Preface  
 Dimensions and units 
       Fundamental concepts 
             Base units and dimensions 
             Dimensions of common physical quantities 
             The Buckingham Pi theorem 
             Absolute errors, relative errors, and units 
             Units and computers 
             Unit systems 
             Example on challenges arising from unit systems 
             PhysicalQuantity: a tool for computing with units 
       Parampool: user interfaces with automatic unit conversion 
             Pool of parameters 
             Fetching pool data for computing 
             Reading command-line options 
             Setting default values in a file 
             Specifying multiple values of input parameters 
             Generating a graphical user interface 
 Ordinary differential equation models 
       Exponential decay problems 
             Fundamental ideas of scaling 
             The basic model problem 
             The technical steps of the scaling procedure 
             Making software for utilizing the scaled model 
             Scaling a generalized problem 
             Variable coefficients 
             Scaling a cooling problem with constant temperature in the surroundings 
             Scaling a cooling problem with time-dependent surroundings 
             Scaling a nonlinear ODE 
             SIR ODE system for spreading of diseases 
             SIRV model with finite immunity 
             Michaelis-Menten kinetics for biochemical reactions 
       Vibration problems 
             Undamped vibrations without forcing 
             Undamped vibrations with constant forcing 
             Undamped vibrations with time-dependent forcing 
             Damped vibrations with forcing 
             Oscillating electric circuits 
       Exercises 
             Exercise 2.1: Perform unit conversion 
             Problem 2.2: Scale a simple formula 
             Exercise 2.3: Perform alternative scalings 
             Problem 2.4: A nonlinear ODE for vertical motion with air resistance 
             Exercise 2.5: Solve a decay ODE with discontinuous coefficient 
             Exercise 2.6: Implement a scaled model for cooling 
             Problem 2.7: Decay ODE with discontinuous coefficients 
             Exercise 2.8: Alternative scalings of a cooling model 
             Exercise 2.9: Projectile motion 
             Problem 2.10: A predator-prey model 
             Problem 2.11: A model for competing species 
             Problem 2.12: Find the period of sinusoidal signals 
             Problem 2.13: Oscillating mass with sliding friction 
             Problem 2.14: Pendulum equations 
             Exercise 2.15: ODEs for a binary star 
             Problem 2.16: Duffing's equation 
             Problem 2.17: Vertical motion in a varying gravity field 
             Problem 2.18: A simplified Schroedinger equation 
 Basic partial differential equation models 
       The wave equation 
             Homogeneous Dirichlet conditions in 1D 
             Implementation of the scaled wave equation 
             Time-dependent Dirichlet condition 
             Velocity initial condition 
             Variable wave velocity and forcing 
             Damped wave equation 
             A three-dimensional wave equation problem 
       The diffusion equation 
             Homogeneous 1D diffusion equation 
             Generalized diffusion PDE 
             Jump boundary condition 
             Oscillating Dirichlet condition 
       Reaction-diffusion equations 
             Fisher's equation 
             Nonlinear reaction-diffusion PDE 
       The convection-diffusion equation 
             Convection-diffusion without a force term 
             Stationary PDE 
             Convection-diffusion with a source term 
       Exercises 
             Problem 3.1: Stationary Couette flow 
             Exercise 3.2: Couette-Poiseuille flow 
             Exercise 3.3: Pulsatile pipeflow 
             Exercise 3.4: The linear cable equation 
             Exercise 3.5: Heat conduction with discontinuous initial condition 
             Problem 3.6: Scaling a welding problem 
 Advanced partial differential equation models 
       The equations of linear elasticity 
             The general time-dependent elasticity problem 
             Dimensionless stress tensor 
             When can the acceleration term be neglected? 
             The stationary elasticity problem 
             Quasi-static thermo-elasticity 
       The Navier-Stokes equations 
             The momentum equation without body forces 
             Scaling of time for low Reynolds numbers 
             Shear stress as pressure scale 
             Gravity force and the Froude number 
             Oscillating boundary conditions and the Strouhal number 
             Cavitation and the Euler number 
             Free surface conditions and the Weber number 
       Thermal convection 
             Forced convection 
             Free convection 
             The Grashof, Prandtl, and Eckert numbers 
             Heat transfer at boundaries and the Nusselt and Biot numbers 
       Compressible gas dynamics 
             The Euler equations of gas dynamics 
             General isentropic flow 
             The acoustic approximation for sound waves 
       Water surface waves driven by gravity 
             The mathematical model 
             Scaling 
             Waves in deep  water 
             Long waves in shallow water 
       Two-phase porous media flow 
       The bidomain model in electrophysiology 
             The mathematical model 
             Scaling 
             An alternative \( I_{\rm{ion}} \) 
       Exercises 
             Exercise 4.1: Comparison of vibration models for elastic structures 
             Exercise 4.2: A model for quasi-static poro-elasticity 
             Problem 4.3: Starting Couette flow 
             Problem 4.4: Channel flow 
       References