
Using Pysketcher to Create Principal
Sketches of Physics Problems

Hans Petter Langtangen1,2

1Center for Biomedical Computing, Simula Research Laboratory
2Department of Informatics, University of Oslo

Jan 22, 2016

This document is derived from Chapter 9 in the book A Primer
on Scientific Programming with Python, by H. P. Langtangen, 4th
edition, Springer, 2014.

Abstract
Pysketcher is a Python package which allows principal sketches of

physics and mechanics problems to be realized through short programs
instead of interactive (and potentially tedious and inaccurate) drawing.
Elements of the sketch, such as lines, circles, angles, forces, coordinate
systems, etc., are realized as objects and collected in hierarchical structures.
Parts of the hierarchical structures can easily change line styles and colors,
or be copied, scaled, translated, and rotated. These features make it
straightforward to move parts of the sketch to create animation, usually in
accordance with the physics of the underlying problem. Exact dimensioning
of the elements in the sketch is trivial to obtain since distances are specified
in computer code.

Pysketcher is easy to learn from a number of examples. Beyond essential
Python programming and a knowledge about mechanics problems, no
further background is required.

Contents
1 A first glimpse of Pysketcher 2

1.1 Basic construction of sketches . 2

2 A simple pendulum 12
2.1 The basic physics sketch . 12
2.2 The body diagram . 16
2.3 Animated body diagram . 18

http://www.amazon.com/Scientific-Programming-Computational-Science-Engineering/dp/3642549586/ref=sr_1_2?s=books&ie=UTF8&qid=1407225588&sr=1-2&keywords=langtangen
http://www.amazon.com/Scientific-Programming-Computational-Science-Engineering/dp/3642549586/ref=sr_1_2?s=books&ie=UTF8&qid=1407225588&sr=1-2&keywords=langtangen

3 Basic shapes 23
3.1 Axis . 23
3.2 Distance with text . 24
3.3 Rectangle . 26
3.4 Triangle . 27
3.5 Arc . 28
3.6 Spring . 29
3.7 Dashpot . 30
3.8 Wavy . 31
3.9 Stochastic curves . 31

4 Inner workings of the Pysketcher tool 32
4.1 Example of classes for geometric objects 33
4.2 Adding functionality via recursion 37
4.3 Scaling, translating, and rotating a figure 41

Index 44

1 A first glimpse of Pysketcher
Formulation of physical problems makes heavy use of principal sketches such as
the one in Figure 1. This particular sketch illustrates the classical mechanics
problem of a rolling wheel on an inclined plane. The figure is made up many
individual elements: a rectangle filled with a pattern (the inclined plane), a
hollow circle with color (the wheel), arrows with labels (the N and Mg forces,
and the x axis), an angle with symbol θ, and a dashed line indicating the starting
location of the wheel.

Drawing software and plotting programs can produce such figures quite easily
in principle, but the amount of details the user needs to control with the mouse
can be substantial. Software more tailored to producing sketches of this type
would work with more convenient abstractions, such as circle, wall, angle, force
arrow, axis, and so forth. And as soon we start programming to construct the
figure we get a range of other powerful tools at disposal. For example, we
can easily translate and rotate parts of the figure and make an animation that
illustrates the physics of the problem. Programming as a superior alternative to
interactive drawing is the mantra of this section.

1.1 Basic construction of sketches
Before attacking real-life sketches as in Figure 1 we focus on the significantly
simpler drawing shown in Figure 2. This toy sketch consists of several elements:
two circles, two rectangles, and a “ground” element.

2

Mg
N

θ

x

Figure 1: Sketch of a physics problem.

Figure 2: Sketch of a simple figure.

When the sketch is defined in terms of computer code, it is natural to
parameterize geometric features, such as the radius of the wheel (R), the center
point of the left wheel (w1), as well as the height (H) and length (L) of the
main part. The simple vehicle in Figure 2 is quickly drawn in almost any
interactive tool. However, if we want to change the radius of the wheels, you
need a sophisticated drawing tool to avoid redrawing the whole figure, while in
computer code this is a matter of changing the R parameter and rerunning the
program. For example, Figure 3 shows a variation of the drawing in Figure 2
obtained by just setting R = 0.5, L = 5, H = 2, and R = 2. Being able to
quickly change geometric sizes is key to many problem settings in physics and
engineering, but then a program must define the geometry.

Basic drawing. A typical program creating these five elements is shown next.
After importing the pysketcher package, the first task is always to define a
coordinate system:

3

Figure 3: Redrawing a figure with other geometric parameters.

from pysketcher import *

drawing_tool.set_coordinate_system(
xmin=0, xmax=10, ymin=-1, ymax=8)

Instead of working with lengths expressed by specific numbers it is highly
recommended to use variables to parameterize lengths as this makes it easier to
change dimensions later. Here we introduce some key lengths for the radius of
the wheels, distance between the wheels, etc.:

R = 1 # radius of wheel
L = 4 # distance between wheels
H = 2 # height of vehicle body
w_1 = 5 # position of front wheel
drawing_tool.set_coordinate_system(xmin=0, xmax=w_1 + 2*L + 3*R,

ymin=-1, ymax=2*R + 3*H)

With the drawing area in place we can make the first Circle object in an
intuitive fashion:

wheel1 = Circle(center=(w_1, R), radius=R)

to change dimensions later.
To translate the geometric information about the wheel1 object to instruc-

tions for the plotting engine (in this case Matplotlib), one calls the wheel1.draw().
To display all drawn objects, one issues drawing_tool.display(). The typical
steps are hence:

wheel1 = Circle(center=(w_1, R), radius=R)
wheel1.draw()

Define other objects and call their draw() methods
drawing_tool.display()
drawing_tool.savefig(’tmp.png’) # store picture

The next wheel can be made by taking a copy of wheel1 and translating the
object to the right according to a displacement vector (L, 0):

wheel2 = wheel1.copy()
wheel2.translate((L,0))

The two rectangles are also made in an intuitive way:
under = Rectangle(lower_left_corner=(w_1-2*R, 2*R),

width=2*R + L + 2*R, height=H)
over = Rectangle(lower_left_corner=(w_1, 2*R + H),

width=2.5*R, height=1.25*H)

4

Groups of objects. Instead of calling the draw method of every object, we
can group objects and call draw, or perform other operations, for the whole
group. For example, we may collect the two wheels in a wheels group and the
over and under rectangles in a body group. The whole vehicle is a composition
of its wheels and body groups. The code goes like

wheels = Composition({’wheel1’: wheel1, ’wheel2’: wheel2})
body = Composition({’under’: under, ’over’: over})

vehicle = Composition({’wheels’: wheels, ’body’: body})

The ground is illustrated by an object of type Wall, mostly used to indicate
walls in sketches of mechanical systems. A Wall takes the x and y coordinates
of some curve, and a thickness parameter, and creates a thick curve filled with
a simple pattern. In this case the curve is just a flat line so the construction is
made of two points on the ground line ((w1 − L, 0) and (w1 + 3L, 0)):

ground = Wall(x=[w_1 - L, w_1 + 3*L], y=[0, 0], thickness=-0.3*R)

The negative thickness makes the pattern-filled rectangle appear below the
defined line, otherwise it appears above.

We may now collect all the objects in a “top” object that contains the whole
figure:

fig = Composition({’vehicle’: vehicle, ’ground’: ground})
fig.draw() # send all figures to plotting backend
drawing_tool.display()
drawing_tool.savefig(’tmp.png’)

The fig.draw() call will visit all subgroups, their subgroups, and so forth in
the hierarchical tree structure of figure elements, and call draw for every object.

Changing line styles and colors. Controlling the line style, line color, and
line width is fundamental when designing figures. The pysketcher package
allows the user to control such properties in single objects, but also set global
properties that are used if the object has no particular specification of the
properties. Setting the global properties are done like

drawing_tool.set_linestyle(’dashed’)
drawing_tool.set_linecolor(’black’)
drawing_tool.set_linewidth(4)

At the object level the properties are specified in a similar way:
wheels.set_linestyle(’solid’)
wheels.set_linecolor(’red’)

and so on.
Geometric figures can be specified as filled, either with a color or with a

special visual pattern:
Set filling of all curves
drawing_tool.set_filled_curves(color=’blue’, pattern=’/’)

5

Turn off filling of all curves
drawing_tool.set_filled_curves(False)

Fill the wheel with red color
wheel1.set_filled_curves(’red’)

The figure composition as an object hierarchy. The composition of ob-
jects making up the figure is hierarchical, similar to a family, where each object
has a parent and a number of children. Do a print fig to display the relations:

ground
wall

vehicle
body

over
rectangle

under
rectangle

wheels
wheel1

arc
wheel2

arc

The indentation reflects how deep down in the hierarchy (family) we are. This
output is to be interpreted as follows:

• fig contains two objects, ground and vehicle

• ground contains an object wall

• vehicle contains two objects, body and wheels

• body contains two objects, over and under

• wheels contains two objects, wheel1 and wheel2

In this listing there are also objects not defined by the programmer: rectangle
and arc. These are of type Curve and automatically generated by the classes
Rectangle and Circle.

More detailed information can be printed by
print fig.show_hierarchy(’std’)

yielding the output
ground (Wall):

wall (Curve): 4 coords fillcolor=’white’ fillpattern=’/’
vehicle (Composition):

body (Composition):
over (Rectangle):

rectangle (Curve): 5 coords
under (Rectangle):

rectangle (Curve): 5 coords
wheels (Composition):

wheel1 (Circle):
arc (Curve): 181 coords

wheel2 (Circle):
arc (Curve): 181 coords

6

Here we can see the class type for each figure object, how many coordinates
that are involved in basic figures (Curve objects), and special settings of the
basic figure (fillcolor, line types, etc.). For example, wheel2 is a Circle object
consisting of an arc, which is a Curve object consisting of 181 coordinates (the
points needed to draw a smooth circle). The Curve objects are the only objects
that really holds specific coordinates to be drawn. The other object types are
just compositions used to group parts of the complete figure.

One can also get a graphical overview of the hierarchy of figure objects
that build up a particular figure fig. Just call fig.graphviz_dot(’fig’) to
produce a file fig.dot in the dot format. This file contains relations between
parent and child objects in the figure and can be turned into an image, as in
Figure 4, by running the dot program:

Terminal> dot -Tpng -o fig.png fig.dot

Figure 4: Hierarchical relation between figure objects.

The call fig.graphviz_dot(’fig’, classname=True) makes a fig.dot
file where the class type of each object is also visible, see Figure 5. The ability to
write out the object hierarchy or view it graphically can be of great help when
working with complex figures that involve layers of subfigures.

Any of the objects can in the program be reached through their names, e.g.,
fig[’vehicle’]
fig[’vehicle’][’wheels’]
fig[’vehicle’][’wheels’][’wheel2’]
fig[’vehicle’][’wheels’][’wheel2’][’arc’]
fig[’vehicle’][’wheels’][’wheel2’][’arc’].x # x coords
fig[’vehicle’][’wheels’][’wheel2’][’arc’].y # y coords
fig[’vehicle’][’wheels’][’wheel2’][’arc’].linestyle
fig[’vehicle’][’wheels’][’wheel2’][’arc’].linetype

Grabbing a part of the figure this way is handy for changing properties of that
part, for example, colors, line styles (see Figure 6):

7

Figure 5: Hierarchical relation between figure objects, including their class
names.

fig[’vehicle’][’wheels’].set_filled_curves(’blue’)
fig[’vehicle’][’wheels’].set_linewidth(6)
fig[’vehicle’][’wheels’].set_linecolor(’black’)

fig[’vehicle’][’body’][’under’].set_filled_curves(’red’)

fig[’vehicle’][’body’][’over’].set_filled_curves(pattern=’/’)
fig[’vehicle’][’body’][’over’].set_linewidth(14)
fig[’vehicle’][’body’][’over’][’rectangle’].linewidth = 4

The last line accesses the Curve object directly, while the line above, accesses
the Rectangle object, which will then set the linewidth of its Curve object, and
other objects if it had any. The result of the actions above is shown in Figure 6.

Figure 6: Left: Basic line-based drawing. Right: Thicker lines and filled parts.

8

We can also change position of parts of the figure and thereby make anima-
tions, as shown next.

Animation: translating the vehicle. Can we make our little vehicle roll?
A first attempt will be to fake rolling by just displacing all parts of the vehicle.
The relevant parts constitute the fig[’vehicle’] object. This part of the figure
can be translated, rotated, and scaled. A translation along the ground means a
translation in x direction, say a length L to the right:

fig[’vehicle’].translate((L,0))

You need to erase, draw, and display to see the movement:
drawing_tool.erase()
fig.draw()
drawing_tool.display()

Without erasing, the old drawing of the vehicle will remain in the figure so
you get two vehicles. Without fig.draw() the new coordinates of the vehicle
will not be communicated to the drawing tool, and without calling display the
updated drawing will not be visible.

A figure that moves in time is conveniently realized by the function animate:
animate(fig, tp, action)

Here, fig is the entire figure, tp is an array of time points, and action is a
user-specified function that changes fig at a specific time point. Typically,
action will move parts of fig.

In the present case we can define the movement through a velocity function
v(t) and displace the figure v(t)*dt for small time intervals dt. A possible
velocity function is

def v(t):
return -8*R*t*(1 - t/(2*R))

Our action function for horizontal displacements v(t)*dt becomes
def move(t, fig):

x_displacement = dt*v(t)
fig[’vehicle’].translate((x_displacement, 0))

Since our velocity is negative for t ∈ [0, 2R] the displacement is to the left.
The animate function will for each time point t in tp erase the drawing, call

action(t, fig), and show the new figure by fig.draw() and drawing_tool.display().
Here we choose a resolution of the animation corresponding to 25 time points in
the time interval [0, 2R]:

import numpy
tp = numpy.linspace(0, 2*R, 25)
dt = tp[1] - tp[0] # time step

animate(fig, tp, move, pause_per_frame=0.2)

9

The pause_per_frame adds a pause, here 0.2 seconds, between each frame in
the animation.

We can also ask animate to store each frame in a file:
files = animate(fig, tp, move_vehicle, moviefiles=True,

pause_per_frame=0.2)

The files variable, here ’tmp_frame_%04d.png’, is the printf-specification used
to generate the individual plot files. We can use this specification to make a video
file via ffmpeg (or avconv on Debian-based Linux systems such as Ubuntu).
Videos in the Flash and WebM formats can be created by

Terminal> ffmpeg -r 12 -i tmp_frame_%04d.png -vcodec flv mov.flv
Terminal> ffmpeg -r 12 -i tmp_frame_%04d.png -vcodec libvpx mov.webm

An animated GIF movie can also be made using the convert program from the
ImageMagick software suite:

Terminal> convert -delay 20 tmp_frame*.png mov.gif
Terminal> animate mov.gif # play movie

The delay between frames, in units of 1/100 s, governs the speed of the movie. To
play the animated GIF file in a web page, simply insert
in the HTML code.

The individual PNG frames can be directly played in a web browser by
running

Terminal> scitools movie output_file=mov.html fps=5 tmp_frame*

or calling

from scitools.std import movie
movie(files, encoder=’html’, output_file=’mov.html’)

in Python. Load the resulting file mov.html into a web browser to play the
movie.

Try to run vehicle0.py and then load mov.html into a browser, or play one
of the mov.* video files. Alternatively, you can view a ready-made movie.

Animation: rolling the wheels. It is time to show rolling wheels. To this
end, we add spokes to the wheels, formed by two crossing lines, see Figure 7.
The construction of the wheels will now involve a circle and two lines:

wheel1 = Composition({
’wheel’: Circle(center=(w_1, R), radius=R),
’cross’: Composition({’cross1’: Line((w_1,0), (w_1,2*R)),

’cross2’: Line((w_1-R,R), (w_1+R,R))})})
wheel2 = wheel1.copy()
wheel2.translate((L,0))

10

http://tinyurl.com/ot733jn/vehicle0.py
http://tinyurl.com/oou9lp7/mov-tut/vehicle0.html

Figure 7: Wheels with spokes to illustrate rolling.

Observe that wheel1.copy() copies all the objects that make up the first wheel,
and wheel2.translate translates all the copied objects.

The move function now needs to displace all the objects in the entire vehicle
and also rotate the cross1 and cross2 objects in both wheels. The rotation
angle follows from the fact that the arc length of a rolling wheel equals the
displacement of the center of the wheel, leading to a rotation angle

angle = - x_displacement/R

With w_1 tracking the x coordinate of the center of the front wheel, we can
rotate that wheel by

w1 = fig[’vehicle’][’wheels’][’wheel1’]
from math import degrees
w1.rotate(degrees(angle), center=(w_1, R))

The rotate function takes two parameters: the rotation angle (in degrees) and
the center point of the rotation, which is the center of the wheel in this case.
The other wheel is rotated by

w2 = fig[’vehicle’][’wheels’][’wheel2’]
w2.rotate(degrees(angle), center=(w_1 + L, R))

That is, the angle is the same, but the rotation point is different. The update
of the center point is done by w_1 += x_displacement. The complete move
function with translation of the entire vehicle and rotation of the wheels then
becomes

w_1 = w_1 + L # start position

def move(t, fig):
x_displacement = dt*v(t)
fig[’vehicle’].translate((x_displacement, 0))

Rotate wheels
global w_1
w_1 += x_displacement
R*angle = -x_displacement

11

angle = - x_displacement/R
w1 = fig[’vehicle’][’wheels’][’wheel1’]
w1.rotate(degrees(angle), center=(w_1, R))
w2 = fig[’vehicle’][’wheels’][’wheel2’]
w2.rotate(degrees(angle), center=(w_1 + L, R))

The complete example is found in the file vehicle1.py. You may run this file
or watch a ready-made movie.

The advantages with making figures this way, through programming rather
than using interactive drawing programs, are numerous. For example, the objects
are parameterized by variables so that various dimensions can easily be changed.
Subparts of the figure, possible involving a lot of figure objects, can change color,
linetype, filling or other properties through a single function call. Subparts of
the figure can be rotated, translated, or scaled. Subparts of the figure can also
be copied and moved to other parts of the drawing area. However, the single
most important feature is probably the ability to make animations governed by
mathematical formulas or data coming from physics simulations of the problem,
as shown in the example above.

2 A simple pendulum
2.1 The basic physics sketch
We now want to make a sketch of simple pendulum from physics, as shown in
Figure 8. A body with mass m is attached to a massless, stiff rod, which can
rotate about a point, causing the pendulum to oscillate.

A suggested work flow is to first sketch the figure on a piece of paper and
introduce a coordinate system. A simple coordinate system is indicated in
Figure 9. In a code we introduce variables W and H for the width and height of
the figure (i.e., extent of the coordinate system) and open the program like this:

from pysketcher import *

H = 7.
W = 6.

drawing_tool.set_coordinate_system(xmin=0, xmax=W,
ymin=0, ymax=H,
axis=True)

drawing_tool.set_grid(True)
drawing_tool.set_linecolor(’blue’)

Note that when the sketch is ready for “production”, we will (normally) set
axis=False to remove the coordinate system and also remove the grid, i.e.,
delete or comment out the line drawing_tool.set_grid(True). Also note that
we in this example let all lines be blue by default.

The next step is to introduce variables for key quantities in the sketch. Let L
be the length of the pendulum, P the rotation point, and let a be the angle the
pendulum makes with the vertical (measured in degrees). We may set

12

http://tinyurl.com/ot733jn/vehicle1.py
http://tinyurl.com/oou9lp7/mov-tut/vehicle1.html

g

m

L

θ

Figure 8: Sketch of a simple pendulum.

0 1 2 3 4 5 6
0

1

2

3

4

5

6

7

g

m

L

θ

Figure 9: Sketch with assisting coordinate system.

L = 5*H/7 # length
P = (W/6, 0.85*H) # rotation point
a = 40 # angle

Be careful with integer division if you use Python 2! Fortunately, we started out
with float objects for W and H so the expressions above are safe.

What kind of objects do we need in this sketch? Looking at Figure 8 we see
that we need

1. a vertical, dashed line

2. an arc with no text but dashed line to indicate the path of the mass

3. an arc with name θ to indicate the angle

4. a line, here called rod, from the rotation point to the mass

13

5. a blue, filled circle representing the mass

6. a text m associated with the mass

7. an indicator of the pendulum’s length L, visualized as a line with two
arrows tips and the text L

8. a gravity vector with the text g

Pysketcher has objects for each of these elements in our sketch. We start with
the simplest element: the vertical line, going from P to P minus the length L in
y direction:

vertical = Line(P, P-point(0,L))

The class point is very convenient: it turns its two coordinates into a vector with
which we can compute, and is therefore one of the most widely used Pysketcher
objects.

The path of the mass is an arc that can be made by Pysketcher’s Arc object:

path = Arc(P, L, -90, a)

The first argument P is the center point, the second is the radius (L here), the
next argument is the start angle, here it starts at -90 degrees, while the next
argument is the angle of the arc, here a. For the path of the mass, we also
need an arc object, but this time with an associated text. Pysketcher has a
specialized object for this purpose, Arc_wText, since placing the text manually
can be somewhat cumbersome.

angle = Arc_wText(r’θ’, P, L/4, -90, a, text_spacing=1/30.)

The arguments are as for Arc above, but the first one is the desired text. Re-
member to use a raw string since we want a LATEX greek letter that contains
a backslash. The text_spacing argument must often be tweaked. It is recom-
mended to create only a few objects before rendering the sketch and then adjust
spacings as one goes along.

The rod is simply a line from P to the mass. We can easily compute the
position of the mass from basic geometry considerations, but it is easier and safer
to look up this point in other objects if it is already computed. In the present case,
the path object stored its start and end points, so path.geometric_features()[’end’]
is the end point of the path, which is the position of the mass. We can therefore
create the rod simply as a line from P to this already computed end point:

mass_pt = path.geometric_features()[’end’]
rod = Line(P, mass_pt)

The mass is a circle filled with color:

mass = Circle(center=mass_pt, radius=L/20.)
mass.set_filled_curves(color=’blue’)

14

To place the m correctly, we go a small distance in the direction of the rod, from
the center of the circle. To this end, we need to compute the direction. This is
easiest done by computing a vector from P to the center of the circle and calling
unit_vec to make a unit vector in this direction:

rod_vec = rod.geometric_features()[’end’] - \
rod.geometric_features()[’start’]

unit_rod_vec = unit_vec(rod_vec)
mass_symbol = Text(’m’, mass_pt + L/10*unit_rod_vec)

Again, the distance L/10 is something one has to experiment with.
The next object is the length measure with the text L. Such length measures

are represented by Pysketcher’s Distance_wText object. An easy construction
is to first place this length measure along the rod and then translate it a little
distance (L/15) in the normal direction of the rod:

length = Distance_wText(P, mass_pt, ’L’)
length.translate(L/15*point(cos(radians(a)), sin(radians(a))))

For this translation we need a unit vector in the normal direction of the rod, which
is from geometric considerations given by (cos a, sin a), when a is the angle of the
pendulum. Alternatively, we could have found the normal vector as a vector that
is normal to unit_rod_vec: point(-unit_rod_vec[1],unit_rod_vec[0]).

The final object is the gravity force vector, which is so common in physics
sketches that Pysketcher has a ready-made object: Gravity,

gravity = Gravity(start=P+point(0.8*L,0), length=L/3)

Since blue is the default color for lines, we want the dashed lines (for vertical
and path) to be black and with linewidth 1. These properties can be set one by
one for each object, but we can also make a little helper function:

def set_dashed_thin_blackline(*objects):
"""Set linestyle of objects to dashed, black, width=1."""
for obj in objects:

obj.set_linestyle(’dashed’)
obj.set_linecolor(’black’)
obj.set_linewidth(1)

set_dashed_thin_blackline(vertical, path)

Now, all objects are in place, so it remains to compose the final figure and
draw the composition:

fig = Composition(
{’body’: mass, ’rod’: rod,
’vertical’: vertical, ’theta’: angle, ’path’: path,
’g’: gravity, ’L’: length, ’m’: mass_symbol})

fig.draw()
drawing_tool.display()
drawing_tool.savefig(’pendulum1’)

15

2.2 The body diagram
Now we want to isolate the mass and draw all the forces that act on it. Figure 10
shows the desired result, but embedded in the coordinate system. We consider
three types of forces: the gravity force, the force from the rod, and air resistance.
The body diagram is key for deriving the equation of motion, so it is illustrative
to add useful mathematical quantities needed in the derivation, such as the unit
vectors in polar coordinates.

0 1 2 3 4 5 6
0

1

2

3

4

5

6

7

(x0 ,y0)

mg

iθ

m

ir

∼|v|v

S

θ

Figure 10: Body diagram of a simple pendulum.

We start by listing the objects in the sketch:

1. a text (x0, y0) representing the rotation point P

2. unit vector ir with text

3. unit vector iθ with text

4. a dashed vertical line

5. a dashed line along the rod

6. an arc with text θ

7. the gravity force with text mg

8. the force in the rod with text S

9. the air resistance force with text ∼ |v|v

16

The first object, (x0, y0), is simply a plain text where we have to experiment
with its position. The unit vectors in polar coordinates may be drawn using
the Pysketcher’s Force object since it has an arrow with a text. The first three
objects can then be made as follows:

x0y0 = Text(’(x_0,y_0)’, P + point(-0.4,-0.1))
ir = Force(P, P + L/10*unit_vec(rod_vec),

r’\boldsymbol{i}_r’, text_pos=’end’,
text_spacing=(0.015,0))

ith = Force(P, P + L/10*unit_vec((-rod_vec[1], rod_vec[0])),
r’\boldsymbol{i}_{θ}’, text_pos=’end’,
text_spacing=(0.02,0.005))

Note that tweaking of the position of x0y0 use absolute coordinates, so if W or H
is changed in the beginning of the figure, the tweaked position will most likely
not look good. A better solution would be to express the tweaked displacement
point(-0.4,-0.1) in terms of W and H. The text_spacing values in the Force
objects also use absolute coordinates. Very often, this is much more convenient
when adjusting the objects, and global size parameters like W and H are in practice
seldom changed, so the solution above is quite typical.

The vertical, dashed line, the dashed rod, and the arc for θ are made by
rod_start = rod.geometric_features()[’start’] # Point P
vertical2 = Line(rod_start, rod_start + point(0,-L/3))
set_dashed_thin_blackline(vertical2)
set_dashed_thin_blackline(rod)
angle2 = Arc_wText(r’θ’, rod_start, L/6, -90, a,

text_spacing=1/30.)

Note how we reuse the earlier defined object rod.
The forces are constructed as shown below.

mg_force = Force(mass_pt, mass_pt + L/5*point(0,-1),
’mg’, text_pos=’end’)

rod_force = Force(mass_pt, mass_pt - L/3*unit_vec(rod_vec),
’S’, text_pos=’end’,
text_spacing=(0.03, 0.01))

air_force = Force(mass_pt, mass_pt -
L/6*unit_vec((rod_vec[1], -rod_vec[0])),
’$\sim|v|v$’, text_pos=’end’,
text_spacing=(0.04,0.005))

Note that the drag force from the air is directed perpendicular to the rod, so we
construct a unit vector in this direction directly from the rod_vec vector.

All objects are in place, and we can compose a figure to be drawn:
body_diagram = Composition(

{’mg’: mg_force, ’S’: rod_force, ’rod’: rod,
’vertical’: vertical2, ’theta’: angle2,
’body’: mass, ’m’: mass_symbol})

body_diagram[’air’] = air_force
body_diagram[’ir’] = ir
body_diagram[’ith’] = ith
body_diagram[’origin’] = x0y0

Here, we exemplify that we can start out with a composition as a dictionary, but
(as in ordinary Python dictionaries) add new elements later when desired.

17

2.3 Animated body diagram
We want to make an animated body diagram so that we can see how forces
develop in time according to the motion. This means that we must couple the
sketch at each time level to a numerical solution for the motion of the pendulum.

Function for drawing the body diagram. The previous flat program for
making sketches of the pendulum is not suitable when we want to make a sketch
at a lot of different points in time, i.e., for a lot of different angles that the
pendulum makes with the vertical. We therefore need to draw the body diagram
in a function where the angle is a parameter. We also supply arrays containing
the (numerically computed) values of the angle θ and the forces at various time
levels, plus the desired time point and level for this particular sketch:

from pysketcher import *

H = 15.
W = 17.

drawing_tool.set_coordinate_system(xmin=0, xmax=W,
ymin=0, ymax=H,
axis=False)

def pendulum(theta, S, mg, drag, t, time_level):

drawing_tool.set_linecolor(’blue’)
import math
a = math.degrees(theta[time_level])
L = 0.4*H # length
P = (W/2, 0.8*H) # rotation point

vertical = Line(P, P-point(0,L))
path = Arc(P, L, -90, a)
angle = Arc_wText(r’θ’, P, L/4, -90, a, text_spacing=1/30.)

mass_pt = path.geometric_features()[’end’]
rod = Line(P, mass_pt)

mass = Circle(center=mass_pt, radius=L/20.)
mass.set_filled_curves(color=’blue’)
rod_vec = rod.geometric_features()[’end’] - \

rod.geometric_features()[’start’]
unit_rod_vec = unit_vec(rod_vec)
mass_symbol = Text(’m’, mass_pt + L/10*unit_rod_vec)

length = Distance_wText(P, mass_pt, ’L’)
Displace length indication
length.translate(L/15*point(cos(radians(a)), sin(radians(a))))
gravity = Gravity(start=P+point(0.8*L,0), length=L/3)

def set_dashed_thin_blackline(*objects):
"""Set linestyle of objects to dashed, black, width=1."""
for obj in objects:

obj.set_linestyle(’dashed’)
obj.set_linecolor(’black’)
obj.set_linewidth(1)

18

set_dashed_thin_blackline(vertical, path)

fig = Composition(
{’body’: mass, ’rod’: rod,
’vertical’: vertical, ’theta’: angle, ’path’: path,
’g’: gravity, ’L’: length})

#fig.draw()
#drawing_tool.display()
#drawing_tool.savefig(’tmp_pendulum1’)

drawing_tool.set_linecolor(’black’)

rod_start = rod.geometric_features()[’start’] # Point P
vertical2 = Line(rod_start, rod_start + point(0,-L/3))
set_dashed_thin_blackline(vertical2)
set_dashed_thin_blackline(rod)
angle2 = Arc_wText(r’θ’, rod_start, L/6, -90, a,

text_spacing=1/30.)

magnitude = 1.2*L/2 # length of a unit force in figure
force = mg[time_level] # constant (scaled eq: about 1)
force *= magnitude
mg_force = Force(mass_pt, mass_pt + force*point(0,-1),

’’, text_pos=’end’)
force = S[time_level]
force *= magnitude
rod_force = Force(mass_pt, mass_pt - force*unit_vec(rod_vec),

’’, text_pos=’end’,
text_spacing=(0.03, 0.01))

force = drag[time_level]
force *= magnitude
#print(’drag(%g)=%g’ % (t, drag[time_level]))
air_force = Force(mass_pt, mass_pt -

force*unit_vec((rod_vec[1], -rod_vec[0])),
’’, text_pos=’end’,
text_spacing=(0.04,0.005))

body_diagram = Composition(
{’mg’: mg_force, ’S’: rod_force, ’air’: air_force,
’rod’: rod,
’vertical’: vertical2, ’theta’: angle2,
’body’: mass})

x0y0 = Text(’(x_0,y_0)’, P + point(-0.4,-0.1))
ir = Force(P, P + L/10*unit_vec(rod_vec),

r’\boldsymbol{i}_r’, text_pos=’end’,
text_spacing=(0.015,0))

ith = Force(P, P + L/10*unit_vec((-rod_vec[1], rod_vec[0])),
r’\boldsymbol{i}_{θ}’, text_pos=’end’,
text_spacing=(0.02,0.005))

#body_diagram[’ir’] = ir
#body_diagram[’ith’] = ith
#body_diagram[’origin’] = x0y0

drawing_tool.erase()
body_diagram.draw(verbose=0)
#drawing_tool.display(’Body diagram’)
drawing_tool.savefig(’tmp_%04d.png’ % time_level, crop=False)
No cropping: otherwise movies will be very strange

19

Equations for the motion and forces. The modeling of the motion of a
pendulum is most conveniently done in polar coordinates since then the unknown
force in the rod is separated from the equation determining the motion θ(t). The
position vector for the mass is

r = x0i + y0j + Lir .

The corresponding acceleration becomes

r̈ = Lθ̈iθ − Lθ̇2ir .

There are three forces on the mass: the gravity force mgj = mg(− cos θ ir +
sin θ iθ), the force in the rod −Sir, and the drag force because of air resistance:

−1
2CD%πR

2|v|v iθ,

where CD ≈ 0.4 is the drag coefficient for a sphere, % is the density of air, R is
the radius of the mass, and v is the velocity (v = Lθ̇). The drag force acts in
−iθ direction when v > 0.

Newton’s second law of motion for the pendulum now becomes

mLθ̈iθ −mLθ̇2ir = −mg(− cos θ ir + sin θ iθ)− Sir −
1
2CD%πR

2L2|θ̇|θ̇iθ,

which gives two component equations

mLθ̈ + 1
2CD%πR

2L2|θ̇|θ̇ +mg sin θ = 0, (1)

S = mLθ̇2 +mg cos θ . (2)

It is almost always convenient to scale such equations. Introducing the
dimensionless time

t̄ = t

tc
, tc =

√
L

g
,

leads to

d2θ

dt̄2
+ α

∣∣∣∣dθdt̄
∣∣∣∣ dθdt̄ + sin θ = 0, (3)

S̄ =
(
dθ

dt̄

)2
+ cos θ, (4)

where α is a dimensionless drag coefficient

α = CD%πR
2L

2m ,

20

and S̄ is the scaled force

S̄ = S

mg
.

We see that S̄ = 1 for the equilibrium position θ = 0, so this scaling of S seems
appropriate.

The parameter α is about the ratio of the drag force and the gravity force:

| 12CD%πR
2|v|v|

|mg|
∼ CD%πR

2L2t−2
c

mg

∣∣∣∣dθ̄dt̄
∣∣∣∣ dθ̄dt̄ ∼ CD%πR

2L

2m θ2
0 = αθ2

0 .

(We have that θ(t)/dθ0 is in [−1, 1], so we expect since θ−1
0 dθ̄/dt̄ to be around

unity. Here, θ0 = θ(0).)
The next step is to write a numerical solver for (3)-(4). To this end, we use

the Odespy package. The system of second-order ODEs must be expressed as a
system of first-order ODEs. We realize that the unknown S̄ is decoupled from θ
in the sense that we can first use (3) to solve for θ and then compute S̄ from (4).
The first-order ODEs become

dω

dt̄
= −α |ω|ω − sin θ, (5)

dθ

dt̄
= ω . (6)

Then we compute

S̄ = ω2 + cos θ . (7)

The dimensionless air resistance force can also be computed:

−α|ω|ω . (8)

Since we scaled the force S by mg, mg is the natural force scale, and the mg
force itself is then unity.

By updating ω in the first equation, we can use an Euler-Cromer scheme
on Odespy (all other schemes are independent of whether the θ or ω equation
comes first).

Numerical solution. An appropriate solver is

def simulate_pendulum(alpha, theta0, dt, T):
import odespy

def f(u, t, alpha):
omega, theta = u
return [-alpha*omega*abs(omega) - sin(theta),

omega]

21

https://github.com/hplgit/odespy

import numpy as np
Nt = int(round(T/float(dt)))
t = np.linspace(0, Nt*dt, Nt+1)
solver = odespy.RK4(f, f_args=[alpha])
solver.set_initial_condition([0, theta0])
u, t = solver.solve(t,

terminate=lambda u, t, n: abs(u[n,1]) < 1E-3)
omega = u[:,0]
theta = u[:,1]
S = omega**2 + np.cos(theta)
drag = -alpha*np.abs(omega)*omega
return t, theta, omega, S, drag

Animation. We can finally traverse the time array and draw a body diagram
at each time level. The resulting sketches are saved to files tmp_%04d.png, and
these files can be combined to videos:

def animate():
Clean up old plot files
import os, glob
for filename in glob.glob(’tmp_*.png’) + glob.glob(’movie.*’):

os.remove(filename)
Solve problem
from math import pi, radians, degrees
import numpy as np
alpha = 0.4
period = 2*pi
T = 12*period
dt = period/40
a = 70
theta0 = radians(a)
t, theta, omega, S, drag = simulate_pendulum(alpha, theta0, dt, T)
mg = np.ones(S.size)
Visualize drag force 5 times as large
drag *= 5
print(’NOTE: drag force magnified 5 times!!’)

Draw animation
import time
for time_level, t_ in enumerate(t):

pendulum(theta, S, mg, drag, t_, time_level)
time.sleep(0.2)

Make videos
prog = ’ffmpeg’
filename = ’tmp_%04d.png’
fps = 6
codecs = {’flv’: ’flv’, ’mp4’: ’libx264’,

’webm’: ’libvpx’, ’ogg’: ’libtheora’}
for ext in codecs:

lib = codecs[ext]
cmd = ’%(prog)s -i %(filename)s -r %(fps)s ’ % vars()
cmd += ’-vcodec %(lib)s movie.%(ext)s’ % vars()
print(cmd)
os.system(cmd)

This time we did not use the animate function from Pysketcher, but stored
each sketch in a file with drawing_tool.savefig. Note that the argument

22

crop=False is key: otherwise each figure is cropped and it makes to sense to
combine the images to a video. By default, Pysketcher crops (removes all exterior
whitespace) from figures saved to file.

Movie 1: The drag force is magnified 5 times (compared to mg and S!
https://github.com/hplgit/pysketcher/raw/master/doc/pub/tutorial/
mov-tut/pendulum/movie.mp4

3 Basic shapes
This section presents many of the basic shapes in Pysketcher: Axis, Distance_wText,
Rectangle, Triangle, Arc, Spring, Dashpot, and Wavy. Each shape is demon-
strated with a figure and a unit test that shows how the figure is constructed in
Python code. These demos rely heavily on the method draw_dimensions in the
shape classes, which annotates the basic drawing of the shape with the various
geometric parameters that govern the shape.

3.1 Axis
The Axis object gives the possibility draw a single axis to notify a coordinate
system. Here is an example where we draw x and y axis of three coordinate
systems of different rotation:

0 2 4 6 8 10 12 14

6

4

2

0

2

4

6

8

x

y

x
y

x

y

Axis

23

https://github.com/hplgit/pysketcher/raw/master/doc/pub/tutorial/mov-tut/pendulum/movie.mp4
https://github.com/hplgit/pysketcher/raw/master/doc/pub/tutorial/mov-tut/pendulum/movie.mp4

The corresponding code looks like this:

def test_Axis():
drawing_tool.set_coordinate_system(

xmin=0, xmax=15, ymin=-7, ymax=8, axis=True,
instruction_file=’tmp_Axis.py’)

Draw normal x and y axis with origin at (7.5, 2)
in the coordinate system of the sketch: [0,15]x[-7,8]
x_axis = Axis((7.5,2), 5, ’x’, rotation_angle=0)
y_axis = Axis((7.5,2), 5, ’y’, rotation_angle=90)
system = Composition({’x axis’: x_axis, ’y axis’: y_axis})
system.draw()
drawing_tool.display()

Rotate this system 40 degrees counter clockwise
and draw it with dashed lines
system.set_linestyle(’dashed’)
system.rotate(40, (7.5,2))
system.draw()
drawing_tool.display()

Rotate this system another 220 degrees and show
with dotted lines
system.set_linestyle(’dotted’)
system.rotate(220, (7.5,2))
system.draw()
drawing_tool.display()

drawing_tool.display(’Axis’)

3.2 Distance with text
The object Distance_wText is used to display an arrow, to indicate a distance
in a sketch, with an additional text in the middle of the arrow.

The figure

0 2 4 6 8 10
0

1

2

3

4

5

6

2πR2

2πR22πR2

2πR2 2πR2

2πR2

2πR2

text_spacing=-1./40, alignment="right"

text_spacing=-1./60

Distance_wText and text positioning

was produced by this code:

24

def test_Distance_wText():
drawing_tool.set_coordinate_system(

xmin=0, xmax=10, ymin=0, ymax=6,
axis=True, instruction_file=’tmp_Distance_wText.py’)

fontsize=14
t = r’$ 2\pi R^2 $’ # sample text
examples = Composition({

’a0’: Distance_wText((4,5), (8, 5), t, fontsize),
’a6’: Distance_wText((4,5), (4, 4), t, fontsize),
’a1’: Distance_wText((0,2), (2, 4.5), t, fontsize),
’a2’: Distance_wText((0,2), (2, 0), t, fontsize),
’a3’: Distance_wText((2,4.5), (0, 5.5), t, fontsize),
’a4’: Distance_wText((8,4), (10, 3), t, fontsize,

text_spacing=-1./60),
’a5’: Distance_wText((8,2), (10, 1), t, fontsize,

text_spacing=-1./40, alignment=’right’),
’c1’: Text_wArrow(’text_spacing=-1./60’,

(4, 3.5), (9, 3.2),
fontsize=10, alignment=’left’),

’c2’: Text_wArrow(’text_spacing=-1./40, alignment="right"’,
(4, 0.5), (9, 1.2),
fontsize=10, alignment=’left’),

})
examples.draw()
drawing_tool.display(’Distance_wText and text positioning’)

Note the use of Text_wArrow to write an explaining text with an associated
arrow, here used to explain how the text_spacing and alignment arguments
can be used to adjust the appearance of the text that goes with the distance
arrow.

25

3.3 Rectangle

0 1 2 3 4 5 6 7 8

1

0

1

2

3

4

5

6

width
lower_left_corner

height

Rectangle

The above figure can be produced by the following code.

def test_Rectangle():
L = 3.0
W = 4.0

drawing_tool.set_coordinate_system(
xmin=0, xmax=2*W, ymin=-L/2, ymax=2*L,
axis=True, instruction_file=’tmp_Rectangle.py’)

drawing_tool.set_linecolor(’blue’)
drawing_tool.set_grid(True)

xpos = W/2
r = Rectangle(lower_left_corner=(xpos,0), width=W, height=L)
r.draw()
r.draw_dimensions()
drawing_tool.display(’Rectangle’)

Note that the draw_dimension method adds explanation of dimensions and
various important argument in the construction of a shape. It adapts the
annotations to the geometry of the current shape.

26

3.4 Triangle

0 1 2 3 4 5 6 7 8

1

0

1

2

3

p2

p3

p1

Triangle

The code below produces the figure.

def test_Triangle():
L = 3.0
W = 4.0

drawing_tool.set_coordinate_system(
xmin=0, xmax=2*W, ymin=-L/2, ymax=1.2*L,
axis=True, instruction_file=’tmp_Triangle.py’)

drawing_tool.set_linecolor(’blue’)
drawing_tool.set_grid(True)

xpos = 1
t = Triangle(p1=(W/2,0), p2=(3*W/2,W/2), p3=(4*W/5.,L))
t.draw()
t.draw_dimensions()
drawing_tool.display(’Triangle’)

Here, the draw_dimension method writes the name of the corners at the position
of the corners, which does not always look nice (the present figure is an example).
For a high-quality sketch one would add some spacing to the location of the p1,
p2, and even p3 texts.

27

3.5 Arc

2 1 0 1 2 3 4
2

1

0

1

2

3

4

5

6

center

start_angle

radius

arc_angle

Arc

An arc like the one above is produced by

def test_Arc():
L = 4.0
W = 4.0

drawing_tool.set_coordinate_system(
xmin=-W/2, xmax=W, ymin=-L/2, ymax=1.5*L,
axis=True, instruction_file=’tmp_Arc.py’)

drawing_tool.set_linecolor(’blue’)
drawing_tool.set_grid(True)

center = point(0,0)
radius = L/2
start_angle = 60
arc_angle = 45
a = Arc(center, radius, start_angle, arc_angle)
a.draw()

R1 = 1.25*radius
R2 = 1.5*radius
R = 2*radius
a.dimensions = {

’start_angle’:
Arc_wText(

’start_angle’, center, R1, start_angle=0,
arc_angle=start_angle, text_spacing=1/10.),

’arc_angle’:
Arc_wText(

’arc_angle’, center, R2, start_angle=start_angle,
arc_angle=arc_angle, text_spacing=1/20.),

28

’r=0’:
Line(center, center +

point(R*cos(radians(start_angle)),
R*sin(radians(start_angle)))),

’r=start_angle’:
Line(center, center +

point(R*cos(radians(start_angle+arc_angle)),
R*sin(radians(start_angle+arc_angle)))),

’r=start+arc_angle’:
Line(center, center +

point(R, 0)).set_linestyle(’dashed’),
’radius’: Distance_wText(center, a(0), ’radius’, text_spacing=1/40.),
’center’: Text(’center’, center-point(radius/10., radius/10.)),
}

for dimension in a.dimensions:
if dimension.startswith(’r=’):

dim = a.dimensions[dimension]
dim.set_linestyle(’dashed’)
dim.set_linewidth(1)
dim.set_linecolor(’black’)

a.draw_dimensions()
drawing_tool.display(’Arc’)

3.6 Spring

0 2 4 6 8 10 12 14

2

0

2

4

6
Default Spring

bar_length

bar_length

width
start

length

num_windings

Spring

The code for making these two springs goes like this:
def test_Spring():

L = 5.0

29

W = 2.0

drawing_tool.set_coordinate_system(
xmin=0, xmax=7*W, ymin=-L/2, ymax=1.5*L,
axis=True, instruction_file=’tmp_Spring.py’)

drawing_tool.set_linecolor(’blue’)
drawing_tool.set_grid(True)

xpos = W
s1 = Spring((W,0), L, teeth=True)
s1_title = Text(’Default Spring’,

s1.geometric_features()[’end’] + point(0,L/10))
s1.draw()
s1_title.draw()
#s1.draw_dimensions()
xpos += 3*W
s2 = Spring(start=(xpos,0), length=L, width=W/2.,

bar_length=L/6., teeth=False)
s2.draw()
s2.draw_dimensions()
drawing_tool.display(’Spring’)

3.7 Dashpot

0 2 4 6 8 10

2

0

2

4

6
Dashpot (default)

width

start

bar_length

total_length

dashpot_length

piston_pos

Dashpot

This dashpot is produced by

def test_Dashpot():
L = 5.0
W = 2.0

30

xpos = 0

drawing_tool.set_coordinate_system(
xmin=xpos, xmax=xpos+5.5*W, ymin=-L/2, ymax=1.5*L,
axis=True, instruction_file=’tmp_Dashpot.py’)

drawing_tool.set_linecolor(’blue’)
drawing_tool.set_grid(True)

Default (simple) dashpot
xpos = 1.5
d1 = Dashpot(start=(xpos,0), total_length=L)
d1_title = Text(’Dashpot (default)’,

d1.geometric_features()[’end’] + point(0,L/10))
d1.draw()
d1_title.draw()

Dashpot for animation with fixed bar_length, dashpot_length and
prescribed piston_pos
xpos += 2.5*W
d2 = Dashpot(start=(xpos,0), total_length=1.2*L, width=W/2,

bar_length=W, dashpot_length=L/2, piston_pos=2*W)
d2.draw()
d2.draw_dimensions()

drawing_tool.display(’Dashpot’)

3.8 Wavy
Looks strange. Fix x axis.

3.9 Stochastic curves
The StochasticWavyCurve object offers three precomputed graphics that have
a random variation:

31

The usage is simple. The construction

curve = StochasticWavyCurve(curve_no=1, percentage=40)

picks the second curve (the three are numbered 0, 1, and 2), and the first 40%
of that curve. In case one desires another extent of the axis, one can just scale
the coordinates directly as these are stored in the arrays curve.x[curve_no]
and curve.y[curve_no].

4 Inner workings of the Pysketcher tool
We shall now explain how we can, quite easily, realize software with the capa-
bilities demonstrated in the previous examples. Each object in the figure is
represented as a class in a class hierarchy. Using inheritance, classes can inherit
properties from parent classes and add new geometric features.

Class programming is a key technology for realizing Pysketcher. As soon
as some classes are established, more are easily added. Enhanced functionality
for all the classes is also easy to implement in common, generic code that can
immediately be shared by all present and future classes. The fundamental data
structure involved in the pysketcher package is a hierarchical tree, and much
of the material on implementation issues targets how to traverse tree structures
with recursive function calls in object hierarchies. This topic is of key relevance

32

in a wide range of other applications as well. In total, the inner workings of
Pysketcher constitute an excellent example on the power of class programming.

4.1 Example of classes for geometric objects
We introduce class Shape as superclass for all specialized objects in a figure.
This class does not store any data, but provides a series of functions that add
functionality to all the subclasses. This will be shown later.

Simple geometric objects. One simple subclass is Rectangle, specified by
the coordinates of the lower left corner and its width and height:

class Rectangle(Shape):
def __init__(self, lower_left_corner, width, height):

p = lower_left_corner # short form
x = [p[0], p[0] + width,

p[0] + width, p[0], p[0]]
y = [p[1], p[1], p[1] + height,

p[1] + height, p[1]]
self.shapes = {’rectangle’: Curve(x,y)}

Any subclass of Shape will have a constructor that takes geometric informa-
tion about the shape of the object and creates a dictionary self.shapes with
the shape built of simpler shapes. The most fundamental shape is Curve, which
is just a collection of (x, y) coordinates in two arrays x and y. Drawing the
Curve object is a matter of plotting y versus x. For class Rectangle the x and
y arrays contain the corner points of the rectangle in counterclockwise direction,
starting and ending with in the lower left corner.

Class Line is also a simple class:
class Line(Shape):

def __init__(self, start, end):
x = [start[0], end[0]]
y = [start[1], end[1]]
self.shapes = {’line’: Curve(x, y)}

Here we only need two points, the start and end point on the line. However,
we may want to add some useful functionality, e.g., the ability to give an x
coordinate and have the class calculate the corresponding y coordinate:

def __call__(self, x):
"""Given x, return y on the line."""
x, y = self.shapes[’line’].x, self.shapes[’line’].y
self.a = (y[1] - y[0])/(x[1] - x[0])
self.b = y[0] - self.a*x[0]
return self.a*x + self.b

Unfortunately, this is too simplistic because vertical lines cannot be handled
(infinite self.a). The true source code of Line therefore provides a more general
solution at the cost of significantly longer code with more tests.

A circle implies a somewhat increased complexity. Again we represent the
geometric object by a Curve object, but this time the Curve object needs to store

33

a large number of points on the curve such that a plotting program produces a
visually smooth curve. The points on the circle must be calculated manually in
the constructor of class Circle. The formulas for points (x, y) on a curve with
radius R and center at (x0, y0) are given by

x = x0 +R cos(t),
y = y0 +R sin(t),

where t ∈ [0, 2π]. A discrete set of t values in this interval gives the corresponding
set of (x, y) coordinates on the circle. The user must specify the resolution as
the number of t values. The circle’s radius and center must of course also be
specified.

We can write the Circle class as

class Circle(Shape):
def __init__(self, center, radius, resolution=180):

self.center, self.radius = center, radius
self.resolution = resolution

t = linspace(0, 2*pi, resolution+1)
x0 = center[0]; y0 = center[1]
R = radius
x = x0 + R*cos(t)
y = y0 + R*sin(t)
self.shapes = {’circle’: Curve(x, y)}

As in class Line we can offer the possibility to give an angle θ (equivalent to t
in the formulas above) and then get the corresponding x and y coordinates:

def __call__(self, theta):
"""Return (x, y) point corresponding to angle theta."""
return self.center[0] + self.radius*cos(theta), \

self.center[1] + self.radius*sin(theta)

There is one flaw with this method: it yields illegal values after a translation,
scaling, or rotation of the circle.

A part of a circle, an arc, is a frequent geometric object when drawing
mechanical systems. The arc is constructed much like a circle, but t runs in
[θs, θs + θa]. Giving θs and θa the slightly more descriptive names start_angle
and arc_angle, the code looks like this:

class Arc(Shape):
def __init__(self, center, radius,

start_angle, arc_angle,
resolution=180):

self.start_angle = radians(start_angle)
self.arc_angle = radians(arc_angle)

t = linspace(self.start_angle,
self.start_angle + self.arc_angle,
resolution+1)

x0 = center[0]; y0 = center[1]
R = radius

34

x = x0 + R*cos(t)
y = y0 + R*sin(t)
self.shapes = {’arc’: Curve(x, y)}

Having the Arc class, a Circle can alternatively be defined as a subclass
specializing the arc to a circle:

class Circle(Arc):
def __init__(self, center, radius, resolution=180):

Arc.__init__(self, center, radius, 0, 360, resolution)

Class curve. Class Curve sits on the coordinates to be drawn, but how is
that done? The constructor of class Curve just stores the coordinates, while a
method draw sends the coordinates to the plotting program to make a graph. Or
more precisely, to avoid a lot of (e.g.) Matplotlib-specific plotting commands in
class Curve we have created a small layer with a simple programming interface
to plotting programs. This makes it straightforward to change from Matplotlib
to another plotting program. The programming interface is represented by the
drawing_tool object and has a few functions:

• plot_curve for sending a curve in terms of x and y coordinates to the
plotting program,

• set_coordinate_system for specifying the graphics area,

• erase for deleting all elements of the graph,

• set_grid for turning on a grid (convenient while constructing the figure),

• set_instruction_file for creating a separate file with all plotting com-
mands (Matplotlib commands in our case),

• a series of set_X functions where X is some property like linecolor,
linestyle, linewidth, filled_curves.

This is basically all we need to communicate to a plotting program.
Any class in the Shape hierarchy inherits set_X functions for setting prop-

erties of curves. This information is propagated to all other shape objects in
the self.shapes dictionary. Class Curve stores the line properties together
with the coordinates of its curve and propagates this information to the plotting
program. When saying vehicle.set_linewidth(10), all objects that make
up the vehicle object will get a set_linewidth(10) call, but only the Curve
object at the end of the chain will actually store the information and send it to
the plotting program.

A rough sketch of class Curve reads

class Curve(Shape):
"""General curve as a sequence of (x,y) coordintes."""
def __init__(self, x, y):

self.x = asarray(x, dtype=float)
self.y = asarray(y, dtype=float)

35

def draw(self):
drawing_tool.plot_curve(

self.x, self.y,
self.linestyle, self.linewidth, self.linecolor, ...)

def set_linewidth(self, width):
self.linewidth = width

det set_linestyle(self, style):
self.linestyle = style

...

Compound geometric objects. The simple classes Line, Arc, and Circle
could can the geometric shape through just one Curve object. More complicated
shapes are built from instances of various subclasses of Shape. Classes used
for professional drawings soon get quite complex in composition and have a
lot of geometric details, so here we prefer to make a very simple composition:
the already drawn vehicle from Figure 2. That is, instead of composing the
drawing in a Python program as shown above, we make a subclass Vehicle0 in
the Shape hierarchy for doing the same thing.

The Shape hierarchy is found in the pysketcher package, so to use these
classes or derive a new one, we need to import pysketcher. The constructor of
class Vehicle0 performs approximately the same statements as in the example
program we developed for making the drawing in Figure 2.

from pysketcher import *

class Vehicle0(Shape):
def __init__(self, w_1, R, L, H):

wheel1 = Circle(center=(w_1, R), radius=R)
wheel2 = wheel1.copy()
wheel2.translate((L,0))

under = Rectangle(lower_left_corner=(w_1-2*R, 2*R),
width=2*R + L + 2*R, height=H)

over = Rectangle(lower_left_corner=(w_1, 2*R + H),
width=2.5*R, height=1.25*H)

wheels = Composition(
{’wheel1’: wheel1, ’wheel2’: wheel2})

body = Composition(
{’under’: under, ’over’: over})

vehicle = Composition({’wheels’: wheels, ’body’: body})
xmax = w_1 + 2*L + 3*R
ground = Wall(x=[R, xmax], y=[0, 0], thickness=-0.3*R)

self.shapes = {’vehicle’: vehicle, ’ground’: ground}

Any subclass of Shape must define the shapes attribute, otherwise the
inherited draw method (and a lot of other methods too) will not work.

The painting of the vehicle, as shown in the right part of Figure 6, could in
class Vehicle0 be offered by a method:

36

def colorful(self):
wheels = self.shapes[’vehicle’][’wheels’]
wheels.set_filled_curves(’blue’)
wheels.set_linewidth(6)
wheels.set_linecolor(’black’)
under = self.shapes[’vehicle’][’body’][’under’]
under.set_filled_curves(’red’)
over = self.shapes[’vehicle’][’body’][’over’]
over.set_filled_curves(pattern=’/’)
over.set_linewidth(14)

The usage of the class is simple: after having set up an appropriate coordinate
system as previously shown, we can do

vehicle = Vehicle0(w_1, R, L, H)
vehicle.draw()
drawing_tool.display()

and go on the make a painted version by

drawing_tool.erase()
vehicle.colorful()
vehicle.draw()
drawing_tool.display()

A complete code defining and using class Vehicle0 is found in the file vehicle2.
py.

The pysketcher package contains a wide range of classes for various ge-
ometrical objects, particularly those that are frequently used in drawings of
mechanical systems.

4.2 Adding functionality via recursion
The really powerful feature of our class hierarchy is that we can add much
functionality to the superclass Shape and to the “bottom” class Curve, and then
all other classes for various types of geometrical shapes immediately get the
new functionality. To explain the idea we may look at the draw method, which
all classes in the Shape hierarchy must have. The inner workings of the draw
method explain the secrets of how a series of other useful operations on figures
can be implemented.

Basic principles of recursion. Note that we work with two types of hierar-
chies in the present documentation: one Python class hierarchy, with Shape as
superclass, and one object hierarchy of figure elements in a specific figure. A
subclass of Shape stores its figure in the self.shapes dictionary. This dictionary
represents the object hierarchy of figure elements for that class. We want to
make one draw call for an instance, say our class Vehicle0, and then we want
this call to be propagated to all objects that are contained in self.shapes and
all is nested subdictionaries. How is this done?

The natural starting point is to call draw for each Shape object in the
self.shapes dictionary:

37

http://tinyurl.com/ot733jn/vehicle2.py
http://tinyurl.com/ot733jn/vehicle2.py

def draw(self):
for shape in self.shapes:

self.shapes[shape].draw()

This general method can be provided by class Shape and inherited in subclasses
like Vehicle0. Let v be a Vehicle0 instance. Seemingly, a call v.draw() just
calls

v.shapes[’vehicle’].draw()
v.shapes[’ground’].draw()

However, in the former call we call the draw method of a Composition object
whose self.shapes attributed has two elements: wheels and body. Since class
Composition inherits the same draw method, this method will run through
self.shapes and call wheels.draw() and body.draw(). Now, the wheels
object is also a Composition with the same draw method, which will run
through self.shapes, now containing the wheel1 and wheel2 objects. The
wheel1 object is a Circle, so calling wheel1.draw() calls the draw method in
class Circle, but this is the same draw method as shown above. This method
will therefore traverse the circle’s shapes dictionary, which we have seen consists
of one Curve element.

The Curve object holds the coordinates to be plotted so here draw really
needs to do something “physical”, namely send the coordinates to the plotting
program. The draw method is outlined in the short listing of class Curve shown
previously.

We can go to any of the other shape objects that appear in the figure hierarchy
and follow their draw calls in the similar way. Every time, a draw call will invoke
a new draw call, until we eventually hit a Curve object at the “bottom” of
the figure hierarchy, and then that part of the figure is really plotted (or more
precisely, the coordinates are sent to a plotting program).

When a method calls itself, such as draw does, the calls are known as recursive
and the programming principle is referred to as recursion. This technique is
very often used to traverse hierarchical structures like the figure structures we
work with here. Even though the hierarchy of objects building up a figure are of
different types, they all inherit the same draw method and therefore exhibit the
same behavior with respect to drawing. Only the Curve object has a different
draw method, which does not lead to more recursion.

Explaining recursion. Understanding recursion is usually a challenge. To
get a better idea of how recursion works, we have equipped class Shape with a
method recurse that just visits all the objects in the shapes dictionary and
prints out a message for each object. This feature allows us to trace the execution
and see exactly where we are in the hierarchy and which objects that are visited.

The recurse method is very similar to draw:
def recurse(self, name, indent=0):

print message where we are (name is where we come from)
for shape in self.shapes:

print message about which object to visit
self.shapes[shape].recurse(indent+2, shape)

38

The indent parameter governs how much the message from this recurse method
is intended. We increase indent by 2 for every level in the hierarchy, i.e., every
row of objects in Figure 11. This indentation makes it easy to see on the printout
how far down in the hierarchy we are.

A typical message written by recurse when name is ’body’ and the shapes
dictionary has the keys ’over’ and ’under’, will be

Composition: body.shapes has entries ’over’, ’under’
call body.shapes["over"].recurse("over", 6)

The number of leading blanks on each line corresponds to the value of indent.
The code printing out such messages looks like

def recurse(self, name, indent=0):
space = ’ ’*indent
print space, ’%s: %s.shapes has entries’ % \

(self.__class__.__name__, name), \
str(list(self.shapes.keys()))[1:-1]

for shape in self.shapes:
print space,
print ’call %s.shapes["%s"].recurse("%s", %d)’ % \

(name, shape, shape, indent+2)
self.shapes[shape].recurse(shape, indent+2)

Let us follow a v.recurse(’vehicle’) call in detail, v being a Vehicle0
instance. Before looking into the output from recurse, let us get an overview
of the figure hierarchy in the v object (as produced by print v)

ground
wall

vehicle
body

over
rectangle

under
rectangle

wheels
wheel1

arc
wheel2

arc

The recurse method performs the same kind of traversal of the hierarchy, but
writes out and explains a lot more.

The data structure represented by v.shapes is known as a tree. As in physical
trees, there is a root, here the v.shapes dictionary. A graphical illustration of
the tree (upside down) is shown in Figure 11. From the root there are one or
more branches, here two: ground and vehicle. Following the vehicle branch,
it has two new branches, body and wheels. Relationships as in family trees are
often used to describe the relations in object trees too: we say that vehicle
is the parent of body and that body is a child of vehicle. The term node is
also often used to describe an element in a tree. A node may have several other
nodes as descendants.

39

Figure 11: Hierarchy of figure elements in an instance of class Vehicle0.

Recursion is the principal programming technique to traverse tree structures.
Any object in the tree can be viewed as a root of a subtree. For example,
wheels is the root of a subtree that branches into wheel1 and wheel2. So when
processing an object in the tree, we imagine we process the root and then recurse
into a subtree, but the first object we recurse into can be viewed as the root of
the subtree, so the processing procedure of the parent object can be repeated.

A recommended next step is to simulate the recurse method by hand and
carefully check that what happens in the visits to recurse is consistent with the
output listed below. Although tedious, this is a major exercise that guaranteed
will help to demystify recursion.

A part of the printout of v.recurse(’vehicle’) looks like

Vehicle0: vehicle.shapes has entries ’ground’, ’vehicle’
call vehicle.shapes["ground"].recurse("ground", 2)

Wall: ground.shapes has entries ’wall’
call ground.shapes["wall"].recurse("wall", 4)

reached "bottom" object Curve
call vehicle.shapes["vehicle"].recurse("vehicle", 2)

Composition: vehicle.shapes has entries ’body’, ’wheels’
call vehicle.shapes["body"].recurse("body", 4)

Composition: body.shapes has entries ’over’, ’under’
call body.shapes["over"].recurse("over", 6)

Rectangle: over.shapes has entries ’rectangle’
call over.shapes["rectangle"].recurse("rectangle", 8)

reached "bottom" object Curve
call body.shapes["under"].recurse("under", 6)

Rectangle: under.shapes has entries ’rectangle’

40

call under.shapes["rectangle"].recurse("rectangle", 8)
reached "bottom" object Curve

...

This example should clearly demonstrate the principle that we can start at any
object in the tree and do a recursive set of calls with that object as root.

4.3 Scaling, translating, and rotating a figure
With recursion, as explained in the previous section, we can within minutes
equip all classes in the Shape hierarchy, both present and future ones, with the
ability to scale the figure, translate it, or rotate it. This added functionality
requires only a few lines of code.

Scaling. We start with the simplest of the three geometric transformations,
namely scaling. For a Curve instance containing a set of n coordinates (xi, yi)
that make up a curve, scaling by a factor a means that we multiply all the x
and y coordinates by a:

xi ← axi, yi ← ayi, i = 0, . . . , n− 1 .

Here we apply the arrow as an assignment operator. The corresponding Python
implementation in class Curve reads

class Curve:
...
def scale(self, factor):

self.x = factor*self.x
self.y = factor*self.y

Note here that self.x and self.y are Numerical Python arrays, so that multi-
plication by a scalar number factor is a vectorized operation.

An even more efficient implementation is to make use of in-place multiplication
in the arrays,

class Curve:
...
def scale(self, factor):

self.x *= factor
self.y *= factor

as this saves the creation of temporary arrays like factor*self.x.
In an instance of a subclass of Shape, the meaning of a method scale is to

run through all objects in the dictionary shapes and ask each object to scale
itself. This is the same delegation of actions to subclass instances as we do in
the draw (or recurse) method. All objects, except Curve instances, can share
the same implementation of the scale method. Therefore, we place the scale
method in the superclass Shape such that all subclasses inherit the method.
Since scale and draw are so similar, we can easily implement the scale method
in class Shape by copying and editing the draw method:

41

class Shape:
...
def scale(self, factor):

for shape in self.shapes:
self.shapes[shape].scale(factor)

This is all we have to do in order to equip all subclasses of Shape with scaling
functionality! Any piece of the figure will scale itself, in the same manner as it
can draw itself.

Translation. A set of coordinates (xi, yi) can be translated v0 units in the x
direction and v1 units in the y direction using the formulas

xi ← xi + v0, yi ← yi + v1, i = 0, . . . , n− 1 .

The natural specification of the translation is in terms of the vector v = (v0, v1).
The corresponding Python implementation in class Curve becomes

class Curve:
...
def translate(self, v):

self.x += v[0]
self.y += v[1]

The translation operation for a shape object is very similar to the scaling and
drawing operations. This means that we can implement a common method
translate in the superclass Shape. The code is parallel to the scale method:

class Shape:
....
def translate(self, v):

for shape in self.shapes:
self.shapes[shape].translate(v)

Rotation. Rotating a figure is more complicated than scaling and translating.
A counter clockwise rotation of θ degrees for a set of coordinates (xi, yi) is given
by

x̄i ← xi cos θ − yi sin θ,
ȳi ← xi sin θ + yi cos θ .

This rotation is performed around the origin. If we want the figure to be rotated
with respect to a general point (x, y), we need to extend the formulas above:

x̄i ← x+ (xi − x) cos θ − (yi − y) sin θ,
ȳi ← y + (xi − x) sin θ + (yi − y) cos θ .

The Python implementation in class Curve, assuming that θ is given in degrees
and not in radians, becomes

42

def rotate(self, angle, center):
angle = radians(angle)
x, y = center
c = cos(angle); s = sin(angle)
xnew = x + (self.x - x)*c - (self.y - y)*s
ynew = y + (self.x - x)*s + (self.y - y)*c
self.x = xnew
self.y = ynew

The rotate method in class Shape follows the principle of the draw, scale, and
translate methods.

We have already seen the rotate method in action when animating the
rolling wheel at the end of Section 1.1.

43

Index
recursive function calls, 37

tree data structure, 32

44

	A first glimpse of Pysketcher
	Basic construction of sketches

	A simple pendulum
	The basic physics sketch
	The body diagram
	Animated body diagram

	Basic shapes
	Axis
	Distance with text
	Rectangle
	Triangle
	Arc
	Spring
	Dashpot
	Wavy
	Stochastic curves

	Inner workings of the Pysketcher tool
	Example of classes for geometric objects
	Adding functionality via recursion
	Scaling, translating, and rotating a figure

	Index

