$$
\newcommand{\half}{\frac{1}{2}}
\newcommand{\tp}{\thinspace .}
\newcommand{\uex}{{u_{\small\mbox{e}}}}
\newcommand{\normalvec}{\boldsymbol{n}}
\newcommand{\x}{\boldsymbol{x}}
\renewcommand{\u}{\boldsymbol{u}}
\renewcommand{\v}{\boldsymbol{v}}
\newcommand{\w}{\boldsymbol{w}}
\newcommand{\rpos}{\boldsymbol{r}}
\newcommand{\f}{\boldsymbol{f}}
\newcommand{\F}{\boldsymbol{F}}
\newcommand{\stress}{\boldsymbol{\sigma}}
\newcommand{\I}{\boldsymbol{I}}
\newcommand{\U}{\boldsymbol{U}}
\newcommand{\dfc}{\alpha} % diffusion coefficient
\newcommand{\ii}{\boldsymbol{i}}
\newcommand{\jj}{\boldsymbol{j}}
\newcommand{\kk}{\boldsymbol{k}}
\newcommand{\ir}{\boldsymbol{i}_r}
\newcommand{\ith}{\boldsymbol{i}_{\theta}}
$$
Scaling of Differential Equations
Hans Petter Langtangen [1, 2]
Geir K. Pedersen [3]
[1] Center for Biomedical Computing, Simula Research Laboratory
[2] Department of Informatics, University of Oslo
[3] Department of Mathematics, University of Oslo
This book explains the mathematical details of making differential
equation models dimensionless. A key feature of the text is the reasoning
about the right choice
of scales. A large number of worked examples demonstrate
the scaling technique for ordinary and partial differential equations
from physics and biology. How to utilize scaled models in simulation
software is also addressed.
Jun 20, 2016
© 2016, Hans Petter Langtangen, Geir K. Pedersen. Released under CC Attribution 4.0 license