
Ch.2: Loops and lists

Hans Petter Langtangen1,2

Simula Research Laboratory1

University of Oslo, Dept. of Informatics2

Aug 21, 2016

Make a table of Celsius and Fahrenheit degrees

-20 -4.0
-15 5.0
-10 14.0
-5 23.0
0 32.0
5 41.0
10 50.0
15 59.0
20 68.0
25 77.0
30 86.0
35 95.0
40 104.0

How can a program write out such a table?

Making a table: the simple naive solution

We know how to make one line in the table:

C = -20
F = 9.0/5*C + 32
print C, F

We can just repeat these statements:

C = -20; F = 9.0/5*C + 32; print C, F
C = -15; F = 9.0/5*C + 32; print C, F
...
C = 35; F = 9.0/5*C + 32; print C, F
C = 40; F = 9.0/5*C + 32; print C, F

Very boring to write, easy to introduce a misprint

When programming becomes boring, there is usually a
construct that automates the writing!

The computer is extremely good at performing repetitive tasks

For this purpose we use loops

The while loop makes it possible to repeat almost similar
tasks

A while loop executes repeatedly a set of statements as long as a
boolean condition is true

while condition:
<statement 1>
<statement 2>
...

<first statement after loop>

All statements in the loop must be indented!

The loop ends when an unindented statement is encountered

The while loop for making a table

print '------------------' # table heading
C = -20 # start value for C
dC = 5 # increment of C in loop
while C <= 40: # loop heading with condition

F = (9.0/5)*C + 32 # 1st statement inside loop
print C, F # 2nd statement inside loop
C = C + dC # last statement inside loop

print '------------------' # end of table line

The program �ow in a while loop

C = -20
dC = 5
while C <= 40:

F = (9.0/5)*C + 32
print C, F
C = C + dC

(Visualize execution)

Let us simulate the while loop by hand:

First C is -20, −20 ≤ 40 is true, therefore we execute the loop
statements

Compute F, print, and update C to -15

We jump up to the while line, evaluate C ≤ 40, which is true,
hence a new round in the loop

We continue this way until C is updated to 45

Now the loop condition 45 ≤ 40 is false, and the program
jumps to the �rst line after the loop - the loop is over

http://pythontutor.com/visualize.html#code=C+%3D+-20%0AdC+%3D+5%0Awhile+C+%3C%3D+40%3A%0A++++F+%3D+%289.0%2F5%29%2AC+%2B+32%0A++++print+C%2C+F%0A++++C+%3D+C+%2B+dC&mode=display&cumulative=false&heapPrimitives=false&drawParentPointers=false&textReferences=false&py=2&curInstr=0

Boolean expressions are true or false

An expression with value true or false is called a boolean expression.
Examples: C = 40, C 6= 40, C ≥ 40, C > 40, C < 40.

C == 40 # note the double ==, C = 40 is an assignment!
C != 40
C >= 40
C > 40
C < 40

We can test boolean expressions in a Python shell:

>>> C = 41
>>> C != 40
True
>>> C < 40
False
>>> C == 41
True

Combining boolean expressions

Several conditions can be combined with and/or:

while condition1 and condition2:
...

while condition1 or condition2:
...

Rule 1: C1 and C2 is True if both C1 and C2 are True
Rule 2: C1 or C2 is True if one of C1 or C2 is True

>>> x = 0; y = 1.2
>>> x >= 0 and y < 1
False
>>> x >= 0 or y < 1
True
>>> x > 0 or y > 1
True
>>> x > 0 or not y > 1
False
>>> -1 < x <= 0 # -1 < x and x <= 0
True
>>> not (x > 0 or y > 0)
False

Lists are objects for storing a sequence of things (objects)

So far, one variable has referred to one number (or string), but
sometimes we naturally have a collection of numbers, say degrees
−20,−15,−10,−5, 0, . . . , 40
Simple solution: one variable for each value

C1 = -20
C2 = -15
C3 = -10
...
C13 = 40

Stupid and boring solution if we have many values!
Better: a set of values can be collected in a list

C = [-20, -15, -10, -5, 0, 5, 10, 15, 20, 25, 30, 35, 40]

Now there is one variable, C, holding all the values

List operations: initialization and indexing

Initialize with square brackets and comma between the Python
objects:

L1 = [-91, 'a string', 7.2, 0]

Elements are accessed via an index: L1[3] (index=3).
List indices start at 0: 0, 1, 2, ... len(L1)-1.

>>> mylist = [4, 6, -3.5]
>>> print mylist[0]
4
>>> print mylist[1]
6
>>> print mylist[2]
-3.5
>>> len(mylist) # length of list
3

List operations: append, extend, insert, delete

>>> C = [-10, -5, 0, 5, 10, 15, 20, 25, 30]
>>> C.append(35) # add new element 35 at the end
>>> C
[-10, -5, 0, 5, 10, 15, 20, 25, 30, 35]
>>> C = C + [40, 45] # extend C at the end
>>> C
[-10, -5, 0, 5, 10, 15, 20, 25, 30, 35, 40, 45]
>>> C.insert(0, -15) # insert -15 as index 0
>>> C
[-15, -10, -5, 0, 5, 10, 15, 20, 25, 30, 35, 40, 45]
>>> del C[2] # delete 3rd element
>>> C
[-15, -10, 0, 5, 10, 15, 20, 25, 30, 35, 40, 45]
>>> del C[2] # delete what is now 3rd element
>>> C
[-15, -10, 5, 10, 15, 20, 25, 30, 35, 40, 45]
>>> len(C) # length of list
11

List operations: search for elements, negative indices

>>> C.index(10) # index of the first element with value 10
3
>>> 10 in C # is 10 an element in C?
True
>>> C[-1] # the last list element
45
>>> C[-2] # the next last list element
40
>>> somelist = ['book.tex', 'book.log', 'book.pdf']
>>> texfile, logfile, pdf = somelist # assign directly to variables
>>> texfile
'book.tex'
>>> logfile
'book.log'
>>> pdf
'book.pdf'

Loop over elements in a list with a for loop

Use a for loop to loop over a list and process each element:

degrees = [0, 10, 20, 40, 100]
for C in degrees:

print 'Celsius degrees:', C
F = 9/5.*C + 32
print 'Fahrenheit:', F

print 'The degrees list has', len(degrees), 'elements'

(Visualize execution)
As with while loops, the statements in the loop must be indented!

http://pythontutor.com/visualize.html#code=degrees+%3D+%5B0%2C+10%2C+20%2C+40%2C+100%5D%0Afor+C+in+degrees%3A%0A++++print+%27Celsius+degrees%3A%27%2C+C%0A++++F+%3D+9%2F5.%2AC+%2B+32%0A++++print+%27Fahrenheit%3A%27%2C+F%0Aprint+%27The+degrees+list+has%27%2C+len%28degrees%29%2C+%27elements%27&mode=display&cumulative=false&heapPrimitives=false&drawParentPointers=false&textReferences=false&py=2&curInstr=0

Simulate a for loop by hand

degrees = [0, 10, 20, 40, 100]
for C in degrees:

print C
print 'The degrees list has', len(degrees), 'elements'

Simulation by hand:

First pass: C is 0

Second pass: C is 10 ...and so on...

Third pass: C is 20 ...and so on...

Fifth pass: C is 100, now the loop is over and the program �ow
jumps to the �rst statement with the same indentation as the
for C in degrees line

Making a table with a for loop

Table of Celsius and Fahreheit degrees:

Cdegrees = [-20, -15, -10, -5, 0, 5, 10, 15,
20, 25, 30, 35, 40]

for C in Cdegrees:
F = (9.0/5)*C + 32
print C, F

Note: print C, F gives ugly output. Use printf syntax to nicely
format the two columns:

print '%5d %5.1f' % (C, F)

Output:

-20 -4.0
-15 5.0
-10 14.0
-5 23.0
0 32.0
......
35 95.0
40 104.0

A for loop can always be translated to a while loop

The for loop

for element in somelist:
process element

can always be transformed to a corresponding while loop

index = 0
while index < len(somelist):

element = somelist[index]
process element
index += 1

But not all while loops can be expressed as for loops!

While loop version of the for loop for making a table

Cdegrees = [-20, -15, -10, -5, 0, 5, 10,
15, 20, 25, 30, 35, 40]

index = 0
while index < len(Cdegrees):

C = Cdegrees[index]
F = (9.0/5)*C + 32
print '%5d %5.1f' % (C, F)
index += 1

Implement a mathematical sum via a loop

S =
N∑
i=1

i2

N = 14

S = 0
for i in range(1, N+1):

S += i**2

Or (less common):

S = 0
i = 1
while i <= N:

S += i**2
i += 1

Mathematical sums appear often so remember the implementation!

Storing the table columns as lists

Let us put all the Fahrenheit values in a list as well:

Cdegrees = [-20, -15, -10, -5, 0, 5, 10,
15, 20, 25, 30, 35, 40]

Fdegrees = [] # start with empty list
for C in Cdegrees:

F = (9.0/5)*C + 32
Fdegrees.append(F) # add new element to Fdegrees

print Fdegrees

(Visualize execution)
print Fdegrees results in

[-4.0, 5.0, 14.0, 23.0, 32.0, 41.0, 50.0, 59.0,
68.0, 77.0, 86.0, 95.0, 104.0]

http://pythontutor.com/visualize.html#code=Cdegrees+%3D+%5B-20%2C+-15%2C+-10%2C+-5%2C+0%2C+5%2C+10%2C%0A++++++++++++15%2C+20%2C+25%2C+30%2C+35%2C+40%5D%0AFdegrees+%3D+%5B%5D++++++++++++%23+start+with+empty+list%0Afor+C+in+Cdegrees%3A%0A++++F+%3D+%289.0%2F5%29%2AC+%2B+32%0A++++Fdegrees.append%28F%29+++%23+add+new+element+to+Fdegrees%0Aprint+Fdegrees&mode=display&cumulative=false&heapPrimitives=false&drawParentPointers=false&textReferences=false&py=2&curInstr=0

For loop with list indices

For loops usually loop over list values (elements):

for element in somelist:
process variable element

We can alternatively loop over list indices:

for i in range(0, len(somelist), 1):
element = somelist[i]
process element or somelist[i] directly

range(start, stop, inc) generates a list of integers start,
start+inc, start+2*inc, and so on up to, but not including,
stop. range(stop) is short for range(0, stop, 1).

>>> range(3) # = range(0, 3, 1)
[0, 1, 2]
>>> range(2, 8, 3)
[2, 5]

How can we change the elements in a list?

Say we want to add 2 to all numbers in a list:

>>> v = [-1, 1, 10]
>>> for e in v:
... e = e + 2
...
>>> v
[-1, 1, 10] # unaltered!!

v = [-1, 1, 10]
for e in v:

e = e + 2

(Visualize execution)

http://pythontutor.com/visualize.html#code=v+%3D+%5B-1%2C+1%2C+10%5D%0Afor+e+in+v%3A%0A++++e+%3D+e+%2B+2&mode=display&cumulative=false&heapPrimitives=false&drawParentPointers=false&textReferences=false&py=2&curInstr=0

Changing a list element requires assignment to an indexed
element

What is the problem?
Inside the loop, e is an ordinary (int) variable, �rst time e becomes
1, next time e becomes 3, and then 12 - but the list v is unaltered
Solution: must index a list element to change its value:

>>> v[1] = 4 # assign 4 to 2nd element (index 1) in v
>>> v
[-1, 4, 10]
>>>
>>> for i in range(len(v)):
... v[i] = v[i] + 2
...
>>> v
[1, 6, 12]

List comprehensions: compact creation of lists

Example: compute two lists in a for loop

n = 16
Cdegrees = []; Fdegrees = [] # empty lists

for i in range(n):
Cdegrees.append(-5 + i*0.5)
Fdegrees.append((9.0/5)*Cdegrees[i] + 32)

Python has a compact construct, called list comprehension, for
generating lists from a for loop:

Cdegrees = [-5 + i*0.5 for i in range(n)]
Fdegrees = [(9.0/5)*C + 32 for C in Cdegrees]

General form of a list comprehension:

somelist = [expression for element in somelist]

where expression involves element

Interactive demonstration of list comprehensions

n = 4
Cdegrees = [-5 + i*2 for i in range(n)]
Fdegrees = [(9.0/5)*C + 32 for C in Cdegrees]

(Visualize execution)

http://pythontutor.com/visualize.html#code=n+%3D+4%0ACdegrees+%3D+%5B-5+%2B+i%2A2+for+i+in+range%28n%29%5D%0AFdegrees+%3D+%5B%289.0%2F5%29%2AC+%2B+32+for+C+in+Cdegrees%5D&mode=display&cumulative=false&heapPrimitives=false&drawParentPointers=false&textReferences=false&py=2&curInstr=0

Traversing multiple lists simultaneously with zip

Can we one loop running over two lists?

Solution 1: loop over indices

for i in range(len(Cdegrees)):
print Cdegrees[i], Fdegrees[i]

Solution 2: use the zip construct (more �Pythonic�):

for C, F in zip(Cdegrees, Fdegrees):
print C, F

Example with three lists:

>>> l1 = [3, 6, 1]; l2 = [1.5, 1, 0]; l3 = [9.1, 3, 2]
>>> for e1, e2, e3 in zip(l1, l2, l3):
... print e1, e2, e3
...
3 1.5 9.1
6 1 3
1 0 2

Nested lists: list of lists

A list can contain any object, also another list

Instead of storing a table as two separate lists (one for each
column), we can stick the two lists together in a new list:

Cdegrees = range(-20, 41, 5)
Fdegrees = [(9.0/5)*C + 32 for C in Cdegrees]

table1 = [Cdegrees, Fdegrees] # list of two lists

print table1[0] # the Cdegrees list
print table1[1] # the Fdegrees list
print table1[1][2] # the 3rd element in Fdegrees

Table of columns vs table of rows

The previous table = [Cdegrees,Fdegrees] is a table of
(two) columns

Let us make a table of rows instead, each row is a [C,F] pair:

table2 = []
for C, F in zip(Cdegrees, Fdegrees):

row = [C, F]
table2.append(row)

more compact with list comprehension:
table2 = [[C, F] for C, F in zip(Cdegrees, Fdegrees)]

print table2

[[-20, -4.0], [-15, 5.0],, [40, 104.0]]

Iteration over a nested list:

for C, F in table2:
work with C and F from a row in table2

or
for row in table2:

C, F = row
...

Illustration of table of columns

table1 0 0 20

1 25

2 30

3 35

4 40

1 0 68.0

1 77.0

2 86.0

3 95.0

4 104.0

Illustration of table of rows

table2 0 0 20

1 68.0

1 0 25

1 77.0

2 0 30

1 86.0

3 0 35

1 95.0

4 0 40

1 104.0

Extracting sublists (or slices)

We can easily grab parts of a list:

>>> A = [2, 3.5, 8, 10]
>>> A[2:] # from index 2 to end of list
[8, 10]

>>> A[1:3] # from index 1 up to, but not incl., index 3
[3.5, 8]

>>> A[:3] # from start up to, but not incl., index 3
[2, 3.5, 8]

>>> A[1:-1] # from index 1 to next last element
[3.5, 8]

>>> A[:] # the whole list
[2, 3.5, 8, 10]

Note: sublists (slices) are copies of the original list!

What does this code snippet do?

for C, F in table2[Cdegrees.index(10):Cdegrees.index(35)]:
print '%5.0f %5.1f' % (C, F)

This is a for loop over a sublist of table2

Sublist indices: Cdegrees.index(10), Cdegrees.index(35),
i.e., the indices corresponding to elements 10 and 35

Output:

10 50.0
15 59.0
20 68.0
25 77.0
30 86.0

What does this code snippet do?

for C, F in table2[Cdegrees.index(10):Cdegrees.index(35)]:
print '%5.0f %5.1f' % (C, F)

This is a for loop over a sublist of table2

Sublist indices: Cdegrees.index(10), Cdegrees.index(35),
i.e., the indices corresponding to elements 10 and 35

Output:

10 50.0
15 59.0
20 68.0
25 77.0
30 86.0

Iteration over general nested lists

List with many indices: somelist[i1][i2][i3]...

Loops over list indices:

for i1 in range(len(somelist)):
for i2 in range(len(somelist[i1])):

for i3 in range(len(somelist[i1][i2])):
for i4 in range(len(somelist[i1][i2][i3])):

value = somelist[i1][i2][i3][i4]
work with value

Loops over sublists:

for sublist1 in somelist:
for sublist2 in sublist1:

for sublist3 in sublist2:
for sublist4 in sublist3:

value = sublist4
work with value

Iteration over a speci�c nested list

L = [[9, 7], [-1, 5, 6]]
for row in L:

for column in row:
print column

(Visualize execution)

Simulate this program by hand!

Question

How can we index element with value 5?

http://pythontutor.com/visualize.html#code=L+%3D+%5B%5B9%2C+7%5D%2C+%5B-1%2C+5%2C+6%5D%5D%0Afor+row+in+L%3A%0A++++for+column+in+row%3A%0A++++++++print+column&mode=display&cumulative=false&heapPrimitives=false&drawParentPointers=false&textReferences=false&py=2&curInstr=0

Tuples are constant lists

Tuples are constant lists that cannot be changed:

>>> t = (2, 4, 6, 'temp.pdf') # define a tuple
>>> t = 2, 4, 6, 'temp.pdf' # can skip parenthesis
>>> t[1] = -1
...
TypeError: object does not support item assignment

>>> t.append(0)
...
AttributeError: 'tuple' object has no attribute 'append'

>>> del t[1]
...
TypeError: object doesn't support item deletion

Tuples can do much of what lists can do:

>>> t = t + (-1.0, -2.0) # add two tuples
>>> t
(2, 4, 6, 'temp.pdf', -1.0, -2.0)
>>> t[1] # indexing
4
>>> t[2:] # subtuple/slice
(6, 'temp.pdf', -1.0, -2.0)
>>> 6 in t # membership
True

Why tuples when lists have more functionality?

Tuples are constant and thus protected against accidental
changes

Tuples are faster than lists

Tuples are widely used in Python software
(so you need to know about them!)

Tuples (but not lists) can be used as keys is dictionaries
(more about dictionaries later)

Key topics from this chapter

While loops

Boolean expressions

For loops

Lists

Nested lists

Tuples

Summary of loops, lists and tuples

While loops and for loops:

while condition:
<block of statements>

for element in somelist:
<block of statements>

Lists and tuples:

mylist = ['a string', 2.5, 6, 'another string']
mytuple = ('a string', 2.5, 6, 'another string')
mylist[1] = -10
mylist.append('a third string')
mytuple[1] = -10 # illegal: cannot change a tuple

List functionality
Construction Meaning

a = [] initialize an empty list
a = [1, 4.4, 'run.py'] initialize a list
a.append(elem) add elem object to the end
a + [1,3] add two lists
a.insert(i, e) insert element e before index i

a[3] index a list element
a[-1] get last list element
a[1:3] slice: copy data to sublist (here: index 1, 2)
del a[3] delete an element (index 3)
a.remove(e) remove an element with value e

a.index('run.py') �nd index corresponding to an element's value
'run.py' in a test if a value is contained in the list
a.count(v) count how many elements that have the value v

len(a) number of elements in list a
min(a) the smallest element in a

max(a) the largest element in a

sum(a) add all elements in a

sorted(a) return sorted version of list a
reversed(a) return reversed sorted version of list a
b[3][0][2] nested list indexing
isinstance(a, list) is True if a is a list
type(a) is list is True if a is a list

A summarizing example; problem

src/misc/Oxford_sun_hours.txt: data of the no of sun hours in
Oxford, UK, for every month since Jan, 1929:

[
[43.8, 60.5, 190.2, ...],
[49.9, 54.3, 109.7, ...],
[63.7, 72.0, 142.3, ...],
...
]

Tasks:

Compute the average number of sun hours for each month
during the total data period (1929�2009),

Which month has the best weather according to the means
found in the preceding task?

For each decade, 1930-1939, 1949-1949, . . ., 2000-2009,
compute the average number of sun hours per day in January
and December

A summarizing example; program (task 1)

data = [
[43.8, 60.5, 190.2, ...],
[49.9, 54.3, 109.7, ...],
[63.7, 72.0, 142.3, ...],
...
]
monthly_mean = [0]*12
for month in range(1, 13):

m = month - 1 # corresponding list index (starts at 0)
s = 0 # sum
n = 2009 - 1929 + 1 # no of years
for year in range(1929, 2010):

y = year - 1929 # corresponding list index (starts at 0)
s += data[y][m]

monthly_mean[m] = s/n
month_names = ['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun',

'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec']
nice printout:
for name, value in zip(month_names, monthly_mean):

print '%s: %.1f' % (name, value)

A summarizing example; program (task 2)

max_value = max(monthly_mean)
month = month_names[monthly_mean.index(max_value)]
print '%s has best weather with %.1f sun hours on average' % \

(month, max_value)

max_value = -1E+20
for i in range(len(monthly_mean)):

value = monthly_mean[i]
if value > max_value:

max_value = value
max_i = i # store index too

print '%s has best weather with %.1f sun hours on average' % \
(month_names[max_i], max_value)

A summarizing example; program (task 3)

decade_mean = []
for decade_start in range(1930, 2010, 10):

Jan_index = 0; Dec_index = 11 # indices
s = 0
for year in range(decade_start, decade_start+10):

y = year - 1929 # list index
print data[y-1][Dec_index] + data[y][Jan_index]
s += data[y-1][Dec_index] + data[y][Jan_index]

decade_mean.append(s/(20.*30))
for i in range(len(decade_mean)):

print 'Decade %d-%d: %.1f' % \
(1930+i*10, 1939+i*10, decade_mean[i])

Complete code: src/looplist/sun_data.py

Using a debugger to trace the execution

A debugger is a program that can be used to inspect and
understand programs. Example:

In [1]: run -d some_program.py
ipdb> continue # or just c (go to first statement)
1---> 1 g = 9.81; v0 = 5

2 dt = 0.05
3

ipdb> step # or just s (execute next statement)
ipdb> print g
Out[1]: 9.8100000000000005
ipdb> list # or just l (list parts of the program)
1 1 g = 9.81; v0 = 5
----> 2 dt = 0.05

3
4 def y(t):
5 return v0*t - 0.5*g*t**2
6

ipdb> break 15 # stop program at line 15
ipdb> c # continue to next break point

How to �nd Python info

The book contains only fragments of the Python language
(intended for real beginners!)

These slides are even briefer, so you will need to look up more
Python information

Primary reference: The o�cial Python documentation at
docs.python.org

Very useful: The Python Library Reference, especially the index

Example: what can I �nd in the math module?

Go to the Python Library Reference, click index

Go to M

�nd math (module), click on the link

Alternative: run pydoc math in the terminal window (briefer
description)

http://docs.python.org/index.html
https://docs.python.org/2/genindex.html
https://docs.python.org/2/reference/index.html
https://docs.python.org/2/genindex.html
https://docs.python.org/2/genindex-M.html
https://docs.python.org/2/library/math.html#module-math

Warning about reading programming documentation

Warning

For a newbie it is di�cult to read manuals (intended for experts!) -
you will need a lot of training; just browse, don't read everything,
try to dig out the key info.
It's much like googling in general: only a fraction of the
information is relevant for you.

