
How to Use DocOnce to Write
Books

Hans Petter Langtangen1,2

1Center for Biomedical Computing, Simula Research Laboratory
2Department of Informatics, University of Oslo

Dec 20, 2015

Preface

The purpose of this “book” is to demonstrate a minimalistic setup for
making books in the DocOnce format. The setup contains several useful
features:

1. Chapters can exist as stand-alone documents in different formats:
•traditional LaTeX-style PDF report,
•web pages with various fancy stylings (e.g., Sphinx, Boot-
strap) and possibility for multi-media elements,

•IPython notebooks,
•blog posts (not exemplified here, but straightforward1),
•wiki (if you do not need mathematical typesetting).

2. Chapters can be flexibly assembled into a traditional LaTeX-
based PDF book for a traditional publisher, or a fancy ebook.

3. The book and the individual chapter documents may have dif-
ferent layouts.

4. Active use of preprocessors (Preprocess and Mako) makes it
easy to have different versions of the chapters, e.g., a specialized
version for a course and a general version for the world book
market).

5. DocOnce has support for important elements in teaching mate-
rial: eye-catching boxes (admonitions), quizzes, interactive code,
videos, structured exercises, quotes.

1 http://hplgit.github.io/doconce/doc/pub/manual/html/manual.html#blog-posts

1

http://hplgit.github.io/doconce/doc/pub/manual/html/manual.html#blog-posts

2

6. Study guides or slides can easily be developed from the running
text and stored along with the chapters. These can be published
as LATEX Beamer slides, reveal.js slides, and IPython notebooks.

These features have the great advantage that a book can evolve from
small documents, thereby making the barrier for book writing much
smaller. Also, several appealing ebook formats can be produced, both
for the book and the individual chapter documents. The chances that
your students read a chapter on the bus becomes larger if the chapter is
available as attractive, screen-fit Bootstrap pages on the smart phone
than if you just offer the classic LATEX PDF which actually requires a
big screen or a printer.

Implementation of point 1 and 2 is not trivial and requires some rules
that might not feel natural at first sight in the setup. Writing a book soon
becomes a technically and mentally complex task, just like developing a
software system. For the latter people have invented a lot of sophisticated
technologies and best practices to deal with the complexity. The present
setup for books is a similar collection of my own technologies and best
practices, developed from writing thousands of pages. In particular, the
setup has been successfully used for the large-scale 900-page Springer
book “A Primer on Scientific Programming with Python” [4] (individual
chapters of this book, e.g. [2], can be examined online in various ebook
formats) as well as for books in the works2.

To use this setup, just clone the repository3 and you have the di-
rectory structure, the scripts, and example files to get started with
a book project at once! The source files for this book (especially in
doc/src/chapters/rules) constitute nice demonstrations for learning
about basic and advanced DocOnce writing techniques.

April 2015 Hans Petter Langtangen

2 http://hplgit.github.io/num-methods-for-PDEs/doc/pub/index.html
3 https://github.com/hplgit/setup4book-doconce

http://hplgit.github.io/num-methods-for-PDEs/doc/pub/index.html
https://github.com/hplgit/setup4book-doconce

Contents

Preface . 1

1 Directory and file structure . 5

1.1 Directory structure . 5

1.2 Principles and conventions . 6
1.2.1 Mathematical notation and newcommands 7
1.2.2 Label conventions . 9
1.2.3 Programming style . 10
1.2.4 Degree of modularization . 12
1.2.5 Student guide (slides) style . 12
1.2.6 Style in exercises, problems, and projects 13

1.3 Assembling different pieces to a book . 14
1.3.1 Organization of a chapter . 14
1.3.2 Figures and source code . 15
1.3.3 Assembly of chapters to a book 15

1.4 Tools . 18
1.4.1 Making a new chapter . 18
1.4.2 Compiling the chapter to LATEX and PDF. 19
1.4.3 Automatic spell checking . 20
1.4.4 Compiling the chapter to HTML 21
1.4.5 Compiling the chapter to a notebook 23
1.4.6 About figures when publishing HTML 23

3

4 Contents

1.4.7 Compiling the book . 23

1.5 Cross-referencing across chapters (or books) 24

1.6 Study guides and slides . 25
1.6.1 Slide directory . 26
1.6.2 Generating slides from running text 27
1.6.3 Slides as IPython/Jupyter notebooks 29
1.6.4 Compiling slides . 30
1.6.5 IPython/Jupyter notebooks . 30

1.7 Writing in private repository while publishing in public 32

1.8 Book versions with and without solutions to exercises 34
1.8.1 Password protected files . 35
1.8.2 Separating the source files from published documents . 36

1.9 Special features for teaching material . 36
1.9.1 Admonitions . 37
1.9.2 Simple box . 37
1.9.3 Embedded interactive code . 37
1.9.4 Exercises . 38
1.9.5 Quote . 39
1.9.6 Quiz . 39
1.9.7 What about a video lecture? . 41

A Use of Mako to aid book writing . 43

References . 45

Index . 47

Directory and file structure 1

This chapter describes the file structure of book projects. The setup can
of course be used for proceedings and theses as well.

1.1 Directory structure

We shall outline a directory structure that can be effective when assem-
bling different DocOnce documents into a book:

doc
src

chapters
ch2

fig-ch2
src-ch2
mov-ch2
exer-ch2

book
pub

chapters
book

web

The root directory for all documentation is called doc, with two
subdirectories: src for all the DocOnce source code, and pub for compiled
(published) documents in various formats. A third subdirectory, web,
is often present as an entry point for the web pages on GitHub. This
directory typically contains the autogenerated index.html and additional

5

6 1 Directory and file structure

style files on GitHub. The index.html file should have links to published
documents in ../pub.

Under doc/src we may have a directory chapters for the individual
chapters and a directory book for the assembly into a book. One may also
think of more than one book directory if a set of documents (chapters)
naturally leads to multiple books. All chapters can then be put in the
chapters directory.

Each chapter has a short nickname, say ch2 for simplicity for Chapter
2 (a more descriptive name related to the content is obviously much
better!). Figures are placed in subdirectory fig-ch2 and computer code
in subdirectory src-ch2. These two latter directories may have subdi-
rectories if desired. We may also include a directory mov-ch2 for video
files, exer-ch2 for answers to exercises, etc.

Under book, we typically have a document book.do.txt for the com-
plete book. This is a file with a lot of # #include "...do.txt" state-
ments for the Preprocess preprocessor for including the files for the
various chapters, see Section 1.3 for details. Additional files in the book
directory include make files for compiling the book, scripts for packing
the book for publishing, perhaps an errata document, etc.

1.2 Principles and conventions

When starting a bigger project like one or more book projects, alone
or with others, it is wise to sit down and agree upon some basic princi-
ples and conventions. This note is about a technical infrastructure for
writing books as an assembly of chapter components, but much more
infrastructure is needed to achieve an efficient work flow in the project.
One simply needs rules to make the work flow and end product coherent.
This means one must agree upon

• mathematical notation
• conventions for labels in cross referencing
• programming style
• degree of modularization
• writing style
• student guide (slides) style
• style in exercises, problems, and projects

1.2 Principles and conventions 7

The suggestions here have grown out of the author’s own experience with
writing books and must be taken as just one possible example on how to
deal with the bullet list above.

Observation: LaTeX-based writing styles are very pri-
vate
Most authors develop very private ways of using LATEX in their
projects. They often have a vast amount of newcommands
and a collection of special LATEX packages they rely upon.
The result is that it might be quite a challenge to combine
two LaTeX-based writing projects, because of all the special
commands floating around.

With DocOnce and other quite simple markup languages,
there are not so many ways to do it and the source code
becomes much simpler and easier to integrate across projects
and authors.

Note. DocOnce applies a lot of fancy LATEX packages and
HTML CSS styles, but the associated LaTeX/HTML code
is automatically generated and steered via command-line op-
tions such that the complexity of fancy admonitions or syntax
highlighting is not visible in the document the authors are
writing on.

1.2.1 Mathematical notation and newcommands

Use a common mathematical notation!
I strongly recommend to spend considerable time on construct-
ing a set of newcommands in LATEX that defines a common
mathematical notation for the project (and future projects).
Think about newcommands for vectors (arrows or boldface),
matrices (uppercase slanted or bold?, tensors, gradient, diver-
gence, curl, etc.

Files with names newcommands*.tex are treated by DocOnce
as files with definition of newcommands for LATEX mathematics.
These files must reside in the same directory as the DocOnce source

8 1 Directory and file structure

files. However, for a book project, I recommend to have a single
newcommands file shared by all chapters. This file is placed in
doc/src/chapters/newcommands.p.tex and copied to a specific chap-
ter by the make script for that chapter. The extension of the file is
.p.tex, indicating that the file has to be preprocessed by preprocess
prior to being copied. The reason is that one occasionally wants the
definitions of the newcommands to depend on the output format:
standard LATEX or MathJax. For example, subscripts in mbox font look
best with footnotesize font in plain LATEX, while the larger small font is
more appropriate for MathJax. We can then put the following definitions
in newcommands.p.tex:

% #if FORMAT in ("latex", "pdflatex")
% Use footnotesize in subscripts
\newcommand{\subsc}[2]{#1_{\mbox{\footnotesize #2}}}
% #else
% In MathJax, a different construction is used
\newcommand{\subsc}[2]{#1_{\small\mbox{#2}}}
% #endif

The make script will then run preprocess on this file, typically

preprocess -DFORMAT=pdflatex ../newcommands.p.tex > newcommands.tex
or
preprocess -DFORMAT=html ../newcommands.p.tex > newcommands.tex

DocOnce newcommands are for mathematics only!

Note that newcommands in DocOnce context are only used for
mathematics, rendered by LATEX or MathJax. Newcommands
for other LATEX constructions (such as section or boxes) should
not be used in the DocOnce source code as these are confined
to the LATEX format. Use instead Mako functions.

Here is an example on some useful constructs in a newcommands.p.tex
file:

\newcommand{\halfi}{{1/2}}
\newcommand{\half}{\frac{1}{2}}
\newcommand{\tp}{\thinspace .} % right space after equations

% Operators
\newcommand{\Ddt}[1]{\frac{D #1}{dt}}
\newcommand{\E}[1]{\hbox{E}\lbrack #1 \rbrack}
\newcommand{\Var}[1]{\hbox{Var}\lbrack #1 \rbrack}
\newcommand{\Std}[1]{\hbox{Std}\lbrack #1 \rbrack}

1.2 Principles and conventions 9

\newcommand{\Oof}[1]{\mathcal{O}(#1)}

% Boldface vectors/tensors
\newcommand{\x}{\bm{x}}
\newcommand{\X}{\bm{X}}
\renewcommand{\u}{\bm{u}}
\renewcommand{\v}{\bm{v}}
\newcommand{\w}{\bm{w}}
\newcommand{\V}{\bm{V}}
\newcommand{\e}{\bm{e}}
\newcommand{\f}{\bm{f}}
\newcommand{\F}{\bm{F}}
\newcommand{\stress}{\bm{\sigma}}
\newcommand{\strain}{\bm{\varepsilon}}
\newcommand{\stressc}{{\sigma}}
\newcommand{\strainc}{{\varepsilon}}
\newcommand{\normalvec}{\bm{n}}

% Unit vectors
\newcommand{\ii}{\bm{i}}
\newcommand{\jj}{\bm{j}}
\newcommand{\kk}{\bm{k}}
\newcommand{\ir}{\bm{i}_r}
\newcommand{\ith}{\bm{i}_{\theta}}
\newcommand{\iz}{\bm{i}_z}

% Number sets
\newcommand{\Real}{\mathbb{R}}
\newcommand{\Integerp}{\mathbb{N}}
\newcommand{\Integer}{\mathbb{Z}}

1.2.2 Label conventions
Books usually contain large amounts of cross referencing using labels
(logical names) for sections, equations, exercises, and literature references.
I strongly recommend to introduce conventions for how to construct
labels as it makes it much easier to find the name of a new label and
understand what a given label refers to.

My chapter names are of the form ch:name, where name is the nickname
of the chapter (this nickname is used for many other purposes also, see
Section 1.3.1). Section and subsection names are of the form

projectname:chaptername:sectionname:subsectionname

where the names are short nicknames. Each short name may contain
underscores to separate words. For example, the present section has
label setup:rules:conv:labels, where setup is the nickname of the
project (this book), rules is the nickname of the present chapter, conv

10 1 Directory and file structure

is the nickname of the present section, and label is the nickname of the
subsection. Section 1.3.1 has label setup:rules:book_assembly:org,
where book_assembly is the nickname of the section using underscore
to separate two words. Sometimes I leave out the project name.

Equations may start with the current subsection label and contin-
ued with eq:name, where name is some logical name for the equation.
Figures are given the same type of name, except that the postfix
is fig:name. For exercises I use exer:name as postfix in the labels.
Equations and figures within an exercise have extended names such as
setup:rules:exer:eq:uv_relation.

Bibliographic references can take the forms author_year,
author1_author2_year, author1_etal_year. An alternative is to
use names that reflect the topic: topic:paper or topic:url, e.g.,
IPython:paper for a]paper on IPython or IPython:url for the
IPython website.

You can run doconce list_labels *.do.txt to get a list of labels,
categorized under the various section headings, in your DocOnce doc-
uments. This command quickly reveals if a clean-up of label names is
necessary. You can redirect the output of the command to a file and then
add a second column with new label names. This file can be used with the
command doconce replace_from_file to perform substitutions from
old to new labels.

Compilation of DocOnce files can make use of the option
--latex_labels_in_margin to get the label names of equations
and sections to be printed in the margin.

1.2.3 Programming style

It is fundamental for a book project to stick to one well-defined pro-
gramming style. I recommend to adopt the most widely accepted style
and adapt that to the project. For example, in the world of Python
programming, there is a style, referred to as PEP81. Personally, I am not
fond of all the rules in this style, and I intentionally break some of them,
especially rules that forces unnecessary vertical space in a book (although
vertical space in electronic books is for free, there is a strong tradition of
minimizing the vertical length of programs in books). Fortunately, for

1 https://www.python.org/dev/peps/pep-0008/

https://www.python.org/dev/peps/pep-0008/

1.2 Principles and conventions 11

Python there is are nice tools for checking that a code follows the PEP8
rules, e.g., Flake82 (see [1] for an intro).

For any programming language it is key to agree on how to use white
space in indentation, style of loops, identifier names (my_funtcion vs
myFunction vs MyFunction), white space in function argument lists, etc.

Tip: make a 1-1 mapping between mathematics and
code
Computer code is very much easier to understand if you have
defined the problem it is going to solve in mathematics first.
Reuse terms and notation in the program, and try to make
the key statements in the code as close as possible to the
mathematical formulation.

Typesetting of computer code in DocOnce makes use of the !bc
construction and a named environment, e.g., pycod for a Python snippet
and pypro for a complete Python program. Users are often confused if a
set of statements in a text can be executed as they stand or not. That is
why we have introduced the cod and pro environments: cod is for just
some code, while pro is for a complete program that will run. You may
choose the typesetting to be different for the cod and pro environments.

When preparing text for IPython/Jupyter notebooks, a code snippet
cannot run unless previous snippets contain the necessary code. Some-
times this forces you to include more code than would be natural in
a book. There is a third type of environment, hid, that can be used
to insert code segments that are to be hidden in text, but present in
notebooks to enable execution of future snippets. For example,

Need to import to run next snippet
!bc pyhid
from numpy import *
from matplotlib.pyplot import *
!ec

We can now generate coordinates by

!bc pycod
x = linspace(0, 1, 101)
y = sin(x)
plot(x, y)
!ec

2 https://flake8.readthedocs.org/en/2.0/

https://flake8.readthedocs.org/en/2.0/

12 1 Directory and file structure

The import statements will only be visible in the notebook output and
not in any other format.

1.2.4 Degree of modularization

My recommendation is to divide the project into as small modules as
possible and to make these modules as independent as possible. This is a
very difficult optimization problem. There is some kind of gravity force
towards big chapters and lots of cross-references internally and to other
chapters. For book composition and even more for course composition,
smaller modules give much higher degree of flexibility.

To make modules independent, the degree of cross-referencing between
modules must be modest, which forces a need to repeat material. Repeti-
tion breaks a strong tradition in book writing. However, moving away
from a strictly linear chapter-by-chapter book to a more flexible set
of modules connected in a graph, will induce repetition. Readers also
appreciate repetition, perhaps slightly differently phrased with purpose,
rather than being served with lots of references to equations and codes
in other chapters.

Tip: Define input-output of modules

Ideally, modules should start with a well-defined list of re-
quired background knowledge and a set of learning outcomes.
This information makes it easier to place the module in the
knowledge landscape.

Books with widely different writing styles among authors tend to
be confusing for readers. If the styles differ much, and it is difficult to
converge to a more coherent style, listing the authors together with the
chapter title is an idea to point explicitly out that a different team is
behind the present chapter.

1.2.5 Student guide (slides) style

This note suggests to develop a book together with a study guide, i.e.,
a summarizing version of the material. An effective format of a study
guide is a set of slides, ideally a set that can be used both for teaching

1.2 Principles and conventions 13

and for self-study. Section 1.6 explains some infrastructure for producing
DocOnce slides.

Some prefer to develop slides for a study guide first and then use this
as a skeleton for writing the running text of a chapter. Others prefer to
produce the slides from the running text.

The style of slides is even more important than the style of running text.
Slides for reading are not so sensitive to the style, but if the slides are also
intended to be used in teaching, the style becomes key. Some comments
on style are provided in the box in the introduction to Section 1.6. Rather
than having boring headings a la Assumptions, followed by a bullet list of
assumptions, I recommend to summarize the most important information
in a 1-2 line heading, e.g., We assume a homogeneous material and no
external forcing. The headings will then form a collection of the most
important information from each slide and be a very effective table of
contents of the material. The most important thing, though, is that
different authors stick to the same slide style.

1.2.6 Style in exercises, problems, and projects

A central part of the writing style in a book is the division of material
between running text and exercises. DocOnce features three types of
exercises which can be effectively used in this context:

• Exercise: smaller exercises tightly coupled to the text
• Problem: smaller exercise that live its own life (without references

to the text)
• Project: large problem

Exercises are then used to repeat and train the material in the book.
Problems are used to explore new problem settings, while projects are
collections of closely related problems. (The term “exercise” means in
DocOnce context either an exercise in the restricted sense or a common
term for what we call exercise, problem, and project above.)

The DocOnce exercise format has several useful features:

• hints
• multiple-choice questions (quiz)
• remarks
• short answers
• (longer) complete solutions

14 1 Directory and file structure

Many students struggle with identifying the problem setting (question)
when too much information comes at once. Hints can be effectively
used to separate the question from additional information that is just
supposed to help the reader. Remarks fulfill a similar purpose and can
separate fun facts or information that puts the problem into a wider
perspective. Short answers and full solutions can be taken out of the
document at compile time. (HTML Bootstrap styles can fold/unfold
hints and solutions/answers.)

Multiple-choice questions are typeset with the quiz environment3 in
DocOnce. All quizzes can be extracted and uploaded as online Kahoot
games4 where students can participate via their smart phones.

It is possible to extract all exercises in a DocOnce document as a
separate document.

1.3 Assembling different pieces to a book

Many smaller writings in the DocOnce format can be assembled into a
single, large document such as a book or thesis. The recipe for doing this
appears below.

1.3.1 Organization of a chapter

Suppose one chapter of the book has the nickname ch2 and may hold
all text or just include text in other DocOnce files, e.g., part1.do.txt,
part2.do.txt, and part3.do.txt. In this latter case, ch2.do.txt has
the simple content

#include "part1.do.txt"

#include "part2.do.txt"

#include "part3.do.txt"

Note that the ch2.do.txt file contains just plain text without any
TITLE, AUTHOR, or DATE lines and without any table of contents (TOC)
and bibliography (BIBITEM). This property makes ch2.do.txt suitable
for being included in other documents like a book. However, to compile
ch2.do.txt to a stand-alone document, we normally want a title, an

3 http://hplgit.github.io/doconce/doc/pub/quiz/quiz.html
4 https://getkahoot.com

http://hplgit.github.io/doconce/doc/pub/quiz/quiz.html
https://getkahoot.com
https://getkahoot.com

1.3 Assembling different pieces to a book 15

author, a date, and perhaps a table of contents. We also want a bibliog-
raphy if any of the included files have cite tags. To this end, we create
a wrapper file, say main_ch2.do.txt5, with the content

TITLE: Some chapter title
AUTHOR: A. Name Email:somename@someplace.net at Institute One
AUTHOR: A. Two at Institute One & Institute Two
DATE: today

TOC: on

Externaldocuments: ../ch3/main_ch3, ../ch4/main_ch4

#include "ch2.do.txt"

======= References =======

BIBFILE: ../papers.pub

Recall that DocOnce relies on the Publish software for handling bib-
liographies. It is easy to import from BibTEX to Publish and create a
database of references (papers.pub) to get started (but we recommend
to continue working with the Publish database directly and collect new
items in the papers.pub file as Publish is more flexible than BibTEX).

1.3.2 Figures and source code
As described in Section 1.1, we recommend to put figures and source
codes (to be included in the document) in separate directories. Although
such directories could have natural names like fig and src, it will cause
trouble if we do not use unique names for these directories, like fig-ch2
and src-ch2. Otherwise, we would need to copy all figures in all pieces
into a common fig directory for the book and all source code files into
a src directory. With unique names, figures and source code files can
always reside in their original locations, and we can easily reach them
through links. This will be described next.

1.3.3 Assembly of chapters to a book
All the files associated with the ch2 document and chapter reside in the
ch2 directory. A fundamental principle of DocOnce is to have just one

5The prefix main_ is inspired by the main program in computer program: those state-
ments make a program run, like main_ch2.do.txt defines the surroundings of the “library
text” ch2.do.txt. We strip off main_ when publishing the files in doc/pub.

16 1 Directory and file structure

copy of the files (“document once!”). To include the ch2 text in a larger
document like a book, we just need to include the ch2.do.txt file and a
chapter heading. Here is an example of a document book.do.txt for a
complete book:

TITLE: This is a book title
AUTHOR: A. Name Email:somename@someplace.net at Institute One
AUTHOR: A. Two at Institute One & Institute Two
DATE: today

TOC: on

========= Preface =========
label{ch:preface}

#include "../chapters/preface/preface.do.txt"

========= Heading of a chapter =========
label{ch:ch2}

#include "../chapters/ch2/ch2.do.txt"

Similar inclusion of other chapters

========= Appendix: Heading of an appendix =========
label{ch:somename}

#include "../chapters/nickname/nickname.do.txt"

======= References =======

BIBFILE: ../papers.pub

When running doconce format on book.do.txt, the entire document
is contained in one big file6 (!). To see exactly what has been included,
you can examine the result of running the first preprocessor, preprocess,
on book.do.txt. All the includes are handled by this preprocessor. The
result is contained in the file tmp_preprocess__book.do.txt, which
then contains the entire DocOnce source code of the book. The second
preprocessor, mako, is thereafter run (if DocOnce detects that it is nec-
essary). The result of that step is available in tmp_mako__book.do.txt.
It is important to examine this file if there are problems with Mako
variables or functions. The tmp_mako__book.do.txt file is thereafter
translated to the desired output format.

Say we want to produce a LATEX document:

Terminal
6A single DocOnce file and consequently a single .tex file works out well on today’s
laptops. A book with 900 pages [4] has been tested!

1.3 Assembling different pieces to a book 17

Terminal> doconce format pdflatex book [options]

If the DocOnce source contains copying of source code from files in
@@@CODE constructs, it is important that doconce finds the files. For
example,

@@@CODE src-ch2/myprog.py fromto: def test1@def test2

will try to open the file src-ch2/myprog.py. Since this file is actually
located in ../ch2/src-ch2/myprog.py, pdflatex will report an error
message. A local link to that directory resolves the problem:

Terminal

Terminal> ln -s ../chapters/ch2/src-ch2 src-ch2

Similarly, the LATEX code in book.tex for inclusion of a figure may
contain

\includegraphics[width=0.9\linewith]{fig-ch2/fig1.pdf}

For this command to work, it is paramount that there is a link fig-ch2
in the present book directory where the pdflatex command is run to
the directory ../chapters/ch2/fig-ch2 where the figure file fig1.pdf
is located.

It is recommended to use the function make_links in scripts.py to
automatically set up all convenient links from the book directory to the
individual chapter directories. Provided the list of chapter nicknames at
the top of scripts.py is correct, you can just run

>>> import scripts
>>> scripts.make_links()

to automatically set up all links to all src-*, fig-*, and mov-* directories.
You need to rerun this make_links function after inclusion of a new
chapter in the chapters tree.

Identify LATEX errors in the original chapter files!

When you run pdflatex book and get LATEX errors, you need
to see where they are in book.tex and use this information
to find the appropriate DocOnce source file in some chapter.
Usually, there are few errors at the “book level” if each indi-
vidual chapter has been compiled. To this end, you can use

18 1 Directory and file structure

scripts.py to automatically compile each chapter separately.
The process is stopped as soon as a DocOnce or LATEX error
is encountered.

>>> import scripts
>>> scripts.compile_chapters()

With heavy use of Mako one can get quite strange error mes-
sages. Some ask you to rerun the doconce format command with
--mako_strict_undefined to see undefined Mako variables. Make sure
you run the make.sh script by bash -x if the script does not feature
the set -x command in the top of the file (for displaying a com-
mand prior to running it). Copy the complete doconce format with
the mouse and add the --mako_strict_undefined option. Other error
messages point to specific lines that Mako struggles with. Go to the file
tmp_mako__book.do.txt to investigate the line.

1.4 Tools

You can start a new, future, potential book project by simply copying
the directory structure of the setup4book-doconce7 repository on GitHub.
Then you can follow the instructions below to start writing and adapting
the structure to your project’s needs.

1.4.1 Making a new chapter

Under doc/src/chapters you find the chapters in this “sample book”
as well as a script doc/chapters/mkdir.sh that creates a new directory
for you with the typical files needed for a new chapter. You can either
edit existing chapters, or make a brand new empty chapter by running

Terminal

Terminal> sh mkdir.sh mychap

This command makes a directory mychap for a new chapter with nick-
name mychap. Files from the template directory are used to populate

7 https://github.com/hplgit/setup4book-doconce

https://github.com/hplgit/setup4book-doconce

1.4 Tools 19

mychap. You get an empty mychap.do.txt where the text is supposed to
go, or this file can just include a series of smaller .do.txt files, and you
get the wrapper file main_mychap.do.txt such that you can compile this
chapter as a stand-alone document. You also get make.sh which calls
../make.sh with the chapter main document (main_mychap) as argu-
ment. Optional arguments for running doconce format pdflatex can
be given to ../make.sh in make.sh if needed (e.g., –encoding=utf8).

1.4.2 Compiling the chapter to LATEX and PDF

To make a stand-alone document of a chapter, by compiling to LATEX
and PDF, we propose the convention to have a make.sh in each chap-
ter directory. This make.sh can in most cases just call up a common
../make.sh script,

bash -x ../make.sh main_mychap

or optionally with some command-line arguments,

bash -x ../make.sh main_mychap --encoding=utf-8

The doc/src/chapters/make.sh script is quite general and may be
edited according to your layout preferences of the LATEX documents.

The present make.sh script creates two PDF files: one for printing and
one for electronic viewing. The difference is that all URLs in the version
for printing appear as footnotes (and just hyperlinks with a dark blue
color in the electronic version). The two files are named mychap.pdf and
mychap-4print.pdf, respectively, and copied to doc/pub/mychap/pdf
for publishing.

Tip: use tinyurl.com for shortening long URLs

When compiling a document to LATEX for printing on
paper (–device=paper), URLs in hyperlinks will appear
as footnotes. Very long URLs may then exceed the
line width, or worse, extend beyond the physical paper
size. Replace such long URLs with short forms using
tinyurl.coma. I recommend tinyurl.com rather than competi-
tors like goo.gl and bit.ly because if you have some URL
http://tinyurl.com/oul3xhn you can easily add more to
the path, e.g., http://tinyurl.com/oul3xhn/index.html,

http://tinyurl.com/

20 1 Directory and file structure

and this new URL works (goo.gl and bit.ly do not allow
such extensions).

In particular, you can define the tinyurl.com URL as a
Mako variable (see doc/mako_code.txt for example) and use
it as a quick and logical name in the text for the URL and
extend its path as appropriate. For example, I always have
a Mako variable for the URL of the repository directory for
the software associated with a chapter and can then easily
add /myprog.py to the variable to create a link to the file at
GitHub. Readers can then just click to read or download the
file.

a http://tinyurl.com/

Remark about LATEX typesetting of computer code. The suggested
make.sh file applies the --latex_code_style= option to doconce
format for specifying the typesetting of blocks of computer code in
LATEX. Originally, DocOnce applied the ptex2tex program to select such
typesetting, but the new method is more flexible and simpler in that
it gives cleaner LATEX code. (With ptex2tex one would need a com-
mon configuration file .ptex2tex.cfg in doc/chapters to be copied
by doc/chapters/make.sh to the chapter directory prior to running
‘ptex2tex.)

Cleaning Files. The make*.sh files generate a lot of files that can easily
be regenerated and that are normally removed from the chapter directo-
ries. The script sh ../clean.sh can be run in any chapter directory to
clean up redundant files.

1.4.3 Automatic spell checking

The make.sh first runs a spell check using doconce spellcheck. The
first time you run this command there will be many “misspellings” because
of unregistered (scientific) words in the dictionary and maybe also because
some words are actually misspelled. Invoke the misspellings.txt file
to see a list of all misspellings. Correct mistakes in the original documents
and run the make.sh script again. When misspellings.txt at some
point contains acceptable words only, you update the dictionary by

cp new_dictionary.txt~ .dict4spell.txt

1.4 Tools 21

Make sure .dict4spell.txt is version controlled by Git. The make.sh
script will not proceed with compilation of the documents before the
spell check is run without errors.

Finding misspellings can sometimes be a challenge. For a document
named mydoc.do.txt, the spell check is carried out on a stripped ver-
sion, named tmp_stripped_mydoc.do.txt. Look into this file for mis-
spellings that are not obvious. Strange misspellings such as APlu or
similar usually arise from missing dollar sign around mathematical formu-
las. Formulas are stripped away in tmp_stripped_mydoc.do.txt, but
if a dollar sign is missing, mathematical formulas become words sub-
ject to spell checking. To find the relevant file containing a particular
misspelling listed in misspellings.txt , you may look into the file-
wise list of misspellings: the misspellings in mydoc.do.txt are listed in
tmp_misspelled_mydoc.do.txt~.

1.4.4 Compiling the chapter to HTML

There is also a script doc/src/chapters/make_html.sh for making
HTML versions of the chapter. Just call this as

Terminal

Terminal> bash ../make_html.sh main_mychap

to make HTML versions of the mychap chapter.
The current version of make_html.sh creates four types of HTML

layouts and an index.html file with a list of links to these three files: 1)
HTML plain Bootstrap style, 2) HTML Bootswatch readable style, 3)
plain HTML solarized color style, and 4) Sphinx pyramid style. (Note
that the latter document is a true Sphinx document, made by doconce
format sphinx, and from which one could make other formats too.)

It is easy to go into the make_html.sh script and generate other HTML
or Sphinx styles.

You need to edit the index file!
The index.html file generated by make_html.sh is made from
the DocOnce source file index_html_files.do.txt. This is
a file utilizing Mako programming (see appendix A). There is
also a similar file, index_files.do.txt, listing all the pub-

22 1 Directory and file structure

lished documents in various formats associated with a complete
book projects (to go to doc/pub/index.html).

The index_html_files.do.txt and index_files.do.txt
files rely much on a Mako dictionary chapters, defined in
mako_code.txt. This dictionary maps nicknames to chap-
ter titles. We can then specify a nickname and easily
get the corresponding full chapter title. For example, in
index_files.do.txt we defined a Mako list published
holding the nicknames of the chapters we want to publish.
With a Mako for loop we can then run through these selected
chapters and generate the corresponding DocOnce lists with
all the formats that is offered for a chapter and its associated
slides. This is a nice example on how a potentially quite large
DocOnce document with much repetitive constructions can
be written with very compact code.

One can imagine that for a large books under constant
development with different states of different chapters, this
setup makes it easy to take chapters in and out of the book. In
addition, with Mako variables in the chapters one can easily
defined different state of maturity of the text. With minor
Mako programming in index_files.do.txt and extension
of the make*.sh files, authors can generate the various states
of the book, e.g., a quality controlled version approved for
students and a complete “work-in-progress” version for authors
only with all available text and lots of DocOnce square-bracket
comments.

The index_files.do.txt file gives a table of contents of
all documents, so you will normally compile this manually now
and then as

Terminal

Terminal> doconce format html index_files \
--html_style=bootstrap \
--html_links_in_new_window \
--html_bootstrap_navbar=off

and publish it in doc/pub/index.html.

1.4 Tools 23

1.4.5 Compiling the chapter to a notebook

Although there is no benefit from interactive computing and visualization
in the present document, we may produce an IPython notebook for the
fun of it:

Terminal

Terminal> doconce format ipynb main_rules \
CHAPTER=document BOOK=document APPENDIX=document

1.4.6 About figures when publishing HTML

There will be type of tags in HTML code
produced by DocOnce, so it is very important to ensure that the published
.html files have access to a subdirectory fig-ch2. Normally, one needs to
copy fig-ch2 from the ch2 chapter source directory to some publishing
directory that stores all the files necessary for accessing the entire HTML
document on the web.

1.4.7 Compiling the book

Go to doc/src/book and run make.sh to compile the book. This re-
quires that book.do.txt performs the right include of chapters, table of
contents, and bibliography.

There are many other tools in doc/src/book too, e.g., the mentioned
library of handy scripts in scripts.py, and an example on how to
pack all files of the entire book projects for publishing with Springer
(pack_Springer.sh).

The current book layout created by make.sh makes use of a (now out-
dated) Springer T4 style for textbooks (requires the .cls and .sty files
in the book directory). Other Springer styles supported by DocOnce are
Lecture Notes in Computational Science and Engineering (monographs
and proceedings), Lecture Notes in Computer Science (proceedings), and
Undergraduate Texts in Physics. Other book styles will require some
manual work, either working out a LATEX preamble for a special style
and use that when compiling book.do.txt or actually extending the
DocOnce source code.

24 1 Directory and file structure

HTML/Sphinx versions of the book. It is easy to make a standard
HTML version of the book.do.txt manuscript, but for large books,
Sphinx is usually a better alternative since it supports navigation, search-
ing, and has an index. There is a script doc/src/book/make_html.sh
that creates a Sphinx version of the book. Actually, it generates two
versions

• standard Sphinx book8

• RunestoneInteractive9 Sphinx book10

1.5 Cross-referencing across chapters (or books)

A fundamental problem when writing a book and stand-alone chapters
arises with cross-referencing. In a book file it makes sense to refer to
an equation in any chapter, say (4.23), while in a stand-alone chapter
references to equations or sections in other stand-alone documents will
not work. That is, LATEX has a native mechanism for this, the xr package,
where one can register a set of .aux files for other LATEX documents and
refer directly to these labels and get them right. It is then possible to
write something like

see (\eqref{sec:results:u:eq}) in \cite{Hansen_2011b}

and get it out as

see (2.37) in [12]

provided our .tex file contains \externaldocument{myother} and the
label sec:results:u:eq is defined in myother.aux. DocOnce has gener-
alized this feature so it works for non-LaTeX formats as well. It is called
generalized cross-references. You can then write such references across
chapters and get all labels right whether you produce the entire book or
individual chapters.

Here is an example on a generalized reference to an equation in another
chapter:

The world’s most famous equation is ref[(ref{setup:fake:Emc2})][in
cite{Langtangen_dobook_fake}][
as found in the document "Some document":

8 http://hplgit.github.io/setup4book-doconce/doc/pub/sphinx/index.html
9 http://runestoneinteractive.org

10 http://hplgit.github.io/setup4book-doconce/doc/pub/sphinx-runestone/index.html

http://hplgit.github.io/setup4book-doconce/doc/pub/sphinx/index.html
http://runestoneinteractive.org
http://hplgit.github.io/setup4book-doconce/doc/pub/sphinx-runestone/index.html

1.6 Study guides and slides 25

"http://hplgit.gthub.io/setup4book-doconce/doc/pub/fake"
cite{Langtangen_dobook_fake}].

This sentence is rendered as follows in the present format (pdflatex):

The world’s most famous equation is (1)in [3].

More detailed information about generalized cross-references is
found in the DocOnce manual11. In particular, one has to insert
Externaldocuments: commands in all main_*.do.txt files that in-
cludes files with generalized references.

Tip: Limit generalized references to those strictly
needed
Books often contain a lot of cross references, and making
generalized references out of all them can be quite some job.
A convenient way of saving boring work is to enclose nice-to-
have, yet not strictly needed, references in Mako or Preprocess
if statements (typically if BOOK == "book") such that they
appear in the full book but not in individual chapters.

However, if individual chapters in HTML are to be one
official format of the book, you should make the chapters
identical to the book and make generalized references out of
all references to other chapters.

1.6 Study guides and slides

DocOnce has good support for creating slides. Especially if you have
ordinary DocOnce documents with running text, it is an efficient process
to strip down this text to a slide format.

Rather than speaking about slides, we think of study guides where
the material is presented in a very condensed, effective, summarizing
form for overview, use in lectures, and repetition. The slide format is a
good way of writing study guides, but by explicitly thinking of study
guides the slide format can be made more effective for self-study when
overview and repetition are necessary - with a particular emphasis on
gaining understanding.
11 http://hplgit.github.io/doconce/doc/pub/manual/html/manual.html#generalized-cross-referencing

http://hplgit.github.io/doconce/doc/pub/manual/html/manual.html#generalized-cross-referencing

26 1 Directory and file structure

Slides can easily be too crowded or too empty

It is a very challenging balance between enough information
for self-study by reading slides and the modest amount of
information you want in slides for oral presentations. For a
talk, you will have (very) little text on slides and rely on figures.
This is not so effective in a teaching and study guide setting.
Some text is indeed necessary, but it has to be minimized.
Michael Alley’s evidence-assertiona slide design is effective:
summarize the slide’s key point in a heading over 1-2 lines, use
figures/equations/code effectively, and work on minimizing
text.

Make it an assumption that the reader of a study guide is
also a reader of the underlying running text in the chapter.

a http://writing.engr.psu.edu/slides.html

1.6.1 Slide directory

For each DoOnce file in the chapter ch2 it can be wise to make
a corresponding study guide file in the subdirectory slides-ch2.
For example, part1.do.txt has its counterpart with slides in
slides-ch2/part1.do.txt. Then there is a file slides_ch2.do.txt
which assembles the parts if slides-ch2, typically with a content like

TITLE: Study Guide: Some title
AUTHOR: Author Name Email:somename@someplace.net at Institute One
DATE: today

#ifdef WITH_TOC
!split
TOC: on
#endif

#include "lec-ch2/part1.do.txt"

#include "lec-ch2/part2.do.txt"

#include "lec-ch2/part3.do.txt"

http://writing.engr.psu.edu/slides.html

1.6 Study guides and slides 27

1.6.2 Generating slides from running text

The author has the following work flow for generating slides for a chapter
file, say part1.do.txt.

1. Copy part1.do.txt to slides-ch2/part1.do.txt.
2. Make slides_ch2.do.txt and include slides-ch2/part1.do.txt.
3. Decide on parts of the slide collection. Often a part can be a

section in the parent ch2.do.txt file, but sometimes it can be
more natural to have larger parts than sections in the slide
collection.

4. Each part in the slide file has a DocOnce section heading with 7
=, while each slide has a DocOnce subsection heading with 5 =.

5. Edit slides-ch2/part1.do.txt:
•One can keep subsection headings from the running text
for the most part, but slides need many more subsection
headings.

•Try to let the heading summarize explicitly a conclusion/rule
from the slide (the slide table of contents is then a set of
conclusions/rules!)

•Remember a !split right above every slide heading!
•Compile frequently and look at the slides: they become over-
full very quickly so there is a constant need for dividing slides
into new ones with new headings.

•Read a paragraph, focus on its main idea and result, and
see how it can be condensed to one sentence or a few bullet
points. Making effective slides is the art of condensing the
most important information in the text to a eye-catching
format.

•Do not remove figures without a very good reason. Figures
are important!

•Add new images to liven up the presentation. In slides you
may think of cartoons or entertaining images that would
never be suitable in a chapter/book, but they may help at-
tract attention, communicate ideas, and enhance the memory
process.

•Condense every mathematical derivation. Make sure the goal
and end result is clear before diving into details.

•Detailed derivations are seldom of interest in a study guide or
oral presentation - refer to the underlying running text in the

28 1 Directory and file structure

chapter for the details. Focus on ideas and key mathematical
steps (if they are important enough).

•Remember that equations are sometimes excellent images
for ideas! Complicated equations can therefore be important
slide elements although the details will never be addressed.

•It is quite often wise to remove equation numbers
in slides. You can automatically remove them by
--denumber_all_equations, or you can edit the LATEX
math environment manually. Remember that references to
equations numbers must be removed from the slides too!

•Movies are effective in slides. It is still a hassle to get them
displayed correctly in PDF files, so using a test on FORMAT
and writing MOVIE for HTML output and just a link in PDF
output might be necessary. See the manual12 for how to work
with movies in DocOnce.

The slides are to fulfill three purposes:

1. reading as a study guide to get overview before reading the full
text of chapter,

2. watching as slides during an oral presentation,
3. reading as a study guide to repeat and enforce overview of the

material.

It is highly non-trivial to meet all these purposes: limit the information on
the slides, make them as visual as feasible, make them self contained, and
provide the sufficient amount of information. Considerable iterations are
always needed. Reading the slides as a study guide is easy to accomplish.
The slides’ properties in live presentations can only be tested by speaking
to them (making a rough draft of a video podcast is a very effective way
of testing the slides’ quality).

Tip: use quizzes to define a sufficient preparation level

You want students to study the slides/study guide before
a lecture. To measure to what extent this is done, you can
insert multiple-choice questions about the most basic concepts
in the slides (using the DocOnce quiz environment). With
quiztoolsa you can extract all such multiple-choice questions,

12 http://hplgit.github.io/doconce/doc/pub/manual/html/manual.html#movies

http://hplgit.github.io/doconce/doc/pub/manual/html/manual.html#movies
https://github.com/hplgit/quiztools

1.6 Study guides and slides 29

create online games with Kahoot, and let the students answer
with their smart phones at the beginning of a lecture. The
scores are visible to all on the main screen and communicate
the preparation level.

a https://github.com/hplgit/quiztools

1.6.3 Slides as IPython/Jupyter notebooks

I would add a fourth requirement to the list in the previous section: a
study guide should also be available as an IPython/Jupyter notebook
for experimentation, extension, and personal notes. This is technically
straightforward by just generating a notebook from the slide source, but
a notebook puts some constraints on code snippets and figures such
that it is meaningful to execute all the code. Moreover, many figures are
inlined and appear as a result of executing code in a notebook. While
other formats will show a code snippet and then the corresponding
figure, the notebook can leave the figure out and let it appear as the
code cell is executed. Technically in DocOnce, this is solved by putting
a FIGURE construction inside an # #if FORMAT test (or % if FORMAT
if Mako branches are preferred). If ‘FORMAT != ’ipynb“, you have a
FIGURE line, otherwise the preceding code cell is supposed to generate
the figure.

Notebook from a chapter or from slides?

The book’s running text can also be converted to a notebook.
However, the notebook then consists of very much text and
often a lot of cross-referencing because this is the typically
writing style of a book chapter. This style is not so effective
for a notebook. Stripped text with focus on formulas, code,
and figures is more ideal for a notebook and this is the style
of a study guide realized by slides.

30 1 Directory and file structure

1.6.4 Compiling slides

There is a quite general script in doc/src/chapters/make_slides.sh
for compiling a slide collection defined in a file like slides_ch2.do.txt.
Just run

Terminal

Terminal> bash ../make_slides.sh slides_ch2

from the chapter directory. Note that the script will first spell check the
slide files. This is done in the slides-ch2 directory. Errors are reported
in files located in slides-ch2. To update the chapter’s dictionary for
spell checking, you need to do

Terminal

Terminal> cp slides-ch2/new_dictionary.txt~ .dict4spell

in the ch2 chapter directory.
Similarly, to look at misspellings, the file slides-ch2/misspellings.txt is

the relevant file.
The make_slides.sh script compiles a variety of slides:

• First a plain LATEX PDF document to catch as many errors in
the DocOnce source as early as possible. This document can
also be used for compact printing of the contents of the study
guide (and the output looks definitely like a study guide and
not slides!).

• HTML5 reveal.js slides with different colors.
• HTML5 deck.js slides. This format is usually inferior to

reveal.js, but is also very much personal taste.
• LATEX Beamer slides. Edit the theme=red_shadow line in

make_slides.sh to control the Beamer theme.
• Remark (Markdown) slides for viewing in a browser.

1.6.5 IPython/Jupyter notebooks

Since DocOnce documents can be translated to IPython/Jupyter note-
books, hereafter just called notebooks, it is tempting to produce a version
of the teaching material also in notebook form. This author’s experience

1.6 Study guides and slides 31

is that a more traditional book format with running text is not so ideal
for a notebook:

• you simply get too much text in a too long notebook,
• the notebook needs more code snippets than what you want to

show in a book (or you just want to show fragments while the
notebook requires complete code),

• there are many cross-references between equations, sections,
figures, and running text that the notebook does not support
well.

Instead, making slides from the chapter’s text and translating slides to
the notebook format is a splendid idea. This requires some tuning, as you
want slight differences between classic slides and a notebook. For example,
a code snippet that results with a plot should contain the plot in classic
slides, while the notebook will automatically produce it when run. This
is easily fixed by an if test in Mako, typically % if FORMAT != ’ipynb’:
followed by a FIGURE: line that includes the resulting figure for all
formats except the notebook.

Also be aware of the DocOnce hidden code environment that can be
used to declare code blocks that appear in notebooks (because they are
needed) but not in other formats: !bc pyhid gives a Python hidden
snippet.

Using notebooks as a starting point for a traditional textbook might
be a good idea, but will enforce a non-conventional style in the textbook.
For example, notebooks should be quite small, leading to similarly small
modules in the book. Notebooks use cross-referencing to little extent, and
this will be reflected in the textbook too. Notebooks also need more code
to run, so one has to accept more code in the textbook. However, there
is still a problem for the notebook with defining items for an index, fancy
admonitions, and other elements that one would desire in a textbook.
More experience is needed to make best practices. Since notebooks can
be compiled in Markdown, and DocOnce can read basic Markdown input,
it is possible to go from the notebook format to DocOnce, but this is not
tested.

Remark
More best practices for turning teaching material into books
and into notebooks are supposed to be collected here in the
future.

32 1 Directory and file structure

1.7 Writing in private repository while publishing in
public

Sometimes you want to keep ongoing writing in a private repository and
make only selected chapters and/or files publicly visible. In such cases
one can set up the book project structure in a private repository, but
use a public repository instead of the doc/pub directory for publishing
selected compiled documents. This is easy: just change the dest= line,
where the publishing directory is defined, in all make*.sh scripts in
doc/src/chapters. The files will then be copied to this alternative
destination.

Often, you want to publish the software associated with the book
project, stored in doc/src/chapter/nickname/src-nickname, as a part
of the public repository. Such files can also easily be copied, say to
src/nickname in the public repository. However, software files often
change names and locations in subdirectories, and then you need to be
very careful with updating the Git commands in the public repository
every time you do git add or git rm locally in the private repository.
This problem occurs with text files too, but maybe less often, so the
recipe given below applies to all kind of files you want to mirror from a
private to a public repository.

We have made a script rsync_git.py that can copy files from one
repository to another and log files that are removed or deleted and then
take the appropriate Git actions. Running

Terminal

Terminal> rsync_git.py src-mychap $HOME/repos/pub/mybook/src/mychap

will copy all files from src-mychap to $HOME/repos/pub/mybook/src/mychap,
find which files that are new in src-mychap and must be added to the
destination directory, and which files that are removed in src-mychap
and should be removed in the destination directory as well. An rsync
command is run to the physical copy and removal of files, followed by
git add and git rm commands. In this way, you can automatically keep
the public repository as a mirror of parts of your private repository!13

13 This functionality should be a part of Git, but no Git expert I have talked to has ever
seen use for merging a flexibly defined subset of a repository with another repository.
(The current functionality of Git is not capable of working with, e.g., branches that
merge with only parts of another branch.)

https://github.com/hplgit/setup4book-doconce/tree/master/doc/src/chapters/rules/src-rules/rsync_git.py

1.7 Writing in private repository while publishing in public 33

The rsync_git.py script is listed below for reference. Note that a file
$HOME/.rsyncexclude can be made to filter out certain files that you
never want to copy (this is always a good idea!).

#!/usr/bin/env python
"""
Sync two directory trees with rsync and perform corresponding
git operations (add or rm).
Skip files listed in $HOME/.rsyncexclude.

Usage: rsync_git.py from-dir to-dir
Example: rsync_git.py src-mychap $HOME/repos/pub/mybook/src/mychap

The from-dir is the source and the to-dir is the destination
(e.g. a public directory where resources are exposed).
The script must be run from a dir within the repo of to-dir.
"""

Typical rsync output:
"""
sending incremental file list
deleting decay7.py
decay_TULL.py

sent 675 bytes received 34 bytes 1418.00 bytes/sec
total size is 94788 speedup is 133.69
"""

Example on $HOME/.rsyncexclude file
"""
.#*
#*
*.rsync~
*.a
*.o
*.so
*~
.*~
*.log
*.dvi
*.aux
*.old
tmp_*
.tmp*
*.tar
*.tar.gz
*.tgz
*.pyc
"""

import commands, os, sys

from_ = sys.argv[1]

34 1 Directory and file structure

to_ = sys.argv[2]
cmd = ’rsync -rtDvz -u -e ssh -b ’ + \

’--exclude-from=$HOME/.rsyncexclude ’ + \
’--suffix=.rsync~ --delete --force %s/ %s’ % (from_, to_)

print cmd
failure, output = commands.getstatusoutput(cmd)
print output

delete = []
add = []
for line in output.splitlines():

relevant_line = True
for text in ’sending incremental file list’, \

’sent ’, ’total size is’:
if line.startswith(text):

relevant_line = False
if relevant_line and line != ’’:

if line.startswith(’deleting’):
delete.append(line.split()[1])

else:
add.append(line.strip())

print delete
print add

for filename in delete:
option = ’-rf’ if os.path.isdir(’%s/%s’ % (to_, filename)) else ’-f’
cmd = ’git rm %s %s/%s’ % (option, to_, filename)
print cmd
os.system(cmd)

for filename in add:
cmd = ’git add %s/%s’ % (to_, filename)
print cmd
os.system(cmd)

1.8 Book versions with and without solutions to
exercises

It is easy to turn solutions to exercises on or off by the
options --without_solutions (for !bsol environments) and
--without_answers (for !bans environments). One often wants to
publish a book without solutions to exercises, but also make versions
with solutions. One possibility is to password protect the versions with
solutions.

It can be wise to create a very complicated filename for the files
that may be shown in a browser with the URL visible for a class. One

1.8 Book versions with and without solutions to exercises 35

possibility is to create a 40 long SHA1 string as filename and start it
with a dot to also make it invisible in most operating systems.

hash=82dee82e1274a586571086dca04d00308d3a0d86
html=.trash<built-in function hash>
doconce format html book --html_output=$html ...

1.8.1 Password protected files

The file following file, called password.html, presents an empty page
with a button for providing a password, and if approved, the first page
of the book opens up.

<html>
<body>
<!-- password protected HTML page --->
<script>
function passWord() {
var testV = 1;
var pass1 = prompt(’Please enter your password’,’ ’);
while (testV < 3) {
if (!pass1)
history.go(-1);
if (pass1.toLowerCase() == "PASSWORD") {
alert(’You Got it Right!’);
window.open(’DESTINATION.html’);
break;
}
testV += 1;
var pass1 =
prompt(’Access denied - password incorrect!’, ’Password’);
}
if (pass1.toLowerCase()!="password" & testV ==3)
history.go(-1);
return " ";
}
</script>
<center>
<form>
<input type="button" value="Enter Protected Area" onClick="passWord()">
</form>
</center>
</body>
</html>

Suppose your HTML file with solutions that you want to password protect
has the name book-sol.html. Then you can simply do

cp password.html book-sol.html
doconce replace DESTINATION "$html" book-sol.html

36 1 Directory and file structure

doconce replace PASSWORD "s!m!artpass@word" book-sol.html

A PDF file can easily be password protected with the use of the pdftk
tool. If book.pdf is with solutions, book-sol.pdf will also require a
password a!4:

pdftk book.pdf output book-sol.pdf owner_pw foo user_pw "a!4"

1.8.2 Separating the source files from published documents

The primary repository organization described in this document has
the DocOnce source files in doc/src, while compiled and published
documents appear in doc/pub. If the book is published without solutions
to exercises, one will often avoid readers to dive into the DocOnce source
files in the repository and find solutions. The author has two methods
for dealing with this problem.

The first method is simple, but not safe. The idea is to rename doc/src
to doc/.src. That is, the source tree has a name starting with a dot
(.src) such that the directory is invisible on Unix systems. However, it
is visible on GitHub, and any ls -a command will list the source tree.
A reader who really wants to find solutions in the DocOnce source files
will most likely locate the files...

Another, completely safe method is to move the .src or src directory
tree to a new, private repository when the book is to be published. The
make* scripts must then the updated such that the directory where the
documents are published becomes correct.

One can also start out with a private repository for the source files
and a public repository for the published files. This author, however,
prefers to use one repository when developing major parts of a book and
then migrate the source tree to a private repository when solutions are
to be protected from the public.

1.9 Special features for teaching material

DocOnce offers some special features that can greatly aid development
of effective teaching material:

• fancy admonitions
• simple boxes

1.9 Special features for teaching material 37

• interactive code blocks
• hidden code blocks
• exercises
• multiple-choice questions or quizzes
• movies
• quotes

These are briefly exemplified below. If you are mainly interested in how
to structure DocOnce-based books, you can safely jump to Section 1.3.

1.9.1 Admonitions

Use admonitions!
Need to notify, warn, summarize, ask a question, give a tip,
dive into less important details, or really emphasize a result?
DocOnce features special notice, warning, summary, and ques-
tion boxes called admonitions. These can be typeset in a
variety of versions, depending on the output format (check out
doconce format –help and the many options with admon in
the name).

1.9.2 Simple box

Put a box around something important:

1 + 1 = 2

1.9.3 Embedded interactive code

The pyoptpro code environment. To illustrate program flow, you can
step through code (as in a debugger, just more illustrative) using the
pyoptpro code environment. Here is an example:

n = 4
i = 0
while i <= n:

print i
i += 1

38 1 Directory and file structure

In HTML and Sphinx format this code can be stepped through in
the browser, while in LATEX one gets a link to a web page with this
functionality.

The pyscpro code environment. The SageMathCell14 server enables
live Python code in web documents. Using the pyscpro code environment,
Python code can be embedded in a for interactive computing:

import random
a = random.randint(1, 7)
print a

We can even plot:

from numpy import *
from matplotlib.pyplot import *

x = linspace(-2*pi, 2*pi, 801)
y = exp(-0.1*x**2)*sin(4*x)
plot(x, y)
show()

HTML and Sphinx output has such interactive Sage Cells, while other
output formats can just show the code.

1.9.4 Exercises

Exercise environments
DocOnce supports exercise subsections, which are subsections
with some extra tagging for exercises. Important features are:

• exercises can be divided into subexercises
• one may specify filename(s) for delivering the answer to an

exercise
• one may specify filename(s) for the solution of an exercise
• one may specify a remark (fun facts, comments)
• one or more hints can be given to an exercise or subexercise

(can be hidden in certain output formats)
• any exercise or subexercise can have a solution field
• any exercise or subexercise can have an answer field (very

condensed solution)

14 https://sagecell.sagemath.org/

https://sagecell.sagemath.org/

1.9 Special features for teaching material 39

• solutions and answers can be removed from the document
at compile time

• exercises can have one of four titles: Exercise, Project,
Problem, or Example

1.9.5 Quote

There is also a quote environment (invisible box with larger margins).
We’re programmers. Programmers are, in their hearts, architects, and the
first thing they want to do when they get to a site is to bulldoze the place
flat and build something grand. We’re not excited by incremental renovation:
tinkering, improving, planting flower beds.
There’s a subtle reason that programmers always want to throw away the
code and start over. The reason is that they think the old code is a mess.
And here is the interesting observation: they are probably wrong. The reason
that they think the old code is a mess is because of a cardinal, fundamental
law of programming: It’s harder to read code than to write it. This
is why code reuse is so hard. This is why everybody on your team has a
different function they like to use for splitting strings into arrays of strings.
They write their own function because it’s easier and more fun than figuring
out how the old function works.
Joel Spolsky15, 2000

1.9.6 Quiz

Question: Does DocOnce feature multiple-choice questions or quizzes?
A. Yes.
B. No.

Answer: A.
Solution:

A: Right. See the quiz manual16.
B: Wrong.

Quite often we need mathematics and computer code in questions and
answers.
15 http://www.joelonsoftware.com/articles/fog0000000069.html
16 http://hplgit.github.io/doconce/doc/pub/quiz/quiz.html

http://www.joelonsoftware.com/articles/fog0000000069.html
http://hplgit.github.io/doconce/doc/pub/quiz/quiz.html

40 1 Directory and file structure

Question: Compute the integral∫ 2π

0
e−x sin2 x dx

and report the formula in verbatim LATEX code,

\[\int_0^{2\pi} e^{-x}\sin^2 x\,dx = ... \]

A. There is no closed-form formula for this integral.
B.

>>> from sympy import *
>>> x = symbols(’x’)
>>> F = integrate(exp(-x)*sin(x)**2, (x, 0, 2*pi))
>>> F
-2*exp(-2*pi)/5 + 2/5
>>> latex(F)
’- \\frac{2}{5 e^{2 \\pi}} + \\frac{2}{5}’

so the answer is

\[\int_0^{2\pi} e^{-x}\sin^2 x\,dx =
- \frac{2}{5 e^{2 \pi}} + \frac{2}{5} \]

C.

\[\int_0^{2\pi} e^{-x}\sin^2 x\,dx =
- \frac{3}{4 e^{2 \pi}} + \frac{3}{4} \]

D.

\[\int_0^{2\pi} e^{-x}\sin^2 x\,dx =
- {2\over5}{5 exp^{2 pi}} + \frac{2}{5} \]

Answer: B.
Solution:

A: Wrong. Maybe you fiddled around with pen and paper the wrong
way... Try sympy!

B: Right.
C: Wrong. Something went wrong here with the fractions...
D: Wrong. Well, the math is correct, but the LATEX code lacks two

backslashes, and \over is old-fashioned, use \frac{}{} in 2015.

The typesetting of a quiz depends on the output format. One can
output in plain HTML and Sphinx formats, hover over the choice and get
a pop-up tooltip with the right answer and an explanation (if defined).
The explanation can only show plain text, so it is empty if it contains

1.9 Special features for teaching material 41

math or code blocks, or figures. With HTML Bootstrap styles one can
click on a symbol to open up the answer and the explanation. Rune-
stoneInteractive books (Sphinx) offers a button for the same purpose, but
the explanation can only be plain text so any math or code block makes
the explanation empty. LATEX output can feature the choices only (no
answer, no explanation: --without_solutions --without_answers),
the short answer only (--without_solutions) or both the answer and
all explanations (the case in this demo).

1.9.7 What about a video lecture?

http://youtube.com/PtJrPEIHNJw

Question

Can you think of applications of the above mentioned features?

http://youtube.com/PtJrPEIHNJw

Use of Mako to aid book writing A

Remark. Documents that contain raw Mako code in verbatim code
blocks cannot also be processed by Mako, and this is the case with the
mako chapter. Since we need Mako for processing the rest of this book
document, we are forced to compile the mako chapter as a stand-alone
document (with the --no_mako option) and let this appendix be just a
link to the this stand-alone document1.

1 http://hplgit.github.io/setup4book-doconce/doc/pub/mako/pdf/main_mako.pdf

43

http://hplgit.github.io/setup4book-doconce/doc/pub/mako/pdf/main_mako.pdf

References

[1] H. P. Langtangen. Debugging in Python.
http://hplgit.github.io/primer.html/doc/pub/debug.

[2] H. P. Langtangen. Loops and lists.
http://hplgit.github.io/primer.html/doc/pub/looplist.

[3] H. P. Langtangen. Some document.
http://hplgit.github.io/setup4book-doconce/doc/pub/fake/html.

[4] H. P. Langtangen. A Primer on Scientific Programming With
Python. Texts in Computational Science and Engineering.
Springer, fourth edition, 2014.

45

46 REFERENCES

Index

–without_solutions, 34

admonitions, 37
assembly (chapters to book), 15

bbox box, 37

chapter
files, 14
organization, 14

clean.sh, 23
cross-referencing, 24

embedded video in DocOnce, 41
exercises in DocOnce, 38

figure directory, 5, 15

generalized references, 24

interactive code, 37
IPython notebooks, 22, 30

Jupyter notebooks, 22, 30

links to fig/src directories, 16

make.sh, 19
make_html.sh, 21
make_slides.sh, 30
mirroring repos, 32
mkdir.sh, 18
movie directory, 5, 15
movie in DocOnce, 41
multiple-choice questions, 39

newcommands, 7
nickname, 6
notebooks, 22, 30

private repos, 32
pub directory, 5
pyoptpro interactive code, 37

quiz, 39

ref generalized reference, 24
refch generalized reference, 24
RunestoneInteractive books, 24

scripts module, 17
slides, 25

47

48 INDEX

solutions to exercises, 34
source code directory, 5, 15
sphinx, 24
study guides, 25

video directory, 5, 15
video in DocOnce, 41

	Preface
	Directory and file structure
	Directory structure
	Principles and conventions
	Mathematical notation and newcommands
	Label conventions
	Programming style
	Degree of modularization
	Student guide (slides) style
	Style in exercises, problems, and projects

	Assembling different pieces to a book
	Organization of a chapter
	Figures and source code
	Assembly of chapters to a book

	Tools
	Making a new chapter
	Compiling the chapter to LaTeX and PDF
	Automatic spell checking
	Compiling the chapter to HTML
	Compiling the chapter to a notebook
	About figures when publishing HTML
	Compiling the book

	Cross-referencing across chapters (or books)
	Study guides and slides
	Slide directory
	Generating slides from running text
	Slides as IPython/Jupyter notebooks
	Compiling slides
	IPython/Jupyter notebooks

	Writing in private repository while publishing in public
	Book versions with and without solutions to exercises
	Password protected files
	Separating the source files from published documents

	Special features for teaching material
	Admonitions
	Simple box
	Embedded interactive code
	Exercises
	Quote
	Quiz
	What about a video lecture?

	Use of Mako to aid book writing
	References
	Index

