
Creating Virtual Python Software
Environments with Virtualenv

Hans Petter Langtangen1,2

Anders Johansen1

1Center for Biomedical Computing, Simula Research Laboratory
2Department of Informatics, University of Oslo

Apr 11, 2016

0.1 Motivation
The most difficult aspect of installing a particular software package is usually
to get all the dependencies right. That is, the package requires the existence
of a lot of other packages on the computer system. These packages also have
their dependencies. In addition, some packages only work with certain versions
of other packages. Getting dependencies and software versions right quickly
becomes a challenging problem. Even more critical is the fact that installing
a new set of packages brings in other versions of some software that affect the
behavior of previously installed software on the computer system.

To be specific, think of package a that depends on packages b and c in their
respective versions 1.0 and 1.2 or newer. Then we install package d, which also
requires package c, but in an older version 0.6. Package c in v0.6 overwrites
v1.2, causing package a to break.

A good solution to the problem of incompatible dependencies, and in fact a
good solution to handle dependencies in general, is to create an isolated virtual
environment where we can install the packages in the versions we want. We can
have several such isolated environments on our system and none of them interfere
with the global software system. Also, we can easily delete an environment when
it is no longer needed.

0.2 Creating an isolated environment with Virtualenv

Use virtualenvwrapper!

Since these notes were written, Virtualenvwrapper has a emerged as a tool
that simplifies the user of Virtualenv. Check out its documentationa.

ahttps://virtualenvwrapper.readthedocs.org/en/latest/

Virtualenv is a tool that creates isolated Python environments. More precisely,
it allows creating virtual environments that have different versions of Python and
Python libraries. This makes it possible to test applications using different set of
libraries, or checking if an upgrade of a library will cause errors, without affecting
the computer system’s global Python installation with all its site-packages.

Note that Virtualenv can only contain Python packages. If an environment
needs other types of software, this software must be installed separately and
globally on the computer system.

The recommended way to install Virtualenv is from PyPi (the Python Package
Index) using pip1:

Terminal> sudo pip install virtualenv

The pip tool itself can be installed from pure Python source2 via the standard
sudo python setup.py install command. On Debian systems (including
Ubuntu) one can install pip by sudo apt-get install python-pip.

The virtualenv script creates a new virtual environment in a destination
directory here named venv:

Terminal> virtualenv venv

By default, virtualenv will symlink to the system’s site-packages if the user
installs a package in the virtual environment that is already installed globally
on the computer system. To create a totally isolated environment one can use
the -–no-site-packages switch when creating the environment:

Terminal> virtualenv --no-site-packages venv

One can apply the -p flag to specify which Python executable to use as the
python program in the environment:

Terminal> virtualenv -p /usr/bin/python2.6

The next step is to activate the virtual environment. To do this, we source the
activation script from the bin subdirectory of the newly created venv directory:

Terminal> cd venv/
Terminal> source bin/activate

Successful execution of the activate script changes the prompt in the
terminal window so that the prompt is prefixed with the name of the virtual
environment one is using:

1https://pypi.python.org/pypi/pip
2https://pypi.python.org/pypi/pip

2

https://virtualenvwrapper.readthedocs.org/en/latest/
https://pypi.python.org/pypi/pip
https://pypi.python.org/pypi/pip

Terminal> source bin/activate
(venv)Terminal>

Packages we install will now be installed in the lib/pythonX.Y/site-packages
directory within the environment, where X.Y is the Python version. First we
install yolk, which is a simple tool for listing all installed Python packages:

(venv)Terminal> pip install yolk
(venv)Terminal> yolk -l

The latter command lists all Python packages installed in the current virtualenv.
At this point, there is nothing more than the essential tools like Python and
pip, and of course yolk itself.

Let us also install the Python web framework Django:

(venv)Terminal> pip install Django

Using yolk we see that the Django version we installed is 1.5.1:

(venv)Terminal> yolk -l | grep Django
Django - 1.5.1 - active

Within a Virtualenv environment, the local python interpreter and local
packages are always used:

(venv)Terminal> which python
/some/path/to/venv/bin/python
(venv)Terminal> python -c ’import django as m; print m’
<module ’django’ from ’/some/path/to/venv/local/lib/...’>

What can be installed by pip install? The above examples have installed
Python packages whose names and details are present in the Python Package
Index (PyPi)3. One can also install from tarballs as long as the root directory
of the tarball contains a setup.py file to do the installation:

(venv)Terminal> pip install ../some/dir/package.tar.gz
(venv)Terminal> pip install http://some.net/dir/package.tar.gz

Installation directly from the source in a version control system is also possible
(if a setup.py resides in the root directory):

(venv)Terminal> pip install -e \
git+https://github.com/hplgit/odespy.git#egg=odespy

The syntax is pip install -e vcs+URL#egg=packaname, where vcs is the name
of the version control system (hg, git, svn, cvs, bzr).

3http://pypi.python.org/pypi

3

http://pypi.python.org/pypi
http://pypi.python.org/pypi

0.3 Creating a slightly different environment
Say that we have written an app for Django v1.5.1 and want to check that it is
compatible with an earlier version of Django, e.g., v1.4.1. With Virtualenv this is
very easy. All we need to do is deactivating the current virtual environment and
create a new one where we install Django v1.4.1. Deactivation of an environment
is done by the command deactivate:

(venv)Terminal> deactivate
Terminal>

Observe that deactivation removes the prompt prefix (venv). To re-activate,
just run source bin/activate.

With the same procedure as before we create a new virtual environment,
now called venv2, and source its activate file. This time we install a specific
Django version:

Terminal> virtualenv venv2
Terminal> cd venv2
Terminal> source bin/activate
(venv2)Terminal> pip install yolk Django==1.4.1

As always, yolk is our tool to assure that the correct version a software is
installed:

(venv2)Terminal> yolk -l | grep Django
Django - 1.4.1 - active

Now we have two Python environments, venv with Django 1.5.1 and venv2
with Django 1.4.1. This makes it easy to test how the same app behaves
on different versions of Django without making any changes to the system’s
configuration. Just copy the files for the app to a directory in the virtual
environment and run.

0.4 Copying an environment
There is not a good and easy way to fully share a virtual environment across
machines. The most convenient solution is first to create the environment and
then re-install this environment in a new environment. A requirements file can
be used for this cause. First we use pip freeze to save a list of requirements to
file:

(venv2)Terminal> pip freeze > requirements.txt

If all the above steps in creating the venv2 environment have been followed, the
requirements file should have the following content:

Django==1.4.1
argparse==1.2.1
wsgiref==0.1.2
yolk==0.4.3

4

In case one has also installed a Python package from the repository of a version
control system, the particular commit version (and of course the URL) is recorded
as data for that package.

To replicate exactly the same environment inside another Virtualenv en-
vironment, we create a new environment, say it is called venv3, copy the
requirements.txt file to the venv3 environment, and use pip to install all the
packages and their versions specified in requirements.txt at once:

(venv3)Terminal> pip install -r requirements.txt

A yolk -l command can be used to check the success of the multiple installations.
A word of caution is necessary here. Distributing a requirements.txt

file produced by pip freeze will not always re-create an environment by a
simple pip install -r requirements.txt. For example, the output from pip
freeze may not account for the fact that some packages must be installed before
others. When creating a Python environment for doing scientific computing,
numpy is a package that must be installed before most other packages. Some
packages can be challenging to compile via pip install (ScientificPython is an
example, although manual execution of setup.py runs fine). Also, many Python
scientific computing packages depend on much non-Python software that cannot
be installed by pip. For such complex environments it is recommended to create
a script that performs the manual installation tasks, but it can utilize pip to as
large extent as possible.

0.5 Installing a scientific computing environment
Basic Python packages for scientific computing include numpy, sympy, matplotlib,
scipy, ipython, nose, and odespy. Some of these packages depend on a series
of non-Python software packages that must be installed on the system. These
and other relevant Debian packages are
gcc g++ gfortran
libatlas-base-dev libsuitesparse-dev
tcl8.5-dev tk8.5-dev
subversion mercurial cvs git gitk
libfreetype6-dev libpng-dev
mayavi2 tcl-vtk
libsqlite3-dev

With this software in place, we can go on with pip install of Python packages:
Terminal> packages="numpy sympy matplotlib scipy ipython nose"
Terminal> for p in packages; do pip install $p; done
Terminal> pip install -e \
git+https://github.com/hplgit/odespy.git#egg=odespy

Note that pip install is preferred over apt-get install of Debian packages
because pip will usually install a newer version of the package. It also opens up
the possibility for installing the development version directly from the package’s
repository on (e.g.) GitHub.

A pip freeze > requirements.txt results as usual in a list of the packages
in the environment, but this file is not so useful.

5

Warning.

This requirement file cannot be used to recreate the environment. The
reason is that there is no way to impose a certain sequence of the packages
for installation. This is demanded, because numpy must be installed before
scipy, matplotlib, and most other packages for numerical computing.
One must therefore provide a Bash script or Python program for installing
the environment. Virtualenv is still useful for having multiple environments
with different versions of, e.g., numpy and matplotlib, but pip install
via a requirements.txt file is not possible.

A Bash script for installing the environment above may look like

#!/bin/sh
apt="yes | sudo apt-get install"
$apt gcc g++ gfortran
$apt libatlas-base-dev libsuitesparse-dev
$apt tcl8.5-dev tk8.5-dev
$apt subversion mercurial cvs git gitk
$apt libfreetype6-dev libpng-dev
$apt mayavi2 tcl-vtk
$apt libsqlite3-dev

packages="numpy sympy matplotlib scipy ipython nose"
for p in packages; do pip install $p; done
pip install -e git+https://github.com/hplgit/odespy.git#egg=odespy

Other packages can be added to the script as well:

pip install -e git+https://github.com/hplgit/scitools.git#egg=scitools
Do manual install of Scientific Python
if [! -d srclib]; then mkdir scrlib; fi
cd srclib
hg clone https://bitbucket.org/khinsen/scientificpython
cd scientificpython
sudo python setup.py install
cd ../..

hpl 1: Should refer to the Vagrant document for how to make a list of
packages and then autogenerate scripts.

References.

• Virtualenv documentation4

• Pip documentation5

4http://www.virtualenv.org/en/latest/
5http://guide.python-distribute.org/pip.html

6

http://www.virtualenv.org/en/latest/
http://guide.python-distribute.org/pip.html

	Motivation
	Creating an isolated environment with Virtualenv
	Creating a slightly different environment
	Copying an environment
	Installing a scientific computing environment

