Creating Vagrant Machines for

Distribution of Software Environments

Hans Petter Langtangen!?

Anders E. Johansen!
!Center for Biomedical Computing, Simula Research Laboratory
?Department of Informatics, University of Oslo

Dec 8, 2014

Scientific software soon gets very complicated to install because packages
build on numerous other packages, some of which may be hard to compile and
link successfully on a system. Those who frequently need to make sure their
target audience (consisting typically of students, collaborators, or customers)
has a certain set of packages installed on their system, run into a serious problem
when few in the target audience have the competence, interest, and patience
to install all the packages on their computer with its particular version of the
operating system.

There are many working solutions to this problem:

e Long technical installation descriptions that in practice require considerable
experience with compiling and linking software packages.

e Ready-made, easy-to-install files for particular platforms, e.g., Debian
packages (.deb files) for Linux systems like Ubuntu, .dmg bundles for Mac,
or .exe files for Windows. It can still be quite some work for a user to
install the right combination of many packages, although each package
gets installed by a double click.

e Virtual machines, such as VirtualBox, Parallels, and VMWare Fusion,
can run a particular operating system and thereby take advantage of the
most easy-to-use platform from an installation perspective. In particular,
one can run Ubuntu or other Debian-based Linux systems and use the
apt-get install and pip install commands to make installation of
packages and their dependencies trivial.

A Vagrant machine! is essentially a wrapper around VirtualBox which makes it
very easy to build, distribute, and use a virtual machine. The present document

Thttp://www.vagrantup.com/

http://www.vagrantup.com/

describes how to create and operate a Vagrant machine. The target audience
of the document is scientists who wants to spend a minimum of efforts on
offering or using a complete computing environment with much sophisticated,
hard-to-install mathematical software.

By host we mean the operating system used to build or run a Vagrant machine.
Operating system commands issued on the host have a prompt Terminal> while
commands issued in the Vagrant machine feature the prompt Machine>.

1 Problem setting

We shall work with a specific example: creating a computing environment
for the participants in a course on computational X, where X is any science
or engineering subject such as chemistry, physics, quantum mechanics, fluid
dynamics, oceanography, and so forth. The challenge with courses featuring
heavy computations is two-fold:

1. to minimize the amount of time the audience spends on installation issues
and

2. to minimize the teacher’s hassle with all types of operating systems that
might be present on the laptops in the audience.

An attractive solution to this minimization problem is to create a Vagrant
machine, which is simply a file with a virtual ready-made computer that anyone
in the audience can easily download and use on any Windows or Mac computer.

Another advantage is that all users of a Vagrant machine have exactly the
same computing environment (unless they modify the machine). The teacher
can then easily debug a user problem inside the teacher’s own Vagrant machine.
And anything that the teacher demonstrates on her computer works out of the
box on the participants’ computers.

Different types of Vagrant machines can be made for different types of courses
or purposes. For example, a research project can set up a software environment
for its project members, as a Vagrant machine, to ensure that the environment
is conserved for the future, which is a key principle for replicable science. Users
may have many Vagrant machines on their computers and switch between these
computing environments.

1.1 Contents of the Vagrant machine

The Vagrant machine needs to have an operating system. Here we choose Ubuntu
of two main reasons:

1. software on Ubuntu can be trivially installed as Debian packages

2. the Debian software repository is at the time of this writing the richest
repository for pre-built mathematical software.

We remark that the user of the machine will mainly work with files and directories
on the host system (Mac or Windows) and only use the Ubuntu system to run
computations.

To be specific, the sample computing environment to be illustrated here
consists of a Python-based ecosystem for scientific computing. Examples on
basic software includes

e Text editors: emacs, vim, gedit

e Compilers: gcc, g++, gfortran

e Numerical libraries: ATLAS

e Python packages: numpy, scipy, sympy, matplotlib, ScientificPython

Most of these packages are in Debian and trivially installed by a sudo apt-get install packagename
command, but the Python packages are often more conveniently installed in
their latest version by a pip install packagename command. A few Python
packages must be installed directly from the source code, via downloading fol-
lowed by the sudo python setup.py install command, if they do not exist
in Debian, or if they are not supported by pip install, or if one needs to
download the latest development version. The example will in detail illustrate
the various cases.
Much more sophisticated packages than those listed above, for instance
PETSc? and FEniCS?, may be very challenging to build from scratch, but

2http://www.mcs.anl.gov/petsc/
Shttp://fenicsproject.org

http://www.mcs.anl.gov/petsc/
http://fenicsproject.org

as long as Debian versions are offered (which is the case with PETSc and
FEniCS), installation on a Debian-based system like Ubuntu is still just a trivial
apt-get install command.

In the Vagrant machine, we create two directories:

e ~/bin for executable programs and scripts

e ~/srclib for Python packages installed from source code
We also include two useful files:

e A small, but illustrative ~/.bashrc? file for setting up the Linux system.

e ~/.rsyncexclude’® for excluding certain files when running rsync for
copying files between machines, or between machines and external disks or
memory sticks.

1.2 Installing the necessary software for using Vagrant

Before going into details on how to utilize Vagrant, you need to have it on your
host system.

VirtualBox. Download and install VirtualBox%. Choose the version according
to the operating system on the host. For example, if you want to build or run
Vagrant machines under Mac OS X, choose VirtualBox z.y.z for OS X hosts,
where x.y.z is the version number of VirtualBox. Double click the downloaded
.dmg file to install Vagrant. Those who work on a Windows machines will select
VirtualBox x.y.z for Windows hosts, which downloads an .exe file which can just
be double clicked to perform the installation.

Installing VirtualBox on Ubuntu and other Linux systems can be challenging.
Here is a recipe. Start with

Terminal> sudo apt-cache search virtualbox

to find a package virtualbox-X, where X denotes a particular version number
(e.g., 4.2). Then copy and paste the following commands into the terminal
window:

Terminal> wget -q \
http://download.virtualbox.org/virtualbox/debian/oracle_vbox.asc \
-0- | sudo apt-key add -
Terminal> sudo sh -c ’echo \
"deb http://download.virtualbox.org/virtualbox/debian precise contrib" \
>> /etc/apt/sources.list’
Terminal> sudo apt-get update
Terminal> sudo apt-get install virtualbox-X

4nttps://github.com/hplgit/vagrantbox/tree/master/doc/src/vagrant/src-vagrant/.bashrc
Shttps://github.com/hplgit/vagrantbox/tree/master/doc/src/vagrant/src-vagrant/.rsyncexclude
Shttps://www.virtualbox.org/wiki/Downloads

https://github.com/hplgit/vagrantbox/tree/master/doc/src/vagrant/src-vagrant/.bashrc
https://github.com/hplgit/vagrantbox/tree/master/doc/src/vagrant/src-vagrant/.rsyncexclude
https://www.virtualbox.org/wiki/Downloads

(Recall to replace X by the appropriate version number.) You may need to run
sudo apt-get -f install and upgrade packages. It is easier to work with
VirtualBox on Mac or Windows if you run into trouble with Ubuntu.

We recommend to install VirtualBox as shown above on Ubuntu rather than
downloading a particular .deb file (Debian package) from the VirtualBox site’,
because the apt-get install approach above makes it easier to explicitly get
all the packages that VirtualBox depends on.

Vagrant. Download and install Vagrant®. Choose the latest version and the
installation file corresponding to the host’s operating system (where you installed
VirtualBox). On a Mac, you select the Vagrant-x.y.z.dmg file (x.y.z denotes
the version of the software), on Windows the Vagrant_x.y.z.msi file is the
relevant choice. On Ubuntu, select vagrant_x.y.z_*.deb and install it by
sudo dpkg -i vagrant_x.y.z_x*.deb.

On Windows and Mac OS X, the vagrant command is automatically available
after installation (because the directory where the vagrant executable resides is
placed in your PATH environment variable). This is true for many Linux systems
too, otherwise you must add the relevant directory where the vagrant program
was installed (say /opt/vagrant/bin) to your PATH variable.

Cygwin (only on Windows). Windows computers do not feature an ssh
client and an X server by default, which are needed in scientific applications.
Therefore, we recommend to install Cygwin® or the enhanced tool Babun'?,
which is a pre-configured version of Cygwin. Babun and Cygwin give easy access
to an ssh-client and an X-server on Windows computers. Actually, Babun or
Cygwin extends Windows with a complete Unix environment. The home pages
of both projects have detailed installation instructions.

Only the minimal base packages from the Cygwin distribution are installed
by default. This means that you need to manually select the 'X11’ category
during installation to install Cygwin’s X11 server. Notice that downloading
Cygwin might take one or more hours, depending on the speed of your network.

Once installed, we need to add Cygwin’s ssh client to our PATH. Cygwin is by
default installed to C: \cygwin, so the command is set PATH=},PATH%;C:\cygwin\bin.

2 Creating the Vagrant machine

In this section we explain how to select an operating system for the Vagrant
machine, how to install pre-compiled binary packages, how to install (Python)
packages from source code, and how to configure the machine.

"https://www.virtualbox.org/wiki/Downloads
8http://downloads.vagrantup.com/
9mttp://cygwin.com/install.html
10https://github.com/babun/babun

https://www.virtualbox.org/wiki/Downloads
http://downloads.vagrantup.com/
http://cygwin.com/install.html
https://github.com/babun/babun

2.1 Choice of operating system type

The first step of building a Vagrant machine is to choose a plain version of an
operating system to base the machine on. This is called a base box. A lot of
pre-made base boxes for various versions of operating systems are available at
http://www.vagrantbox.es. (If, for some reason, you want to build a base box
with another operating system, there are instructions!! for that.) Let us decide
on adopting Ubuntu precise 64, which we find down on the list. This is a version
of Ubuntu 12.04 (precise refers to the official Ubuntu name Precise Pangolin
for version 12.04). Click on Copy to copy the URL. You have now two choices:

1. you can build and distribute a complete virtual machine, or

2. the user can download a box and then automatically install a list of
prescribed packages in the box.

The former approach, called a complete Vagrant machine in the following, results
in one big file containing the machine. The latter approach, referred to as a
Vagrant machine specification results in very small text files to be distributed to
the users.

The advantage of a complete Vagrant machine is that users can download one
big file and they immediately have an operative machine. You are also guaranteed
that all users have identical environments. An empty Vagrant machine is easy
to distribute, but the disadvantage is that a user’s initialization of the machine
takes (very) long time since a lot of packages must be downloaded and installed.
Something can go wrong with the installation. It may also happen that different
users get slightly different environments because they run the installation process
of their machines at different times.

2.2 Downloading a base box to create a complete Vagrant
machine

Paste the copied URL of the chosen box in a new browser tab. This action
should automatically download a file precise64.box. Say you store this file in
a directory ~/vagrant. Go to this directory and run

Terminal> vagrant box add mybox precise64.box
Terminal> vagrant init mybox
Terminal> vagrant up

The result is now an initialized Vagrant machine mybox which you can log into.

The vagrant directory where these commands are run is known as the project

directory in the Vagrant documentation'?.

Mhttp://docs-v1.vagrantup.com/v1/docs/base_boxes.html
12nttp://docs.vagrantup.com/v2/

http://www.vagrantbox.es
http://docs-v1.vagrantup.com/v1/docs/base_boxes.html
http://docs.vagrantup.com/v2/

2.3 Making an empty Vagrant machine
Make some directory (say) ~/vagrant, move to this directory, and type

Terminal> vagrant init

This command creates a Vagrantfile. Invoke the file in a text editor and
replace the line config.vm.box = "base" by the URL to the base box and add
another line config.ssh.forward_x11 = true to enable X11 graphics. The
Vagrantfile looks something like

Vagrant.configure("2") do |config]
All Vagrant configuration is done here. The most common configuration
options are documented and commented below. For a complete reference,
please see the online documentation at vagrantup.com.

Every Vagrant virtual environment requires a box to build off of.
config.vm.box = http://files.vagrantup.com/precise64.box
config.ssh.forward_x11 = true

end

2.4 Installing packages in a complete Vagrant machine

This section assumes that you want to build and distribute a complete Vagrant
machine as defined above. There is not much installed yet on the mybox machine,
but this is an Ubuntu system where we can very easily install what we want via
sudo apt-get install or pip install commands, or by downloading source
code and performing manual installation. Section 2.6 describes a type of file
for listing packages and Unix commands, with an associated tool deb2sh.py for
automatic generation of installation scripts. Using these utilities, it is close to
trivial to create a rich computing environment.

Creating files. Make sure you are logged out of the Vagrant machine (Ctrl-D)
and located in the project directory on the host. Download default versions'® of
some key files: deb2sh.py, debpkg_minimal.txt, .bashrc, and .rsyncexclude.
Just click on the files, choose the Raw version, and right-click to save each file
to the project directory. Read about the former two files in Section 2.6 and the
latter two in Section 2.7. Edit the files to your users’ needs. Then run

Terminal> python deb2sh.py debpkg _minimal.txt

to produce a Bash script install_minimal.sh and an equivalent Python script
install_minimal.py. Make sure you run all the commands in the project
directory (~/vagrant).

You may alternatively download the more comprehensive debpkg. txt'4 pack-
age list and use that file as a starting point. Running deb2sh.py debpkg.txt
will produce the scripts install.sh and install.py.

https://github.com/hplgit/vagrantbox/tree/master/doc/src/vagrant/src-vagrant
https://github.com/hplgit/vagrantbox/tree/master/doc/src/vagrant/debpkg. txt

https://github.com/hplgit/vagrantbox/tree/master/doc/src/vagrant/src-vagrant
https://github.com/hplgit/vagrantbox/tree/master/doc/src/vagrant/debpkg.txt

Installing files and packages. When you have edited the above files accord-
ing to your users’ needs, you are ready to log into the Vagrant machine, copy
files to the machine and run the installation. The project directory is visible as
/vagrant inside the Vagrant machine (see Section 3.4 for more details). The
relevant login command is vagrant ssh, here followed by two copy commands:

Terminal> vagrant ssh
Machine> cp /vagrant/.bashrc .
Machine> cp /vagrant/.rsyncexclude .

Now you can run the (lengthy) installation process by

Machine> bash /vagrant/install_minimal.sh

or

Machine> python /vagrant/install_minimal.py

If something goes wrong with the installation, edit the script on the host system
(invoke /vagrant/install_minimal.sh in an editor) and rerun the installation
command inside the Vagrant machine.

You may want to include the installation scripts in the box so that users can
see exactly what has been installed and rerun installation commands if necessary
(e.g., at a later stage to update the software).

Machine> cp /vagrant/install_minimal.sh .
Machine> cp /vagrant/install_minimal.py .

Enabling X11 graphics. It is recommended that you test graphics programs
and check that they display the graphics on the host appropriately. To this end,
you need to enable X11 graphics on the host by editing the file Vagrantfile in the
project directory so that it includes the line config.ssh.forward_x11 = true:

Vagrant::Config.run do |configl|

Enable X11
config.ssh.forward_x11 = true

end

To get X11 graphics to work, you must also start X11 on the host: run Applica-
tions - Utilities - X11 on a Mac, or invoke Start - All Programs - Cygwin-X -
XWin Server on Windows.

A simple application just to test X11 is to run xterm from the Vagrant
machine. A terminal window will pop up on the host.

Packaging a new box. When everything is copied to the box, installed, and
tested, we need to package the installed virtual environment into a box in order
to distribute it to other users. Log out of the machine and finalize the machine
by running the vagrant package command in the project directory:

Terminal> vagrant package --output course.box \
--vagrantfile Vagrantfile

The settings in Vagrantfile are now packed with the box. In particular, if X11
graphics has been enabled in Vagrantfile as described above, you have a fully
functioning Ubuntu machine in course.box that will work seamlessly with X11
graphics on the host. Users can just do

Terminal> vagrant box add course course.box
Terminal> vagrant init course

Terminal> vagrant up

Terminal> vagrant ssh

A real machine (containing what is listed earlier, plus the FEniCS'® software)
can be downloaded from Google Drive at http://goo.gl/ta977B (note the file
size: 3.8Gb!).

2.5 Installing packages in an empty Vagrant machine

An empty Vagrant machine is distributed to users as a bundle of Vagrantfile
and an installation script. Read Section 2.6 and make a Bash installation script.

You may want to distribute .bashrc and .rsyncexlude files too, as described
in Section 2.7, but that is easiest done by letting the installation script download
the files from site where they are available. Relevant lines may be

$ cd $HOME
$ wget http://tinyurl.com/m88bljf/.bashrc
$ wget http://tinyurl.com/m88bljf/.rsyncexclude

To ensure that the user’s initialization process of the machine invokes an
installation of the desired packages, you need to add a line to Vagrantfile that
runs the Bash script. Say the name of the script is install_minimal.sh. The
relevant line is shown below:

Vagrant.configure("2") do |config]|

Run installation
config.vm.provision :shell, :path => "install_minimal.sh"

end

Users must now have the files Vagrantfile and install_minimal.sh to
create a complete Vagrant machine on their computers.

15http://fenicsproject.org

http://fenicsproject.org
http://goo.gl/ta977B

2.6 Scripts for installing ready-made packages

We have developed a little tool where one can list the desired Debian or Python
packages in a computing environment in a file with default name debkpg.txt.
This file may also contain plain Unix commands for doing other types of instal-
lation, like pip install, or cloning of source code repositories with subsequent
execution of a setup.py file. Concrete examples are listed below.

A little Python script deb2sh. py!® reads the installation specification in some
file debpkg_minimal.txt!” and creates a Bash script install_minimal.sh!®
and an equivalent Python script install_minimal.py!? for running all the
necessary operating system commands to install all the packages in the correct
order. The script aborts if any package cannot be installed successfully. The
problem must then be fixed, or the package must in worst case be removed (just
comment out the install line(s) in the Bash or Python script). The script can
thereafter be rerun again.

The following is an extract of packages as they are listed in the mentioned
debpkg_minimal.txt file:

Minimal installation for a Python ecosystem
for scientific computing

Editors
emacs python-mode gedit vim ispell

Compilers
gcc g++ gawk f2c gfortran
autoconf automake autotools-dev

Numerical libraries
libatlas-base-dev libsuitesparse-dev

Python

idle

python-pip

python-dev

Matplotlib requires libfreetype-dev libpng-dev
(otherwise pip install matplotlib does not work)
libfreetype6-dev libpng-dev

pip install numpy

pip install sympy

#pip install matplotlib # pip may fail for matplotlib
python-matplotlib

pip install scipy

ScientificPython must be installed from source

$ if [! -d srclib]; then mkdir srclib; fi

$ cd srclib

$ hg clone https://bitbucket.org/khinsen/scientificpython
$ cd scientificpython

$ sudo python setup.py install

$cd ../..

The syntax has four elements:

16https://github.
Thttps://github.
8https://github.
Yhttps://github.

com/hplgit/vagrantbox/tree/master/doc/src/vagrant/src-vagrant/deb2sh.py

com/hplgit/vagrantbox/tree/master/doc/src/vagrant/src-vagrant/debpkg minimal.txt
com/hplgit/vagrantbox/tree/master/doc/src/vagrant/src-vagrant/install_minimal.sh
com/hplgit/vagrantbox/tree/master/doc/src/vagrant/src-vagrant/install_minimal.py

10

https://github.com/hplgit/vagrantbox/tree/master/doc/src/vagrant/src-vagrant/deb2sh.py
https://github.com/hplgit/vagrantbox/tree/master/doc/src/vagrant/src-vagrant/debpkg_minimal.txt
https://github.com/hplgit/vagrantbox/tree/master/doc/src/vagrant/src-vagrant/install_minimal.sh
https://github.com/hplgit/vagrantbox/tree/master/doc/src/vagrant/src-vagrant/install_minimal.py

1. comment lines are just copied to the Bash and Python installation scripts,

2. lines starting with $ are plain Unix commands and run by the installation
scripts,

3. lines starting with pip install lists packages to be installed with pip,
while

4. all other non-blank lines are supposed to list the name of Debian packages
to be installed by sudo apt-get install commands.

The examples above show all four line types. Observe in particular how we can
freely add Unix commands to download ScientificPython from its Bitbucket
repo (done in the srclib subdirectory) and install the package manually by
running setup.py the usual way.

Some examples on lines in the automatically generated install_minimal.sh
script are

#!1/bin/bash
Automatically generated script. Based on debpkg.tzt.

function apt_install {
sudo apt-get -y install $1
if [$7? -ne 0]; then
echo "could not install $1 - abort"
exit 1
fi
}

function pip_install {
for p in $@; do
sudo pip install $p
if [$7? -ne 0]; then
echo "could not install $p - abort"
exit 1
fi
done

function unix_command {
$0
if [$? -ne 0]; then
echo "could not run $@ - abort"
exit 1
fi
}

sudo apt-get update --fix-missing

Minimal installation for a Python ecosystem
for sctentific computing

Editors
apt_install python-mode gedit vim ispell

pip_install numpy
pip_install sympy

11

apt_install scipy

ScientificPython must be installed from source

unix_command if [! -d srclib]; then mkdir srclib; fi

unix_command cd srclib

unix_command hg clone https://bitbucket.org/khinsen/scientificpython
unix_command cd scientificpython

unix_command sudo python setup.py install

Notice.

e Installation commands may fail. Therefore we have made separate
functions for doing the apt-get and pip install commands. We
test the value of the environment variable $7 after the installation of
a package: a successful installation implies value of 0, while values
different from 0 mean that something went wrong. We then abort
the script with exit 1.

e The apt-get install command will prompt the user for questions
for every package, but here we use the option -y to automatically
rely on default answers, i.e., accepting yes to all questions.

The corresponding lines in the equivalent, automatically generated install.py
file look as follows.

import commands, sys

def system(cmd):
"""Run system command cmd."""
failure, output = commands.getstatusoutput (cmd)
if failure:
print ’Command\n Y%s\nfailed.’ % cmd
print output
sys.exit(1)

system(’sudo apt-get update --fix-missing’)
system(’sudo apt-get -y install python-mode gedit vim ispell’)

system(’pip install numpy’)
system(’pip install sympy’)
system(’sudo apt-get -y install scipy’)

system(’if [! -d srclib]; then mkdir srclib; f£i’)

system(’cd srclib’)

sytem(’hg clone https://bitbucket.org/khinsen/scientificpython’)
system(’ cd scientificpython’)

system(’sudo python setup.py install’)

The Python script does not test the Unix environment variable $7, but the first
return value from the getstatusoutput function acts as the value of $?.

12

We can use the Bash or Python script to easily automate installation of
packages in the Vagrant machine. More powerful, industry standard tools for
setting up complete software environments are Chef?° and Puppet?!.

2.7 Setting up a default environment with .bashrc

We should include a brief .bashrc file in the Vagrant machine as a starting point
for the user’s customization of her Unix environment. Here is an example??:

~/.bashrc: executed by bash(1l) for non-login shells.
see /usr/share/doc/bash/examples/startup-files for examples

export PYTHONPATH=$PYTHONPATH:$HOME/pythonlib
export PATH=$PATH:$HOME/bin

Create some aliases for rsync commands for copying files:
rsync_basic="-rtDvz -u -e ssh -b"
rsync_excl="--exclude-from=$HOME/ .rsyncexclude"
rsync_del="--suffix=.rsync~ --delete --force"
scp_rsync="rsync $rsync_basic $rsync_excl"
scp_rsync_del="$scp_rsync $rsync_del"

alias scp_rsync="$scp_rsync"

alias scp_rsync_del="$scp_rsync_del"

If running interactively, then:

if ["$PS1"]1; then
alias 1s=’1s -sF’
alias grep=’grep --color=auto’
alias fgrep=’fgrep --color=auto’
alias egrep=’egrep --color=auto’

enable programmable completion features (you don’t need to enable
this, if it’s already enabled in /etc/bash.bashrc and /etc/profile
sources /etc/bash.bashrc).
if [-f /etc/bash_completion] &% ! shopt -oq posix; then

. /etc/bash_completion
fi

set a new prompt and the directory as window title

PROMPT_DIRTRIM=1 makes the dir in window title have 1 trailing dir name
(instead of the whole path)
export PROMPT_DIRTRIM=1

Let prompt in terminal window (PS1) display username, time and
current working directory
PS1=>\u:\D{/H.%M} \W> °
Add directory info to the title bar: (often done in terminal prefs too)
PS1=¢PS1"\ [\e]O;\w\a\]"
fi

The handy rsync commands for copying files require a list of files to ignore, so
a file .rsyncexclude?® must be present in the home holder:

20nttp: //www.opscode . com/

2Inttps://puppetlabs.com/
22https://github.com/hplgit/vagrantbox/tree/master/doc/src/vagrant/src-vagrant/.bashrc
23nttps://github.com/hplgit/vagrantbox/tree/master/doc/src/vagrant/src-vagrant/.rsyncexclude

13

http://www.opscode.com/
https://puppetlabs.com/
https://github.com/hplgit/vagrantbox/tree/master/doc/src/vagrant/src-vagrant/.bashrc
https://github.com/hplgit/vagrantbox/tree/master/doc/src/vagrant/src-vagrant/.rsyncexclude

SHx
*.rsync~
*.a

3 Operating the Vagrant machine

For a user, the initialization of a new machine depends on whether it is a complete
Vagrant machine or an empty Vagrant machine.

Important.

On a Windows computer, always operate the Vagrant machine from Cyg-
win’s terminal, which has both an ssh-client and an X-server. The terminal
can be started from Start - All Programs - Cygwin-X - XWin Server.

3.1 Operating a complete Vagrant machine
The Vagrant machine course.box, created as described in Section 2.4, can now
be distributed to users. A user must do the following steps.

Step 1. Install VirtualBox and Vagrant as described in Section 1.2.

Step 2. Create a directory vagrant and move course.box to this directory.
We also recommend to make a subdirectory projects where all files and di-
rectories to be used from the Vagrant machine reside. You edit files in the
vagrant/projects directory tree on the host.

Step 3. Run the these commands from the vagrant directory:

Terminal> vagrant box add course course.box
Terminal> vagrant init course

14

Step 4. Start X11 on the host: run Applications - Utilities - X11 on a Mac, or
Start - All Programs - Cygwin-X - XWin Server on Windows.

Step 5. Start (boot) the Vagrant machine:

Terminal> vagrant up

Step 5. Log in on the machine:

Terminal> vagrant ssh

Log out with Ctrl-D as usual in Unix terminal windows.

3.2 Operating an empty Vagrant machine

The user has the files Vagrantfile and some installation script, say install_minimal.sh
as described in Section 2.5. The user should make some directory vagrant, copy
Vagrantfile and install_minimal.sh to this directory, and from this directory

run

Terminal> vagrant up
Terminal> vagrant ssh

The first command takes a long time to execute since it runs the installation
script. Log out with Ctrl-D.

3.3 Working with an initialized Vagrant machine

The daily work with the Vagrant machine is very easy. Simply go to the vagrant
directory where the machine resides and run

Terminal> vagrant up
Terminal> vagrant ssh

You are now inside the machine and can reach files on the host from /vagrant/projects
(see the next section for more details). Log out with Ctrl-D and in again with
vagrant ssh. Create and edit files on the host in ~/vagrant/projects and its
subdirectories.

Before closing a laptop or shutting it down, it is recommended to log out of
the Vagrant machine and run vagrant suspend.

3.4 Shared directories

Inside the Vagrant machine, /vagrant is a directory shared with the user’s file
system. More precisely, /vagrant points to the project directory where the file
Vagrantfile resides and where the vagrant up command was run (~/vagrant
if you have followed the specific directory naming suggested in this document).
If users of the Vagrant machine keeps all their files relevant for the machine in
the project directory and its subdirectories, all these directories will be shared

15

between the machine and the user’s file system. Normally, this feature is enough
for efficient communication of files between the Vagrant machine’s file system
and the user’s file system. One can also set up other shared directories, see the
Vagrant documentation for Synced Directories®*.

Since the Vagrant machine shares directories with the host system, users can
safely edit files in the shared directories with their favorite editor on the host
system. The Vagrant machine will have immediate access to the files.

Here is a typical example. Assume that vagrant up and vagrant ssh were
run in a directory myubuntu. On the host, create a subdirectory src of myubuntu.
Start an editor and type in the following Python program in a file testl.py:

import numpy as np

import matplotlib.pyplot as plt
x = np.linspace(0, 3, 11)

y = np.exp(-x)

plt.plot(x, y)

plt.show()

This program will show X11 graphics on your host machine. If this machine

runs the Linux operating system, everything is fine, but if this is a Mac or

Windows machine, X11 must be started as described in Step 4 of the installation

instructions. If that is necessary, log out, start X11, log in again (vagrant ssh).
Run the testl.py program:

Terminal> cd /vagrant

Terminal> cd src
Terminal> python testl.py

A plot of the curve y = e™* should now be seen on the screen.

3.5 Troubleshooting

Troubleshooting: shared directory is invisible. It may happen that the
/vagrant directory seems empty inside the Vagrant machine. Two steps will fix
this problem. First, run

Machine> sudo /etc/init.d/vboxadd setup

inside the Vagrant machine. Second, log out and run

Terminal> sudo vagrant reload

outside the Vagrant machine. Then do vagrant ssh and take an 1s /vagrant
to see that the files in the project directory (e.g., Vagrantfile and the Vagrant
box) are visible.

24http://docs.vagrantup. com/v2/synced-directories/basic_usage.html

16

http://docs.vagrantup.com/v2/synced-directories/basic_usage.html

Troubleshooting: "couldn’t connect to display ...". This error message
points to the problem that X11 graphics on the Vagrant machine cannot be shown
on the host’s screen. Inserting the line config.ssh.forward_x11 = true in the
file Vagrantfile in the project directory and starting X11 on the host are the
two steps that will fix the problem. Unless you build a Vagrant box, the editing
of Vagrantfile should not be required as a ready-made box was packaged with
X11 forwarding (cf. the vagrant package command in Section 2.4). To start
X11 on Mac, run Applications - Utilities - X11, while on Windows, go to Start
- All Programs - Cygwin-X - XWin Server. Log out of the Vagrant machine
(Ctrl-D) and in again (vagrant ssh).

Troubleshooting: Internet is not reachable. A test if Internet is reachable
is to run a ping command inside the machine, e.g.,

Machine> ping us.ubuntu.archive.com

A hanging command indicates that Internet is not reachable. Log out of the box,
run vagrant reload, and vagrant ssh. Try the ping command again.

3.6 Stopping the Vagrant machine

There are three ways to stop the virtual Vagrant machine from the host (i.e.,
you must be logged out by Ctrl-D from the machine):

e vagrant suspend sends the machine to sleep mode. Waking it up is done
with vagrant up.

e vagrant halt shuts off the machine. To start it again, a full boot with
vagrant up is needed.

e The machine can be removed forever by vagrant destroy.

3.7 Placing the Vagrant machine in the cloud

There are numerous free file hosting sites where a Vagrant machine can be stored
and shared with others. We have found Google Drive to be a viable solution. It
is free, can handle large enough files, and has flexible functionality for sharing
the machine with others. A potential problem with Google Drive, Sky Drive, or
Dropbox is that other computers connected to the account start to download
the big Vagrant machines. To prevent such actions, click on the Google Drive
icon on all machines that synchronize the account and deselect the directory
where you store the Vagrant machine(s).

3.8 Using VM Ware Fusion
Not written yet.

17

3.9 Documentation of Vagrant

o The official Vagrant documentation®® targets web developers, but contains
more details than the tutorial above.

e An article in The Linux Journal?® is technically slightly outdated, but
gives much valuable additional information.

A Condensed instructions for students

Say you want distribute a complete Vagrant machine with the URL

http://some.where.net/path/to/course.box

Here is the need-know-information for users:

A.1 Troubleshooting: shared directory is invisible

It may happen that the /vagrant directory seems empty inside the Vagrant
machine. Two steps will fix this problem. First, run

Machine> sudo /etc/init.d/vboxadd setup

inside the Vagrant machine. Second, log out and run

Terminal> sudo vagrant reload

outside the Vagrant machine. Then do vagrant ssh and take an 1s /vagrant
to see that the files in the project directory (e.g., Vagrantfile and the Vagrant
box) are visible.

n

A.2 Troubleshooting: "couldn’t connect to display ...
This error message points to the problem that X11 graphics cannot be shown on
the host. It should be sufficient to start X11 on the host, see Step 4 above.
A.3 Troubleshooting: Internet is not reachable

A test if Internet is reachable is to run a ping command inside the machine, e.g.,

Machine> ping us.ubuntu.archive.com

A hanging command indicates that Internet is not reachable. Log out of the box,
run vagrant reload, and vagrant ssh. Try the ping command again.

25http://docs.vagrantup. com/v2/
26nttp://www.linuxjournal.com/content/introducing-vagrant

18

http://docs.vagrantup.com/v2/
http://www.linuxjournal.com/content/introducing-vagrant

	Problem setting
	Contents of the Vagrant machine
	Installing the necessary software for using Vagrant

	Creating the Vagrant machine
	Choice of operating system type
	Downloading a base box to create a complete Vagrant machine
	Making an empty Vagrant machine
	Installing packages in a complete Vagrant machine
	Installing packages in an empty Vagrant machine
	Scripts for installing ready-made packages
	Setting up a default environment with !.bashrc!

	Operating the Vagrant machine
	Operating a complete Vagrant machine
	Operating an empty Vagrant machine
	Working with an initialized Vagrant machine
	Shared directories
	Troubleshooting
	Stopping the Vagrant machine
	Placing the Vagrant machine in the cloud
	Using VMWare Fusion
	Documentation of Vagrant

	Condensed instructions for students
	Troubleshooting: shared directory is invisible
	Troubleshooting: "couldn't connect to display ..."
	Troubleshooting: Internet is not reachable

