We address the initial-value problem $$ \begin{align} u'(t) &= -au(t), \quad t \in (0,T], \tag{1}\\ u(0) &= I, \tag{2} \end{align} $$ where \( a \), \( I \), and \( T \) are prescribed parameters, and \( u(t) \) is the unknown function to be estimated. This mathematical model is relevant for physical phenomena featuring exponential decay in time, e.g., vertical pressure variation in the atmosphere, cooling of an object, and radioactive decay.
We introduce a mesh in time with points \( 0 = t_0 < t_1 \cdots < t_{N_t}=T \). For simplicity, we assume constant spacing \( \Delta t \) between the mesh points: \( \Delta t = t_{n}-t_{n-1} \), \( n=1,\ldots,N_t \). Let \( u^n \) be the numerical approximation to the exact solution at \( t_n \).
The \( \theta \)-rule [1] is used to solve (1) numerically: $$ u^{n+1} = \frac{1 - (1-\theta) a\Delta t}{1 + \theta a\Delta t}u^n, $$ for \( n=0,1,\ldots,N_t-1 \). This scheme corresponds to
The numerical method is implemented in a Python function
[2] solver
(found in the model.py Python module file):
def solver(I, a, T, dt, theta):
"""Solve u'=-a*u, u(0)=I, for t in (0,T] with steps of dt."""
dt = float(dt) # avoid integer division
Nt = int(round(T/dt)) # no of time intervals
T = Nt*dt # adjust T to fit time step dt
u = zeros(Nt+1) # array of u[n] values
t = linspace(0, T, Nt+1) # time mesh
u[0] = I # assign initial condition
for n in range(0, Nt): # n=0,1,...,Nt-1
u[n+1] = (1 - (1-theta)*a*dt)/(1 + theta*dt*a)*u[n]
return u, t
A set of numerical experiments has been carried out, where \( I \), \( a \), and \( T \) are fixed, while \( \Delta t \) and \( \theta \) are varied. In particular, \( I=1 \), \( a=2 \), \( \Delta t = 1.25, 0.75, 0.5, 0.1 \). Figure 1 contains four plots, corresponding to four decreasing \( \Delta t \) values. The red dashed line represent the numerical solution computed by the Backward Euler scheme, while the blue line is the exact solution. The corresponding results for the Crank-Nicolson and Forward Euler methods appear in Figures 2 and 3.
How the error $$ E^n = \left(\int_0^T (Ie^{-at} - u^n)^2dt\right)^{\frac{1}{2}}$$ varies with \( \Delta t \) for the three numerical methods is shown in Figure 4.
The \( E \) numbers corresponding to Figure 4 are given in the table below.
\( \Delta t \) | \( \theta=0 \) | \( \theta=0.5 \) | \( \theta=1 \) |
1.25 | 7.4630 | 0.2161 | 0.2440 |
0.75 | 0.6632 | 0.0744 | 0.1875 |
0.50 | 0.2797 | 0.0315 | 0.1397 |
0.10 | 0.0377 | 0.0012 | 0.0335 |