Source code for linear
"""
Example for illustrating how Sphinx can be used to create
API documentation for Python modules.
This module is minimalistic - se module :mod:`quadratic` for a
better examples on how to write doc strings.
"""
__all__ = ['root', 'Linear', 'Line']
[docs]def root(a, b):
"""Return the root ``x`` of the equation ``a*x + b``."""
return -b/float(a)
[docs]class Linear:
"""
Class for representing linear functions :math:`ax^2+b`.
>>> line = Linear(a=1, b=-2)
>>> line.value(4)
2.0
>>> line.root()
2.0
>>> print line
1.0*x - 2.0
"""
[docs] def __init__(self, a, b):
"""
`a` and `b` are coefficients in the linear
function :math:`ax^2+b`.
"""
self.a, self.b = float(a), float(b)
[docs] def root(self):
"""Return the root of the linear function."""
return - self.b/self.a
[docs] def value(self, x):
"""Return value of linear function at `x`."""
return self.a*x + self.b
[docs] def __call__(self, x):
"""Return value of linear function at `x`."""
return self.value(x)
[docs] def __str__(self):
import quadratic
return '%s*x %s %s' % (self.a, quadratic._sign(self.b), abs(self.b))
[docs]class Line:
"""
Compute the straight line that goes through two points p1 and p2.
Example:
>>> line = Line((1,0), (-4,1))
>>> print line
-0.2*x + 0.2
>>> line.value(1)
0.0
>>> line.value(-4)
1.0
"""
[docs] def __init__(self, p1, p2):
"""`p1` and `p2` are two points (2-tuple/list)."""
x0, y0 = p1
x1, y1 = p2
# be careful with potential integer division:
a = float(y1-y0)/(x1-x0)
b = y0 - a*x0
self.line = Linear(a, b)
[docs] def value(self, x):
"""Return the value of the line at `x`."""
return self.line.value(x)
[docs] def __str__(self):
return str(self.line)
if __name__ == '__main__':
line = Line((0,-1), (2,4))
print line.a, line.b
print line.value(0.5), line.value(0), line.value(1)