Exam INF5620, 2014

Hans Petter Langtangen

Dec 13, 2014

This is meant to be the final version of the exam topics.

About the exam. Six problems are given for this exam. For each problem, the
candidate must prepare a 20 min oral presentation in Norwegian or English. Try
to communicate a good overview and understanding of the topic, but compose
the talk so that you can demonstrate knowledge about details too. Some of the
problems require graphical illustrations - you can either sketch graphics on the
whiteboard or bring your laptop or tablet to show or compute the graphics. You
can send movies to hpl@simula.no and get them played on the exam (having
them on GitHub is perhaps easiest). Otherwise there are no aids besides a
whiteboard. You will have access to a printout of the present document in the
exam room. (Experience with this type of exam and various aids tells that
learning the content by heart gives by far the best delivery and communication
of understanding.)

You will throw a die 10 minutes before your exam starts, and the number of
eyes determines the problem to be presented. You can then use all the material
you have brought with you to make the final preparations for the talk. After the
talk, you will be given some questions, either about parts of your presention or
facts from the other problems.

Note: We write a lot during the presentations. The writing is no indication
of whether you say good or bad things.

Show up 0845 in the morning!

Usually some candidates decide not to show up on the exam so everybody
must meet 0845 in the morning on the day they want to take the exam to
get their specific time for the exam that day (0900, 0930, 1000, 1030, and
so on). Candidates can choose their times in the sequence they appear in
the list of candidates.
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Problem 1: 2D wave equation

a) Formulate a 2D linear wave equation with variable wave velocity, a linear
damping term, and a source term. State the type of boundary and initial
conditions needed for this type of PDE.

b) Discretize the problem on a rectangle with a finite difference method and
a uniform mesh. Explain how the various types of boundary conditions you
mentioned under a) can be taken care of in the scheme.

c) Formulate a version of the wave equation problem such that the solution is a
constant. What is the practical appliction of such a trivial solution?

d) Derive an exact solution of the discrete equations that you can use for
verifying the implementation. Assume constant wave velocity, no damping, and
no source term. Make your own choice of boundary and initial conditions.

e) Explain what the method of manufactured solution is. Set up a specific
manufactured solution and calculate the source term. What are the initial and
boundary conditions? How can you take advantage of the manufactured solution
to verify a computer implementation?

f) Explain a physical problem where the 2D wave equation model applies.
Simulate a case and make a movie of the solution. (The movie can be shown
on your computer at the exam, or you can send it to hpl@simula.no and get it
played at the exam.)
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Problem 2: 1D finite elements for approximation

a) Approximate the function f(z) = (1 — z) on [0, 1] by 2 P1 elements and
1 P2 element, using a projection or least squares method. Sketch or plot the
solutions. Explain in detail how the computations are made. In particular you
should comment upon the following concepts: element, node, cell, vertex, degree
of freedom, reference element, assembly, linear system.

b) Introduce a boundary function such that the approximation u(z) equals f(x)
at the end points x = 0, 1. Sketch or plot the solutions in this case.

¢) Use the interpolation or collocation method with P1 and P2 elements with
the collocation points x = 0,0.5, 1.

d) Construct a function space with sine functions suitable for this approximation
problem. Compute the approximate solution and show how fast the amplitudes
of the coefficients in front of the sine functions decay. Compare the error of
using one sine function with the errors in a).



Problem 3: 1D finite elements for a wave equation

We address a 1D wave equation problem

Ut = Uy, x € (0,L)
u(0,t) =0
Uy (L) =0
u(z,0) = I(x)
ut(x,0) =0

a) Use a finite difference method in time and a Galerkin method in space. Derive
the system of equations to be solved at each time level.

b) Use P1 finite elements for the spatial discretization. Set up the element
matrices for the various terms in the variational formulation. Set up the assembled
linear system and express it in finite difference operator notation. Comment
upon the differences from a pure finite difference method for this wave equation
problem.

c) Explain what kind of artifacts that can appear in a pure finite difference
solution of this wave equation problem (keep boundary conditions out of the
discussion).

Hint. A wave entering a medium with a different (constant) wave velocity is
an example on a kind of physical problem that may trigger numerical artifacts.
Below is a wave that enters a medium with 1/4 of the wave velocity (more
precisely, the Courant number jumps from 1 to 0.25). The propagation of waves
in the left medium is exact, while the propagation in the other medium is subject
to numerical errors. (Note: These computations have u, = 0 as boundary
condition at both end points!)
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Figure 1: Little noise. See movie.


http://hplgit.github.io/INF5620/doc/pub/mov-wave/pulse1_in_two_media/movie.ogg
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Figure 2: Significant noise. See movie.

d) Find an expression for the non-dimensional numerical wave velocity ¢/c,
where ¢ is the numerical wave velocity and c is the exact velocity, when we use
P1 elements for the spatial discretization. Compare in a plot this expression
with the one we have in a pure finite difference method. Comment on accuracy
and stability for the finite difference versus the finite element method.

e) Can you change “numerical ingredients” in the finite element method such
that it reproduces the discrete equations of the finite difference method in this
problem?


http://hplgit.github.io/INF5620/doc/pub/mov-wave/pulse2_in_two_media/movie.ogg

Problem 4: Finite differences for a nonlinear PDE

We look at a nonlinear diffusion problem

o(u)uy = 8%0 (a(u)?i) , z€(0,1)
u(0,t) =

u(l,t) =

u(z,0) = I(x)

Here, o(u) and a(u) are possibly nonlinear functions of u.

a) Formulate a Picard iteration method for linearizing the PDE directly (after
time discretization).

b) Formulate a Newton method for linearizing the PDE directly (after time
discretization).

c) Discretize the original nonlinear problem by a backward difference in time
and a centered difference in space.

d) Show that it does not matter whether we use Picard iteration first on the
PDE problem and then discretize by finite differences, or if we first discretize
by finite differences and then use Picard iteration for the resulting system of
nonlinear equations.

e) Is the equivalence result in d) true if we use a Newton method? Explain in
detail.



Problem 5: A Galerkin method for spatial discretization of
a nonlinear PDE

We address the same nonlinear diffusion problem as in the previous problem.

a) Use a Galerkin method for discretizing in space and a backward finite
difference in time. Derive the resulting system of nonlinear equations to be
solved at each time level. Use Picard iteration to linearize the system.

b) Use Picard iteration to linearize the PDE problem. Then use a backward
finite difference in time and a Galerkin method in space. Show that the resulting
linear systems to be solved at each time level is the same as in a).

¢) Use the method in a), but apply Newton’s method to linearize the equations.
Derive expressions for the Jacobian and explain how it and the right-hand side
arising in Newton’s method can be computed.

d) Use a Newton method to linearize the PDE problem directly, after a backward
difference discretization in time, but prior to a Galerkin discretization in space.
Compare the linear system (arising from the discrete space-time problem) to be
solved in each Newton iteration with the one derived in the previous subexercise.

e) Set up the expression for the Jacobian in Newton’s method when g(u) = 1+u?
and a(u) = |u,|™ for a real number m.



Problem 6: A nonlinear ODE

The (scaled) velocity of a body falling in a fluid is governed by the following
equation:

V'(t) = —Blvlv—1, v(0)=0
The velocity v(t) is positive upwards.
a) Explain how this model arises from physical principles.

b) Formulate a Forward Euler method, a Backward Euler method, and a Crank-
Nicolson method. Linearize the Backward Euler method by using the previous
time step in the factor |v|. Interpret this approach as a Picard iteration method.
Linearize the Crank-Nicolson method by using a geometric mean for the nonlinear
term |v|v.

¢) Show plots or sketch the solution corresponding to 8 =1 and At =0.5,1.1.

d) To analyze the behavior of the schemes, we need a linear difference equation.
The “worst case” corresponds to the highest possible velocity. Find this velocity
and call it vy (for terminal velocity as ¢ — c0). The worst case version of the
ODE for stability analysis can take the factor |v| as a known |vr| constant. Seek
symbolic, exact solutions v™ = b(A™ — 1) of the difference schemes in this case,
where b and A are coefficients to be determined (v° = 0 as it should), and n is a
time level counter. Use the exact solution of the difference equations to predict
when the numerical solution is stable.

Note.

The oscillatory behavior of the Backward Euler and Crank-Nicolson schemes
from b) when At > 1 (8 = 1) cannot be explained by the exact symbolic
solution since this feature stems from the effect that v(At) = —At when
v(0) = 0. That is, the “worst case” scenario for this effect corresponds
to setting |v| = 0 and demanding the qualitative property |[v(At)| < |vr|,
which gives the condition At < |vr| for non-oscillatory behavior.




