Bases: odespy.RungeKutta.RungeKutta2level
Adaptive Bogacki-Shampine Runge-Kutta method of order (3, 2). Implementated in the general Python framework in the RungeKutta module.
Required input arguments:
Name | Description |
---|---|
f | Right-hand side f(u,t) defining the ODE. |
Optional input arguments:
Name | Description |
---|---|
f_args | Extra positional arguments to f: f(u, t, *f_args, **f_kwargs). (default: ()) |
f_kwargs | Extra keyword arguments to f: f(u, t, *f_args, **f_kwargs). (default: {}) |
complex_valued | True if f is complex valued. (default: False) |
disk_storage | Indicates whether u is stored in memory or in file. If string, it is the filename; if False or “”, u is kept in memory; if True, a default filename tmp_odspy.dat is used. (default: False) |
verbose | Integer reflecting output of intermediate quantities. (default: 0) |
u_exact | Function of t returning exact solution. (default: None) |
rtol | Relative tolerance for solution. (default: 1e-06) |
atol | Absolute tolerance for solution. (default: 1e-08) |
first_step | Suggested first time step size for an adaptive algorithm. |
min_step | Minimum step size for an adaptive algorithm. |
max_step | Maximum step size for an adaptive algorithm. |
Methods
adjust_parameters() | This method allows subclasses to adjust (modify or add) entries in the self._parameters dictionary. |
advance() | Advance from t[n] to t[n+1] in (small) adaptive steps. |
check_conditional_parameters() | This function is used to check whether conditional parameters are provided when specified condition fulfilled. |
check_extra(**kwargs) | A parameter may have a keyword extra_check for user-given functions that performs consistency checks on the parameter. |
check_input_range(**kwargs) | Check whether all existing inputs are in right specified range. |
check_input_types(**kwargs) | Check whether all existing inputs are of right specified type. |
compile_string_functions(f, **kwargs) | Compile functions which are supplied as Fortran strings. |
constant_time_step() | Check if self.t has a uniform partition. |
get([parameter_name, print_info]) | Return value of specified input parameters. |
get_order() | Return the order of current method, both for non-adaptive |
get_parameter_info([print_info]) | Return a dictionary containing all properties of all legal parameters in current subclass (i.e., the parameters in self._parameters). |
has_u_t_all() | Return True if self.u_all and self.t_all, defined in |
initialize() | Subclass-specific initialization. |
initialize_for_solve() | |
set([strict]) | Assign values to one or more parameters, specified as keyword arguments. |
set_initial_condition(U0) | Function set_initial_condition() is used to set initial value of |
solve(time_points[, terminate]) | Compute discrete solution u of the ODE problem at time points |
switch_to(solver_target[, print_info]) | Create a new solver instance which switch to another subclass with same values of common attributes. |
validate_data() | This function is used for extra checking and validating of attributes before the computations start. |
Bases: odespy.RungeKutta.RungeKutta2level
Adaptive Cash-Karp Runge-Kutta method of order (5, 4). Implementated in the general Python framework in the RungeKutta module.
Required input arguments:
Name | Description |
---|---|
f | Right-hand side f(u,t) defining the ODE. |
Optional input arguments:
Name | Description |
---|---|
f_args | Extra positional arguments to f: f(u, t, *f_args, **f_kwargs). (default: ()) |
f_kwargs | Extra keyword arguments to f: f(u, t, *f_args, **f_kwargs). (default: {}) |
complex_valued | True if f is complex valued. (default: False) |
disk_storage | Indicates whether u is stored in memory or in file. If string, it is the filename; if False or “”, u is kept in memory; if True, a default filename tmp_odspy.dat is used. (default: False) |
verbose | Integer reflecting output of intermediate quantities. (default: 0) |
u_exact | Function of t returning exact solution. (default: None) |
rtol | Relative tolerance for solution. (default: 1e-06) |
atol | Absolute tolerance for solution. (default: 1e-08) |
first_step | Suggested first time step size for an adaptive algorithm. |
min_step | Minimum step size for an adaptive algorithm. |
max_step | Maximum step size for an adaptive algorithm. |
Methods
adjust_parameters() | This method allows subclasses to adjust (modify or add) entries in the self._parameters dictionary. |
advance() | Advance from t[n] to t[n+1] in (small) adaptive steps. |
check_conditional_parameters() | This function is used to check whether conditional parameters are provided when specified condition fulfilled. |
check_extra(**kwargs) | A parameter may have a keyword extra_check for user-given functions that performs consistency checks on the parameter. |
check_input_range(**kwargs) | Check whether all existing inputs are in right specified range. |
check_input_types(**kwargs) | Check whether all existing inputs are of right specified type. |
compile_string_functions(f, **kwargs) | Compile functions which are supplied as Fortran strings. |
constant_time_step() | Check if self.t has a uniform partition. |
get([parameter_name, print_info]) | Return value of specified input parameters. |
get_order() | Return the order of current method, both for non-adaptive |
get_parameter_info([print_info]) | Return a dictionary containing all properties of all legal parameters in current subclass (i.e., the parameters in self._parameters). |
has_u_t_all() | Return True if self.u_all and self.t_all, defined in |
initialize() | Subclass-specific initialization. |
initialize_for_solve() | |
set([strict]) | Assign values to one or more parameters, specified as keyword arguments. |
set_initial_condition(U0) | Function set_initial_condition() is used to set initial value of |
solve(time_points[, terminate]) | Compute discrete solution u of the ODE problem at time points |
switch_to(solver_target[, print_info]) | Create a new solver instance which switch to another subclass with same values of common attributes. |
validate_data() | This function is used for extra checking and validating of attributes before the computations start. |
Bases: odespy.RungeKutta.RungeKutta2level
Dormand&Prince Runge-Kutta method of order (5, 4). Implementated in the general Python framework in the RungeKutta module.
Required input arguments:
Name | Description |
---|---|
f | Right-hand side f(u,t) defining the ODE. |
Optional input arguments:
Name | Description |
---|---|
f_args | Extra positional arguments to f: f(u, t, *f_args, **f_kwargs). (default: ()) |
f_kwargs | Extra keyword arguments to f: f(u, t, *f_args, **f_kwargs). (default: {}) |
complex_valued | True if f is complex valued. (default: False) |
disk_storage | Indicates whether u is stored in memory or in file. If string, it is the filename; if False or “”, u is kept in memory; if True, a default filename tmp_odspy.dat is used. (default: False) |
verbose | Integer reflecting output of intermediate quantities. (default: 0) |
u_exact | Function of t returning exact solution. (default: None) |
rtol | Relative tolerance for solution. (default: 1e-06) |
atol | Absolute tolerance for solution. (default: 1e-08) |
first_step | Suggested first time step size for an adaptive algorithm. |
min_step | Minimum step size for an adaptive algorithm. |
max_step | Maximum step size for an adaptive algorithm. |
Methods
adjust_parameters() | This method allows subclasses to adjust (modify or add) entries in the self._parameters dictionary. |
advance() | Advance from t[n] to t[n+1] in (small) adaptive steps. |
check_conditional_parameters() | This function is used to check whether conditional parameters are provided when specified condition fulfilled. |
check_extra(**kwargs) | A parameter may have a keyword extra_check for user-given functions that performs consistency checks on the parameter. |
check_input_range(**kwargs) | Check whether all existing inputs are in right specified range. |
check_input_types(**kwargs) | Check whether all existing inputs are of right specified type. |
compile_string_functions(f, **kwargs) | Compile functions which are supplied as Fortran strings. |
constant_time_step() | Check if self.t has a uniform partition. |
get([parameter_name, print_info]) | Return value of specified input parameters. |
get_order() | Return the order of current method, both for non-adaptive |
get_parameter_info([print_info]) | Return a dictionary containing all properties of all legal parameters in current subclass (i.e., the parameters in self._parameters). |
has_u_t_all() | Return True if self.u_all and self.t_all, defined in |
initialize() | Subclass-specific initialization. |
initialize_for_solve() | |
set([strict]) | Assign values to one or more parameters, specified as keyword arguments. |
set_initial_condition(U0) | Function set_initial_condition() is used to set initial value of |
solve(time_points[, terminate]) | Compute discrete solution u of the ODE problem at time points |
switch_to(solver_target[, print_info]) | Create a new solver instance which switch to another subclass with same values of common attributes. |
validate_data() | This function is used for extra checking and validating of attributes before the computations start. |
Bases: odespy.RungeKutta.RungeKutta2level
Adaptive Runge-Kutta-Fehlberg method of order (4, 5). Implementated in the general Python framework in the RungeKutta module.
Required input arguments:
Name | Description |
---|---|
f | Right-hand side f(u,t) defining the ODE. |
Optional input arguments:
Name | Description |
---|---|
f_args | Extra positional arguments to f: f(u, t, *f_args, **f_kwargs). (default: ()) |
f_kwargs | Extra keyword arguments to f: f(u, t, *f_args, **f_kwargs). (default: {}) |
complex_valued | True if f is complex valued. (default: False) |
disk_storage | Indicates whether u is stored in memory or in file. If string, it is the filename; if False or “”, u is kept in memory; if True, a default filename tmp_odspy.dat is used. (default: False) |
verbose | Integer reflecting output of intermediate quantities. (default: 0) |
u_exact | Function of t returning exact solution. (default: None) |
rtol | Relative tolerance for solution. (default: 1e-06) |
atol | Absolute tolerance for solution. (default: 1e-08) |
first_step | Suggested first time step size for an adaptive algorithm. |
min_step | Minimum step size for an adaptive algorithm. |
max_step | Maximum step size for an adaptive algorithm. |
Methods
adjust_parameters() | This method allows subclasses to adjust (modify or add) entries in the self._parameters dictionary. |
advance() | Advance from t[n] to t[n+1] in (small) adaptive steps. |
check_conditional_parameters() | This function is used to check whether conditional parameters are provided when specified condition fulfilled. |
check_extra(**kwargs) | A parameter may have a keyword extra_check for user-given functions that performs consistency checks on the parameter. |
check_input_range(**kwargs) | Check whether all existing inputs are in right specified range. |
check_input_types(**kwargs) | Check whether all existing inputs are of right specified type. |
compile_string_functions(f, **kwargs) | Compile functions which are supplied as Fortran strings. |
constant_time_step() | Check if self.t has a uniform partition. |
get([parameter_name, print_info]) | Return value of specified input parameters. |
get_order() | Return the order of current method, both for non-adaptive |
get_parameter_info([print_info]) | Return a dictionary containing all properties of all legal parameters in current subclass (i.e., the parameters in self._parameters). |
has_u_t_all() | Return True if self.u_all and self.t_all, defined in |
initialize() | Subclass-specific initialization. |
initialize_for_solve() | |
set([strict]) | Assign values to one or more parameters, specified as keyword arguments. |
set_initial_condition(U0) | Function set_initial_condition() is used to set initial value of |
solve(time_points[, terminate]) | Compute discrete solution u of the ODE problem at time points |
switch_to(solver_target[, print_info]) | Create a new solver instance which switch to another subclass with same values of common attributes. |
validate_data() | This function is used for extra checking and validating of attributes before the computations start. |
Bases: odespy.RungeKutta.RungeKutta2level
User-supplied RungeKutta method, which is defined by providing butcher-table in an 2d-array. Method order should be provided if it is known. If not, the order would be estimated automatically with function get_order().
Required input arguments:
Name | Description |
---|---|
f | Right-hand side f(u,t) defining the ODE. |
butcher_tableau | 2d-array which contains the butcher table for user- supplied Runge-Kutta method. (n,n) array for 1-level Runge-Kutta methods.(n+1,n) array for 2-level Runge- Kutta methods. |
Optional input arguments:
Name | Description |
---|---|
f_args | Extra positional arguments to f: f(u, t, *f_args, **f_kwargs). (default: ()) |
f_kwargs | Extra keyword arguments to f: f(u, t, *f_args, **f_kwargs). (default: {}) |
complex_valued | True if f is complex valued. (default: False) |
disk_storage | Indicates whether u is stored in memory or in file. If string, it is the filename; if False or “”, u is kept in memory; if True, a default filename tmp_odspy.dat is used. (default: False) |
verbose | Integer reflecting output of intermediate quantities. (default: 0) |
u_exact | Function of t returning exact solution. (default: None) |
rtol | Relative tolerance for solution. (default: 1e-06) |
atol | Absolute tolerance for solution. (default: 1e-08) |
first_step | Suggested first time step size for an adaptive algorithm. |
min_step | Minimum step size for an adaptive algorithm. |
max_step | Maximum step size for an adaptive algorithm. |
method_order | Method order for user-defined method if known.A integer for 1-level methods, or a pair of integer for 2-levels methods. |
Methods
adjust_parameters() | This method allows subclasses to adjust (modify or add) entries in the self._parameters dictionary. |
advance() | Advance from t[n] to t[n+1] in (small) adaptive steps. |
check_conditional_parameters() | This function is used to check whether conditional parameters are provided when specified condition fulfilled. |
check_extra(**kwargs) | A parameter may have a keyword extra_check for user-given functions that performs consistency checks on the parameter. |
check_input_range(**kwargs) | Check whether all existing inputs are in right specified range. |
check_input_types(**kwargs) | Check whether all existing inputs are of right specified type. |
compile_string_functions(f, **kwargs) | Compile functions which are supplied as Fortran strings. |
constant_time_step() | Check if self.t has a uniform partition. |
get([parameter_name, print_info]) | Return value of specified input parameters. |
get_order() | Return the order of current method, both for non-adaptive |
get_parameter_info([print_info]) | Return a dictionary containing all properties of all legal parameters in current subclass (i.e., the parameters in self._parameters). |
has_u_t_all() | Return True if self.u_all and self.t_all, defined in |
initialize() | Subclass-specific initialization. |
initialize_for_solve() | |
set([strict]) | Assign values to one or more parameters, specified as keyword arguments. |
set_initial_condition(U0) | Function set_initial_condition() is used to set initial value of |
solve(time_points[, terminate]) | Compute discrete solution u of the ODE problem at time points |
switch_to(solver_target[, print_info]) | Create a new solver instance which switch to another subclass with same values of common attributes. |
validate_data() |
Bases: odespy.RungeKutta.RungeKutta1level
Explicit Forward Euler method implemented in the general RungeKutta Python framework.
Required input arguments:
Name | Description |
---|---|
f | Right-hand side f(u,t) defining the ODE. |
Optional input arguments:
Name | Description |
---|---|
f_args | Extra positional arguments to f: f(u, t, *f_args, **f_kwargs). (default: ()) |
f_kwargs | Extra keyword arguments to f: f(u, t, *f_args, **f_kwargs). (default: {}) |
complex_valued | True if f is complex valued. (default: False) |
disk_storage | Indicates whether u is stored in memory or in file. If string, it is the filename; if False or “”, u is kept in memory; if True, a default filename tmp_odspy.dat is used. (default: False) |
verbose | Integer reflecting output of intermediate quantities. (default: 0) |
u_exact | Function of t returning exact solution. (default: None) |
Methods
adjust_parameters() | This method allows subclasses to adjust (modify or add) entries in the self._parameters dictionary. |
advance() | Advance the solution one time step: t[n] to t[n+1]. |
check_conditional_parameters() | This function is used to check whether conditional parameters are provided when specified condition fulfilled. |
check_extra(**kwargs) | A parameter may have a keyword extra_check for user-given functions that performs consistency checks on the parameter. |
check_input_range(**kwargs) | Check whether all existing inputs are in right specified range. |
check_input_types(**kwargs) | Check whether all existing inputs are of right specified type. |
compile_string_functions(f, **kwargs) | Compile functions which are supplied as Fortran strings. |
constant_time_step() | Check if self.t has a uniform partition. |
get([parameter_name, print_info]) | Return value of specified input parameters. |
get_order() | Return the order of the current method. |
get_parameter_info([print_info]) | Return a dictionary containing all properties of all legal parameters in current subclass (i.e., the parameters in self._parameters). |
has_u_t_all() | Return True if self.u_all and self.t_all, defined in |
initialize() | Subclass-specific initialization. |
initialize_for_solve() | Setting values of internal attributes to be used in iteration. |
set([strict]) | Assign values to one or more parameters, specified as keyword arguments. |
set_initial_condition(U0) | Function set_initial_condition() is used to set initial value of |
solve(time_points[, terminate]) | Compute discrete solution u of the ODE problem at time points |
switch_to(solver_target[, print_info]) | Create a new solver instance which switch to another subclass with same values of common attributes. |
validate_data() | This function is used for extra checking and validating of attributes before the computations start. |
Bases: odespy.solvers.Solver
Superclass for explicit 1-level Runge-Kutta methods. Subclasses are RungeKutta4, Rungekutta2, RungeKutta3, RugeKutta1 (Forward Euler).
Required input arguments:
Name | Description |
---|---|
f | Right-hand side f(u,t) defining the ODE. |
Optional input arguments:
Name | Description |
---|---|
f_args | Extra positional arguments to f: f(u, t, *f_args, **f_kwargs). (default: ()) |
f_kwargs | Extra keyword arguments to f: f(u, t, *f_args, **f_kwargs). (default: {}) |
complex_valued | True if f is complex valued. (default: False) |
disk_storage | Indicates whether u is stored in memory or in file. If string, it is the filename; if False or “”, u is kept in memory; if True, a default filename tmp_odspy.dat is used. (default: False) |
verbose | Integer reflecting output of intermediate quantities. (default: 0) |
u_exact | Function of t returning exact solution. (default: None) |
Methods
adjust_parameters() | This method allows subclasses to adjust (modify or add) entries in the self._parameters dictionary. |
advance() | Advance the solution one time step: t[n] to t[n+1]. |
check_conditional_parameters() | This function is used to check whether conditional parameters are provided when specified condition fulfilled. |
check_extra(**kwargs) | A parameter may have a keyword extra_check for user-given functions that performs consistency checks on the parameter. |
check_input_range(**kwargs) | Check whether all existing inputs are in right specified range. |
check_input_types(**kwargs) | Check whether all existing inputs are of right specified type. |
compile_string_functions(f, **kwargs) | Compile functions which are supplied as Fortran strings. |
constant_time_step() | Check if self.t has a uniform partition. |
get([parameter_name, print_info]) | Return value of specified input parameters. |
get_order() | Return the order of the current method. |
get_parameter_info([print_info]) | Return a dictionary containing all properties of all legal parameters in current subclass (i.e., the parameters in self._parameters). |
has_u_t_all() | Return True if self.u_all and self.t_all, defined in |
initialize() | Subclass-specific initialization. |
initialize_for_solve() | Setting values of internal attributes to be used in iteration. |
set([strict]) | Assign values to one or more parameters, specified as keyword arguments. |
set_initial_condition(U0) | Function set_initial_condition() is used to set initial value of |
solve(time_points[, terminate]) | Compute discrete solution u of the ODE problem at time points |
switch_to(solver_target[, print_info]) | Create a new solver instance which switch to another subclass with same values of common attributes. |
validate_data() | This function is used for extra checking and validating of attributes before the computations start. |
Bases: odespy.RungeKutta.RungeKutta1level
Standard Runge-Kutta method of order 2. Implementated in the general Python framework in the RungeKutta module.
Required input arguments:
Name | Description |
---|---|
f | Right-hand side f(u,t) defining the ODE. |
Optional input arguments:
Name | Description |
---|---|
f_args | Extra positional arguments to f: f(u, t, *f_args, **f_kwargs). (default: ()) |
f_kwargs | Extra keyword arguments to f: f(u, t, *f_args, **f_kwargs). (default: {}) |
complex_valued | True if f is complex valued. (default: False) |
disk_storage | Indicates whether u is stored in memory or in file. If string, it is the filename; if False or “”, u is kept in memory; if True, a default filename tmp_odspy.dat is used. (default: False) |
verbose | Integer reflecting output of intermediate quantities. (default: 0) |
u_exact | Function of t returning exact solution. (default: None) |
Methods
adjust_parameters() | This method allows subclasses to adjust (modify or add) entries in the self._parameters dictionary. |
advance() | Advance the solution one time step: t[n] to t[n+1]. |
check_conditional_parameters() | This function is used to check whether conditional parameters are provided when specified condition fulfilled. |
check_extra(**kwargs) | A parameter may have a keyword extra_check for user-given functions that performs consistency checks on the parameter. |
check_input_range(**kwargs) | Check whether all existing inputs are in right specified range. |
check_input_types(**kwargs) | Check whether all existing inputs are of right specified type. |
compile_string_functions(f, **kwargs) | Compile functions which are supplied as Fortran strings. |
constant_time_step() | Check if self.t has a uniform partition. |
get([parameter_name, print_info]) | Return value of specified input parameters. |
get_order() | Return the order of the current method. |
get_parameter_info([print_info]) | Return a dictionary containing all properties of all legal parameters in current subclass (i.e., the parameters in self._parameters). |
has_u_t_all() | Return True if self.u_all and self.t_all, defined in |
initialize() | Subclass-specific initialization. |
initialize_for_solve() | Setting values of internal attributes to be used in iteration. |
set([strict]) | Assign values to one or more parameters, specified as keyword arguments. |
set_initial_condition(U0) | Function set_initial_condition() is used to set initial value of |
solve(time_points[, terminate]) | Compute discrete solution u of the ODE problem at time points |
switch_to(solver_target[, print_info]) | Create a new solver instance which switch to another subclass with same values of common attributes. |
validate_data() | This function is used for extra checking and validating of attributes before the computations start. |
Bases: odespy.solvers.Adaptive
Superclass for 2-levels adaptive Runge-Kutta methods: DormandPrince, Fehlberg, CashKarp, BogackiShampine, MyRungeKutta (user-supplied RungeKutta methods).
NOTE: This class should be superclass for level-1 methods. A subclass AdaptiveRungeKutta can act as superclass for the level-2 methods. get_order can be in RungeKutta.
Required input arguments:
Name | Description |
---|---|
f | Right-hand side f(u,t) defining the ODE. |
Optional input arguments:
Name | Description |
---|---|
f_args | Extra positional arguments to f: f(u, t, *f_args, **f_kwargs). (default: ()) |
f_kwargs | Extra keyword arguments to f: f(u, t, *f_args, **f_kwargs). (default: {}) |
complex_valued | True if f is complex valued. (default: False) |
disk_storage | Indicates whether u is stored in memory or in file. If string, it is the filename; if False or “”, u is kept in memory; if True, a default filename tmp_odspy.dat is used. (default: False) |
verbose | Integer reflecting output of intermediate quantities. (default: 0) |
u_exact | Function of t returning exact solution. (default: None) |
rtol | Relative tolerance for solution. (default: 1e-06) |
atol | Absolute tolerance for solution. (default: 1e-08) |
first_step | Suggested first time step size for an adaptive algorithm. |
min_step | Minimum step size for an adaptive algorithm. |
max_step | Maximum step size for an adaptive algorithm. |
Methods
adjust_parameters() | This method allows subclasses to adjust (modify or add) entries in the self._parameters dictionary. |
advance() | Advance from t[n] to t[n+1] in (small) adaptive steps. |
check_conditional_parameters() | This function is used to check whether conditional parameters are provided when specified condition fulfilled. |
check_extra(**kwargs) | A parameter may have a keyword extra_check for user-given functions that performs consistency checks on the parameter. |
check_input_range(**kwargs) | Check whether all existing inputs are in right specified range. |
check_input_types(**kwargs) | Check whether all existing inputs are of right specified type. |
compile_string_functions(f, **kwargs) | Compile functions which are supplied as Fortran strings. |
constant_time_step() | Check if self.t has a uniform partition. |
get([parameter_name, print_info]) | Return value of specified input parameters. |
get_order() | Return the order of current method, both for non-adaptive |
get_parameter_info([print_info]) | Return a dictionary containing all properties of all legal parameters in current subclass (i.e., the parameters in self._parameters). |
has_u_t_all() | Return True if self.u_all and self.t_all, defined in |
initialize() | Subclass-specific initialization. |
initialize_for_solve() | |
set([strict]) | Assign values to one or more parameters, specified as keyword arguments. |
set_initial_condition(U0) | Function set_initial_condition() is used to set initial value of |
solve(time_points[, terminate]) | Compute discrete solution u of the ODE problem at time points |
switch_to(solver_target[, print_info]) | Create a new solver instance which switch to another subclass with same values of common attributes. |
validate_data() | This function is used for extra checking and validating of attributes before the computations start. |
Bases: odespy.RungeKutta.RungeKutta1level
Standard Runge-Kutta method of order 3. Implementated in the general Python framework in the RungeKutta module.
Required input arguments:
Name | Description |
---|---|
f | Right-hand side f(u,t) defining the ODE. |
Optional input arguments:
Name | Description |
---|---|
f_args | Extra positional arguments to f: f(u, t, *f_args, **f_kwargs). (default: ()) |
f_kwargs | Extra keyword arguments to f: f(u, t, *f_args, **f_kwargs). (default: {}) |
complex_valued | True if f is complex valued. (default: False) |
disk_storage | Indicates whether u is stored in memory or in file. If string, it is the filename; if False or “”, u is kept in memory; if True, a default filename tmp_odspy.dat is used. (default: False) |
verbose | Integer reflecting output of intermediate quantities. (default: 0) |
u_exact | Function of t returning exact solution. (default: None) |
Methods
adjust_parameters() | This method allows subclasses to adjust (modify or add) entries in the self._parameters dictionary. |
advance() | Advance the solution one time step: t[n] to t[n+1]. |
check_conditional_parameters() | This function is used to check whether conditional parameters are provided when specified condition fulfilled. |
check_extra(**kwargs) | A parameter may have a keyword extra_check for user-given functions that performs consistency checks on the parameter. |
check_input_range(**kwargs) | Check whether all existing inputs are in right specified range. |
check_input_types(**kwargs) | Check whether all existing inputs are of right specified type. |
compile_string_functions(f, **kwargs) | Compile functions which are supplied as Fortran strings. |
constant_time_step() | Check if self.t has a uniform partition. |
get([parameter_name, print_info]) | Return value of specified input parameters. |
get_order() | Return the order of the current method. |
get_parameter_info([print_info]) | Return a dictionary containing all properties of all legal parameters in current subclass (i.e., the parameters in self._parameters). |
has_u_t_all() | Return True if self.u_all and self.t_all, defined in |
initialize() | Subclass-specific initialization. |
initialize_for_solve() | Setting values of internal attributes to be used in iteration. |
set([strict]) | Assign values to one or more parameters, specified as keyword arguments. |
set_initial_condition(U0) | Function set_initial_condition() is used to set initial value of |
solve(time_points[, terminate]) | Compute discrete solution u of the ODE problem at time points |
switch_to(solver_target[, print_info]) | Create a new solver instance which switch to another subclass with same values of common attributes. |
validate_data() | This function is used for extra checking and validating of attributes before the computations start. |
Bases: odespy.RungeKutta.RungeKutta1level
Standard Runge-Kutta method of order 4. Implementated in the general Python framework in the RungeKutta module.
Required input arguments:
Name | Description |
---|---|
f | Right-hand side f(u,t) defining the ODE. |
Optional input arguments:
Name | Description |
---|---|
f_args | Extra positional arguments to f: f(u, t, *f_args, **f_kwargs). (default: ()) |
f_kwargs | Extra keyword arguments to f: f(u, t, *f_args, **f_kwargs). (default: {}) |
complex_valued | True if f is complex valued. (default: False) |
disk_storage | Indicates whether u is stored in memory or in file. If string, it is the filename; if False or “”, u is kept in memory; if True, a default filename tmp_odspy.dat is used. (default: False) |
verbose | Integer reflecting output of intermediate quantities. (default: 0) |
u_exact | Function of t returning exact solution. (default: None) |
Methods
adjust_parameters() | This method allows subclasses to adjust (modify or add) entries in the self._parameters dictionary. |
advance() | Advance the solution one time step: t[n] to t[n+1]. |
check_conditional_parameters() | This function is used to check whether conditional parameters are provided when specified condition fulfilled. |
check_extra(**kwargs) | A parameter may have a keyword extra_check for user-given functions that performs consistency checks on the parameter. |
check_input_range(**kwargs) | Check whether all existing inputs are in right specified range. |
check_input_types(**kwargs) | Check whether all existing inputs are of right specified type. |
compile_string_functions(f, **kwargs) | Compile functions which are supplied as Fortran strings. |
constant_time_step() | Check if self.t has a uniform partition. |
get([parameter_name, print_info]) | Return value of specified input parameters. |
get_order() | Return the order of the current method. |
get_parameter_info([print_info]) | Return a dictionary containing all properties of all legal parameters in current subclass (i.e., the parameters in self._parameters). |
has_u_t_all() | Return True if self.u_all and self.t_all, defined in |
initialize() | Subclass-specific initialization. |
initialize_for_solve() | Setting values of internal attributes to be used in iteration. |
set([strict]) | Assign values to one or more parameters, specified as keyword arguments. |
set_initial_condition(U0) | Function set_initial_condition() is used to set initial value of |
solve(time_points[, terminate]) | Compute discrete solution u of the ODE problem at time points |
switch_to(solver_target[, print_info]) | Create a new solver instance which switch to another subclass with same values of common attributes. |
validate_data() | This function is used for extra checking and validating of attributes before the computations start. |