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Project 1: 1D wave equation with finite elements
The purpose of this project is to derive and analyze a finite element method for
the 1D wave equation

utt = c2uxx, x ∈ [0, L], t ∈ (0, T ],

with boundary and initial conditions

u(0, t) = U0(t), ux(L, t) = 0, u(x, 0) = I(x), ut(x, 0) = V (x) .

The analysis will give insight into how to adjust the default behavior of the
finite element method such that its properties are as good as those for the finite
difference method for this particular equation. With the necessary adjustments
discovered in detailed 1D calculations, one gets a recipe for constructing an
accurate finite element method for simulating 2D and 3D waves in complex
geometries.

Relevant background material consists of

• Time-dependent finite element discretization1, which builds on finite ele-
ment discretization in space2.

• Analysis of wave equations3, which builds on analysis of vibration equa-
tions4.

Introduce a set of Nn = N − 1 nodes numbered from left to right, with coordi-
nates x0, x1, . . . , xN . Associated with these nodes are a set of basis functions
{ϕ0(x), . . . , ϕN (x)}.

Let ue(x, t) be the exact solution of the initial-boundary value problem.
After discretization in time by finite differences, we get a set of time-discrete

1http://tinyurl.com/k3sdbuv/pub/sphinx-fem/._main_fem019.html
2http://tinyurl.com/k3sdbuv/pub/sphinx-fem/._main_fem013.html
3http://tinyurl.com/k3sdbuv/pub/sphinx-wave/._main_wave004.html
4http://tinyurl.com/k3sdbuv/pub/pub/sphinx-vib/._main_vib000.html#analysis-of-the-numerical-scheme
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problems for un
e (x), where un

e (x) ≈ ue(x, tn). These functions of space are then
approximated by finite element expansions

un
e (x) ≈ un(x) =

∑
j∈Is

cn
j ϕj(x), (1)

in case the linear system for the coefficients {cn
j }j∈Is is modified such that

cj
0 = U0(tn). The unknown coefficients now involve u at all the nodes and
consequently Is = {0, . . . , N}.

Alternatively, one can use a boundary function to take care of the Dirichlet
condition at x = 0:

un(x) ≡ u(x, tn) = U0(tn)ϕ0(x) +
∑
j∈Is

cn
j ϕj+1(x) . (2)

Now, Is = {0, . . . , N − 1} and the unknowns cn
0 , . . . , cn

N−1 are the values of u
at the N nodes x1, . . . , xN , i.e., all the nodes where we do not have Dirichlet
conditions.

a) Set up equations for the coefficients c0
j , j ∈ Is, associated with the initial con-

dition u(x, 0) = I(x). Use two methods: Galerkin and collocation/interpolation.

b) Use a finite difference method in time to formulate a sequence of spatial
problems for un

e (x), n = 0, 1, . . . , Nt. A special problem is needed for n = 1 in
order to incorporate the boundary condition with ut(x, t).

c) Apply Galerkin’s method to derive a variational form of each of the spatial
problems. Integrate the term with the second-order derivative by parts. Express
the variational form in terms of un+1, un, and un−1.

d) Insert (1) or (2) in the variational form and derive the linear system to be
solved at each time level. Express the system in the form

Mcn+1 = 2Mcn −Mcn−1 −∆t2c2Kcn,

where M and K are matrices, cn = {cn
j }j∈Is

. Set up the formulas for the matrix
entries Mi,j and Ki,j .

Remark. Unless M is diagonal, a (tridiagonal) linear system must be solved at
each time step, whereas the finite difference method leads to an explicit formula
for un+1

i at each spatial point at a new time level.

e) Use P1 elements and compute element matrices and vectors corresponding to
the M and K matrices. Assemble the element contributions to a global matrices.

f) Interpret equation number i in the linear system as a finite difference approx-
imation of utt = c2uxx using the following scheme:

[DtDt(u + 1
6∆x2DxDxu) = c2DxDxu]ni . (3)
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Hint. Write out an arbitrary equation in the linear system and group the
unknown coefficients to mimic the differences above. Then substitute the coeffi-
cients by their corresponding u values, using a notation un

i as the finite element
approximation of ue(xi, tn), and write the finite element equation in the same
form as a finite difference scheme.

g) Perform an analysis of the scheme (3) in the same way as is done for the
corresponding finite difference scheme in the course notes5. That is, investigate
a Fourier component un

p = exp (i(kp∆x− ω̃n∆t)). Show that the stability
criterion is

C ≤ 1√
3

,

and therefore that any hope for recovering the exact solution for C = 1 becomes
impossible.

h) Find the numerical dispersion relation (ω̃ expressed by other parameters)
and plot the error in wave velocity c̃/c (c̃ = ω̃/k, c = ω/c) as a function of k∆x
for various Courant numbers. Compare with the corresponding plot for the
finite difference method6 for utt = c2uxx (computed with the aid of the program
dispersion_relation_1D.py7).

i) Use the Trapezoidal rule to compute the M matrix. Show that the finite
element method with P1 elements now produces the same scheme at the interior
mesh points as the standard finite difference method for utt = c2uxx. Also show
that the first and last equations, which are affected by the boundary conditions,
also are identical in the two methods.

j) Instead of using the Trapezoidal rule to produce a diagonal M matrix, one can
replace M by diag(Me), where e = (1, 1, . . . , 1) and diag(w) means a diagonal
matrix with the vector w on the diagonal. The interpretation of this approach is
that we sum each row in M and place the sum on the diagonal. Show that this
method produces the same results as Trapezoidal integration (in a 1D problem).
Also show that if you replace each row in the element matrices associated with
M by the row sum on the diagonal, the same result arises.
Filenames: wave1D_fem.py, wave1D_fem.pdf.

Remarks. Say we want to solve the 3D wave equation utt = c2∇2u with finite
elements and get the same stability as in the finite difference method. We can
then compute M and K in the usual way and thereafter just replace M by
diag(Me). When the mass matrix is lumped this way and becomes diagonal,
we get the same representation of of the terms un−1, un, and un+1 as in the
finite difference method. The K matrix also resembles finite differences for P1
elements. With Q1 elements the K matrix has more nonzero entries per row,
but this does not change the numerical properties of the scheme significantly.
The key issue is to use a lumped mass matrix.

5http://hplgit.github.com/INF5620/doc/pub/sphinx-wave/main_wave.html#analysis-of-the-continuous-and-discrete-solutions
6http://hplgit.github.com/INF5620/doc/pub/sphinx-wave/main_wave.html#wave-pde1-fig-disprel
7https://github.com/hplgit/INF5620/blob/gh-pages/src/wave/dispersion_relation_1D.py

3

http://hplgit.github.com/INF5620/doc/pub/sphinx-wave/main_wave.html#analysis-of-the-continuous-and-discrete-solutions
http://hplgit.github.com/INF5620/doc/pub/sphinx-wave/main_wave.html#wave-pde1-fig-disprel
http://hplgit.github.com/INF5620/doc/pub/sphinx-wave/main_wave.html#wave-pde1-fig-disprel
https://github.com/hplgit/INF5620/blob/gh-pages/src/wave/dispersion_relation_1D.py

