Bases: odespy.problems.Problem
Classical 1D diffusion equation:
rac{partial u}{partial t} = a rac{partial^2 u}{partial x^2}
with initial condition \(u(x,0)=I(x)\) and boundary condtions \(u(0,t)=U_L(t), u(L,t)=U_R(t)\).
\[\begin{split}u_0' &= u_1 u_1' &= \mu (1-u_0^2)u_1 - u_0\end{split}\]with a Jacobian
\[\begin{split}\left(egin{array}{cc} 0 & 1\ -2\mu u_0 - 1 & \mu (1-u_0^2) \end{array}\end{split}\]
ight)
Methods
default_parameters() | Compute suitable time_points, atol/rtol, etc. |
f(u, t) | |
get_initial_condition() | Return vector of initial conditions. |
jac(u, t) | |
jac_banded(u, t) | |
str_f_f77() | Return f(u,t) as Fortran source code string. |
str_jac_f77_fadau5() | Return f(u,t) as Fortran source code string. |
str_jac_f77_lsode_dense() | Return Fortran source for dense Jacobian matrix in LSODE format. |
terminate(u, t, step_number) | Default terminate function, always returning False. |
u_exact(t) | Implementation of the exact solution. |
verify(u, t[, atol, rtol]) | Return True if u at time points t coincides with an exact |