
Using Web Frameworks for Scientific
Applications

Hans Petter Langtangen1,2

Anders E. Johansen1

1Center for Biomedical Computing, Simula Research Laboratory
2Department of Informatics, University of Oslo

Oct 11, 2015

Contents
1 Web frameworks 2

1.1 The MVC pattern . 3
1.2 A very simple application . 5
1.3 Application of the MVC pattern 5

2 Making a Flask application 6
2.1 Programming the Flask application 7
2.2 Equipping the input page with output results 9
2.3 Splitting the app into model, view, and controller files 10
2.4 Troubleshooting . 11

3 Making a Django application 11
3.1 Setting up a Django project . 12
3.2 Setting up a Django application 13
3.3 Programming the Django application 15
3.4 Equipping the input page with output results 18

4 Handling multiple input variables in Flask 19
4.1 Programming the Flask application 21
4.2 Implementing error checking in the template 24
4.3 Using style sheets . 25
4.4 Using LATEX mathematics . 26
4.5 Rearranging the elements in the HTML template 26
4.6 Bootstrap HTML style . 28
4.7 Custom validation . 33

c© 2015, Anders E. Johansen, Hans Petter Langtangen. Released under CC Attribution 4.0
license

4.8 Avoiding plot files . 36
4.9 Plotting with the Bokeh library 38
4.10 Autogenerating the code . 41
4.11 User login and storage of computed results 47
4.12 Uploading of files . 59

5 Handling multiple input variables in Django 62
5.1 Programming the Django application 62
5.2 Custom validation . 64
5.3 Customizing widgets . 66
5.4 Resources . 66

6 Exercises 67

7 Resources 75
7.1 Flask resources . 75
7.2 Django resources . 76

Index 77

1 Web frameworks
Computational scientists may want to offer their applications through a web
interface, thereby making a web application. Basically, this means that users can
set input data to the application on a web page, then click on some Compute
button, and back comes a new web page with the results of the computations.
The web interface can either be used as a GUI locally on the scientist’s computer,
or the interface can be depolyed to a server and made available to the whole
world.

Web applications of the mentioned type can be created from scratch using
CGI scripts in (e.g.) Python, but the code quickly gets longer and more involved
as the complexity of the web interface grows. Nowadays, most web applications
are created with the aid of web frameworks, which are software packages that
simplify the programming tasks of offering services through the Internet. The
downside of web frameworks is that there is a significant amount of steps and
details to learn before your first simple demo application works. The upside is
that advanced applications are within reach, without an overwhelming amount
of programming, as soon as you have understood the basic demos.

We shall explore two web frameworks: the very popular Django framework and
the more high-level and easy-to-use framework Flask. The primary advantage of
Django over other web frameworks is the rich set of documentation and examples.
Googling for "Django tutorials" gives lots of hits including a list of web tutorials
and a list of YouTube videos. There is also an electronic Django book. At the

c© 2015, Anders E. Johansen, Hans Petter Langtangen. Released under CC Attribution 4.0
license

2

https://www.djangoproject.com/
http://flask.pocoo.org/
https://code.djangoproject.com/wiki/Tutorials
http://www.youtube.com/playlist?list=PL385A53B00B8B158E
http://www.djangobook.com/en/2.0/

time of this writing, the Flask documentation is not comparable. The two most
important resources are the official web site and the WTForms Documentation.
There is, unfortunately, hardly any examples on how Django or Flask can be
used to enable typical scientific applications for the web, and that is why we
have developed some targeted examples on this topic.

A basic question is, of course, whether you should apply Flask or Django for
your web project. Googling for flask vs django gives a lot of diverging opinions.
The authors’ viewpoint is that Flask is much easier to get started with than
Django. You can grow your application to a really big one with both frameworks,
but some advanced features is easier in one framework than in the other.

The problem for a computational scientist who wants to enable mathematical
calculations through the web is that most of the introductory examples on
utilizing a particular web framework address web applications of very different
nature, e.g., blogs and polls. Therefore, we have made an alternative introduction
which explains, in the simplest possible way, how web frameworks can be used to

1. generate a web page with input data to your application,

2. run the application to perform mathematical computations, and

3. generate a web page with the results of the computations.

To work with Django, you need to know about Python packages and modules as
well as Python classes. With Flask it is enough to be familiar with functions
and modules, though knowledge of classes and a bit of decorators might be an
advantage.

All the files associated with this document are available in a GitHub repository.
The relevant files for the web applications are located in a subtree doc/src/
web4sa/src-web4sa/apps of this repository.

Other frameworks. Our introductory examples were also implemented in
the web2py framework, but according to our experience, Flask and Django are
easier to explain to scientists. A framework quite similar to Flask is Bottle. An
even simpler framework is CherryPy, which has an interesting extension Spyre
for easy visualization of data. Once you know the basics of Flask, CherryPy
is easy to pick up by reading its tutorial. (There are some comments on the
Internet about increased stability of Flask apps if they are run on a CherryPy
server.)

1.1 The MVC pattern
The MVC pattern stands for Model-View-Controller and is a way of separating
the user’s interaction with an application from the inner workings of the appli-
cation. In a scientific application this usually means separating mathematical
computations from the user interface and visualization of results. The Wikipedia
definition of the MVC pattern gives a very high-level explanation of what the

c© 2015, Anders E. Johansen, Hans Petter Langtangen. Released under CC Attribution 4.0
license

3

http://flask.pocoo.org/
http://wtforms.simplecodes.com/docs/0.6/index.html
https://github.com/hplgit/web4sciapps/
https://github.com/hplgit/web4sciapps/tree/master/doc/src/web4sa/src-web4sa/apps/
https://github.com/hplgit/web4sciapps/tree/master/doc/src/web4sa/src-web4sa/apps/
http://www.web2py.com/
http://bottlepy.org/docs/dev/index.html
http://www.cherrypy.org/
https://github.com/adamhajari/spyre
http://docs.cherrypy.org/en/latest/tutorials.html#tutorials
http://flask.pocoo.org/snippets/24/
http://flask.pocoo.org/snippets/24/
http://en.wikipedia.org/wiki/MVC_Pattern
http://en.wikipedia.org/wiki/MVC_Pattern

model, view, and controller do and mentions the fact that different web frame-
works interpret the three components differently. Any web application works
with a set of data and needs a user interface for the communication of data
between the user and some data processing software. The classical MVC pattern
introduces

• the model to hold the data

• the view to display the data

• the controller to move the data by gluing the model and the view.

For applications performing mathematical computations we find it convenient
to explicitly introduce a fourth component that we call compute where the
mathematical computations are encapsulated. With the MVC pattern and
the compute component we have a clear separation between data (model), the
way data is presented (view), the computations (compute), and the way these
components communicate (controller). In a small program such a separation
may look as overkill, but it pays off in more complicated applications. More
importantly, the concepts of the MVC pattern are widely used in web frameworks
and their documentation so one should really adapt to the MVC way of thinking.

Web frameworks often have their own way of interpreting the model, view,
and controller parts of the MVC pattern. In particular, most frameworks often
divide the view into two parts: one software component and one HTML template.
The latter takes care of the look and feel of the web page while the former often
takes the role of being the controller too. For our scientific applications we shall
employ an interpretation of the MVC pattern which is compatible with what we
need later on:

• the model contains the data (often only the input data) of the application,

• the view controls the user interface that handles input and output data,
and also calls to functionality that computes the output given the input.

The model will be a Python class with static attributes holding the data. The
view consists of Python code processing the model’s data, calling the compute
component, and specifying HTML templates for the design of the web pages.

Flask does not force any MVC pattern on the programmer, but the code
needed to build web applications can easily be split into model, view, controller,
and compute components, as will be shown later. Django, on the other hand,
automatically generates application files with names views.py and models.py
so it is necessary to have some idea what Django means by these terms. The
controller functionality in Django lies both in the views.py file and in the
configuration files (settings.py and urls.py). The view component of the
application consists both of the views.py file and template files used to create
the HTML code in the web pages.

Forthcoming examples will illustrate how a scientific application is split to
meet the requirements of the MVC software design pattern.

c© 2015, Anders E. Johansen, Hans Petter Langtangen. Released under CC Attribution 4.0
license

4

1.2 A very simple application
We shall start with the simplest possible application, a “scientific hello world
program”, where the task is to read a number and write out “Hello, World!”
followed by the sine of the number. This application has one input variable and
a line of text as output.

Our first implementation reads the input from the command line and writes
the results to the terminal window:

#!/usr/bin/env python
import sys, math
r = float(sys.argv[1])
s = math.sin(r)
print ’Hello, World! sin(%g)=%g’ % (r, s)

In the terminal we can exemplify the program

Terminal> python hw.py 1.2
Hello, World! sin(1.2)=0.932039

The task of the web version of this program is to read the r variable from a web
page, compute the sine, and write out a new web page with the resulting text.

1.3 Application of the MVC pattern
Before thinking of a web application, we first refactor our program such that it
fits with the classical MVC pattern and a compute component. The refactoring
does not change the functionality of the code, it just distributes the original
statements in functions and modules. Here we create four modules: model, view,
compute, and controller.

• The compute module contains a function compute(r) that performs the
mathematics and returns the value s, which equals sin(r).

• The model module holds the input data, here r.

• The view module has two functions, one for reading input data, get_input,
and one for presenting the output, present_output. The latter takes the
input, calls compute functionalty, and generates the output.

• The controller module calls the view to initialize the model’s data from
the command line. Thereafter, the view is called to present the output.

The model.py file contains the r variable, which must be declared with a default
value in order to create the data object:

r = 0.0 # input
s = None # output

The view.py file is restricted to the communication with the user and reads

c© 2015, Anders E. Johansen, Hans Petter Langtangen. Released under CC Attribution 4.0
license

5

import sys
import compute

Input: float r
Output: "Hello, World! sin(r)=..."

def get_input():
"""Get input data from the command line."""
r = float(sys.argv[1])
return r

def present_output(r):
"""Write results to terminal window."""
s = compute.compute(r)
print ’Hello, World! sin(%g)=%g’ % (r, s)

The mathematics is encapsulated in compute.py:

import math

def compute(r):
return math.sin(r)

Finally, controller.py glues the model and the view:

import model, view

model.r = view.get_input()
view.present_output(model.r)

Let us try our refactored code:

Terminal> python controller.py 1.2
Hello, World! sin(1.2)=0.932039

The next step is to create a web interface to our scientific hello world program
such that we can fill in the number r in a text field, click a Compute button
and get back a new web page with the output text shown above: “Hello, World!
sin(r)=s”.

2 Making a Flask application
Not much code or configuration is needed to make a Flask application. Actually
one short file is enough. For this file to work you need to install Flask and some
corresponding packages. This is easiest performed by

Terminal> sudo pip install --upgrade Flask
Terminal> sudo pip install --upgrade Flask-WTF

The –upgrade option ensures that you upgrade to the latest version in case you
already have these packages.

c© 2015, Anders E. Johansen, Hans Petter Langtangen. Released under CC Attribution 4.0
license

6

2.1 Programming the Flask application
The user interaction. We want our input page to feature a text field where
the user can write the value of r, see Figure 1. By clicking on the equals button
the corresponding s value is computed and written out the result page seen in
Figure 2.

Figure 1: The input page.

Figure 2: The output page.

The Python code. Flask does not require us to use the MVC pattern so there
is actually no need to split the original program into model, view, controller, and
compute files as already explained (but it will be done later). First we make a
controller.py file where the view, the model, and the controller parts appear
within the same file. The compute component is always in a separate file as we
like to encapsulate the computations completely from user interfaces.

The view that the user sees is determined by HTML templates in a subdirec-
tory templates, and consequently we name the template files view*.html. The
model and other parts of the view concept are just parts of the controller.py
file. The complete file is short and explained in detail below.

from flask import Flask, render_template, request
from wtforms import Form, FloatField, validators
from compute import compute

app = Flask(__name__)

Model
class InputForm(Form):

r = FloatField(validators=[validators.InputRequired()])

View

c© 2015, Anders E. Johansen, Hans Petter Langtangen. Released under CC Attribution 4.0
license

7

@app.route(’/hw1’, methods=[’GET’, ’POST’])
def index():

form = InputForm(request.form)
if request.method == ’POST’ and form.validate():

r = form.r.data
s = compute(r)
return render_template("view_output.html", form=form, s=s)

else:
return render_template("view_input.html", form=form)

if __name__ == ’__main__’:
app.run(debug=True)

Dissection. The web application is the app object of class Flask, and initial-
ized as shown. The model is a special Flask class derived from Form where the
input variable in the app is listed as a static class attribute and initialized by
a special form field object from the wtforms package. Such form field objects
correspond to HTML forms in the input page. For the r variable we apply
FloatField since it is a floating-point variable. A default validator, here check-
ing that the user supplies a real number, is automatically included, but we add
another validator, InputRequired, to force the user to provide input before
clicking on the equals button.

The view part of this Python code consists of a URL and a corresponding
function to call when the URL is invoked. The function name is here chosen
to be index (inspired by the standard index.html page that is the main page
of a web app). The decorator @app.route(’/hw1’, ...) maps the URL
http://127.0.0.1:5000/hw1 to a call to index. The methods argument must
be as shown to allow the user to communicate with the web page.

The index function first makes a form object based on the data in the
model, here class InputForm. Then there are two possibilities: either the user
has provided data in the HTML form or the user is to be offered an input
form. In the former case, request.method equals ’POST’ and we can extract
the numerical value of r from the form object, using form.r.data, call up our
mathematical computations, and make a web page with the result. In the latter
case, we make an input page as displayed in Figure 1.

The template files. Making a web page with Flask is conveniently done
by an HTML template. Since the output page is simplest we display the
view_output.html template first:

Hello, World! sin({{ form.r.data }})={{s}}.

Keyword arguments sent to render_template are available in the HTML
template. Here we have the keyword arguments form and s. With the form
object we extract the value of r in the HTML code by {{ form.r.data }}.
Similarly, the value of s is simply {{ s }}.

The HTML template for the input page is slightly more complicated as we
need to use an HTML form:

c© 2015, Anders E. Johansen, Hans Petter Langtangen. Released under CC Attribution 4.0
license

8

<form method=post action="">
Hello, World! The sine of {{ form.r }}
<input type=submit value=equals>

</form>

Testing the application. We collect the files associated with a Flask appli-
cation (often called just app) in a directory, here called hw1. All you have to do
in order to run this web application is to find this directory and run

Terminal> python controller.py
* Running on http://127.0.0.1:5000/
* Restarting with reloader

Open a new window or tab in your browser and type in the URL http://127.0.0.1:5000/hw1.

2.2 Equipping the input page with output results
Our application made two distinct pages for grabbing input from the user and
presenting the result. It is often more natural to add the result to the input page.
This is particularly the case in the present web application, which is a kind of
calculator. Figure 3 shows what the user sees after clicking the equals button.

Figure 3: The modified result page.

To let the user stay within the same page, we create a new directory hw2 for
this modified Flask app and copy the files from the previous hw1 directory. The
idea now is to make use of just one template, in templates/view.html:

<form method=post action="">
Hello, World! The sine of
{{(form.r)}}
<input type=submit value=equals>

{% if s != None %}
{{s}}
{% endif %}
</form>

The form is identical to what we used in view_input.html in the hw1
directory, and the only new thing is the output of s below the form.

The template language supports some programming with Python objects
inside {% and %} tags. Specifically in this file, we can test on the value of s: if
it is None, we know that the computations are not performed and s should not
appear on the page, otherwise s holds the sine value and we can write it out.
Note that, contrary to plain Python, the template language does not rely on
indentation of blocks and therefore needs an explicit end statement {% endif %}
to finish the if-test. The generated HTML code from this template file reads

c© 2015, Anders E. Johansen, Hans Petter Langtangen. Released under CC Attribution 4.0
license

9

https://github.com/hplgit/web4sciapps/tree/master/doc/src/web4sa/src-web4sa/apps/flask_apps/hw1
https://github.com/hplgit/web4sciapps/tree/master/doc/src/web4sa/src-web4sa/apps/flask_apps/hw2

<form method=post action="">
Hello, World! The sine of
<input id="r" name="r" type="text" value="1.2">
<input type=submit value=equals>

0.932039085967

</form>

The index function of our modified application needs adjustments since we
use the same template for the input and the output page:

View
@app.route(’/hw2’, methods=[’GET’, ’POST’])
def index():

form = InputForm(request.form)
if request.method == ’POST’ and form.validate():

r = form.r.data
s = compute(r)

else:
s = None

return render_template("view.html", form=form, s=s)

It is seen that if the user has given data, s is a float, otherwise s is None. You
are encouraged to test the app by running

Terminal> python controller.py

and loading http://127.0.0.1:5000/hw2 into your browser. A nice little
exercise is to control the formatting of the result s. To this end, you can simply
transform s to a string: s = ’%.5f’ % s before sending it to render_template.

2.3 Splitting the app into model, view, and controller files
In our previous two Flask apps we have had the view displayed for the user in
a separate template file, and the computations as always in compute.py, but
everything else was placed in one file controller.py. For illustration of the
MVC concept we may split the controller.py into two files: model.py and
controller.py. The view is in templates/view.html. These new files are
located in a directory hw3_flask The contents in the files reflect the splitting
introduced in the original scientific hello world program in Section 1.3. The
model.py file now consists of the input form class:

from wtforms import Form, FloatField, validators

class InputForm(Form):
r = FloatField(validators=[validators.InputRequired()])

The file templates/view.html is as before, while controller.py contains

from flask import Flask, render_template, request
from compute import compute
from model import InputForm

c© 2015, Anders E. Johansen, Hans Petter Langtangen. Released under CC Attribution 4.0
license

10

https://github.com/hplgit/web4sciapps/tree/master/doc/src/web4sa/src-web4sa/apps/flask_apps/hw3

app = Flask(__name__)

@app.route(’/hw3’, methods=[’GET’, ’POST’])
def index():

form = InputForm(request.form)
if request.method == ’POST’ and form.validate():

r = form.r.data
s = compute(r)

else:
s = None

return render_template("view.html", form=form, s=s)

if __name__ == ’__main__’:
app.run(debug=True)

The statements are indentical to those in the hw2 app, only the organization
of the statement in files differ.

2.4 Troubleshooting
Address already in use. You can easily kill the Flask application and restart
it, but sometimes you will get an error that the address is already in use. To
recover from this problem, run the lsof program to see which program that
applies the 5000 port (Flask runs its server on http://127.0.0.1:5000, which
means that it uses the 5000 port). Find the PID of the program that occupies
the port and force abortion of that program:

Terminal> lsof -i :5000
COMMAND PID USER FD TYPE DEVICE SIZE/OFF NODE NAME
python 48824 hpl 3u IPv4 1128848 0t0 TCP ...
Terminal> kill -9 48824

You are now ready to restart a Flask application.

3 Making a Django application
We recommend to download and istall the latest official version of Django from
http://www.djangoproject.com/download/. Pack out the tarfile, go to the
directory, and run setup.py:

Terminal> tar xvzf Django-1.5-tar.gz
Terminal> cd Django-1.5
Terminal> sudo python setup.py install

The version in this example, 1.5, may be different at the time you follow these
instructions.

c© 2015, Anders E. Johansen, Hans Petter Langtangen. Released under CC Attribution 4.0
license

11

http://www.djangoproject.com/download/

3.1 Setting up a Django project
Django applies two concepts: project and application (or app). The app is the
program we want to run through a web interface. The project is a Python
package containing common settings and configurations for a collection of apps.
This means that before we can make a Django app, we must to establish a
Django project.

A Django project for managing a set of Django apps is created by the
command

Terminal> django-admin.py startproject django_project

The result in this example is a directory django_project whose content can be
explored by some ls and cd commands:

Terminal> ls django_project
manage.py django_project
Terminal> cd django_project/django_project
Terminal> ls
__init__.py settings.py urls.py wsgi.py

The meaning of the generated files is briefly listed below.

• The outer django_project/ directory is just a container for your project.
Its name does not matter to Django.

• manage.py is a command-line utility that lets you interact with this Django
project in various ways. You will typically run manage.py to launch a
Django application.

• The inner django_project/ directory is a Python package for the Django
project. Its name is used in import statements in Python code (e.g.,
import django_project.settings).

• django_project/__init__.py is an empty file that just tells Python that
this directory should be considered a Python package.

• django_project/settings.py contains the settings and configurations
for this Django project.

• django_project/urls.py maps URLs to specific functions and thereby
defines that actions that various URLs imply.

• django_project/wsgi.py is not needed in our examples.

Django comes with a web server for developing and debugging applications. The
server is started by running

Terminal> python manage.py runserver
Validating models...

0 errors found
March 34, 201x - 01:09:24
Django version 1.5, using settings ’django_project.settings’
Development server is running at http://127.0.0.1:8000/
Quit the server with CONTROL-C.

c© 2015, Anders E. Johansen, Hans Petter Langtangen. Released under CC Attribution 4.0
license

12

The output from starting the server tells that the server runs on the URL
http://127.0.0.1:8000/. Load this URL into your browser to see a welcome
message from Django, meaning that the server is working.

Despite the fact that our introductory web applications do not need a
database, you have to register a database with any Django project. To this
end, open the django_project/settings.py file in a text editor, locate the
DATABASES dictionary and type in the following code:

import os

def relative2absolute_path(relative_path):
"""Return the absolute path correspodning to relative_path."""
dir_of_this_file = os.path.dirname(os.path.abspath(__file__))
return dir_of_this_file + ’/’ + relative_path

DATABASES = {
’default’ : {

’ENGINE’: ’django.db.backends.sqlite3’,
’NAME’: relative2absolute_path(’../database.db’)

}
}

The settings.py file needs absolute paths to files, while it is more convenient
for us to specify relative paths. Therefore, we made a function that figures
out the absolute path to the settings.py file and then combines this absolute
path with the relative path. The location and name of the database file can
be chosen as desired. Note that one should not use os.path.join to create
paths as Django always applies the forward slash between directories, also on
Windows.

3.2 Setting up a Django application
The next step is to create a Django app for our scientific hello world program. We
can place the app in any directory, but here we utilize the following organization.
As neighbor to django_project we have a directory apps containing our various
scientific applications. Under apps we create a directory django_apps with our
different versions of Django applications. The directory py_apps contains the
original hw.py program in the subdirectory orig, while split of this program
according to the MVC pattern appears in the mvc directory.

The directory django_apps/hw1 is our first attempt to write a Django-based
web interface for the hw.py program. The directory structure is laid out by

Terminal> cd ..
Terminal> mkdir apps
Terminal> cd apps
Terminal> mkdir py_apps
Terminal> cd py
Terminal> mkdir orig mvc
Terminal> cd ../..
Terminal> mkdir django_apps
Terminal> cd django_apps

c© 2015, Anders E. Johansen, Hans Petter Langtangen. Released under CC Attribution 4.0
license

13

The file hw.py is moved to orig while mvc contains the MVC refactored version
with the files model.py, view.py, compute.py, and controller.py.

The hw1 directory, containing our first Django application, must be made
with

Terminal> python ../../django_project/manage.py startapp hw1

The command creates a directory hw1 with four empty files:

Terminal> cd hw1
Terminal> ls
__init__.py models.py tests.py views.py

The __init__.py file will remain empty to just indicate that the Django ap-
plication is a Python package. The other files need to be filled with the right
content, which happens in the next section.

At this point, we need to register some information about our application in
the django_project/settings.py and django_project/urls.py files.

Step 1: Add the app. Locate the INSTALLED_APPS tuple in settings.py
and add your Django application as a Python package:

INSTALLED_APPS = (
’django.contrib.auth’,
’django.contrib.contenttypes’,
...
’hw1’,

)

Unfortunately, Django will not be able to find the package hw1 unless we register
the parent directory in sys.path:

import sys
sys.path.insert(0, relative2absolute_path(’../../apps/django_apps’))

Note here that the relative path is given with respect to the location of the
settings.py script.

Step 2: Add a template directory. Make a subdirectory templates under
hw1,

Terminal> mkdir templates

and add the absolute path of this directory to the TEMPLATE_DIRS tuple:

TEMPLATE_DIRS = (
relative2absolute_path(’../../apps/django_apps/hw1/templates’),

)

The templates directory will hold templates for the HTML code applied in the
web interfaces. The trailing comma is important as this is a tuple with only one
element.

c© 2015, Anders E. Johansen, Hans Petter Langtangen. Released under CC Attribution 4.0
license

14

Step 3: Define the URL. We need to connect the Django app with an
URL. Our app will be associated with a Python function index in the views
module within the hw1 package. Say we want the corresponding URL to be
named hw1 relative to the server URL. This information is registered in the
django_project/urls.py file by the syntax

urlpatterns = patterns(’’,
url(r’^hw1/’, ’django_apps.hw1.views.index’),

The first argument to the url function is a regular expression for the URL and
the second argument is the name of the function to call, using Python’s syntax
for a function index in a module views in a package hw1. The function name
index resembles the index.html main page associated with an URL, but any
other name than index can be used.

3.3 Programming the Django application
The Django application is about filling the files views.py and models.py with
content. The mathematical computations are performed in compute.py so we
copy this file from the mvc directory to the hw1 directory for convenience (we
could alternatively add ../mvc to sys.path such that import compute would
work from the hw1 directory).

The user interaction. The web application offers a text field where the user
can write the value of r, see Figure 4. After clicking on the equals button, the
mathematics is performed and a new page as seen in Figure 5 appears.

Figure 4: The input page.

Figure 5: The result page.

The model. The models.py file contains the model, which consists of the
data we need in the application, stored in Django’s data types. Our data consists
of one number, called r, and models.py then look like

c© 2015, Anders E. Johansen, Hans Petter Langtangen. Released under CC Attribution 4.0
license

15

from django.db import models
from django.forms import ModelForm

class Input(models.Model):
r = models.FloatField()

class InputForm(ModelForm):
class Meta:

model = Input

The Input class lists variables representing data as static class attributes. The
django.db.models module contains various classes for different types of data,
here we use FloatField to represent a floating-point number. The InputForm
class has a the shown generic form across applications if we by convention apply
the name Input for the class holding the data.

The view. The views.py file contains a function index which defines the ac-
tions we want to perform when invoking the URL (here http://127.0.0.1:8000/hw1/).
In addition, views.py has the present_output function from the view.py file
in the mvc directory.

from django.shortcuts import render_to_response
from django.template import RequestContext
from django.http import HttpResponse
from models import InputForm
from compute import compute

def index(request):
if request.method == ’POST’:

form = InputForm(request.POST)
if form.is_valid():

form = form.save(commit=False)
return present_output(form)

else:
form = InputForm()

return render_to_response(’hw1.html’,
{’form’: form}, context_instance=RequestContext(request))

def present_output(form):
r = form.r
s = compute(r)
return HttpResponse(’Hello, World! sin(%s)=%s’ % (r, s))

The index function deserves some explanation. It must take one argument,
usually called request. There are two modes in the function. Either the user
has provided input on the web page, which means that request.method equals
’POST’, or we show a new web page with which the user is supposed to interact.

Making the input page. The input consists of a web form with one field
where we can fill in our r variable. This page is realized by the two central
statements

Make info needed in the web form
form = InputForm()

c© 2015, Anders E. Johansen, Hans Petter Langtangen. Released under CC Attribution 4.0
license

16

Make HTML code
render_to_response(’hw1.html’,

{’form’: form}, context_instance=RequestContext(request))

The hw1.html file resides in the templates subdirectory and contains a template
for the HTML code:

<form method="post" action="">{% csrf_token %}
Hello, World! The sine of {{ form.r }}
<input type="submit" value="equals" />

</form>

This is a template file because it contains instructions like {% csrf_token %} and
variables like {{ form.r }}. Django will replace the former by some appropriate
HTML statements, while the latter simply extracts the numerical value of the
variable r in our form (specified in the Input class in models.py). Typically,
this hw1.html file results in the HTML code

<form method="post" action="">
<div style=’display:none’>
<input type=’hidden’ name=’csrfmiddlewaretoken’
value=’oPWMuuy1gLlXm9GvUZINv49eVUYnux5Q’ /></div>

Hello, World! The sine of <input type="text" name="r" id="id_r" />
<input type="submit" value="equals" />

</form>

Making the results page. When then user has filled in a value in the text field
on the input page, the index function is called again and request.method equals
’POST’. A new form object is made, this time with user info (request.POST).
We can check that the form is valid and if so, proceed with computations followed
by presenting the results in a new web page (see Figure 5):

def index(request):
if request.method == ’POST’:

form = InputForm(request.POST)
if form.is_valid():

form = form.save(commit=False)
return present_output(form)

def present_output(form):
r = form.r
s = compute(r)
return HttpResponse(’Hello, World! sin(%s)=%s’ % (r, s))

The numerical value of r as given by the user is available as form.r. Instead of
using a template for the output page, which is natural to do in more advanced
cases, we here illustrate the possibility to send raw HTML to the output page by
returning an HttpResponse object initialized by a string containing the desired
HTML code.

Launch this application by filling in the address http://127.0.0.1:8000/hw1/
in your web browser. Make sure the Django development server is running, and
if not, restart it by

Terminal> python ../../../django_project/manage.py runserver

c© 2015, Anders E. Johansen, Hans Petter Langtangen. Released under CC Attribution 4.0
license

17

Fill in some number on the input page and view the output. To show how easy
it is to change the application, invoke the views.py file in an editor and add
some color to the output HTML code from the present_output function:

return HttpResponse("""
Hello, World!
sin(%s)=%s
"""% (r, s))

Go back to the input page, provide a new number, and observe how the "Hello"
word now has a blue color.

3.4 Equipping the input page with output results
Instead of making a separate output page with the result, we can simply add the
sine value to the input page. This makes the user feel that she interacts with
the same page, as when operating a calculator. The output page should then
look as shown in Figure 6.

Figure 6: The modified result page.

We need to make a new Django application, now called hw2. Instead of
running the standard manage.py startapp hw2 command, we can simply copy
the hw1 directory to hw2. We need, of course, to add information about this new
application in settings.py and urls.py. In the former file we must have

TEMPLATE_DIRS = (
relative2absolute_path(’../../apps/django_apps/hw1/templates’),
relative2absolute_path(’../../apps/django_apps/hw2/templates’),

)

INSTALLED_APPS = (
’django.contrib.auth’,
’django.contrib.contenttypes’,
’django.contrib.sessions’,
’django.contrib.sites’,
’django.contrib.messages’,
’django.contrib.staticfiles’,
Uncomment the next line to enable the admin:
’django.contrib.admin’,
Uncomment the next line to enable admin documentation:
’django.contrib.admindocs’,
’hw1’,
’hw2’,

)

In urls.py we add the URL hw2 which is to call our index function in the
views.py file of the hw2 app:

c© 2015, Anders E. Johansen, Hans Petter Langtangen. Released under CC Attribution 4.0
license

18

https://github.com/hplgit/web4sciapps/tree/master/doc/src/web4sa/src-web4sa/apps/django_apps/hw2

urlpatterns = patterns(’’,
url(r’^hw1/’, ’django_apps.hw1.views.index’),
url(r’^hw2/’, ’django_apps.hw2.views.index’),

The views.py file changes a bit since we shall generate almost the same web
page on input and output. This makes the present_output function unnatural,
and everything is done within the index function:

def index(request):
s = None # initial value of result
if request.method == ’POST’:

form = InputForm(request.POST)
if form.is_valid():

form = form.save(commit=False)
r = form.r
s = compute(r)

else:
form = InputForm()

return render_to_response(’hw2.html’,
{’form’: form,
’s’: ’%.5f’ % s if isinstance(s, float) else ’’
}, context_instance=RequestContext(request))

Note that the output variable s is computed within the index function and
defaults to None. The template file hw2.html looks like

<form method="post" action="">{% csrf_token %}
Hello, World! The sine of {{ form.r }}
<input type="submit" value="equals" />

{% if s != ’’ %}
{{ s }}
{% endif %}
</form>

The difference from hw1.html is that we right after the equals button write out
the value of s. However, we make a test that the value is only written if it is
computed, here recognized by being a non-empty string. The s in the template
file is substituted by the value of the object corresponding to the key ’s’ in the
dictionary we pass to the render_to_response. As seen, we pass a string where
s is formatted with five digits if s is a float, i.e., if s is computed. Otherwise, s
has the default value None and we send an empty string to the template. The
template language allows tests using Python syntax, but the if-block must be
explicitly ended by {% endif %}.

4 Handling multiple input variables in Flask
The scientific hello world example shows how to work with one input variable
and one output variable. We can easily derive an extensible recipe for apps
with a collection of input variables and some associated HTML code as result.
Multiple input variables are listed in the InputForm class using different types
for different forms (text field, float field, integer field, check box field for boolean

c© 2015, Anders E. Johansen, Hans Petter Langtangen. Released under CC Attribution 4.0
license

19

values, etc.). The value of these variables will be available in a form object for
computation. It is then a matter of setting up a template code where the various
variables if the form object are formatted in HTML code as desired.

Our sample web application addresses the task of plotting the function
u(t) = Ae−bt sin(wt) for t ∈ [0, T]. The web application must have fields for the
numbers A, b, w, and T , and a Compute button, as shown in Figure 7. Filling
in values, say 0.1 for b and 20 for T , results in what we see in Figure 8, i.e., a
plot of u(t) is added after the input fields and the Compute button.

Figure 7: The input page.

Figure 8: The result page.

c© 2015, Anders E. Johansen, Hans Petter Langtangen. Released under CC Attribution 4.0
license

20

We shall make a series of different versions of this app:

1. vib1 for the basic set-up and illustration of tailoring the HTML code.

2. vib2 for custom validation of input, governed by the programmer, and
inlined graphics in the HTML code.

3. vib3 for interactive Bokeh plots.

4. gen for automatic generation of the Flask app (!).

5. login for storing computed results in user accounts.

6. upload for uploading files to a web app.

4.1 Programming the Flask application
The forthcoming text explains the necessary steps to realize a Flask app that
behaves as depicted in Figures 7 and 8. We start with the compute.py module
since it contains only the computation of u(t) and the making of the plot, without
any interaction with Flask.

The files associated with this app are found in the vib1 directory.

The compute part. More specifically, inside compute.py, we have a function
for evaluating u(t) and a compute function for making the plot. The return
value of the latter is the name of the plot file, which should get a unique name
every time the compute function is called such that the browser cannot reuse an
already cached image when displaying the plot. Flask applications must have all
extra files (CSS, images, etc.) in a subdirectory static.

from numpy import exp, cos, linspace
import matplotlib.pyplot as plt
import os, time, glob

def damped_vibrations(t, A, b, w):
return A*exp(-b*t)*cos(w*t)

def compute(A, b, w, T, resolution=500):
"""Return filename of plot of the damped_vibration function."""
t = linspace(0, T, resolution+1)
u = damped_vibrations(t, A, b, w)
plt.figure() # needed to avoid adding curves in plot
plt.plot(t, u)
plt.title(’A=%g, b=%g, w=%g’ % (A, b, w))
if not os.path.isdir(’static’):

os.mkdir(’static’)
else:

Remove old plot files
for filename in glob.glob(os.path.join(’static’, ’*.png’)):

os.remove(filename)
Use time since Jan 1, 1970 in filename in order make
a unique filename that the browser has not chached
plotfile = os.path.join(’static’, str(time.time()) + ’.png’)

c© 2015, Anders E. Johansen, Hans Petter Langtangen. Released under CC Attribution 4.0
license

21

https://github.com/hplgit/web4sciapps/tree/master/doc/src/web4sa/src-web4sa/apps/flask_apps/vib1

plt.savefig(plotfile)
return plotfile

if __name__ == ’__main__’:
print compute(1, 0.1, 1, 20)

Avoid file writing.

It is in general not a good idea to write plots to file or let a web app write
to file. If this app is deployed at some web site and multiple users are
running the app, the os.remove statements may remove plots created by
all other users. However, the app is useful as a graphical user interface run
locally on a machine. Later, we shall avoid writing plot files and instead
store plots in strings and embed the strings in the img tag in the HTML
code.

We organize the model, view, and controller as three separate files, as
illustrated in Section 2.3. This more complicated app involves more code and
especially the model will soon be handy to isolate in its own file.

The model. Our first version of model.py reads

from wtforms import Form, FloatField, validators
from math import pi

class InputForm(Form):
A = FloatField(

label=’amplitude (m)’, default=1.0,
validators=[validators.InputRequired()])

b = FloatField(
label=’damping factor (kg/s)’, default=0,
validators=[validators.InputRequired()])

w = FloatField(
label=’frequency (1/s)’, default=2*pi,
validators=[validators.InputRequired()])

T = FloatField(
label=’time interval (s)’, default=18,
validators=[validators.InputRequired()])

As seen, the field classes can take a label argument for a longer description,
here also including the units in which the variable is measured. It is also possible
to add a description argument with some help message. Furthermore, we
include a default value, which will appear in the text field such that the user
does not need to fill in all values.

The view. The view component will of course make use of templates, and we
shall experiment with different templates. Therefore, we allow a command-line
argument to this Flask app for choosing which template we want. The rest of
the controller.py file follows much the same set up as for the scientific hello
world app:

c© 2015, Anders E. Johansen, Hans Petter Langtangen. Released under CC Attribution 4.0
license

22

from model import InputForm
from flask import Flask, render_template, request
from compute import compute

app = Flask(__name__)

@app.route(’/vib1’, methods=[’GET’, ’POST’])
def index():

form = InputForm(request.form)
if request.method == ’POST’ and form.validate():

result = compute(form.A.data, form.b.data,
form.w.data, form.T.data)

else:
result = None

return render_template(’view.html’, form=form, result=result)

if __name__ == ’__main__’:
app.run(debug=True)

The HTML template. The details governing how the web page really looks
like lie in the template file. Since we have several fields and want them nicely
align in a tabular fashion, we place the field name, text areas, and labels inside
an HTML table in our first attempt to write a template, view_plain.html:

<form method=post action="">
<table>

{% for field in form %}
<tr>
<td>{{ field.name }}</td><td>{{ field }}</td>
<td>{{ field.label }}</td>
</tr>

{% endfor %}
</table>
<p><input type=submit value=Compute></form></p>

<p>
{% if result != None %}

{% endif %}
</p>

Observe how easy it is to iterate over the form object and grab data for each field:
field.name is the name of the variable in the InputForm class, field.label is
the full name with units as given through the label keyword when constructing
the field object, and writing the field object itself generates the text area for input
(i.e., the HTML input form). The control statements we can use in the template
are part of the Jinja2 templating language. For now, the if-test, for-loop and
output of values ({{ object }}) are enough to generate the HTML code we
want.

Recall that the objects we need in the template, like result and form in
the present case, are transferred to the template via keyword arguments to the
render_template function. We can easily pass on any object in our application
to the template. Debugging of the template is done by viewing the HTML source
of the web page in the browser.

c© 2015, Anders E. Johansen, Hans Petter Langtangen. Released under CC Attribution 4.0
license

23

http://jinja.pocoo.org/docs/

You are encouraged to go to the vib1 directory, run python controller.py,
and load
‘http://127.0.0.1:5000/vib1‘

into your web browser for testing.

4.2 Implementing error checking in the template
What happens if the user gives wrong input, for instance the letters asd instead
of a number? Actually nothing! The FloatField object checks that the input
is compatible with a real number in the form.validate() call, but returns just
False if this is not the case. Looking at the code in controller.py,

def index():
form = InputForm(request.form)
if request.method == ’POST’ and form.validate():

result = compute(form.A.data, form.b.data,
form.w.data, form.T.data)

else:
result = None

we realize that wrong input implies result = None and no computations and
no plot! Fortunately, each field object gets an attribute error with information
on errors that occur on input. We can write out this information on the web
page, as exemplified in the template view_errcheck.html:

<form method=post action="">
<table>

{% for field in form %}
<tr>
<td>{{ field.name }}</td><td>{{ field(size=12) }}</td>
<td>{{ field.label }}</td>
{% if field.errors %}

<td><ul class=errors>
{% for error in field.errors %}

{{ error }}
{% endfor %}</td>

{% endif %}
</tr>

{% endfor %}
</table>
<p><input type=submit value=Compute></form></p>
<p>
{% if result != None %}

{% endif %}
</p>

Two things are worth noticing here:

1. We can control the width of the text field where the user writes the numbers,
here set to 12 characters.

2. We can make an extra column in the HTML table with a list of possible
errors for each field object.

c© 2015, Anders E. Johansen, Hans Petter Langtangen. Released under CC Attribution 4.0
license

24

Let us test the error handling of the A field by writing asd instead of a number.
This input triggers an error, whose message is written in red to the right of the
label, see Figure 9.

Figure 9: Error message because of wrong input.

It is possible to use the additional HTML5 fields for input in a Flask context.
Instead of explaining how here, we recommend to use the Parampool package to
automatically generate Flask files with HTML5 fields.

4.3 Using style sheets
Web developers make heavy use of CSS style sheets to control the look and feel
of web pages. Templates can utilize style sheets as any other standard HTML
code. Here is a very simple example where we introduce a class name for the
HTML table’s column with the field name and set the foreground color of the
text in this column to blue. The style sheet is called basic.css and must reside
in the static subdirectory of the Flask application directory. The content of
basic.css is just the line

td.name { color: blue; }

The view_css.html file using this style sheet features a link tag to the style
sheet in the HTML header, and the column containing the field name has the
HTML tag <td class="name"> to trigger the specification in the style sheet:

<html>
<head>
<link rel="stylesheet" href="static/basic.css" type="text/css">
</head>
<body>

<form method=post action="">
<table>

{% for field in form %}
<tr>
<td class="name">{{ field.name }}</td>
<td>{{ field(size=12) }}</td>
<td>{{ field.label }}</td>

c© 2015, Anders E. Johansen, Hans Petter Langtangen. Released under CC Attribution 4.0
license

25

https://github.com/hplgit/parampool

Just run python controller.py view_css to see that the names of the vari-
ables to set in the web page are blue.

4.4 Using LATEX mathematics
Scientific applications frequently have many input data that are defined through
mathematics and where the typesetting on the web page should be as close as
possible to the typesetting where the mathematics is documented. In the present
example we would like to typeset A, b, w, and T with italic font as done in
LATEX. Fortunately, native LATEX typesetting is available in HTML through the
tool MathJax. Our template view_tex.html enables MathJax. Formulas are
written with standard LATEX inside \(and \), while equations are surrounded
by $$. Here we use formulas only:

<script type="text/x-mathjax-config">
MathJax.Hub.Config({

TeX: {
equationNumbers: { autoNumber: "AMS" },
extensions: ["AMSmath.js", "AMSsymbols.js", "autobold.js", "color.js"]

}
});
</script>
<script type="text/javascript"
src="http://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML">

</script>

This web page visualizes the function \(
u(t) = Ae^{-bt}\sin (w t), \hbox{ for } t\in [0,T]
\).

<form method=post action="">
<table>

{% for field in form %}
<tr>
<td>\({{ field.name }} \)</td><td>{{ field(size=12) }}</td>
<td>{{ field.label }}</td>

Figure 10 displays how the LATEX rendering looks like in the browser.

4.5 Rearranging the elements in the HTML template
Now we want to place the plot to the right of the input forms in the web page,
see Figure 11. This can be accomplished by having an outer table with two rows.
The first row contains the table with the input forms in the first column and the
plot in the second column, while the second row features the Compute button in
the first column.

The enabling template file is view_table.html:

<script type="text/x-mathjax-config">
MathJax.Hub.Config({

TeX: {
equationNumbers: { autoNumber: "AMS" },
extensions: ["AMSmath.js", "AMSsymbols.js", "autobold.js"]

}

c© 2015, Anders E. Johansen, Hans Petter Langtangen. Released under CC Attribution 4.0
license

26

http://www.mathjax.org/

Figure 10: LATEX typesetting of mathematical symbols.

Figure 11: New design with input and output side by side.

});
</script>
<script type="text/javascript"
src="http://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML">

</script>

This web page visualizes the function \(
u(t) = Ae^{-bt}\sin (w t), \hbox{ for } t\in [0,T]
\).

<form method=post action="">
<table> <!-- table with forms to the left and plot to the right -->
<tr><td>
<table>

c© 2015, Anders E. Johansen, Hans Petter Langtangen. Released under CC Attribution 4.0
license

27

{% for field in form %}
<tr>
<td>\({{ field.name }} \)</td><td>{{ field(size=12) }}</td>
<td>{{ field.label }}</td>
{% if field.errors %}

<td><ul class=errors>
{% for error in field.errors %}

{{ error }}
{% endfor %}</td>

{% endif %}
</tr>

{% endfor %}
</table>
</td>

<td>
<p>
{% if result != None %}

{% endif %}
</p>
</td></tr>
<tr>
<td><p><input type=submit value=Compute></p></td>
</tr>
</table>
</form>

4.6 Bootstrap HTML style
The Bootstrap framework for creating web pages has been very popular in recent
years, both because of the design and the automatic support for responsive
pages on all sorts of devices. Bootstrap can easily be used in combination
with Flask. The template file view_bootstrap.html is identical to the former
view_table.html, except that we load the Bootstrap CSS file and include in
comments how to add the typical navigation bar found in many Bootstrap-based
web pages. Moreover, we use the grid layout functionality of Bootstrap to control
the placement of elements (name, input field, label, and error message) in the
input form.

The template looks like
<!DOCTYPE html>
<html lang="en">

<link href=
"http://netdna.bootstrapcdn.com/bootstrap/3.1.1/css/bootstrap.min.css"
rel="stylesheet">

<script type="text/x-mathjax-config">
MathJax.Hub.Config({

TeX: {
equationNumbers: { autoNumber: "AMS" },
extensions: ["AMSmath.js", "AMSsymbols.js", "autobold.js", "color.js"]

}
});
</script>

c© 2015, Anders E. Johansen, Hans Petter Langtangen. Released under CC Attribution 4.0
license

28

http://getbootstrap.com/

<script type="text/javascript" src=
"http://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML">
</script>
<!--
<nav class="navbar navbar-default" role="navigation">
<div class="collapse navbar-collapse" id="bs-example-navbar-collapse-1">

<ul class="nav navbar-nav">
{% for text, url in some_sequence %}
{{ text }}
{% endfor %}

</div>
</nav>
-->

<h2>Damped sine wave</h2>

This web page visualizes the function \(
u(t) = Ae^{-bt}\sin (w t), \hbox{ for } t\in [0,T]
\).

<p>
<form class="navbar-form navbar-top" method="post" action="">

<div class="form-group">
{% for field in form %}

<div class="row">
<div class="input-group">
<label class="col-xs-1 control-label">
 \({{ field.name }} \)
</label>
<div class="col-xs-2">
{{ field(class_="form-control") }}
</div>
<div class="col-xs-3">

{{ field.label }}
</div>
{% if field.errors %}

{% for error in field.errors %}
<div class="col-xs-3">

<div style="color: red;">{{ error }}</div>
</div>

{% endfor %}
{% endif %}

</div>
</div>

{% endfor %}

<input type="submit" value="Compute" class="btn btn-default">
</form>

<p>
{% if result != None %}

{% endif %}
</html>

The input fields and fonts now get the typical Bootstrap look and feel:

c© 2015, Anders E. Johansen, Hans Petter Langtangen. Released under CC Attribution 4.0
license

29

The only special feature in this template is the need to pass a CSS class
form-control to the field object in the part that defines the input field. We also
use the standard input-group-addon style in the name part of the Bootstrap
form. A heading Damped sine wave was added to demonstrate the Bootstrap
fonts.

It is easy to switch to other Bootstrap styles, e.g., those in the "Bootswatch
family": "http:bootswatch.com":

<link href=
"http://netdna.bootstrapcdn.com/bootswatch/3.1.1/X/bootstrap.min.css"
rel="stylesheet">

where X can be journal, cosmo, flatly, and other legal Bootswatch styles. The
journal style looks like this:

While view_bootstrap.html makes use of plain Bootstrap HTML code,
there is also a higher-level framework, called Flask-Bootstrap that combines

c© 2015, Anders E. Johansen, Hans Petter Langtangen. Released under CC Attribution 4.0
license

30

http://pythonhosted.org/Flask-Bootstrap/

Flask and Bootstrap. Installation of this extension is done by sudo pip install
flask-bootstrap.

After app = Flask(__name__) we need to do

from flask_bootstrap import Bootstrap
Bootstrap(app)

We introduce a command-line argument to control whether we want the plain
view or the Bootstrap view. The complete controller.py file then looks like

from model import InputForm
from flask import Flask, render_template, request
from compute import compute
import sys

app = Flask(__name__)

try:
template_name = sys.argv[1]

except IndexError:
template_name = ’view_plain’

if template_name == ’view_flask_bootstrap’:
from flask_bootstrap import Bootstrap
Bootstrap(app)

@app.route(’/vib1’, methods=[’GET’, ’POST’])
def index():

form = InputForm(request.form)
if request.method == ’POST’ and form.validate():

result = compute(form.A.data, form.b.data,
form.w.data, form.T.data)

else:
result = None

return render_template(template_name + ’.html’,
form=form, result=result)

if __name__ == ’__main__’:
app.run(debug=True)

The template employs new keywords extends and block:

{% extends "bootstrap/base.html" %}

{% block styles %}
{{super()}}
<style>

.appsize { width: 800px }
</style>

<script type="text/x-mathjax-config">
MathJax.Hub.Config({

TeX: {
equationNumbers: { autoNumber: "AMS" },
extensions: ["AMSmath.js", "AMSsymbols.js", "autobold.js", "color.js"]

}
});
</script>

c© 2015, Anders E. Johansen, Hans Petter Langtangen. Released under CC Attribution 4.0
license

31

<script type="text/javascript" src=
"http://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML">
</script>
{% endblock %}

<!--
{% block navbar %}
<nav class="navbar navbar-default" role="navigation">
<div class="collapse navbar-collapse" id="bs-example-navbar-collapse-1">

<ul class="nav navbar-nav">
{% for f in some_sequence %}
{{f}}
{% endfor %}

</div>
</nav>
{% endblock %}
-->

{% block content %}

<h2>Damped sine wave</h2>

This web page visualizes the function \(
u(t) = Ae^{-bt}\sin (w t), \hbox{ for } t\in [0,T]
\).

<p>
<form class="navbar-form navbar-top" method="post" action="">

<div class="form-group">
{% for field in form %}

<div class="row">
<div class="input-group appsize">
<label class="col-sm-1 control-label">
 \({{ field.name }} \)
</label>
<div class="col-sm-4">
{{ field(class_="form-control") }}
</div>
<div class="col-sm-4">

{{ field.label }}
</div>
{% if field.errors %}

{% for error in field.errors %}
<div class="col-sm-3">

<div style="color: red;">{{ error }}</div>
</div>

{% endfor %}
{% endif %}

</div>
</div>

{% endfor %}

<input type="submit" value="Compute" class="btn btn-default">
</form>

<p>
{% if result != None %}

{% endif %}

c© 2015, Anders E. Johansen, Hans Petter Langtangen. Released under CC Attribution 4.0
license

32

</html>
{% endblock %}

It is important to have the MathJax script declaration and all styles within
{% block styles %}.

It seems easier to apply plain Bootstrap HTML code than the functionality
in the Flask-Bootstrap layer.

4.7 Custom validation
The FloatField objects can check that the input is compatible with a number,
but what if we want to control that A > 0, b > 0, and T is not greater than 30
periods (otherwise the plot gets cluttered)? We can write functions for checking
appropriate conditions and supply the function to the list of validator functions
in the call to the FloatField constructor or other field constructors. The extra
code is a part of the model.py and the presented extensions appear in the
directory vib2.

Using Flask validators. The simplest approach to validation is to use existing
functionality in the web framework. Checking that A > 0 can be done by the
NumberRange validator which checks that the value is inside a prescribed interval:

from wtforms import Form, FloatField, validators

class InputForm(Form):
A = FloatField(

label=’amplitude (m)’, default=1.0,
validators=[validators.NumberRange(0, 1E+20)])

Tailored validation. We can also easily provide our own more tailored val-
idators. As an example, let us explain how we can check that T is less than 30
periods. One period is 2π/w so we need to check if T > 30 · 2π/w and raise an
exception in that case. A validation function takes two arguments: the whole
form and the specific field to test:

def check_T(form, field):
"""Form validation: failure if T > 30 periods."""
w = form.w.data
T = field.data
period = 2*pi/w
if T > 30*period:

num_periods = int(round(T/period))
raise validators.ValidationError(

’Cannot plot as much as %d periods! T<%.2f’ %
(num_periods, 30*period))

The appropriate exception is of type validators.ValidationError. Observe
that through form we have in fact access to all the input data so we can easily use
the value of w when checking the validity of the value of T . The check_T function
is easy to add to the list of validator functions in the call to the FloatField
constructor for T:

c© 2015, Anders E. Johansen, Hans Petter Langtangen. Released under CC Attribution 4.0
license

33

https://github.com/hplgit/web4sciapps/tree/master/doc/src/web4sa/src-web4sa/apps/flask_apps/vib2

class InputForm(Form):
...
T = FloatField(

label=’time interval’, default=6*pi,
validators=[validators.InputRequired(), check_T])

The validator objects are tested one by one as they appear in the list, and
if one fails, the others are not invoked. We therefore add check_T after the
check of input such that we know we have a value for all data when we run the
computations and test in check_T.

Tailored validation of intervals. Although there is already a NumberRange
validator for checking whether a value is inside an interval, we can write our own
version with some improved functionality for open intervals where the maximum
or minimum value can be infinite. The infinite value can on input be represented
by None. A general such function may take the form

def check_interval(form, field, min_value=None, max_value=None):
"""For validation: failure if value is outside an interval."""
failure = False
if min_value is not None:

if field.data < min_value:
failure = True

if max_value is not None:
if field.data > max_value:

failure = True
if failure:

raise validators.ValidationError(
’%s=%s not in [%s, %s]’ %
(field.name, field.data,
’-infty’ if min_value is None else str(min_value),
’infty’ if max_value is None else str(max_value)))

The problem is that check_interval takes four arguments, not only the
form and field arguments that a validator function in the Flask framework can
accept. The way out of this difficulty is to use a Python tool functools.partial
which allows us to call a function with some of the arguments set beforehand.
Here, we want to create a new function that calls check_interval with some
prescribed values of min_value and max_value. This function looks like it does
not have these arguments, only form and field. The following function produces
this function, which we can use as a valid Flask validator function:

import functools

def interval(min_value=None, max_value=None):
return functools.partial(

check_interval, min_value=min_value, max_value=max_value)

We can now in any field constructor just add interval(a, b) as a validator
function, here checking that b ∈ [0,∞):

class InputForm(Form):
...
b = FloatField(

label=’damping factor (kg/s)’, default=0,
validators=[validators.InputRequired(), interval(0,None)])

c© 2015, Anders E. Johansen, Hans Petter Langtangen. Released under CC Attribution 4.0
license

34

Demo. Let us test our tailored error checking. Run python controller.py
in the vib2 directory and fill in −1.0 in the b field. Pressing Compute invokes
our interval(0,None) function, which is nothing but a call to check_interval
with the arguments field, form, 0, and None. Inside this function, the test
if field.data < min_value becomes true, failure is set, and the exception is
raised. The message in the exception is available in the field.errors attribute
so our template will write it out in red, see Figure 12. The template used
in vib2 is basically the same as view_tex.html in vib1, i.e., it feaures LATEX
mathematics and checking of field.errors.

Figure 12: Triggering of a user-defined error check.

Finally, we mention a detail in the controller.py file in the vib2 app:
instead of sending form.var.data to the compute function we may automatically
generate a set of local variables such that the application of data from the web
page, here in the compute call, looks nicer:

def index():
form = InputForm(request.form)
if request.method == ’POST’ and form.validate():

for field in form:
Make local variable (name field.name)
exec(’%s = %s’ % (field.name, field.data))

result = compute(A, b, w, T)
else:

result = None

return render_template(template, form=form, result=result)

if __name__ == ’__main__’:
app.run(debug=True)

The idea is just to run exec on a declaration of a local variable with name
field.name for each field in the form. This trick is often neat if web variables
are buried in objects (form.T.data) and you want these variables in your code
to look like they do in mathematical writing (T for T).

c© 2015, Anders E. Johansen, Hans Petter Langtangen. Released under CC Attribution 4.0
license

35

4.8 Avoiding plot files
Files with plots are easy to deal with as long as they are in the static subdirec-
tory of the Flask application directory. However, as already pointed out, the
previous vib1 app, which writes plot files, is not suited for multiple simultaneous
users since every user will destroy all existing plot files before making a new one.
Therefore, we need a robust solution for multiple users of the app.

The idea is to not write plot files, but instead return the plot as a string and
embed that string directly in the HTML code. This is relatively straightforward
with Matplotlib and Python. The relevant code is found in the compute.py file
of the vib2 app.

PNG plots. Python has the io.StringIO object for writing text to a string
buffer with the same syntax as used for writing text to files. For binary streams,
such as PNG files, one can use a similar object, io.BytesIO, to hold the stream
(i.e., the plot file) in memory. The idea is to let Matplotlib write to a io.BytesIO
object and afterwards extract the series of bytes in the plot file from this object
and embed it in the HTML file directly. This approach avoids storing plots in
separate files, at the cost of bigger HTML files.

The first step is to let Matplotlib write the PNG data to the BytesIO buffer:

import matplotlib.pyplot as plot
from io import BytesIO
run plt.plot, plt.title, etc.
figfile = BytesIO()
plt.savefig(figfile, format=’png’)
figfile.seek(0) # rewind to beginning of file
figdata_png = figfile.getvalue() # extract string (stream of bytes)

Before the PNG data can be embedded in HTML we need to convert the data
to base64 format:

import base64
figdata_png = base64.b64encode(figdata_png)

Now we can embed the PNG data in HTML by

where PLOTSTR is the content of the string figdata_png.
The complete compute.py function takes the form

def compute(A, b, w, T, resolution=500):
"""Return filename of plot of the damped_vibration function."""
t = linspace(0, T, resolution+1)
u = damped_vibrations(t, A, b, w)
plt.figure() # needed to avoid adding curves in plot
plt.plot(t, u)
plt.title(’A=%g, b=%g, w=%g’ % (A, b, w))

Make Matplotlib write to BytesIO file object and grab
return the object’s string
from io import BytesIO

c© 2015, Anders E. Johansen, Hans Petter Langtangen. Released under CC Attribution 4.0
license

36

figfile = BytesIO()
plt.savefig(figfile, format=’png’)
figfile.seek(0) # rewind to beginning of file
import base64
figdata_png = base64.b64encode(figfile.getvalue())
return figdata_png

The relevant syntax in an HTML template is

if results holds the returned object from the compute function above.

SVG plots. Inline figures in HTML, instead of using files, are most often
realized by XML code with the figure data in SVG format. Plot strings in the
SVG format are created very similarly to the PNG example:

figfile = BytesIO()
plt.savefig(figfile, format=’svg’)
figdata_svg = figfile.getvalue()

The figdata_svg string contains XML code text can almost be directly embed-
ded in HTML5. However, the beginning of the text contains information before
the svg tag that we want to remove:

<?xml version="1.0" encoding="utf-8" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"

"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
<!-- Created with matplotlib (http://matplotlib.sourceforge.net/) -->
<svg height="441pt" version="1.1" viewBox="0 0 585 441" ...

The removal is done with a little string manipulation:
figdata_svg = ’<svg’ + figfile.getvalue().split(’<svg’)[1]

Now, figdata_svg can be directly inserted in HTML code without any sur-
rounding tags (because it is perfectly valid HTML code in itself).

The SVG code generated by Matplotlib may contain UTF-8 characters so it is
necessary to make a unicode string out of the text: unicode(figdata_svg, ’utf-8’),
otherwise the HTML template will lead to an encoding exception.

We have made an alternative compute function compute_png_svg that re-
turns both a PNG and an SVG plot:

def compute_png_svg(A, b, w, T, resolution=500):
...
figfile = BytesIO()
plt.savefig(figfile, format=’svg’)
figfile.seek(0)
figdata_svg = ’<svg’ + figfile.getvalue().split(’<svg’)[1]
figdata_svg = unicode(figdata_svg, ’utf-8’)
return figdata_png, figdata_svg

The relevant syntax for inserting an SVG plot in the HTML template is now
{{ result[1]|safe }}

The use of safe is essential here.

c© 2015, Anders E. Johansen, Hans Petter Langtangen. Released under CC Attribution 4.0
license

37

Important: use safe for verbatim HTML code:

Special HTML characters like <, >, &, ", and ’ are escaped in a template
string like {{ str }} (i.e., & is replaced by & ‘<‘ is replaced by <,
etc.). We need to avoid this manipulation of the string content because
result[1] contains XML code where the mentioned characters are essential
part of the syntax. Writing {{str|safe}} ensures that the contents of the
string str are not altered before being embedded in the HTML text.

An alternative template, view_svg.html applies the SVG plot instead of the
PNG plot. We use the command-line argument svg for indicating that we want
an SVG instead of a PNG plot:

SVG or PNG plot?
svg = False
try:

if sys.argv[1] == ’svg’:
svg = True

except IndexError:
pass

if svg:
from compute import compute_png_svg as compute
template = ’view_svg.html’

else:
from compute import compute
template = ’view.html’

Using mpld3. The mpld3 library can convert Matplotlib plots to HTML code
that can be directly embedded in a web page. Here is a basic example:

Plot array y vs x
import matplotlib.pyplot as plt, mpld3
fig, ax = plt.subplots()
ax.plot(x, y)
html_text = mpld3.fig_to_html(fig)

The string html_text contains all the HTML code that is needed to display the
plot.

The great advantage of the mpld3 library is that it contains capabilities for
creating custom interactive plots through combining Matplotlib with JavaScript,
see the mpld3 Example Gallery.

4.9 Plotting with the Bokeh library
As an alternative to using Matplotlib for plotting, we can utilize the Bokeh tool,
which is particularly developed for graphics in web browsers. The vib3 app is
similar to the previously described vib1 and vib2 app, except that we make
one plot with Bokeh. Only the compute.py and view.html files are different.
Obviously, we need to run Bokeh in the compute function. Normally, Bokeh
stores the HTML code for the plot in a file with a specified name. We can load

c© 2015, Anders E. Johansen, Hans Petter Langtangen. Released under CC Attribution 4.0
license

38

http://mpld3.github.io
http://mpld3.github.io/examples/index.html#example-gallery
http://bokeh.pydata.org/en/latest/
https://github.com/hplgit/web4sciapps/tree/master/doc/src/web4sa/src-web4sa/apps/flask_apps/vib3

the text in this file and extract the relevant HTML code for a plot. However, it
is easier to use Bokeh tools for returning the HTML code elements directly. The
steps are exemplified in the compute.py file:

from numpy import exp, cos, linspace
import bokeh.plotting as plt
import os, re

def damped_vibrations(t, A, b, w):
return A*exp(-b*t)*cos(w*t)

def compute(A, b, w, T, resolution=500):
"""Return filename of plot of the damped_vibration function."""
t = linspace(0, T, resolution+1)
u = damped_vibrations(t, A, b, w)

create a new plot with a title and axis labels
TOOLS = "pan,wheel_zoom,box_zoom,reset,save,box_select,lasso_select"
p = plt.figure(title="simple line example", tools=TOOLS,

x_axis_label=’t’, y_axis_label=’y’)

add a line renderer with legend and line thickness
p.line(t, u, legend="u(t)", line_width=2)

from bokeh.resources import CDN
from bokeh.embed import components
script, div = components(p)
head = """

<link rel="stylesheet"
href="http://cdn.pydata.org/bokeh/release/bokeh-0.9.0.min.css"
type="text/css" />

<script type="text/javascript"
src="http://cdn.pydata.org/bokeh/release/bokeh-0.9.0.min.js">

</script>
<script type="text/javascript">
Bokeh.set_log_level("info");
</script>
"""

return head, script, div

The key data returned from compute consists of a text for loading Bokeh tools
in the head part of the HTML document (common for all plots in the file) and
for the plot itself there is a script tag and a div tag. The script tag can be
placed anywhere, while the div tag must be placed exactly where we want to
have the plot. In case of multiple plots, there will be a common script tag and
one div tag for each plot.

We need to insert the three elements return from compute, available in the
tuple result, into the view.html file. The link and scripts for Bokeh tools in
result[0] is inserted in the head part, while the script and div tags for the plot
is inserted where we want to have to plot. The complete view.html file looks
like this:

<!DOCTYPE html>
<html lang="en">

<head>
{{ result[0]|safe }}

c© 2015, Anders E. Johansen, Hans Petter Langtangen. Released under CC Attribution 4.0
license

39

http://bokeh.pydata.org/en/latest/docs/user_guide/embed.html

</head>
<body>
<script type="text/x-mathjax-config">
MathJax.Hub.Config({

TeX: {
equationNumbers: { autoNumber: "AMS" },
extensions: ["AMSmath.js", "AMSsymbols.js", "autobold.js"]

}
});
</script>
<script type="text/javascript" src=
"http://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML">
</script>

This web page visualizes the function \(
u(t) = Ae^{-bt}\sin (w t), \hbox{ for } t\in [0,T]
\).

<form method=post action="">
<table>

{% for field in form %}
<tr>
<td class="name">\({{ field.name }} \) </td>
<td>{{ field(size=12) }}</td>
<td>{{ field.label }}</td>
{% if field.errors %}

<td><ul class=errors>
{% for error in field.errors %}

{{ error }}
{% endfor %}</td>

{% endif %}
</tr>

{% endfor %}
</table>
<p><input type="submit" value="Compute"></form></p>

<p>
{% if result != None %}
<!-- script and div elements for Bokeh plot -->
{{ result[1]|safe }}
{{ result[2]|safe }}
{% endif %}
</p>
</body>
</html>

A feature of Bokeh plots is that one can zoom, pan, and save to PNG file, among
other things. There is a toolbar at the top for such actions.

The controller.py file is basically the same as before (but simpler than in
the vib2 app since we do not deal with PNG and/or SVG plots):

from model import InputForm
from flask import Flask, render_template, request
from compute import compute

app = Flask(__name__)

@app.route(’/vib3’, methods=[’GET’, ’POST’])
def index():

c© 2015, Anders E. Johansen, Hans Petter Langtangen. Released under CC Attribution 4.0
license

40

form = InputForm(request.form)
if request.method == ’POST’ and form.validate():

for field in form:
Make local variable (name field.name)
exec(’%s = %s’ % (field.name, field.data))

result = compute(A, b, w, T)
else:

result = None

return render_template(’view.html’, form=form,
result=result)

if __name__ == ’__main__’:
app.run(debug=True)

Finally, we remark that Bokeh plays very well with Flask. Project 9 suggests
a web app that combines Bokeh with Flask in a very interactive way.

Pandas highcharts plotting library. The pandas-highcharts package is
another strong alternative to Bokeh for interative plotting in web pages. It is a
stable and widely used code.

4.10 Autogenerating the code
We shall now present generic model.py and controller.py files that work
with any compute function (!). This example will demonstrate some advanced,
powerful features of Python. The source code is found in the gen directory.

Inspecting function signatures. The basic idea is that the Python module
inspect can be used to retrieve the names of the arguments and the default
values of keyword arguments of any given compute function. Say we have some

def mycompute(A, m=0, s=1, w=1, x_range=[-3,3]):
...
return result

Running

import inspect
arg_names = inspect.getargspec(mycompute).args
defaults = inspect.getargspec(mycompute).defaults

leads to

arg_names = [’A’, ’m’, ’s’, ’w’, ’x_range’]
defaults = (0, 1, 1, [-3, 3])

We have all the argument names in arg_names and defaults[i] is the default
value of keyword argument arg_names[j], where j = len(arg_names) - len(defaults) + i.

c© 2015, Anders E. Johansen, Hans Petter Langtangen. Released under CC Attribution 4.0
license

41

https://pypi.python.org/pypi/pandas-highcharts/
https://github.com/hplgit/web4sciapps/tree/master/doc/src/web4sa/src-web4sa/apps/flask_apps/gen

Generating the model. Knowing the name name of some argument in
the compute function, we can make the corresponding class attribute in the
InputForm class by

setattr(InputForm, name, FloatForm())

For name equal to ’A’ this is the same as hardcoding

class InputForm:
A = FloatForm()

Assuming that all arguments in compute are floats, we could do

class InputForm:
pass # Empty class

arg_names = inspect.getargspec(mycompute).args
for name in arg_names:

setattr(InputForm, name, FloatForm())

However, we can do better than this: for keyword arguments the type of the
default value can be used to select the appropriate form class. The complete
model.py file then goes as follows:

"""
Example on generic model.py file which inspects the arguments
of the compute function and automatically generates a relevant
InputForm class.
"""

import wtforms
from math import pi

from compute import compute_gamma as compute
import inspect
arg_names = inspect.getargspec(compute).args
defaults = inspect.getargspec(compute).defaults

class InputForm(wtforms.Form):
pass

Augment defaults with None elements for the positional
arguments
defaults = [None]*(len(arg_names)-len(defaults)) + list(defaults)
Map type of default to right form field
type2form = {type(1.0): wtforms.FloatField,

type(1): wtforms.IntegerField,
type(’’): wtforms.TextField,
}

for name, value in zip(arg_names, defaults):
if value is None:

setattr(InputForm, name, wtforms.FloatField(
validators=[wtforms.validators.InputRequired()]))

else:
if type(value) in type2form:

setattr(InputForm, name, type2form[type(value)](
default=value,

c© 2015, Anders E. Johansen, Hans Petter Langtangen. Released under CC Attribution 4.0
license

42

validators=[wtforms.validators.InputRequired()]))
else:

raise TypeError(’argument %s %s not supported’ %
name, type(value))

if __name__ == ’__main__’:
for item in dir(InputForm):

if item in arg_names:
print item, getattr(InputForm, item)

(The compute_gamma function imported from compute is the only application-
specific statement in this code and will be explained later.)

Generating the view. The call to compute in the controller.py file must
also be expressed in a general way such that the call handles any type and
number of parameters. This can be done in two ways, using either positional or
keyword arguments.

The technique with positional arguments is explained first. It consists
of collecting all parameters in a list or tuple, called args, and then calling
compute(*args) (which is equivalent to compute(args[0], args[1], ...,
args[n]) if n is len(args)-1). The elements of args are the values of the
form variables. We know the name of a form variable as a string name (from
arg_names), and if form is the form object, the construction getattr(form,
name).data extracts the value that the user provided (getattr(obj, attr) gets
the attribute, with name available as a string in attr, in the object obj). For ex-
ampe, if name is ’A’, getattr(form, name).data is the same as form.A.data.
Collecting all form variables, placing them in a list, and calling compute are
done with

arg_names = inspect.getargspec(compute).args
args = [getattr(form, name).data for name in arg_names]
result = compute(*args)

Our InputForm class guarantees that all arguments in compute are present in
the form, but to be absolutely safe we can test if name is present in the form
object:

args = [getattr(form, name).data for name in arg_names
if hasattr(form, name)]

A potential problem with the args list is that the values might be in wrong
order. It appears, fortunately, that the order we assign attributes to the form
class is preserved when iterating over the form. Nevertheless, using keyword
arguments instead of positional arguments provides a completely safe solution to
calling compute with the correct arguments. Keyword arguments are placed in
a dictionary kwargs and compute is called as compute(**kwargs). The generic
solution is

kwargs = {name: getattr(form, name).data for name in arg_names
if hasattr(form, name)}

result = compute(**kwargs)

c© 2015, Anders E. Johansen, Hans Petter Langtangen. Released under CC Attribution 4.0
license

43

The compute(**kwargs) call is equivalent to compute(A=1, b=3, w=0.5) in
case kwargs = {’w’=0.5, ’A’:1, ’b’:3} (recall that the order of the keys in
a Python dictionary is undetermined).

Generating the template. It remains to generate the right HTML template.
The HTML code depends on what the returned result object from compute con-
tains. Only a human who has read the compute code knows the details of the re-
turned result. Therefore, we leave it to a human to provide the part of the HTML
template that renders the result. The file templates/view_results.html con-
tains this human-provided code, while templates/view.html is a completely
generic template for the forms:

<form method=post action="">
<table>

{% for field in form %}
<tr><td>{{ field.name }}</td> <td>{{ field }}</td>
<td>{% if field.errors %}

<ul class=errors>
{% for error in field.errors %}

{{ error }}
{% endfor %}

{% endif %}</td></tr>
{% endfor %}

</table>
<p><input type=submit value=Compute></form></p>

{% if result != None %}
{{ result|safe }}
{% endif %}

At the end of this code, an HTML text result (string) is to be inserted. This
text is typically generated by calling Flask’s render_template function, which
uses templates/view_results.html to turn the return object result from the
compute function into the desired HTML code:

def index():
...
if result:

result = render_template(’view_results.html’, result=result)
result is now rendered HTML text

return render_template(’view.html’, form=form, result=result)

Notice.
A perhaps simpler alternative would be to have a generic view_forms.html
file and a user-specific view_results.html and explicitly combining them
into a new file. This requires file writing by the app, which one normally
wants to avoid. Especially if the web app gets multiple users, the file
writing may lead to corrupt files.

The complete, generic form of the index function becomes

c© 2015, Anders E. Johansen, Hans Petter Langtangen. Released under CC Attribution 4.0
license

44

def index():
form = InputForm(request.form)
if request.method == ’POST’ and form.validate():

arg_names = inspect.getargspec(compute).args
kwargs = {name: getattr(form, name).data

for name in arg_names if hasattr(form, name)}
result = compute(**kwargs)

else:
result = None

if result:
result must be transformed to HTML and inserted as a
string in the generic view.html file
result = render_template(’view_results.html’, result=result)

return render_template(’view.html’, form=form, result=result)

if __name__ == ’__main__’:
app.run(debug=True)

Application. Let us apply the files above to plot the gamma probability
density function

g(x; a, h,A) = |h|
Γ(a)A

(x
A

)ah−1
e−(x

A)h

,

and its cumulative density

G(x; a, h,A) =
∫ x

0
g(τ ; a, h,A)dτ,

computed by numerically the Trapezoidal rule, for instance. We also want to
compute and display the mean value AΓ(a+ 1/h)/Γ(a) and standard deviation

σ = A

Γ(a)
√

Γ(a+ 2/h)Γ(a)− Γ(a+ 1/h)2.

Here, Γ(a) is the gamma function, which can be computed by math.gamma(a)
in Python. Below is a compute.py file with the relevant implementations of
g(x; a, h,A) (gamma_density), G(x; a, h,A) (gamma_cumulative), and a func-
tion compute_gamma for making a plot of g og G for x ∈ [0, 7σ].

def gamma_density(x, a, h, A):
http://en.wikipedia.org/wiki/Gamma_distribution
xA = x/float(A)
return abs(h)/(math.gamma(a)*A)*(xA)**(a*h-1)*exp(-xA**h)

def gamma_cumulative(x, a, h, A):
Integrate gamma_density using the Trapezoidal rule.
Assume x is array.
g = gamma_density(x, a, h, A)
r = zeros_like(x)
for i in range(len(r)-1):

r[i+1] = r[i] + 0.5*(g[i] + g[i+1])*(x[i+1] - x[i])
return r

def compute_gamma(a=0.5, h=2.0, A=math.sqrt(2), resolution=500):
"""Return plot and mean/st.dev. value of the gamma density."""

c© 2015, Anders E. Johansen, Hans Petter Langtangen. Released under CC Attribution 4.0
license

45

gah = math.gamma(a + 1./h)
mean = A*gah/math.gamma(a)
stdev = A/math.gamma(a)*math.sqrt(

math.gamma(a + 2./h)*math.gamma(a) - gah**2)
x = linspace(0, 7*stdev, resolution+1)
y = gamma_density(x, a, h, A)
plt.figure() # needed to avoid adding curves in plot
plt.plot(x, y)
plt.title(’a=%g, h=%g, A=%g’ % (a, h, A))
Make Matplotlib write to BytesIO file object and grab
return the object’s string
from io import BytesIO
figfile = BytesIO()
plt.savefig(figfile, format=’png’)
figfile.seek(0) # rewind to beginning of file
import base64
figdata_density_png = base64.b64encode(figfile.getvalue())
figfile = BytesIO()
plt.savefig(figfile, format=’svg’)
figfile.seek(0)
figdata_density_svg = ’<svg’ + figfile.getvalue().split(’<svg’)[1]
figdata_density_svg = unicode(figdata_density_svg,’utf-8’)

y = gamma_cumulative(x, a, h, A)
plt.figure()
plt.plot(x, y)
plt.grid(True)
figfile = BytesIO()
plt.savefig(figfile, format=’png’)
figfile.seek(0)
figdata_cumulative_png = base64.b64encode(figfile.getvalue())
figfile = BytesIO()
plt.savefig(figfile, format=’svg’)
figfile.seek(0)
figdata_cumulative_svg = ’<svg’ + figfile.getvalue().split(’<svg’)[1]
figdata_cumulative_svg = unicode(figdata_cumulative_svg,’utf-8’)
return figdata_density_png, figdata_cumulative_png, \

figdata_density_svg, figdata_cumulative_svg, \
’%.2f’ % mean, ’%.2f’ % stdev

The compute_gamma function returns a tuple of six values. We want output as
displayed in Figure 13.

The design is realized in the file view_results.html shown below.

<p>
<table>
<tr>
<td>

</td><td>

</td></tr>
<tr>
<td>{{ result[2]|safe }}</td>
<td>{{ result[3]|safe }}</td>
</tr>
<tr><td>
Mean value: {{ result[4] }}

Standard deviation value: {{ result[5] }}
</td></tr>

c© 2015, Anders E. Johansen, Hans Petter Langtangen. Released under CC Attribution 4.0
license

46

Figure 13: Design of a web page illustrating the gamma probability functions.

</table>
</p>

To create the web application, we just perform the following steps:

1. copy the generic controller.py and model.py files to a new directory

2. write the compute function in a file compute.py

3. edit controller.py and model.py to use the right name of the compute
function (from compute import name as compute)

4. add an appropriate templates/view_forms.html file that visualizes the
returned value results from the compute function

4.11 User login and storage of computed results
We now want to make an app where the computed results can be stored in
a database. To this end, each user must create an account and login to this
account for archiving results and for browsing previous runs of the application.
More files are needed for this purpose, compared to the previous apps, and the
files are located in the login directory.

c© 2015, Anders E. Johansen, Hans Petter Langtangen. Released under CC Attribution 4.0
license

47

https://github.com/hplgit/web4sciapps/tree/master/doc/src/web4sa/src-web4sa/apps/flask_apps/login

Required additional software. Three more packages are needed for this
more advanced application:

• Flask-Login

• Flask-SQLAlchemy

• Flask-Mail

Installation is done by

sudo pip install --upgrade flask-login
sudo pip install --upgrade flask-sqlalchemy
sudo pip install --upgrade flask-mail

The compute part. The compute.py file contains the compute function from
the vib2 app in Section 4.8.

There is quite much Flask code required for user accounts and login. The files
here were generated by the Parampool package and then edited and specialized
to the present application. In general, it is not recommended to hack further on
the example given here, but rather utilize Parampool to generate web apps with
user accounts and login.

The interfaces of the app. The first page after starting the app (python
controller.py) shows input fields for the numerical parameters, but there are
also links to the right for registering a new user or logging in to an existing
account:

Clicking on Register brings up a registration page:

Already registered users can just log in:

c© 2015, Anders E. Johansen, Hans Petter Langtangen. Released under CC Attribution 4.0
license

48

https://flask-login.readthedocs.org/en/latest/
http://flask.pocoo.org/docs/0.10/patterns/sqlalchemy/
http://packages.python.org/Flask-Mail

Then the fields with input parameters are shown again. After pressing
Compute we are left with a combination of input and results, plus a field where
the user can write a comment about this simulation:

All simulations (input data, results, and comment) are stored in a database.
Clicking on Previous simulation brings us to an overview of what is in the
database:

c© 2015, Anders E. Johansen, Hans Petter Langtangen. Released under CC Attribution 4.0
license

49

Here, one can browse previous results, remove entries, or erase the whole
database.

The source code. Rather than explaining everything about the source code
in detail, we primarily list the various code files below. A starting point is
the central controller.py file, which is now quite lengthy and involves four
different URLs (the input page, the login page, the registration page, and the
previous results page).

import os
from compute import compute as compute_function

from flask import Flask, render_template, request, redirect, url_for
from forms import ComputeForm
from db_models import db, User, Compute
from flask.ext.login import LoginManager, current_user, \

login_user, logout_user, login_required
from app import app

login_manager = LoginManager()
login_manager.init_app(app)

@login_manager.user_loader
def load_user(user_id):

return db.session.query(User).get(user_id)

Path to the web application
@app.route(’/’, methods=[’GET’, ’POST’])
def index():

result = None
user = current_user
form = ComputeForm(request.form)
if request.method == "POST":

c© 2015, Anders E. Johansen, Hans Petter Langtangen. Released under CC Attribution 4.0
license

50

if form.validate():

result = compute_function(form.A.data, form.b.data,
form.w.data, form.T.data)

if user.is_authenticated():
object = Compute()
form.populate_obj(object)
object.result = result
object.user = user
db.session.add(object)
db.session.commit()

Send email notification
if user.notify and user.email:

send_email(user)
else:

if user.is_authenticated():
if user.Compute.count() > 0:

instance = user.Compute.order_by(’-id’).first()
result = instance.result
form = populate_form_from_instance(instance)

return render_template("view.html", form=form,
result=result, user=user)

def populate_form_from_instance(instance):
"""Repopulate form with previous values"""
form = ComputeForm()
for field in form:

field.data = getattr(instance, field.name)
return form

def send_email(user):
from flask.ext.mail import Mail, Message
mail = Mail(app)
msg = Message("Compute Computations Complete",

recipients=[user.email])
msg.body = """

A simulation has been completed by the Flask Compute app.
Please log in at

http://localhost:5000/login

to see the results.

If you don’t want email notifications when a result is found,
please register a new user and leave the ’notify’ field
unchecked.
"""

mail.send(msg)

@app.route(’/reg’, methods=[’GET’, ’POST’])
def create_login():

from forms import register_form
form = register_form(request.form)
if request.method == ’POST’ and form.validate():

user = User()
form.populate_obj(user)
user.set_password(form.password.data)

c© 2015, Anders E. Johansen, Hans Petter Langtangen. Released under CC Attribution 4.0
license

51

db.session.add(user)
db.session.commit()

login_user(user)
return redirect(url_for(’index’))

return render_template("reg.html", form=form)

@app.route(’/login’, methods=[’GET’, ’POST’])
def login():

from forms import login_form
form = login_form(request.form)
if request.method == ’POST’ and form.validate():

user = form.get_user()
login_user(user)
return redirect(url_for(’index’))

return render_template("login.html", form=form)

@app.route(’/logout’)
@login_required
def logout():

logout_user()
return redirect(url_for(’index’))

@app.route(’/old’)
@login_required
def old():

data = []
user = current_user
if user.is_authenticated():

instances = user.Compute.order_by(’-id’).all()
for instance in instances:

form = populate_form_from_instance(instance)

result = instance.result
if instance.comments:

comments = "<h3>Comments</h3>" + instance.comments
else:

comments = ’’
data.append(

{’form’:form, ’result’:result,
’id’:instance.id, ’comments’: comments})

return render_template("old.html", data=data)

@app.route(’/add_comment’, methods=[’GET’, ’POST’])
@login_required
def add_comment():

user = current_user
if request.method == ’POST’ and user.is_authenticated():

instance = user.Compute.order_by(’-id’).first()
instance.comments = request.form.get("comments", None)
db.session.commit()

return redirect(url_for(’index’))

@app.route(’/delete/<id>’, methods=[’GET’, ’POST’])
@login_required
def delete_post(id):

id = int(id)
user = current_user
if user.is_authenticated():

c© 2015, Anders E. Johansen, Hans Petter Langtangen. Released under CC Attribution 4.0
license

52

if id == -1:
instances = user.Compute.delete()

else:
try:

instance = user.Compute.filter_by(id=id).first()
db.session.delete(instance)

except:
pass

db.session.commit()
return redirect(url_for(’old’))

if __name__ == ’__main__’:
if not os.path.isfile(os.path.join(

os.path.dirname(__file__), ’sqlite.db’)):
db.create_all()

app.run(debug=True)

Creation of the app object is put in a separate file app.py:

import os
from flask import Flask

app = Flask(__name__)
app.config[’SQLALCHEMY_DATABASE_URI’] = ’sqlite:///sqlite.db’
app.secret_key = os.urandom(24)

Email settings
import base64
app.config.update(

MAIL_SERVER=’smtp.gmail.com’,
MAIL_PORT=587,
MAIL_USE_TLS=True,
MAIL_USERNAME = ’cbcwebsolvermail@gmail.com’,
MAIL_PASSWORD = base64.decodestring(’WGlmZmljdox0UFch’),
MAIL_DEFAULT_SENDER = ’Some name <name@gmail.com>’
)

The forms for the compute function and for the login is stored in a file called
forms.py:

import wtforms as wtf
from math import pi

class ComputeForm(wtf.Form):
A = wtf.FloatField(label=’\(A \)’, default=1.0,

validators=[wtf.validators.InputRequired()])
b = wtf.FloatField(label=’\(b \)’, default=0.0,

validators=[wtf.validators.InputRequired()])
w = wtf.FloatField(label=’\(w \)’, default=pi,

validators=[wtf.validators.InputRequired()])
T = wtf.FloatField(label=’\(T \)’, default=18,

validators=[wtf.validators.InputRequired()])
resolution = wtf.IntegerField(label=’resolution’, default=500,

validators=[wtf.validators.InputRequired()])

from db_models import db, User
import flask.ext.wtf.html5 as html5

c© 2015, Anders E. Johansen, Hans Petter Langtangen. Released under CC Attribution 4.0
license

53

Standard Forms
class register_form(wtf.Form):

username = wtf.TextField(
label=’Username’, validators=[wtf.validators.Required()])

password = wtf.PasswordField(
label=’Password’, validators=[

wtf.validators.Required(),
wtf.validators.EqualTo(

’confirm’, message=’Passwords must match’)])
confirm = wtf.PasswordField(

label=’Confirm Password’,
validators=[wtf.validators.Required()])

email = html5.EmailField(label=’Email’)
notify = wtf.BooleanField(label=’Email notifications’)

def validate(self):
if not wtf.Form.validate(self):

return False

if self.notify.data and not self.email.data:
self.notify.errors.append(

’Cannot send notifications without a valid email address’)
return False

if db.session.query(User).filter_by(
username=self.username.data).count() > 0:
self.username.errors.append(’User already exists’)
return False

return True

class login_form(wtf.Form):
username = wtf.TextField(

label=’Username’, validators=[wtf.validators.Required()])
password = wtf.PasswordField(

label=’Password’, validators=[wtf.validators.Required()])

def validate(self):
if not wtf.Form.validate(self):

return False

user = self.get_user()

if user is None:
self.username.errors.append(’Unknown username’)
return False

if not user.check_password(self.password.data):
self.password.errors.append(’Invalid password’)
return False

return True

def get_user(self):
return db.session.query(User).filter_by(

username=self.username.data).first()

Database-related code for the SQLAlchemy database is collected in db_models.py:
from flask.ext.sqlalchemy import SQLAlchemy
from werkzeug import generate_password_hash, check_password_hash

c© 2015, Anders E. Johansen, Hans Petter Langtangen. Released under CC Attribution 4.0
license

54

from app import app

db = SQLAlchemy(app)

class User(db.Model):
id = db.Column(db.Integer, primary_key=True)
username = db.Column(db.String(50), unique=True)
pwhash = db.Column(db.String())
email = db.Column(db.String(120), nullable=True)
notify = db.Column(db.Boolean())

def __repr__(self):
return ’<User %r>’ % (self.username)

def check_password(self, pw):
return check_password_hash(self.pwhash, pw)

def set_password(self, pw):
self.pwhash = generate_password_hash(pw)

def is_authenticated(self):
return True

def is_active(self):
return True

def is_anonymous(self):
return False

def get_id(self):
return self.id

class Compute(db.Model):
id = db.Column(db.Integer, primary_key=True)

A = db.Column(db.String())
b = db.Column(db.String())
w = db.Column(db.String())
T = db.Column(db.String())
resolution = db.Column(db.Integer)

result = db.Column(db.String())
comments = db.Column(db.String(), nullable=True)
user_id = db.Column(db.Integer, db.ForeignKey(’user.id’))
user = db.relationship(’User’,

backref=db.backref(’Compute’, lazy=’dynamic’))

Finally, we need views. For the results of the computation we have a
view.html file that is very similar to view_table.html in the vib1 app:

<!DOCTYPE html>
<html lang="en">

<head>
<meta charset="utf-8" />
<title>Flask Vib app</title>

</head>
<body>

<script type="text/x-mathjax-config">
MathJax.Hub.Config({

c© 2015, Anders E. Johansen, Hans Petter Langtangen. Released under CC Attribution 4.0
license

55

TeX: {
equationNumbers: { autoNumber: "AMS" },
extensions: ["AMSmath.js", "AMSsymbols.js", "autobold.js", "color.js"]

}
});
</script>
<script type="text/javascript" src=
"http://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML">
</script>

{% if user.is_anonymous() %}
<p align="right">Login
/ Register</p>

{% else %}
<p align="right">Logged in as {{user.username}}

Previous simulations<a/>

Logout</p>

{% endif %}

This web page visualizes the function \(
u(t) = Ae^{-bt}\sin (w t), \hbox{ for } t\in [0,T]
\).

<p>
<!-- Input and Results are typeset as a two-column table -->
<table>
<tr>
<td valign="top">
<h2>Input:</h2>

<form method=post action="" enctype=multipart/form-data>
<table>

{% for field in form %}
<tr>

<td>{{ field.label }}</td>
<td>{{ field(size=20) }}</td>
<td>
{% if field.errors %}

<ul class=errors>
{% for error in field.errors %}

{{ error }}
{% endfor %}

{% endif %}
</td></tr>

{% endfor %}
</table>
<p>
<input type="submit" value="Compute">
</p>
</form>
</td>

<td valign="top">
{% if result != None %}

<h2>Results:</h2>

{% if not user.is_anonymous() %}

<h3>Comments:</h3>
<form method="post" action="/add_comment">

<textarea name="comments" rows="4" cols="40"></textarea>
<p><input type="submit" value="Add">

c© 2015, Anders E. Johansen, Hans Petter Langtangen. Released under CC Attribution 4.0
license

56

</form>
{% endif %}

{% endif %}
</td></tr>
</table>
</body>
</html>

The login.html template for the login page takes the form

<!DOCTYPE html>
<html lang="en">
<head>

<meta charset="utf-8" />
<title>Flask Vib app</title>

</head>
<body>
<h2>Login:</h2>
<form method=post action="">

<table>
{% for field in form %}

<tr><td>{{ field.label }}</td>
<td>{{ field(size=20) }}</td>
<td>

{% if field.errors %}
<ul class=errors>
{% for error in field.errors %}

{{ error }}
{% endfor %}

{% endif %}</td></tr>
{% endfor %}

</table>
<p><input type="submit" value="Login">

</form>
</body>
</html>

The page for registering a new user has a simple template reg.html:

<!DOCTYPE html>
<html lang="en">
<head>

<meta charset="utf-8" />
<title>Flask Vib app</title>

</head>
<body>
<h2>Register:</h2>
<form method=post action="">
<table>

{% for field in form %}
<tr><td>{{ field.label }}</td>

<td>{{ field(size=20) }}</td>
<td>

{% if field.errors %}
<ul class=errors>
{% for error in field.errors %}

{{ error }}
{% endfor %}

{% endif %}</td></tr>

c© 2015, Anders E. Johansen, Hans Petter Langtangen. Released under CC Attribution 4.0
license

57

{% endfor %}
</table>
<p><input type=submit value=Register>
</form>
</body>
</html>

The final file is old.html for retrieving old simulations:
<!DOCTYPE html>
<html lang="en">
<head>

<meta charset="utf-8" />
<title>Flask Vib app</title>

</head>
<body>

<script type="text/x-mathjax-config">
MathJax.Hub.Config({

TeX: {
equationNumbers: { autoNumber: "AMS" },
extensions: ["AMSmath.js", "AMSsymbols.js", "autobold.js", "color.js"]

}
});
</script>
<script type="text/javascript"
src="http://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML">

</script>

<h2>Previous simulations</h2>
<p align="right">Back to index</p>
{% if data %}

{% for post in data %}
<hr>
<table>
<tr>
<td valign="top" width="30%">
<h3>Input</h3>

<table>
{% for field in post.form %}

<tr><td>{{ field.label }}: </td>
<td>{{ field.data }}</td></tr>

{% endfor %}
</table>

</td><td valign="top" width="60%">
<h3>Results</h3>

{% if True %}

<p>
{{ comments }}

{% endif %}
</td><td valign="top" width="60%">
<p>
<form method="POST" action="/delete/{{ post.id }}">

<input type=submit value="Delete"
title="Delete this post from database">

</form>
</td></tr>
</table>

{% endfor %}
<hr>

c© 2015, Anders E. Johansen, Hans Petter Langtangen. Released under CC Attribution 4.0
license

58

<center>
<form method="POST" action="/delete/-1">

<input type=submit value="Delete all">
</form>
</center>

{% else %}
No previous simulations

{% endif %}
</body>
</html>

Warning.

• Sending email from the app does not work.

• Storing comments does not work.

hpl 1: Check if an autogenerated app from _generate_app.py can send
mail and store comments. Need a compute function that returns full HTML
text then.

Resources. Working with a database in Flask is described here:

• http://pythonhosted.org/Flask-SQLAlchemy/quickstart.html,

• http://blog.miguelgrinberg.com/post/the-flask-mega-tutorial-part-iv-database,

• The Flask login extension

4.12 Uploading of files
Overview of the application. Many user interfaces need the user to provide
data files. A minimalistic application is to have a button for uploading a single
file. As example we use a file with a series of numbers, and the application’s
purpose is to compute the mean and standard deviation of the numbers. The
first user interface just has the Choose File and Compute buttons:

Clicking on Choose File brings up a file browser where the user can choose
the file to uploaded to the application. Say this is a file testfile.dat. The
interface now looks like

c© 2015, Anders E. Johansen, Hans Petter Langtangen. Released under CC Attribution 4.0
license

59

http://pythonhosted.org/Flask-SQLAlchemy/quickstart.html
http://blog.miguelgrinberg.com/post/the-flask-mega-tutorial-part-iv-database
https://flask-login.readthedocs.org/en/latest/

Pressing thereafter Compute leads to storage of testfile.dat on the server
in a subdirectory uploads and computation of basic statistics of the numbers in
the file. The resulting output looks like

The text “No file chosen” is automatically displayed by the widget object
used for file upload and indicates that a new file can be chosen. Below we shall
present all parts of the code needed to create this interactive application.

The model class. The widget FieldField is used for an input field with a
Choose File button:

import wtforms as wtf

class Average(wtf.Form):
filename = wtf.FileField(validators=

[wtf.validators.InputRequired()])

The controller file. The controller file needs some special code to specify a
directory to store uploaded files. We also include some code to check that the
file has a name with the right extension.

Relative path of directory for uploaded files
UPLOAD_DIR = ’uploads/’

app.config[’UPLOAD_FOLDER’] = UPLOAD_DIR
app.secret_key = ’MySecretKey’

if not os.path.isdir(UPLOAD_DIR):
os.mkdir(UPLOAD_DIR)

Allowed file types for file upload
ALLOWED_EXTENSIONS = set([’txt’, ’dat’, ’npy’])

def allowed_file(filename):
"""Does filename have the right extension?"""
return ’.’ in filename and \

filename.rsplit(’.’, 1)[1] in ALLOWED_EXTENSIONS

The index function must have code for saving the file, and as usual, calling
the compute function and rendering a new page:

def index():
form = Average(request.form)
filename = None # default
if request.method == ’POST’:

Save uploaded file on server if it exists and is valid
if request.files:

file = request.files[form.filename.name]
if file and allowed_file(file.filename):

c© 2015, Anders E. Johansen, Hans Petter Langtangen. Released under CC Attribution 4.0
license

60

Make a valid version of filename for any file ystem
filename = secure_filename(file.filename)
file.save(os.path.join(app.config[’UPLOAD_FOLDER’],

filename))

result = compute_function(filename)
else:

result = None

return render_template("view.html", form=form, result=result)

The compute function. We assume that the uploaded file is available in the
uploads subdirectory, so the compute function needs to open this file, read the
numbers, and compute statistics. The file reading and computations are easily
done by numpy functions. The results are presented in an HTML table.

import numpy as np
import os

def compute_mean_std(filename=None):
data = np.loadtxt(os.path.join(’uploads’, filename))
return """

Data from file <tt>%s</tt>:
<p>
<table border=1>
<tr><td> mean </td><td> %.3g </td></tr>
<tr><td> st.dev. </td><td> %.3g </td></tr>
""" % (filename, np.mean(data), np.std(data))

The HTML template. Although the present minimalistic application only
needs a very simple HTML template, we reuse a quite generic template known
from previous examples, where the input variables are listed to the left and the
output of the compute function is presented to the right. Such a template looks
like

<!DOCTYPE html>
<html>

<head>
<meta charset="utf-8" />
<title>Flask Average app</title>

</head>
<body>

<!-- Input and Results are typeset as a two-column table -->
<table>
<tr>
<td valign="top">

<h2>Input:</h2>

<form method=post action="" enctype="multipart/form-data">
<table>

{% for field in form %}
<tr><td>{{ field.name }}</td>

<td>{{ field(size=20) }}</td>
<td>{% if field.errors %}

<ul class=errors>
{% for error in field.errors %}

c© 2015, Anders E. Johansen, Hans Petter Langtangen. Released under CC Attribution 4.0
license

61

{{ error }}
{% endfor %}

{% endif %}</td></tr>
{% endfor %}

</table>
<p><input type="submit" value="Compute">

</form></p>
</td>

<td valign="top">
{% if result != None %}

<h2>Results:</h2>
{{ result|safe }}

{% endif %}
</td>
</tr>
</table>
</body>

</html>

The complete set of files is found in the upload directory.

5 Handling multiple input variables in Django
We shall briefly how to work with multi-variable input in Django. The text is
the Django counterpart to Section 4. There are four float input variables: A,
b, w, and T . A function compute in the file compute.py makes a plot of the
function u(t) = Ae−bt sin(wt) depending on these four parameters and returns
the name of the plot file. Our task is to define four input fields, execute the
compute function and show the input fields together with the resulting plot,
cf. Figures 7 and 8.

5.1 Programming the Django application
Adding the app to a project. Any Django app needs a project, but here
we reuse the project we set up for the scientific hello world examples. We go to
the directory apps/django_apps and create the Django app vib1:

Terminal> python ../../django_project/manage.py startapp vib1

Then we

1. add relative2absolute_path(’../../apps/django_apps/vib1/templates’),
to the TEMPLATE_DIRS tuple in settings.py,

2. add vib1 to the INSTALLED_APPS tuple, and

3. add url(r’^vib1/’, ’django_apps.vib1.views.index’) to the patterns
call in urls.py.

These steps ensure that Django can find our application as a module/package,
that Django can find our templates associated with this application, and that
the URL address applies the name vib1 to reach the application.

c© 2015, Anders E. Johansen, Hans Petter Langtangen. Released under CC Attribution 4.0
license

62

https://github.com/hplgit/web4sciapps/tree/master/doc/src/web4sa/src-web4sa/apps/flask_apps/upload

The compute part. The computations in our application are put in a file
compute.py and explained in detail in Section 4.1. We can equally well utilize
the Bokeh library for plotting using the code shown in Section 4.9.

The model. We can now write models.py and the Input class that defines
the form fields for the four input variables:

from django.db import models
from django.forms import ModelForm
from math import pi

class Input(models.Model):
A = models.FloatField(

verbose_name=’ amplitude (m)’, default=1.0)
b = models.FloatField(

verbose_name=’ damping coefficient (kg/s)’, default=0.0)
w = models.FloatField(

verbose_name=’ frequency (1/s)’, default=2*pi)
T = models.FloatField(

verbose_name=’ time interval (s)’, default=18)

class InputForm(ModelForm):
class Meta:

model = Input

Note here that we can provide a more explanatory name than just the variable
name, e.g., ’ amplitude (m)’ for A. However, Django will always capitalize
these descriptions, so if one really needs lower case names (e.g., to be compatible
with a mathematical notation or when just listing the unit), one must start the
text with a space, as we have demonstrated above. We also provide a default
value such that all fields have a value when the user sees the page.

The view. The views.py file looks as follows:
from django.shortcuts import render_to_response
from django.template import RequestContext
from django.http import HttpResponse
from models import InputForm
from compute import compute
import os

def index(request):
os.chdir(os.path.dirname(__file__))
result = None
if request.method == ’POST’:

form = InputForm(request.POST)
if form.is_valid():

form2 = form.save(commit=False)
result = compute(form2.A, form2.b, form2.w, form2.T)
result = result.replace(’static/’, ’’)

else:
form = InputForm()

return render_to_response(’vib1.html’,
{’form’: form,
’result’: result,
}, context_instance=RequestContext(request))

c© 2015, Anders E. Johansen, Hans Petter Langtangen. Released under CC Attribution 4.0
license

63

Some remarks are necessary:

1. Doing an os.chdir to the current working directory is necessary as Django
may be left back in another working directory if you have tested other
apps.

2. The form2 object from form.save is the object we extract data from and
send to compute, but the original form object is needed when making the
HTML page through the template.

3. Images, media files, style sheets, javascript files, etc. must reside in a
subdirectory static. The specifications of the URL applies tools to find
this static directory and then the static prefix in the result filename
must be removed.

The template for rendering the page is listed next.

<form method=post action="">{% csrf_token %}
<table>

{% for field in form %}
<tr>
<td>{{ field.name }}</td>
<td>{{ field }}</td>
<td>{{ field.label }}</td>
<td>{{ field.errors }}</td>
<td></td>
</tr>

{% endfor %}
</table>
<p><input type=submit value=Compute></form></p>

<p>
{% if result != None %}
{% load static %}

{% endif %}
</p>

The tricky part is the syntax for displaying static content, such as the plot file
made in the compute function.

5.2 Custom validation
Django has a series of methods available for user-provided validation of form
data. These are exemplified in the app vib2, which is an extension of the
vib1 app with additional code. (This other app needs of course registrations in
settings.py and urls.py, similar to what we did for the vib1 app.)

Making sure that A > 0 is easiest done with a built-in Django validator for
minimum value checking:

class Input(models.Model):
A = models.FloatField(

verbose_name=’ amplitude (m)’, default=1.0,
validators=[MinValueValidator(0)])

c© 2015, Anders E. Johansen, Hans Petter Langtangen. Released under CC Attribution 4.0
license

64

We can write our own validators, which are functions taking the value is the
only argument and raising a ValidationError exception if the value is wrong.
Checking that a value is inside an interval can first be implemented by

def check_interval(value, min_value=None, max_value=None):
"""Validate that a value is inside an interval."""
failure = False
if min_value is not None:

if value < min_value:
failure = True

if max_value is not None:
if value > max_value:

failure = True
if failure:

raise ValidationError(
’value=%s not in [%s, %s]’ %
(value,
’-infty’ if min_value is None else str(min_value),
’infty’ if max_value is None else str(max_value)))

However, this function takes more than the value as argument. We therefore
need to wrap it by a function with value as the only argument. The following
utility returns such a function (see Section 4.7 for more explanation):

import functools

def interval(min_value=None, max_value=None):
"""Django-compatible interface to check_interval."""
return functools.partial(

check_interval, min_value=min_value, max_value=max_value)

Now, interval(0, 1) returns a function that takes value as its only argument
and checks if it is inside [0, 1]. Such a function can be inserted in the validators
list in the field constructor, here to tell that b must be in [0,∞):

class Input(models.Model):
...
b = models.FloatField(

verbose_name=’ damping coefficient (kg/s)’, default=0.0,
validators=[interval(0,None)])

A final example on custom validation is to avoid plotting more than 30
periods of the oscillating function u. This translates to checking that T is geater
than 30 periods, i.e., T > 30 · 2π/w. The task is done in the InputForm class,
where any method clean_name can do validation and adjustment of the field
name name. The code for a clean_T method goes as follows:

class InputForm(ModelForm):
class Meta:

model = Input

def clean_T(self):
T = self.cleaned_data[’T’]
w = self.cleaned_data[’w’]
period = 2*pi/w
if T > 30*period:

c© 2015, Anders E. Johansen, Hans Petter Langtangen. Released under CC Attribution 4.0
license

65

num_periods = int(round(T/period))
raise ValidationError(

’Cannot plot as much as %d periods! T < %.2f’ %
(num_periods, 30*period))

return T

We refer to the vast Django documentation for many other ways of validating
forms. The reader is encouraged to run the vib2 application and test out the
validations we have implemented.

5.3 Customizing widgets
One will occasionally have full control of the layout of the individual elements in
a web form. These are typeset inside input tags in HTML. Django associates
the term widget with an HTML form field. To set the size (width) of the field
and other properties, one must in Django specify a widgets dictionary in the
form class. The key is the name of the parameter in the model class, while the
value is a widget class name. Standard input fields for numbers and text apply
the TextInput widget. An example on setting the size of the T field to a width
of 10 characters goes like

from django.forms import TextInput

class InputForm(ModelForm):
class Meta:

model = Input
widgets = {

’T’: TextInput(attrs={’size’: 10}),
}

At the time of this writing, Django does not yet support the many additional
HTML5 input fields. Nevertheless, the parampool package gives access to
HTML5 widgets in a Django context. We recommend to use parampool to
automatically generate the necessary Django files, and then one can view the
form class in the models.py file for how HTML5 widgets can be used in the
definition of the widgets dictionary.

5.4 Resources
Below are some resources for accounts and login with Django as well as utilization
of Bootstrap styles in the views.

• Django: make user

• Django: read and write database

• http://stackoverflow.com/questions/11821116/django-and-bootstrap-what-app-is-recommended

• https://github.com/dyve/django-bootstrap3

• https://www.youtube.com/watch?v=3Bwl5CYa5Uc

c© 2015, Anders E. Johansen, Hans Petter Langtangen. Released under CC Attribution 4.0
license

66

https://docs.djangoproject.com/en/dev/topics/auth/default/#user-objects
https://docs.djangoproject.com/en/dev/topics/db/queries/
http://stackoverflow.com/questions/11821116/django-and-bootstrap-what-app-is-recommended
https://github.com/dyve/django-bootstrap3
https://www.youtube.com/watch?v=3Bwl5CYa5Uc

6 Exercises
Exercise 1: Add two numbers
Make a web application that reads two numbers from a web page, adds the
numbers, and prints the sum in a new web page. Package the necessary files
that constitute the application in a tar file. Filename: add2.tar.gz.

Exercise 2: Upload data file and visualize curves
Suppose you have tabular data in a file:

t y error
0.0000 1.2345 1.4E-4
1.0000 0.9871 -4.9E-3
1.2300 0.5545 8.2E-3

That is, there is a comment line with headings for the various columns, and
then floating-point values are listed with an arbitrary number of columns and
rows. You want to upload such a data file to a web application and have the
each column, from the second one, plotted against the the values in the first
column. In the particular example, y and error should be plotted against t,
yielding two curves.

The web application may have one field: the name of the file to upload.
Search for constructions on how to upload a files and write this application.
Generate a suitable data file for testing purposes. Filename: upload.tar.gz.

Exercise 3: Plot a user-specified formula
The purpose of this exercise is to write a web application that can visualize any
user-given formula. For example, in the interface below,

c© 2015, Anders E. Johansen, Hans Petter Langtangen. Released under CC Attribution 4.0
license

67

the user has

• specified a curve sin(x) (sin(x)) to be plotted

• specified the x interval to be [0, 2π] ([0, 2*pi])

• clicked Compute to get a blue line with the sine curve

• specified a new formula sin(x)e−x (sin(x)*exp(-x))

• chosen No as the answer to Erase all curves?

• clicked Compute to have the sin(x)e−x drawn with green line without
erasing the previous curve

That is, the user can fill in any expression in x, specify the domain for plotting,
and choose whether new curves should be added to the plot or if all curves
should be erased prior to drawing a new one.

Hint 1. You may use the vib1 app from Section 4.1 with the view_errcheck.html
template as starting point. Preferably, let plots be created as strings, as explained
for the vib2 app in Section 4.8.

The Formula and Domain fields need to be TextField objects, and the
compute function must perform an eval on the user’s input. The Erase field is
a SelectField object with selections Yes and No. The former means that the
compute function calls the figure function in Matplotlib before creating a new
plot. If this is not done, a new formula will be plotting in the same figure as the
last one. With the Yes/No selection, it is possible either plot individual curves
or compare curves in the same plot.

Hint 2. Performing eval on the user’s input requires that names like sin, exp,
and pi are defined. The simplest approach is to do a

from numpy import *

in the top of the file containing the compute function. All the names from
numpy are then available as global variables and one can simply do domain =
eval(domain) to turn the string domain coming from the Domain text field
into a Python list with two elements.

A better approach is not to rely on global variables, but run eval in the
numpy namespace:

import numpy
domain = eval(domain, numpy.__dict__)

The evaluation of the formula is slightly more complicated if eval is to be
run with the numpy namespace. One first needs to create x coordinates:

x = numpy.linspace(domain[0], domain[1], 10001)

c© 2015, Anders E. Johansen, Hans Petter Langtangen. Released under CC Attribution 4.0
license

68

Now, eval(formula, numpy.__dict__) will not work because a formula like
sin(x) needs both sin and x in the namespace. The latter is not in the
namespace and must be explicitly included. A new namespace can be made:

namespace = numpy.__dict__.copy()
namespace.update({’x’: x})
formula = eval(formula, namespace)

Hint 3. You should add tests when evaluating and using the strings from input
as these may have wrong syntax.
Filename: plot_formula.tar.gz.

Exercise 4: Visualize Taylor polynomial approximations
This exercise develops a web application that can plot Taylor polynomial ap-
proximations of any degree to any user-given formula. You should do Exercise 3
first as many of the techniques there must be used and even further developed
in the present exercise.

The figure below shows an example of what one can do in the web app:

Here, the user has

• filled in the formula sin(x) (sin(x))

• specified N to be 3

• clicked Compute to get the formula sin(x) plotted together with the Taylor
polynomial approximation of degree 3, expanded around x = 0

• changed N to 5

• chosen No for the question Erase all curves?

• clicked Compute to have the series expansion of degree 5 plotted in the
same plot

• changed N to 10

c© 2015, Anders E. Johansen, Hans Petter Langtangen. Released under CC Attribution 4.0
license

69

• clicked Compute to have the series expansion of degree 10 plotted in the
same plot

We can use sympy to produce Taylor polynomial expansions of arbitrary expres-
sions. Here is a session demonstrating how to obtain the series expansion of
e−x sin(πx) to 2nd degree.

>>> import sympy as sp
>>> x = sp.symbols(’x’)
>>> f = sp.exp(-x)*sp.sin(sp.pi*x)
>>> f.series(x, 0, 3)
pi*x - pi*x**2 + O(x**3)
>>> sp.latex(f.series(x, 0, 3))
’\\pi x - \\pi x^{2} + \\mathcal{O}\\left(x^{3}\\right)’
>>> fs = f.series(x, 0, 3).removeO() # get rid of O() term
>>> fs
-pi*x**2 + pi*x
>>> f_func = sp.lambdify([x], fs) # make Python function
>>> f_func(1)
0.0
>>> f_func(2)
-6.283185307179586

Basically, the steps above must be carried out to create a Python function
for the series expansion such that it can be plotted. A similar sp.lambdify call
on the original formula is also necessary to plot that one.

However, the challenge is that the formula is available only as a string, and it
may contain an independent variable whose name is also only available through
a string from the web interface. That is, we may give formulas like exp(-t) if t
is chosen as independent variable. Also, the expression does not contain function
names prefixed with sympy or sp, just plain names like sin, cos, exp, etc. An
example on formula is cos(pi*x) + log(x).

a) Write a function

def formula2series2pyfunc(formula, N, x, x0=0):

that takes a sympy formula, and integer N, a sympy symbol x and another sympy
symbol x0 and returns 1) a Python function for formula, 2) a Python function
for the series expansion of degree N of the formula around x0, and 3) a LATEX
string containing the formula for the series expansion.

Put the function in a file compute.py. You should thereafter be able to run
the following session:

>>> import compute
>>> import sympy as sp
>>> from sympy import *
>>> t = symbols(’t’)
>>> formula = exp(-2*t)
>>> f, s, latex = compute.formula2series2pyfunc(formula, 3, t)
>>> latex
’- \\frac{4 t^{3}}{3} + 2 t^{2} - 2 t + 1’
>>> import matplotlib.pyplot as plt
>>> import numpy as np

c© 2015, Anders E. Johansen, Hans Petter Langtangen. Released under CC Attribution 4.0
license

70

>>> t = np.linspace(0, 2)
>>> plt.plot(t, f(t), t, s(t))
[<matplotlib.lines.Line2D at 0x7fc6c020f350>,
<matplotlib.lines.Line2D at 0x7fc6c020f5d0>]

>>> plt.show()

The resulting plot is displayed below.

0.0 0.5 1.0 1.5 2.0
6

5

4

3

2

1

0

1

Hint. The series expansion is obtained by formula.series(x, x0, N), but
the output contains an O() term which makes it impossible to convert the
expression to a Python function via sympy.lambify. Use

series = formula.series(x, x0, N+1).removeO()

to get an expression that can be used as argument to sympy.lambdify. We use
N+1 since N in the series function refers to the degree of the O() term, which is
now removed.

For the LATEX expression it is natural to have the O() term:
latex = sympy.latex(formula.series(x, x0, N+1))

because then the terms start with the lowest order (and not the highest order as
is the case when removeO() is used).

b) Write the compute function:
def visualize_series(

formula, # string: formula
independent_variable, # string: name of independent var.
N, # int: degree of polynomial approx.
xmin, xmax, ymin, ymax, # strings: extent of axes
legend_loc, # string: upper left, etc.
x0=’0’, # string: point of expansion
erase=’yes’, # string: ’yes’ or ’no’
):

c© 2015, Anders E. Johansen, Hans Petter Langtangen. Released under CC Attribution 4.0
license

71

Hint 1. Converting the string formula to a valid sympy expression is chal-
lenging. First, create a local variable for a sympy symbol with the content of
independent_variable as name, since such a variable is needed with perform-
ing eval on formula. Also introduce a variable x to point to the same sympy
symbol. Relevant code is

Turn independent variable into sympy symbol, stored in x
import sympy as sp
exec(’x = %s = sp.symbols("%s")’ %

(independent_variable, independent_variable))

Hint 2. Evaluating formula in the namespace of sympy (so that all the sin,
exp, pi, and similar symbols are defined properly as sympy objects) needs a merge
of the sympy namespace and the variable for the sympy symbol representing the
independent variable:

namespace = sp.__dict__.copy()
local = {}
local[independent_variable] = x
namespace.update(local)
formula = eval(formula, namespace)

Turning x0 into a valid sympy expression is easier: x0 = eval(x0, sp.__dict__).

Hint 3. Note that in the web interface, the minimum and maximum values on
the axis can be mathematical expressions such as 2*pi. This means that these
quantities must be strings that are evaluated in the numpy namespace, e.g.,

import numpy as np
xmin = eval(xmin, np.__dict__)

Hint 4. Getting the legends right when plotting multiple curves in the same
plot is a bit tricky. One solution is to have a global variable legends that is
initialized to [] and do the following inside the compute function:

import matplotlib.pyplot as plt
global legends
if erase == ’yes’: # Start new figure?

plt.figure()
legends = []

if not legends:
We come here every time the figure is empty so
we need to draw the formula
legends.append(’$%s$’ % sp.latex(formula))
plt.plot(x, f(x))

Here, f is the Python function for computing the numpy variant of the expression
in formula.

Hint 5. Use the test block in the file to call the compute function several times
with different values of the erase parameter to test that the erase functionality
is correct.

c© 2015, Anders E. Johansen, Hans Petter Langtangen. Released under CC Attribution 4.0
license

72

c) Write the remaining files. These have straightforward content if Exercise 3 is
done and understood.
Filename: Taylor_approx.tar.gz.

Exercise 5: Extend the gen app
Add a new argument x_axis to the compute function in the gen application
from Section 4.10. The x_axis argument measures the extent of the x axis in
the plots in terms of the number of standard deviations (default may be 7).
Observe how the web interface automatically adds the new argument and how
the plots adapt!

Exercise 6: Make a web app with multiple apps
The purpose of this exercise is to look into web apps with multipe submit buttons.
More precisely, we want a web app that can perform two actions: add a+ b and
multiply pq. There should be two parts of the open web page:

1. Two fields for a and b and an Add button. Clicking on Add brings up a
new line below add: Sum: 3 if a+ b = 3.

2. Two fields for p and q and a Multiply button. Clicking on Multiply
brings up a new line below add: Product: 5 if pq = 5.

That is, the web app actually features two apps in the page.

Hint 1. Make two input form classes, say AddForm and MulForm in model.py.
Since it suffices to fill in either a and b or p and q, all fields cannot be required.
Let the controller process both classes and collect the two forms and two results
in a form dictionary and a result dictionary that is passed on the to the
view.html file.

Hint 2. To detect which “subapp” (add or multply) that was used, one can
give a name to the submit button and in the controller check which of the submit
buttons that was pressed (and then perform the associated computation and
update of results). In view.html:

<input type="submit" name="btn" value="Add"></form>
...
<input type="submit" name="btn" value="Multiply"></form>

In controller.py:

if request.method == ’POST’ and f.validate() and \
request.form[’btn’] == ’Multiply’:

result[’mul’] = mul(f.p.data, f.q.data)

Filename: addmul.tar.gz.

c© 2015, Anders E. Johansen, Hans Petter Langtangen. Released under CC Attribution 4.0
license

73

https://github.com/hplgit/web4sciapps/tree/master/doc/src/web4sa/src-web4sa/apps/flask_apps/gen

Exercise 7: Equip the gen app with more data types
In the gen application from Section 4.10, use the label argument in the form
field objects to add an information of the type of data that is to be supplied
in the text field. Extend the model.py file to also handle lists, tuples, and
Numerical Python arrays. For these three new data types, use a TextField
object and run eval on the text in the view.py file. A simple test is to extend
the compute function with an argument x_range for the range of the x axis,
specified as an interval (2-list or 2-tuple). Filename: gen_ext.tar.gz.

Exercise 8: Auto-generate code from function signature
Given a compute with a set of positional and keyword arguments, the pur-
pose of this exercise is to automatically generate the Flask files model.py and
controller.py. Use the Python inspect module, see Section 4.10, to extract
the positional and keyword arguments in compute, and use this information to
construct the relevant Python code in strings. Write the strings to model.py
and controller.py files. Assume as in Section 4.10 that the user provides a
file view_results.html for defining how the returned object from the compute
function is to be rendered.

Test the code generator on the compute function in the vib1 application
to check that the generated model.py and controller.py files are correct.
Filename: generate_flask.py.

Project 9: Interactive function exploration
The Bokeh Python library works very well with Flask. The purpose of this
exercise is to make a web app where one can explore how parameters in a function
influence the function’s shape. Given some function f(x; p0, p1, . . . , pn), where x
is the independent variable and p0, p1, . . . , pn are parameters, we want to create
a user interface with a plot field and text fields or sliders for p0, p1, . . . , pn such
that altering any parameter immediately updates the graph of the f as a function
of x. The Bokeh web side contains a demo: for the specific function

f(x;x0, A, φ, ω) = x0 +A sin(ω(x+ φ)).

However, this project is about accepting any function f(x; p0, p1, . . . , pn) and
creating tailored Flask/Bokeh code of the type in the demo. The user must
specify a Python function for f :

def f(x, p):
x_0, A, phi, omega = p
return x_0 + A*sin(omega*(x - phi))

where p is a list of parameter values. In addition, the user must provide info
about each parameter: the name, a range or a number, and if range, a default
value. Here is an example:

c© 2015, Anders E. Johansen, Hans Petter Langtangen. Released under CC Attribution 4.0
license

74

https://github.com/hplgit/web4sciapps/tree/master/doc/src/web4sa/src-web4sa/apps/flask_apps/gen
http://bokeh.pydata.org/en/latest/
http://bokeh.pydata.org/en/latest/docs/server_gallery/sliders_server.html

p_info = [
(’offset’, [-2, 2], 0),
(’amplitude’, [0, 5], 2.5),
(’phase’, 0),
(’frequency’, [1, 10], 1)]

Parameters with an interval range get a slider for setting the value, while
parameters with only a number, as for phase in this example, get a text field
where the user can alter the number.

The user must also provide a suitable range for the x axis. As test case
beyond the example above, try a Gaussian function with this input from the
user:

import numpy as np

def gaussian(x, p):
mu, sigma = p
return 1./(sigma*np.sqrt(2*np.pi))*\

np.exp(-0.5*(x - mu)**2/sigma**2)

p_info = [
(’mean’, [-2, 2], 0),
(’standard deviation’, [0.1, 4], 1)]

x_axis = [-10, 10]

Filename: expore_func.tar.gz.

7 Resources
7.1 Flask resources
• Flask website

• Flask Quick Start

• Flask tutorial

• The Flask Mega-Tutorial by M. Grinberg

• WTForms Documentation

• The Jinja2 templating language

• The Werkzeug library

• An Introduction to Python’s Flask Framework by L. Polepeddi

• Discover Flask, Part I - Setting up a Static Site

• Flaskr: A Minimal Blog Application: Code, Explanation

• Flask Login with Facebook, Twitter, and OpenID

c© 2015, Anders E. Johansen, Hans Petter Langtangen. Released under CC Attribution 4.0
license

75

http://flask.pocoo.org/
http://flask.pocoo.org/docs/0.10/tutorial/
http://flask.pocoo.org/docs/0.10/tutorial/
http://blog.miguelgrinberg.com/post/the-flask-mega-tutorial-part-i-hello-world
http://wtforms.simplecodes.com/docs/0.6/index.html
http://jinja.pocoo.org/docs/
http://werkzeug.pocoo.org/
http://code.tutsplus.com/tutorials/an-introduction-to-pythons-flask-framework--net-28822
https://realpython.com/blog/python/introduction-to-flask-part-1-setting-up-a-static-site/
https://github.com/mitsuhiko/flask/tree/master/examples/flaskr/
https://stormpath.com/blog/build-a-flask-app-in-30-minutes/
http://peterhudec.github.io/authomatic/examples/flask-simple.html

• Lightweight Python Apps with Flask, Bootstrap, and Heroku by R. Shea

• How to Structure Large Flask Applications

• Explore Flask by R. Picard (online book)

• Flask Mega Tutorial for Data Scientists

• Quick Flask++ tutorial

• Flask-Bootstrap with documentation, basic usage and example

• Skulpt: Interactive Python in the browser (but no support for numpy,
scipy, or matplotlib)

7.2 Django resources
• Django webpage

• List of Web tutorials

• YouTube videos

• Effective Django Tutorial

• Django by Example (blog, questionnaire, etc.)

• Django for Scientific Applications

• A Tutorial for Deploying a Django Application that Uses Numpy and Scipy
to Google Compute Engine Using Apache2 and modwsgi

c© 2015, Anders E. Johansen, Hans Petter Langtangen. Released under CC Attribution 4.0
license

76

http://blog.shea.io/lightweight-python-apps-with-flask-twitter-bootstrap-and-heroku/
https://www.digitalocean.com/community/tutorials/how-to-structure-large-flask-applications
https://exploreflask.com/index.html
http://www.datacommunitydc.org/blog/2014/02/flask-mega-meta-tutorial-data-scientists
http://maximebf.com/blog/2012/10/building-websites-in-python-with-flask/#.UxV4jHVdXn4
https://github.com/mbr/flask-bootstrap
http://pythonhosted.org/Flask-Bootstrap/
http://pythonhosted.org/Flask-Bootstrap/basic-usage.html
https://github.com/mbr/flask-bootstrap/blob/master/sample_application/__init__.py
http://www.skulpt.org/
https://www.djangoproject.com/
https://code.djangoproject.com/wiki/Tutorials
http://www.youtube.com/playlist?list=PL385A53B00B8B158E
http://www.effectivedjango.com/tutorial/
http://lightbird.net/dbe2/
http://www.blopig.com/blog/2013/09/django-for-scientific-applications/
http://www.datacommunitydc.org/blog/2013/12/a-tutorial-for-deploying-a-django-application-that-uses-numpy-and-scipy-to-google-compute-engine-using-apache2-and-modwsgi
http://www.datacommunitydc.org/blog/2013/12/a-tutorial-for-deploying-a-django-application-that-uses-numpy-and-scipy-to-google-compute-engine-using-apache2-and-modwsgi

Index
base64 encoding of PNG images, 35
Bokeh plotting, 37
BytesIO objects, 35

Django
HTML templates, 15
Django
index function, 15, 62

input forms, 14, 62
input validation, 63
installation, 10
making a project, 11
making an application, 12
Django
models.py, 14

Django
views.py, 15

file-like string objects (BytesIO), 35
Flask

LATEX mathematics, 25
Bokeh plotting, 37
CSS style sheets, 24
database, 46
error checking, 23
file upload, 58
HTML templates, 7
Flask
index function, 7, 21

input forms, 6, 21
input validation, 32
installation, 5
login, 46
MVC pattern, 9
troubleshooting, 10
uploading of files, 58

functools, 33

getattr, 40

hasattr, 40
highcharts, 40

inline PNG image in HTML, 35
inline SVG figure in HTML, 36

mpld3 plotting, 37
MVC pattern, 2

pandas_highcharts, 40

setattr, 40
strings as files (BytesIO), 35

web frameworks, 1

c© 2015, Anders E. Johansen, Hans Petter Langtangen. Released under CC Attribution 4.0
license

	Web frameworks
	The MVC pattern
	A very simple application
	Application of the MVC pattern

	Making a Flask application
	Programming the Flask application
	Equipping the input page with output results
	Splitting the app into model, view, and controller files
	Troubleshooting

	Making a Django application
	Setting up a Django project
	Setting up a Django application
	Programming the Django application
	Equipping the input page with output results

	Handling multiple input variables in Flask
	Programming the Flask application
	Implementing error checking in the template
	Using style sheets
	Using LaTeX mathematics
	Rearranging the elements in the HTML template
	Bootstrap HTML style
	Custom validation
	Avoiding plot files
	Plotting with the Bokeh library
	Autogenerating the code
	User login and storage of computed results
	Uploading of files

	Handling multiple input variables in Django
	Programming the Django application
	Custom validation
	Customizing widgets
	Resources

	Exercises
	Resources
	Flask resources
	Django resources

	Index

