
The second obligatory project

INF5620

2016

Project 1: Nonlinear diffusion equation
Project size: approximately 35 h. This particular project will have significant
overlap with topics for the final exam.

The goal of this project is to discuss various numerical aspects of a nonlinear
diffusion model:

%ut = ∇ · (α(u)∇u) + f(xxx, t),

with initial condition u(xxx, 0) = I(x) and boundary condition ∂u/∂n = 0. The
coefficiet % is constant and α(u) is a known function of u.

Required background knowledge for this project.

1. Discretization of PDEs by finite differences in time and finite element
in space.

2. Solution of linear diffusion equations with FEniCS.

3. Theory of methods for solving nonlinear PDEs, in particular how to
define Picard iterations on a variational form.

4. Verification procedures: testing against exact solutions and measuring
convergence rates.

a) Introduce some finite difference approximation in time that leads to an
implicit scheme (say a Backward Euler, Crank-Nicolson, or 2-step backward
scheme). Derive a variational formulation of the initial condition and the spatial
problem to be solved at each time step (and at the first time step in case of a
2-step backward scheme).

b) Formulate a Picard iteration method at the PDE level, using the most
recently computed u function in the α(u) coefficient. Derive general formulas
for the entries in the linear system to be solved in each Picard iteration. Use
the solution at the previous time step as initial guess for the Picard iteration.

c) Restrict the Picard iteration to a single iteration. That is, simply use a u
value from the previous time step in the α(u) coefficient. Implement this method
with the aid of the FEniCS software (in a dimension-independent way such that
the code runs in 1D, 2D, and 3D).

d) The first verification of the FEniCS implementation may reproduce a constant
solution. Find values of the input data %, α, f , and I such that u(x, t) = C, where
C is some chosen constant. Write test functions that verify the computation
of a constant solution in 1D, 2D, and 3D for P1 and P2 elements (use simple
domains: interval, square, box).

e) The second verification of the FEniCS implementation may reproduce a
simple analytical solution of the PDE problem. Assmue α(u) = 1, f = 0,
Ω = [0, 1] × [0, 1], P1 elements, and I(x, y) = cos(πx). The exact solution is
then u(x, y, t) = e−π2t cos(πx). The error in space is then O(∆x2) + O(∆y2),
while the error in time is O(∆tp), with p = 1 for the Backward Euler scheme
and p = 2 for the Crank-Nicolson or the 2-step backward schemes. We can then
write a model for an error measure:

E = Kt∆tp +Kx∆x2 +Ky∆y2 = Kh,

if h = ∆tp = ∆x2 = ∆y2 is a common discretization measure and K =
(Kt +Kx +Ky). A suitable measure E can be taken as the discrete L2 norm of
the solution at the nodes, computed by

e = u_e.vector().array() - u.vector().array()
E = numpy.sqrt(numpy.sum(e**2)/u.vector().array().size)

for some fixed point of time, say t = 0.05. In this code segment, u_e is a
projection of the exact solution onto the function space used for u.

Show that E/h remains approximately constant as the mesh in space and
time is simultaneously refined (i.e., h is reduced).

f) The analytical solution in the test above is valid only for a linear version of the
PDE without a source term f . To get an indication whether the implementation
of the nonlinear diffusion PDE is correct or not, we can use the method of
manufactured solutions. Say we restrict the problem to one space dimension,
Ω = [0, 1], and choose

u(x, t) = t

∫ x

0
q(1− q)dq = tx2

(
1
2 −

x

3

)
(1)

and α(u) = 1 + u2. The following sympy session computes an f(x, t) such that
the above u is a solution of the PDE problem:

2

>>> from sympy import *
>>> x, t, rho, dt = symbols(’x t rho dt’)
>>>
>>> def a(u):
... return 1 + u**2
...
>>> def u_simple(x, t):
... return x**2*(Rational(1,2) - x/3)*t
...
>>> # Show that u_simple satisfies the BCs
>>> for x_point in 0, 1:
... print ’u_x(%s,t):’ % x_point,
... print diff(u_simple(x, t), x).subs(x, x_point).simplify()
...
u_x(0,t): 0
u_x(1,t): 0
>>> print ’Initial condition:’, u_simple(x, 0)
Initial condition: 0
>>>
>>> # MMS: full nonlinear problem
>>> u = u_simple(x, t)
>>> f = rho*diff(u, t) - diff(a(u)*diff(u, x), x)
>>> print f.simplify()
-rho*x**3/3 + rho*x**2/2 + 8*t**3*x**7/9 - 28*t**3*x**6/9 +
7*t**3*x**5/2 - 5*t**3*x**4/4 + 2*t*x - t

Compare the FEniCS solution and the u given above as a function of x for a
couple of t.

Remark.
A convergence rate test with the manufactured solution above meets
fundamental problems, because in convergence tests we assume that the
temporal and spatial discretization errors are the only errors. For a not
very small ∆t, the single Picard iteration contributes with an error that will
pollute the error model assumed in convergence tests. However, as ∆t→ 0,
the error associated with a single Picard iteration may get significantly less
than the (also small) discretization errors such that correct convergence
rate can be obtained.

In the general case with a not sufficiently small ∆t, we must perform
Picard iterations and use a tolerance for stopping the iterations that is
significantly smaller than the discretization errors.

(Numerical integration in FEniCS will also lead to errors that can
theoretically pollute the measured convergence rates, but the error in
numerical integration formulas is of the same order or smaller than the
discretization errors so impact of numerical integration is not important.)

g) List the different sources of numerical errors in the FEniCS program.

h) (Optional.) To verify the nonlinear PDE implementation in FEniCS by
checking convergence rate, we must eliminate the error due to a single Picard
iteration. This can be done by finding a manufactured solution that fulfills the

3

PDE with α(u(1)), where u(1) is the solution at the previous time step. Choosing
the manufactured solution (1) and α(u) = 1 + u2, the following sympy session
computes the necessary source term f :

>>> u_1 = u_simple(x, t-dt)
>>> f = rho*diff(u, t) - diff(a(u_1)*diff(u, x), x)
>>> print simplify(f)
rho*x**2*(-2*x + 3)/6 -
(-12*t*x + 3*t*(-2*x + 3))*(x**4*(-dt + t)**2*(-2*x + 3)**2 + 36)/324
- (-6*t*x**2 + 6*t*x*(-2*x + 3))*(36*x**4*(-dt + t)**2*(2*x - 3)
+ 36*x**3*(-dt + t)**2*(-2*x + 3)**2)/5832

Perform a convergence rate test by decreasing h = ∆tp = ∆x2. (Observe that
the error E is proportional to h, or assume E ∼ hr and compute r from two
values of h and E and observe that r → 1.)

i) (Optional.) Simulate the nonlinear diffusion of Gaussian function. Due to
symmetry of the Gaussian function (with respect to x = 0 and y = 0), it suffices
to simulate one quarter of the domain:

I(x, y) = exp
(
− 1

2σ2

(
x2 + y2)), (x, y) ∈ Ω = [0, 1]× [0, 1],

where σ measures the width of the Gaussian function. Choose α(u) = 1 + βu2,
where β is a constant one can play around with. The boundary conditions in
this project, ∂u/∂n = 0 are compatible with symmetry conditions on x = 0 and
y = 0, while at x = 1 and y = 1 we assume a wall so the diffused substance
cannot escape from the domain (which means ∂u/∂n = 0).

4

