Study guide: Finite difference methods for wave

motion

Hans Petter Langtangen':?

Center for Biomedical Computing, Simula Research Laboratory®

Department of Informatics, University of Oslo?

2016

‘ The complete initial-boundary value problem

a2~ axe x€(0,L), t(0,T]
u(x,0) = I(x), xeo,1]

17}
eu 0 =0, xeo,1]
u(0,8) =0, te (0, 7]
u(L,t)=0, te(0,7]

1)
@
®)
O
(®)

Demo of a vibrating string

o Our numerical method is sometimes exact (!)

@ Our numerical method is sometimes subject to serious
non-physical effects

‘ Finite difference methods for waves on a string

Waves on a string can be modeled by the wave equation

Pu_ e
o2~ ox?
u(x, t) is the displacement of the string

Demo of waves on a string.

‘ Input data in the problem

o Initial condition u(x,0) = I(x): initial string shape

o Initial condition u;(x,0) = 0: string starts from rest

e c =/ T/o: velocity of waves on the string

o (T is the tension in the string, o is density of the string)

o Two boundary conditions on u: u = 0 means fixed ends (no
displacement)

Rule for number of initial and boundary conditions:

@ uy in the PDE: two initial conditions, on v and u;
o u; (and no wy) in the PDE: one initial conditions, on u

@ Uy, in the PDE: one boundary condition on u at each
boundary point

| Demo of a vibrating string (C = 1.0012)

Ooops!

‘ Step 1: Discretizing the domain

Mesh in time:

O=ty<ti<tb< - <ty1<ty=T (6)

Mesh in space:

O0=xp<x1 <Xxp<---<Xxp—1<xn, =1L 7)

Uniform mesh with constant mesh spacings At and Ax:

xi=iAx, i=0,....,Ny, ti=nAt, n=0,...,N; (8)

‘ Step 2: Fulfilling the equation at the mesh points

Let the PDE be satisfied at all interior mesh points:

2 , 0
W“(Xhtn) =c M”(Xhtn)‘ 9
fori=1,...,Ny—landn=1,... Ny — 1.

For n = 0 we have the initial conditions u = /(x) and u; = 0, and
at the boundaries i = 0, N we have the boundary condition u = 0.

Step 3: Algebraic version of the PDE

Replace derivatives by differences:

0t oy gr-l N oun 4y
ul T 2l Uy — 20 Uy
At? Ax? ’

(10)

In operator notation:

[DeDyu = CZDXDX]IIJ (11)

‘ The discrete solution

o The numerical solution is a mesh function: uf ~ ue(x;, t,)
o Finite difference stencil (or scheme): equation for u]" involving
neighboring space-time points
Stencil at interior point
5
4
Fo)
c 3 ©
x
3
3
£, fo 0O fo
© © ©
o)
1 Q
0
0 1 2 3 4 5
index i

‘ Step 3: Replacing derivatives by finite differences

Widely used finite difference formula for the second-order derivative:

02 MmN

3?‘1(&3 tn) ~ # = [D¢Dyu]?
and

52 ufly —2u? 4+ ul

Wu(x,-, ty) ~ % = [DxDyu]?

Step 3: Algebraic version of the initial conditions

o Need to replace the derivative in the initial condition
u(x,0) = 0 by a finite difference approximation

o The differences for uy and uy, have second-order accuracy
o Use a centered difference for u;(x,0)

Dyu]”=0, n=0 = u."’lzu-"Jrl, i=0,...,Ny
i

‘ Step 4: Formulating a recursive algorithm

o Nature of the algorithm: compute v in space at
t = At,2At,3At, ...

o Three time levels are involved in the general discrete equation:
n+1,nn—1

o uf and u;“l are then already computed for i =0,..., Ny, and
u™* is the unknown quantity

Write out [DDyu = c?DxDy]? and solve for u™*?,

uf =yt 20l + C2 (ufyy —2uf +ufy) (12)

i

The finite difference stencil

Stencil at interior point
5
4
o)
c 3 ©
x
3
Ee]
=, 0O 0O 0O
A4 A4 A4
o)
1 ©
0
0 1 2 3 4 5
index i

‘ The algorithm

O Compute u? =1(x;) fori=0,..., Ny
1

@ Compute u} by (14) and set u} = 0 for the boundary points

i

i=0andi= Ny, forn=12_....N—1,

© For each time level n=1,2,... N, — 1
0 apply (12) to find v fori=1,..., N, —1

@ set u*! = 0 for the boundary points i = 0, i = N.

‘ The Courant number

C= “Ax (13)

is known as the (dimensionless) Courant number

There is only one parameter, C, in the discrete model: C lumps
mesh parameters At and Ax with the only physical parameter, the
wave velocity ¢. The value C and the smoothness of /(x) govern
the quality of the numerical solution.

‘ The stencil for the first time level

@ Problem: the stencil for n = 1 involves ufl, but time
t = —At is outside the mesh

o Remedy: use the initial condition u; = 0 together with the
stencil to eliminate u,-’1

Initial condition:

[Dau=0° = ul=u

Insert in stencil [D;Dyu = czDXDX]? to get

1
uf = uf + ECZ (ufpy =20 +uy) (14)

‘ Moving finite difference stencil

web page or a movie file.

‘ Sketch of an implementation (1) ‘ PDE solvers should save memory

o Arrays:
o uli] stores uf*t Important to minimize the memory usage
° “—; [i] stores L’i:71 The algorithm only needs to access the three most recent time
o u_2[1] stores u; levels, so we need only three arrays for u,f”'l, uf!, and =,
i=0,...,Ny. Storing all the solutions in a two-dimensional array
of size (Nx + 1) x (N; + 1) would be possible in this simple
Naming convention one-dimensional PDE problem, but not in large 2D problems and
u is the unknown to be computed (a spatial mesh function), u_1 not even in small 3D problems.
denotes the latest computed time level, u_2 corresponds to one
time step back in time.
of an implementation (2) ‘ Verificati
Given mesh points as arrays = and t (z[i], t[n])
dx = x[1] - x[0]
dt = t[1] - t[o]
C = cdt/dx # Courant number
Nt = len(t)-1
C2 = Ck*2 # Help variable in the scheme
Set initial condition u(z,0) = I(z) o Think about testing and verification before you start
for i in range(0, Nxtl): implementing the algorithm!

u 1[i] = I(x[il)

o Powerful testing tool: method of manufactured solutions and
Apply special formula for first step, imcorporating du/dt=0

for i in range(l, Nx): computation of convergence rates
ulil = uw_1[i] + 0.5*C#*2(u_1[i+1] - 2#u_1[i] + w_1[i-11) . .
ul0] = 0; ulNx] = 0 # Enforce boundary conditions o Will need a source term in the PDE and u(x,0) # 0

Switch variables before nest step @ Even more powerful method: exact solution of the scheme

u2[:]1, uwil:] = ui, u

for n in range(l, Nt):
Update all inner mesh points at time t[n+1]
for i in range(1, Nx):
ulil = 2+u_1[i] - u_2[i] + \
Cx#2(u_1[i+1] - 2%u_1[il + u_1[i-1])

Insert boundary conditions
ul0] = 0; wulNx] =0

‘ A slightly generalized model problem ‘ Discrete model for the generalized model problem

Add source term f and nonzero initial condition u(x,0):

[DeDru = 2D, Dy + 117 (20)
U = Py + F(x, t), (15) Writing out and solving for the unknown u,f’“:
u(x,0) = I(x), xelo,L] (16)
u(x,0) = V(x), x €[0,L] (17) . o ., . i i)
u(0.t) =0, e>0. (19) WP = a2l Cufly — 207 +) + AP (21)
u(L,t)=0, t>0 (19)

‘ Modified equation for the first time level

Centered difference for u;(x,0) = V(x):

[Dyru=V]} = u'=ud} 241V,

Inserting this in the stencil (21) for n = 0 leads to

1 1
ut =0 — AtV + ECZ (ufyg —2uf +uf) + EAt2f,-" (22)

Manufactured solution: principles

o Disadvantage with the previous physical solution: it does not
test V#0and f #0
o Method of manufactured solution:
o Choose some ue(x, t)
o Insert in PDE and fit f
o Set boundary and initial conditions compatible with the chosen
ue(x, t)

‘ Testing a manufactured solution

Introduce common mesh parameter: h = At, Ax = ch/C
This h keeps C and At/Ax constant

Select coarse mesh h: hy

Run experiments with h; = 2~7hy (halving the cell size),
i=0,...,m

Record the error E; and h; in each experiment
o Compute pariwise convergence rates r; = In Ej;1/E;/In hiy1/hi
@ Verification: r; — 2 as i increases

Using an analytical solution of physical significance

o Standing waves occur in real life on a string
o Can be analyzed mathematically (known exact solution)
ue(x,y, t)) = Asin (%x) cos (%ct) (23)
o PDE data: f =0, boundary conditions ue(0, t) = ue(L,t) =0,
initial conditions /(x) = Asin (¥x) and V =0
o Note: uf“ # ue(xi, tnt1), and we do not know the error, so

testing must aim at reproducing the expected convergence
rates

‘ Manufactured solution: example

ue(x,t) = x(L — x)sint

PDE uy = Pup + F:

—x(L—x)sint=—=2sint+f =f=(2—-x(L—x))sint

Implied initial conditions:

u(x,0)=1(x)=0
up(x,0) = V(x) = —x(L — x)

Boundary conditions:

u(0,t) =u(L,t)=0

‘ Constructing an exact solution of the discrete equations

o Manufactured solution with computation of convergence rates:
much manual work

o (Simpler and more powerful: use an exact solution for u?, if
possible to find.)

o A linear or quadratic ue in x and t is often a good candidate

‘ Analytical work with the PDE problem

Here, choose ue such that ue(0, t) = ue(L, t) = 0:
1
ue(x,t) = x(L —x)(1 + 51‘)7
Insert in the PDE and find f:

f(x,t) = 2(1 + t)c?

Initial conditions:

1) = x(L—x), V(x)= %X(L —3

| Analytical work with the discrete equations (1)

1 1
[DxDxte]f = (1 + 5ta)[DxDx(xt = x*)]i = (1 + 5 tn)[LDxDx — DxDrx®

1
= =21+ 5tn)

Now, " =2(1 + %1.’,,)c2 and we get

1 1
[D: Dy ue—c? Dy Dyue—f]7 = 0752(71)2(1+§tn)+2(1+§t,,)c2 =0

Moreover, ue(xj,0) = I(x;), due/Ot = V(x;) at t =0, and
ue(xo, t) = ue(xn,, t) = 0. Also the modified scheme for the first
time step is fulfilled by ue(x;, tn).

‘ Implementation

| Analytical work with the discrete equations (1)

We want to show that ve also solves the discrete equations!

Useful preliminary result:

2 2 g2
b1 =2t Tty

[Dy Dt = N =(n+1?—n’+(n-12=2
(24)

ot =2ttt ((n+1)—n+(n—1)At
[DeDut]” = Af? - At? =0
(25)

Hence,

1 1
[D¢Dyue]? = xi(L — x;)[De Dy (1 + 51‘)]" =x(L— x,-)E[DtD,t]" =0

‘ Testing with the exact discrete solution

o We have established that

u™ = ve(xi, trs1) = xi(L — xi)(1 + tns1/2)
@ Run one simulation with one choice of ¢, At, and Ax
o Check that max; |u;'4rl — ue(Xiy tny1)| < €, € ~ 10714 (machine
precision + some round-off errors)

@ This is the simplest and best verification test

Later we show that the exact solution of the discrete equations can
be obtained by C =1 (!)

‘ The algorithm

@ Compute uf = I(x;) for i =0,..., Ny

i
@ Compute u} by (14) and set u} = 0 for the boundary points
i=0andi= Ny, forn=12 ... N—-1,
© For each time level n=1,2,... N; — 1
0 apply (12) to find u/™* for i=1,..., Ny — 1
@ set u?*! = 0 for the boundary points i =0, i = N,.

‘ What do to with the solu

o Different problem settings demand different actions with the

computed u,f’+1 at each time step

@ Solution: let the solver function make a callback to a user
function where the user can do whatever is desired with the
solution

o Advantage: solver just solves and user uses the solution

def user_action(u, x, t, n):
ul[i] at spatial mesh points (4] at time t[n]
plot u
or store u

| Making a solver function (2)

def solver(I, V, f, ¢, L, dt, C, T, user_action=None):

Special formula for first time step
n =0
for i in range(1, Nx):
ulil = w_1[i] + de*V(x[i]) + \
0.5%C2% (u_1[i-1] - 2*u_1[i] + u_1[i+1]) + \
0.5%dt**2+f (x[i], t[n])
uf0] = 0; ulNx] =0

if user_action is not lNone:
user_action(u, x, t, 1)

Switch variables before next step
u2l:], uil:]l =ui, u

a

‘ Ver n

Exact solution of the PDE problem and the discrete equations:
ve(x,t) = x(L — x)(1 + %t)

n: exact quadratic solu

def test_quadratic():
nunCheck that u(e,t)=z(L-z)(1+t/2) is ezactly reproduced.”""

def u_exact(x, t):
return x*(L-x)*(1 + 0.5%t)

def I(x):
return u_exact(x, 0)
def V(x):
return 0.5%u_exact(x, 0)
def f(x, t):
return 2%(1 + 0.5%t)*c**2
2.5
1.5
0.75
6 # Very coarse mesh for this ewact test
Cx(L/Nx)/c
18

def assert_no_error(u, x, t, n):
ue = u exact(x, t[n])

| Making a solver function (1)

We specify At and C, and let the solver function compute
Ax = cAt/C.

def solver(I, V, f, c, L, dt, C, T, user_action=None):
nnnSolue u_tt=c-2+u_zz + f on (0,1)z(0,T]."""
Nt = int(round(T/dt))
t = linspace(0, Ntxdt, Nt+1) # Hesh points in time
dx = dt*c/float(C)
Nx = int(round(L/dx))

x = linspace(0, L, Nx+1) # Mesh points in space
dx = x[1] - x[0]
C2 = C*x2 # Help variable in the scheme

if £ is None or f ==
£ = lambda x, t: 0

if V is None or V ==
V = lambda x: 0

zeros(Nx+1) # Solution array at new time level
_1 = zeros(Nx+1) # Solution at I time level back
_2 = zeros(Nx+1) # Solution at 2 time levels back

gee

import time; t0 = time.clock() # for measuring CPU time

Load initial condition into u_1
for i in range(0,Nx+1):

u_1[i] = 1(x[il)

| Making a solver function (3

def solver(I, V, f, c, L, Nx, C, T, user_action=None):
Time loop

for m in range(1, Nt):
Update all inner points at time t[n+1]
for i in range(1, Nx):
ulil = - w_2[il + 2#u_1[i] + \
C2+(u_1[i-1] - 2#u_1[i] + uw_1[i+11) + \
dex*2+f (x[1], t[n])

Insert boundary conditions
uf0] = 0; ulNx] =0
if user_action is not None:
if user_action(u, x, t, n+1):
break

Switch variables before next step
u_2[:1, uw.1l:]1 = u_1l, u

cpu_time = t0 - time.clock()
return u, X, t, cpu_time

Make a viz function for animating the curve, with plotting in a
user_action function plot_u:

def viz(
I, V, f, c, L, dt, C, T, # PDE paramteres
umin, umax, # Interval for u in plots
animate=True, # Simulation with animation?
tool=’"matplotlib’, # ’matplotlid’ or ’scitools’
solver_function=solver, # Function with numerical algorithm

"""Bun solver and visualize u at each time level."""

def plot_u_st(u, x, t, n):
"iiyser_action function for solver. """
plt.plot(x, u, ’r-’,
xlabel="x’, ylabel=’u’,
axis=[0, L, umin, umax],
title="t=/f’> % t[n], show=True)
Let the initial condition stay on the screen for 2
seconds, else insert a pause of 0.2 s between each plot
time.sleep(2) if tn] == O else time.sleep(0.2)
plt.savefig(’frame_%04d.png’ % n) # for movie making

class PlotMatplotlib:
def __call__(self, u, x, t, n):
"nmyser_action function for solver."""

if n == 0:

@ Store spatial curve in a file, for each time level
o Name files like >something_%04d.png’ % frame_counter

o Combine files to a movie

© Zero padding (%04d) is essential for correct sequence of frames
in something_*.png (Unix alphanumeric sort)

@ Remove old frame_s.png files before making a new movie

‘ Implementation of the case

def guitar(C):
innTriangular wave (pulled guitar string). """
L =0.75
x0 = 0.8+L
a = 0.005
freq = 440
wavelength = 2*L
c = freq*wavelength
omega = 2*pi*freq
num_periods = 1
T = 2%pi/omega*num_periods
Choose dt the same as the stability limit for Nw=50
dt = L/50./c

def I(x):
return a*x/x0 if x < x0 else a/(L-x0)*(L-x)

umin = -1.2*%a; umax = -umin

cpu = viz(I, 0, 0, ¢, L, dt, C, T, umin, umax,
animate=True, tool=’scitools’)

Program: wave1D_u0.py.

‘ The benefits of scali

o It is difficult to figure out all the physical parameters of a case

o And it is not necessary because of a powerful: scaling
Introduce new x, t, and u without dimension:

_ X ; Ct _u
x="_ ="t n=-
L L’ a

Insert this in the PDE (with f = 0) and dropping bars

Ut = Uxx
Initial condition: set a=1, L =1, and xg € [0,1] in (26).

In the code: set a=c=L=1, x0=0.8, and there is no need to
calculate with wavelengths and frequencies to estimate c!

Just one challenge: determine the period of the waves and an
appropriate end time (see the text for details).

‘ Running a case

o Vibrations of a guitar string
o Triangular initial shape (at rest)

ax/x0s X < X
I(x) = { a(L N X)/(L = x), otherv?lise (20)

Appropriate data:

o L=75cm, xo =0.8L, a=5 mm, time frequency v = 440 Hz

‘ Resulting movie for C

Movie of the vibrating string

‘ Vectorizati

@ Problem: Python loops over long arrays are slow

o One remedy: use vectorized (numpy) code instead of explicit
loops

o Other remedies: use Cython, port spatial loops to Fortran or C

o Speedup: 100-1000 (varies with N,)

Next: vectorized loops

‘ Operati slices of arrays

o Introductory example: compute dj = uj1 — uj

n = u.size
for i in range(0, n-1):
d[i] = uli+1] - ul[i]

o Note: all the differences here are independent of each other.

o Therefore d = (uy,u,...,up) — (Uo, U1, .., Un—1)
o In numpy code: ul1:n] - u[0:n-1] or just ul1:] -
ul:-1]

Vectorization of finite difference schemes (1)

Finite difference schemes basically contains differences between
array elements with shifted indices. Consider the updating formula

for i in range(1, n-1):
u2[il = uli-11 - 2+u[i] + uli+1]

The vectorization consists of replacing the loop by arithmetics on
slices of arrays of length n-2:

u2 = ul:-2] - 2*uli:-1] + u[2:]
u2 = ul0:n-2] - 2*u[i:n-1] + u[2:n] # alternative

Note: u2 gets length n-2.

If u2 is already an array of length n, do update on "inner" elements

ul:-2] - 2+ult:-1] + ul2:]
ul0:n-2] - 2#ull:n-1] + u[2:n] # alternative

u2[1:-1]
u2[1:n-1]

‘ Vectorized implementation in the solver function

Scalar loop:
for i in range(l, Nx):

ulil = 2#u_1[i] - u_2[i] + \
C2+(u_1[i-1] - 2#u_1[i] + u_1[i+1])

Vectorized loop:

uli:-1] = - u 2[1:-1] + 2%u_1[1:-1] + \
C2#(u_1[:-2] - 2+u_1[1:-1]1 + u_1[2:1)

or

ul1:Nx] = 2+u_1[1:Nx]- u_2[1:Nx] + \
C2+(u_1[0:Nx-1] - 2*u_1[1:Nx] + u_1[2:Nx+1])

Program: wavel1D_uOv.py

‘ Test the underst

Newcomers to vectorization are encouraged to choose a small array
u, say with five elements, and simulate with pen and paper both
the loop version and the vectorized version.

‘ Vectorization of finite difference schemes

Include a function evaluation too:

def f(x):
return x**2 + 1

Scalar version
for i in range(l, n-1):
u2lil = uli-11 - 2*ulil + uli+1] + £(x[i])

Vectorized version
u2[1:-1] = ul:-2] - 2#u[1:-1] + u[2:] + £(x[1:-1])

‘ Verification of the vectorized version

def test_quadratic():

Check the scalar and vectorized versions work for
a quadratic u(z,t)=z(L-z)(1+t/2) that is ezactly reproduced.
o

The following function must work for z as array or scalar
u_exact = lambda x, t: x*(L - x)*(1 + 0.5%t)

I = lambda x: u_exact(x, 0)

V = lambda x: 0.5%u_exact(x, 0)

f is a scalar (zeros_like(z) works for scalar z too)
f = lambda x, t: np.zeros_like(x) + 2%c**2%(1 + 0.5%t)
L =25

c=1.5

C=0.75

Nx = 3 # Very coarse mesh for this ezact test

dt = C+(L/Nx)/c

T =18

def assert_no_error(u, x, t, n):
u_e = u_exact(x, t[n])
tol 1E-13
diff = np.abs(u - u_e) .max()
assert diff < tol

solver(I, V, f, ¢, L, dt, C, T,
user_action=assert_no_error, version=’scalar’)
coluax(T V_£ - T ar o

‘ Efficiency measurements

o Run wavel1D_uOv.py for Ny as 50,100,200,400,800 and
measuring the CPU time

o Observe substantial speed-up: vectorized version is about
N, /5 times faster

Much bigger improvements for 2D and 3D codes!

Neumann boundary condition

ou _
So=n-Vu=0 (27)
For a 1D domain [0, L]:
o _o o __ 0
Onl,_, O0x’ 0n|,_, Ox

Boundary condition terminology:

o uy specified: Neumann condition
o u specified: Dirichlet condition

‘ Discretization of derivatives at the boundary (2)

n n

uy —u

1 1 _ 0
20x

@ Problem: u”, is outside the mesh (fictitious value)

o Remedy: use the stencil at the boundary to eliminate u”,; just
replace u” by uf

u™t =t 20! +2C% (ufy —uf), i=0 (29)

i

‘ Generalization: reflecting boundaries

o Boundary condition u = 0: u changes sign
o Boundary condition u, = 0: wave is perfectly reflected
o How can we implement u,? (more complicated than u = 0)

Demo of boundary conditions

| Discretization of derivatives at the boundary (1)

o How can we incorporate the condition uy = 0 in the finite
difference scheme?

o We used centeral differences for uy and un: O(At?, Ax?)
accuracy

o Also for u(x,0)

o Should use central difference for uy to preserve second order
accuracy

u?y —uf

“ax ° (28)

‘ Visualization of modified boundary stencil

Discrete equation for computing u2 in terms of u2, ud, and u?:
o 01 Up i

Animation in a web page or a movie file.

‘ Implementation of Neumann conditions ‘ Moving finite difference stencil

o Use the general stencil for interior points also on the boundary
o Replace uf ; by uf'y; fori=0
® Replace uf!,; by u'_; for i = Ny

iml = ipl # i-1 -> i+l web page or a movie file.
ulil = u_1[i] + C2#(u_1[im1] - 2*%u_1[il + u_1[ip1])

i=Nx
iml

-1
ipl = iml # i+l -> i-1
“%i] = u_1[i]l + C2*(u_1[im1] - 2*#u_1[i] + u_1[ip1l)
Or just one loop over all points
for i in range(0, Nx+1):
ipl = i+1 if i < Nx else i-1

iml = i-1 if i > 0 else i+l
ulil = uw_1[i] + C2%(u_1[im1] - 2%u_1[il + u_1[ip1l)

Program wave1D_dnO.py

‘ Index set notation ‘ Index set notation in code

o Tedious to write index sets like i =0, ..., Ny and

n=0,....N;
o Notation not valid if i or n starts at 1 instead... “Notation Python
@ Both in math and code it is advantageous to use index sets I Ix
. . . 70 1x[0]
@ i€, instead of i =0,..., Ny -t Tx[-1]
o Definition: Z, = {0,..., Ny} ! Ix[1:]
. . . I: Ix[:-1]
The first index: i = IE T Ii[l:-ﬂ

°
o The last index: i = Z;!

o All interior points: i € Z, T, = {1,..., N, — 1}
o I, means {0,..., N, — 1}

o I} means {1,..., Ny}

| Index sets in action (1) | Index sets in action (2)

A finite difference scheme can with the index set notation be
specified as

Index sets for a problem in the x, t plane: 1 1 . .
um™t =t 20! + CP (ufyy —2uf +ufy), €T, neT]

ntl _ S _ 70 i
L= {0 N}, Te={0..... N}, (30) =0 i=honel
ut=0, i=Z nell
Implemented in Python as
Corresponding implementation:

Ix
It

= range (0, Nx+1)
= range (0, Nt+1) .
for n in It[1:-1]:

for i in Ix[1:-1]:

ulil = - w 2[i] + 2*u_1[Q] + \

C2+(u_1[i-1] - 2%u_1[i] + u_1[i+1])
= Ix[0]; wlil = 0

i = Ix[-11; ulil = 0

[

Program wave1D_dn.py

‘ Alternative implementation via ghost cells

o Instead of modifying the stencil at the boundary, we extend
the mesh to cover u”; and uf

o The extra left and right cell are called ghost cells
o The extra points are called ghost points
o The u"; and ”RIXH values are called ghost values

o Update ghost values as uf! ; = uf!,; for i =0and uf',; = o],
for i = Ny
o Then the stencil becomes right at the boundary

| Implementation of ghost cells (2)

u = zeros(Nx+3)
Ix = range(1, u.shape[0]-1)

Boundary values: ulIx[0]], ul[Ix[-1]]

Set initial conditions
for i in Ix:
u_1[i] = I(x[i-Ix[0]]) # Note i-Ix[0]

Loop over all physical mesh points
for i in Ix:
ulil = - uw_2[i] + 2%u_1[i] + \
C2# (u_1[i-11 - 2#u_1[i] + u_1[i+11)

Update ghost values

i = Ix[0] # x=0 boundary
uli-1]1 = uli+1]
i = Ix[-1] # x=L boundary

uli+1] = uli-1]

Program: wavel1D_dnO_ghost .py.

‘ The model PDE with a

able coefficient

Ry & u
g? = (% (q(x)a—x) +f(x,t) (31)

This equation sampled at a mesh point (i, ta):

&2 7] J
F vl tn) = 5 (q(xi)au(xh tn)) + (i, ta),

| Implementation of ghost cells (1)

Add ghost points:
u = zeros(Nx+3)
u_1 = zeros(Nx+3)
u_2 = zeros(Nx+3)
x = linspace(0, L, Nx+1) # Hesh points without ghost points
o A major indexing problem arises with ghost cells since Python
indices must start at 0.
o u[-1] will always mean the last element in u
o Math indexing: —1,0,1,2,... Ny +1
o Python indexing: 0,..,Nx+2
o Remedy: use index sets
‘ Generalization: variable wave velocity

Heterogeneous media: varying ¢ = c(x)

| Discretizing the variable coefficient (1)

The principal idea is to first discretize the outer derivative.
Define 9
ou
b= q(x)—
¢=aqlx)5

Then use a centered derivative around x = x; for the derivative of

o

991" _ Piry ~ iy
|~ —2—2 = [D,¢]"
[ox], Ax (Dxo;

| Discretizing the variable coefficient (2)

Then discretize the inner operators:

n

oul"” uly — U,
. _ ~ +1 i — [gD,ul"
. =q.: —_— ~ q; —_— uf.
i+ = 9+ [f)x i+l Y3 Ax [aDx]’Jr%
2

Similarly,

4 —
¢;i1=4q;_1

‘ Computing the coefficient between mesh points

o Given g(x): compute Giy1 as q(xi+%)

@ Given g at the mesh points: g;j, use an average

1 . .
Gipl 5 (9i + gi+1) = [@*)i (arithmetic mean) (34)

-1
1 1

12—+

i (qi q:'+1)

91 (qigis1)'?

(harmonic mean) (35)

(geometric mean) (36)

The arithmetic mean in (34) is by far the most used averaging
technique.

Neumann condition and a variable coefficient

Consider du/0x =0 at x = L = NxAx:

un o —yn
S B/ = R Y N P
— = ufg=uq, =N
Ax i+1 i—1 x
Insert uf’,; = ul' ; in the stencil (38) for i = Ny and obtain

at\?
uM A et 2l + (E) 2gi(uf_y — uf) + A"

(We have used ity + g1~ 2g;.)

Alternative: assume dg/dx = 0 (simpler).

‘ Discretizing the variable coefficient (

These intermediate results are now combined to

[(405)] "~ o (g = o)~y (7 - o)
(32)

In operator notation:

[% (ﬂ@%)]: ~ [DeaDyu]} (33)

Many are tempted to use the chain rule on the term -2 (q(x)g—i),

but this is not a good idea!

Discretization of variable-coefficient wave equation in

operator notation

[D:D;u = Dyq* Dyt + f]7 (37)

We clearly see the type of finite differences and averaging!

Write out and solve wrt u,-"“:

A2
Ll,-"+1 = 7u,f”1 +2ul + (E) X

1 1
(300 + an)utia o) = 30+ an)ef — 1)) +

N (38)

‘ Implementation of variable coefficients

Assume c[i] holds ¢; the spatial mesh points

for i in range(l, Nx):
uli] = - uw_2[i] + 2*u_1[i] + \
C2#(0.5%(q[i] + qi+1])*(u_1[i+1] - w_1[i]) -\
0.5%(q[i] + q[i-11)*(u_1[i] - uw_1[i-1])) + \
dt2#f (x[i], t[nl)

Here: C2=(dt/dx)**2
Vectorized version:

uli:-11 = - w 2[1:-1] + 2*xu_1[1:-1] + \
C2+(0.5%(q[1:-1] + q[2:1)*(u_1[2:] - w_1[1:-1]) -
0.5%(qll:-1] + q[:-2D)*(u 1[1:-1] - w 1[:-21)) + \
dt2+f(x[1:-1], t[n])

Neumann condition uy = 0: same ideas as in 1D (modified stencil
or ghost cells).

ore general model PDE with variable coefficients

2
o)t = o (a5)+ £Gst) (39)

A natural scheme is

[0D:Dru = Dxq*Dyu + f]f (40)

Or

[DeDeu = 07 Dy@* Dyeus + 17 (41)

No need to average o, just sample at i

‘ Building a general 1D wave equation solver

The program wave1D_dn_vc.py solves a fairly general 1D wave

equation:
uge = (A(x)ux)x + f(x, t), x€(0,L), t€(0,T] (44)
u(x,0) = I(x), x e [0,L] (45)
ur(x,0) = V(t), x €0, L] (46)
u(0,t) = Uo(t) or uy(0,t) =0, te (0, T] (47)
u(L, t) = Up(t) or uy(L,t) =0, te(0,T] (48)

Can be adapted to many needs.

‘ Finite difference methods for 2D and 3D wave equations

Constant wave velocity c:

2
% = V2 for x e QCRY, te(0,T] (49)
Variable wave velocity:

2
gg—tZ:V(qVU)JrfforerCRd‘tE(O,T] (50)

‘ Generalization: damping
Why do waves die out?

o Damping (non-elastic effects, air resistance)
e 2D/3D: conservation of energy makes an amplitude reduction

by 1/4/r (2D) or 1/r (3D)
Simplest damping model (for physical behavior, see demo):

0%u du 2@

e + 5= °© pe] +f(x,t), (42)

b > 0: prescribed damping coefficient.

Discretization via centered differences to ensure O(At?) error:

[D¢Dyu + bDyyu = 2Dy Dyus +)7 (43)

Need special formula for u} + special stencil (or ghost cells) for
Neumann conditions.

‘ Collection of initial conditions

The function pulse in wave1D_dn_vc.py offers four initial
conditions:

Q a rectangular pulse ("plug")

@ a Gaussian function (gaussian)

© a "cosine hat'": one period of 1 + cos(mx, x € [-1,1]
11

Q half a "cosine hat": half a period of cos7x, x € [~3,3

Can locate the initial pulse at x = 0 or in the middle

>>> import wavelD_dn_vc as w
>>> w.pulse(loc="left’, pulse_tp=’cosinehat’, Nx=50, every_frame=10)

‘ Examples on wave equations written out in 2D

3D, constant ¢:

2D, variable c:

%u 17 u 7] du
@(Xy,")(f)? = o (q(x’}/)(’TX> + ay (q(xv}’)a) +f(x,y,t)
(51)
Compact notation:
Uy = cz(uxx +uyy +uz) + 1, (52)

ourr = (que)x + (quz)z + (quz)z + f (53)

Boundary and initial conditions

We need one boundary condition at each point on 0

Q u is prescribed (u = 0 or known incoming wave)
@ Ju/dn = n-Vu prescribed (= 0: reflecting boundary)

© open boundary (radiation) condition: u; + ¢ - Vu =0 (let
waves travel undisturbed out of the domain)

PDEs with second-order time derivative need two initial conditions:

Qu=1I,
Q u=V.

‘ Discretization

[D:Deu = A(DxDyu + Dy Dyu) + 7},

Written out in detail:

ntl _oon 01 Do oun 4 yn
i 2ului 2l 2uf; +uilyy
= ‘
At? Ax?
n _omn oy n
@Y T 2U5 U
Ayz 1
n—1 n n+1,
ui; and ufl; are known, solve for uii

uf ' =207 + o + AL [DxDyu + Dy Dyulf;

iy

Variable coefficients (1)

3D wave equation:
our = (qux)x + (quy)y + (quz)z + f(x.y, 2, t)
Just apply the 1D discretization for each term:
[oD¢Dyu = (Dxq*Dyu + D, G Dyu + D,G”D;u) + r’]j-’JAk (54)

Need special formula for u,-lj_k (use [Daeu = V]° and stencil for
n=0). '

o Mesh point: (xi, yj, 2k, ta)

@ x direction: xg < x; < -+ < Xp,
o y direction: yo <y1 <--- <y,
o z direction: zg < z; < --- < zp,

o ufli o ~ Ue(Xi, Y, Zk, tn)

‘ Special stencil for the first time step

o The stencil for u,-lJ- (n = 0) involves u,-fjl which is outside the
time mesh

® Remedy: use discretized u(x,0) = V and the stencil for n = 0
to develop a special stencil (as in the 1D case)

Do =V = ul =uf; — 20tV

1
ufft = uf; - AtVij + ECZAL‘Q[DXDXU + Dy Dyul};

| Variable coefficients (2)

Written out:
”,nﬁ = _"Inﬁ + 20 4

B G aat i) — i)
%(qi—u.k + i) (Ul — U1 k)

B s 3 aie + 1)~ o)
%(qw'fl,k + i) (0] — ulio1k))

%ﬁ(%(qu,k + Qi) (U] g1 — U7 a)
%(qu,k—l +qij)]k — Ul e—1))+

+ INS P

D problems

‘ Neumann boundary condition in 2D ‘ Implementation of 2

Use ideas from 1D! Example: %ﬁ =0aty=0, % = 727; g = (U + uyy)+ f(x,y,t), (x,y)€Q, t€(0,T]
Boundary condition discretization: (55)
u(x,y,0) = I(x,y), (xy)eQ
ul — (56)
_ —=0J" N hTl o i
[Dyu=0 = =55, — =0 i€k ue(x.y.0) = V(x.y). (xy)€Q
(57)
Insert uf_; = ”;1,1 in the stencil for ”ﬁf:lo to obtain a modified u=0, (x,y) €09, te(0,T]
stencil on the boundary. (58)
Pattern: use interior stencil also on the bundary, but replace j — 1
by j+1 Q=[0,L] x [0, L]
Alternative: use ghost cells and ghost values Discretization:

[D:Dru = cA(DyDyu + Dy Dyu) + 17},

‘ Algorithm ‘ Scalar computations: mesh

Program: wave2D_u0.py

@ Set initial condition U,OJ- = I(xi, ;) def solver(I, V, f, c, Lx, Ly, Nx, Ny, dt, T,
. i . ; user_action=lone, version=’scalar’):
@ Compute u}J =---foricZyandjcT]
Q Set u,-lJ = 0 for the boundaries i = 0, Ny, j =0, N, Mesh:
Q Forn=1,2,...,Ng .
. i1 . i R i x = linspace(0, Lx, Nx+1) # mesh points in ¢ dir
O Findu;" = fori€I andjeT, y = linspace(0, Ly, Ny+1) # mesh points in y dir
n+l _ e i — P dx = x[1] - x[0]
@ Set ulit =0 for the boundaries i = 0, N, j =0, N, dy - y[l - yio]
Nt = int(round(T/float(dt)))
t = linspace(0, N+dt, N+1) # mesh points in time
Cx2 = (c*dt/dx)**2; Cy2 = (c*dt/dy)**2 # help varicbles
dt2 = dtx=2
‘ Scalar computations: arrays ‘ Scalar computations: initial condition
TIx = range(0, u.shape[0])
n+l n n-1 A . . Iy = range(0, u.shape[1])
Store uii Ll and uf; " in three two-dimensional arrays: TL - range(0, & shape[0])
u = zeros((Nx+1,Ny+1)) # solution array for i in Ix:
u_1 = zeros((Nx+1,Ny+1)) # solution at t-dt for j in Iy:))
u_2 = zeros((Nx+1,Ny+1)) # solution at t-2#dt u_ili,jl = IGx[il, yOjD
L if user_action is not None:
,nj corresponds to uli, j1, etc. user_action(u_1, x, xv, y, yv, t, 0)
Arguments xv and yv: for vectorized computations

‘ Scalar computations: primary stencil
def advance_scalar(u, u_1, u_2, f, x, y, t, n, Cx2, Cy2, dt2,
V=lone, stepl=False):
Ix = range(0, u.shape[0]); Iy = range(0, u.shape[1])
if stepl:
dt = sqrt(dt2) # save
Cx2 = 0.5#Cx2; Cy2 = 0.5%Cy2; dt2 = 0.5%dt2 # redefine
D1 =1; D2 =0

D1 =2; D2 =1
for i in Ix[1:-1]
for j in Iyl :
u_xx = u_1[i-1,j] - 2%u_1[i,j] + u_1[i+1,j]
= u 1[1,]71] - 2+u_1[i,j] + u_1[i,j+1]
u[1 j1 = Di*u_1[i,j] - D2*u_2[i,j] + \
Cx2*u_xx + Cy2*u_yy + dt2*f(x[i], y[j1, t[nl)
if stepl:
uli,jl += de*V(x[il, y[j1)
Boundary condition u=0
j = Iyl[ol
for i in Ix: uli,jl =0
j = Iy[-11
for i in Ix: uli,jl =0
i = 1x[0]
for j in Iy: uli,jl =0
i = Ix[-1]
for j in Iy: uli,jl =0
return u

‘ Vectorized computations: stencil

def advance_vectorized(u, u_1, u_2, f_a, Cx2, Cy2, dt2,
V=None, stepl=False):
if stepl:
= sqrt(dt2) # save
sz = 0.5%Cx2; Cy2 = 0.5%Cy2; dt2 = 0.5+dt2 # redefine
D1 =1; D2 =0

2; D2=1

_1[:-2,1:-1] - 2%u_1[1:-1,1:-1] + u_1[2:,1:-1]

:-2] - 2%u_1[1:-1,1:-1]1 + u,i[l'—l,Z:]

-11 = Dl*u _A01:-1,1:-11 - D2%u_2[1:-1,1:-11 + \
Cx2+u_xx + Cy2*u_yy + dt2*f_all:-1,1:-1]

if stepl:
ull:-1,1:-11 += dexVIl1:-1, 1:-1]
Bou»daTy condition u=0

u[.31 =

j=u. shape[l] -1
u[,J] =0

u[1] 0
i=u. shape [01-1
uli,:] =

return u

def quadratic(Nx, Ny, version):
"miEgact discrete solution of the scheme."""

o [D:De1]" =
o [D;Dit]" =0
o [D:Dt?] =2
o DD, is a linear operator:
[D¢D¢(au + bv)]" = a[DyDyu]™ + b[Dy Dy v]"

[DeDtelfy = (L —Y)(1+ 5 OD:Dex(Le = T

1
—5illy =)1 + 52

@ Similar calculations for [D, D, ue] and [DtDtue] terms

@ Must also check the equation for u,-J

mesh coordinates

‘ Vectorized computatio

Mesh with 30 x 30 cells: vectorization reduces the CPU time by a
factor of 70 (!).

Need special coordinate arrays xv and yv such that /(x,y) and
f(x,y, t) can be vectorized:

from numpy import newaxis
xv = x[:,newaxis]
yv = ylnewaxis, :]

_1[:,:]

u, I(xv, yv)
_al:,:]

f(xv, yv, t)

dratic solution (1)

Manufactured solution:

ooy, t) = (e =yl ~ A+ 30 (59)

Requires f = 2c2(1+ 3t)(y(Ly — y) + x(Lx — x)).

This v is ideal because it also solves the discrete equations!

‘ Analysis of the difference equations

‘ Properties of the solution of the wave equation

%u ,0%u
gu_ 22y
or? Ox?

Solutions:

u(x, t) = gr(x — ct) + gL(x + ct)

If u(x,0) = /(x) and us(x,0) = 0:

1 1
u(x,t) = EI(X —ct)+ EI(X +ct)

Two waves: one traveling to the right and one to the left

Let us change the shape of the initial condition slightly and

see what happens

A similar wave component is also a solution of the finite

difference scheme (1)

Idea: a similar discrete ug = ei(kxa=&tn) solution (corresponding to
the exact e'(**=<t)) solves

[D¢Dyu = CQDXDXU]Z
Note: we expect numerical frequency & # w

@ How accurate is & compared to w?

o What about the wave amplitude (can & become complex)?

‘ Simulation of a case with variable wave velocity

A wave propagates perfectly (C = 1) and hits a medium with 1/4
of the wave velocity (C = 0.25). A part of the wave is reflected
and the rest is transmitted.

‘ Representation of waves as sum of sine/cosine waves

Build /(x) of wave components e®* = cos kx + i sin kx:
1(x) =~ Z bre
kek

o Fit by by a least squares or projection method

o k is the frequency of a component (A = 27 /k is the wave
length in space)

o K is some set of all k needed to approximate /(x) well

o by must be computed (Fourier coefficients)

Since u(x, t) = 3/(x — ct) + 3/(x + ct), the exact solution is

_1 ik(x—ct 1 ik(x+ct
u(x,t)fgkez’(bke’ (x f>+§k§<bke' xtet)

Our interest: one component e'(**=«t)) = k¢

‘ Preliminary results

i 4 At
[D:Dtelum]n = *E sin? <L2) elwniat

By w — k, t = x, n — q) it follows that

p 4 kA ;
[DxDye™], = 2 sin? (ZX) eikatx

‘ Insertion of the numerical wave component

Inserting a basic wave component u = e/(ka~®t) in the scheme
requires computation of

[D; Dre*e™1]0 = [D, Dye™ 2] eikalx

A g DAt o iDnAt gikghx
At?

2
[DXDXeikxe—ith]g — [DXDXeikx]qe—iu”;nAr

4 . (kAX> oikaBx g~ iGnAL
2

*FSIH
X

‘ The numerical dispersion relation

Can easily solve for an explicit formula for &:
2 kA
&= psin! (Csin (TXD

o This & = @(k, c, Ax, At) is the numerical dispersion relation

o Inserting ekx=wt in the PDE leads to w = ke, which is the
analytical/exact dispersion relation

o Speed of waves might be easier to imagine:

o Exact speed: ¢ = w/k,
o Numerical speed: ¢ = &/k

Note:

o We shall investigate &/c to see how wrong the speed of a
numerical wave component is

‘ Computing the error in wave velocity

o Introduce p = kAx/2
(the important dimensionless spatial discretization parameter)
@ p measures no of mesh points in space per wave length in
space
@ Shortest possible wave length in mesh: A = 2Ax,
k=2r/x=m/Ax, and p = kAx/2=7/2 = pe (0,7/2]
o Study error in wave velocity through &/c as function of p

2 —sin}(Csinp) = Lain1((

1 Ceinp) —
sin (Csmp)fk(:A o

¢
f(CYP):E

2
" keAt

Can plot r(C, p) for p € (0,7/2], C € (0,1]

@)

‘ The equation for
The complete scheme,
[D; Dyeixe=idt — 2 DXDXe"kXe”‘“N"]Z

leads to an equation for @ (which can readily be solved):

X

L (OO o, (kDx et
sin (—2)7C sin (2) C= A (Courant number)

Taking the square root:

sin (w?t) = Csin (—ki)()

‘ The special case C =1 gives the exact solution

oForC=1,0=w

@ The numerical solution is exact (at the mesh points),
regardless of Ax and At = ¢! Ax!

o The only requirement is constant ¢

@ The numerical scheme is then a simple-to-use analytical
solution method for the wave equation

Visualizing the error in wave velocity

def r(C, p):
return 1/(C*p)*asin(C*sin(p))

Numerical divided by exact wave velocity

1 A —
1= 3
s —

>

velocity ratio
°
©

°
®

Nata: tha chartact wiavac hava tha Iaraact arear and chart winvac

‘ Taylor expanding the error in wave velocity

For small p, Taylor expand & as polynomial in p:

>>> C, p = symbols(’C p’)

>>> rs = r(C, p).series(p, 0, 7)

>>> print rs

1 - p**2/6 + p**4/120 - p**6/5040 + C**2+p**2/6 -
CHk2kprkd/12 + 13%Chk*2kpk*6/720 + BkCikLrph*4/40 -
CH#d¥pr#6/16 + SxCr¥Exp**6/112 + 0(p**7)

>>> # Drop the remainder 0(...) term

>>> rs = rs.removeD()

>>> # Factorize each term

>>> rs = [factor(term) for term in rs.as_ordered_terms()]
>>> rs = sum(rs)

>>> print rs

pH*6%(C - 1)#(C + 1)*(225%Cx*4 - 90*C#*2 + 1)/5040 +
pH*4*(C - 1)*(C + 1)*(3*C - 1)*(3*C + 1)/120 +

pr#2#(C - 1)*%(C + 1)/6 + 1

Leading error term is %(C2 —1)p? or

1 <kAx

2 2
(5) (€?2-1)= 2—4 (AL — Ax?) = O(AL?, Ax?)

| Example on effect of w wave velocity (1)

Not so smooth wave, significant short waves (large k) in /(x):

| i

.

W]
]

o a5 ar)

‘ Why C > 1 leads to non-physical waves

Recall that right-hand side is in [-C, C]. Then C > 1 means

. (DAt . [kDAx
sin (T) = Csin (T)

—_——
>1

o |sin x| > 1 implies complex x

o Here: complex @ = @, + i@;

@ One &; < 0 gives exp(i - id;) = exp(—&;) and exponential
growth

@ This wave component will after some time dominate the
solution give an overall exponentially increasing amplitude
(non-physicall)

| Example on effect of wrong wave velocity (1)

Smooth wave, few short waves (large k) in /(x):

o Exact w is real

o Complex @ will lead to exponential growth of the amplitude
o Stability criterion: real &

o Then sin(@At/2) € [-1,1]

o kAx/2 is always real, so right-hand side is in [-C, C]

o Then we must have C <1

Stability criterion:

‘ Extending the analysis to

u(x,y, t) = glkex + kyy — wt)
is a typically solution of

Uy = cz(uxx + uyy)

Can build solutions by adding complex Fourier components of the
form

eilkax-thyy—wt)

‘ Discrete wave components in 2D

[DeDeu = c*(DxDyu + Dy Dyu)]2,
This equation admits a Fourier component
n i(kxqAx+kyrAy—onAt)

ug,=e

Inserting the Fourier component into the dicrete 2D wave equation,
and using formulas from the 1D analysis:

DAt
sin? (%) = CZsin” py + C7sin’ py

where

_ cAt _ cAt ~ kDx ~ kAy
X = A y—Ay7 Px = 5 Py = >

‘ Stability criterion in

At<1 11 -1/2
Ax2 T Ay? T A2

For c¢? = c?(x) we must use the worst-case value

¢ = y/Maxyeq c2(x) and a safety factor 5 < 1:

1 1 1\ 72
At < = —+—
t (Ax2 * Ay? * AZ2)

Numerical dispersion relation in 2D (2)

LI Ry ey wkpsing))
c = s (C (sm (zkhc059)+sm (2khsm0)

Can make color contour plots of 1 — &/c in polar coordinates with
0 as the angular coordinate and kh as the radial coordinate.

‘ Stability criterion in 2D

Ensuring real-valued & requires
2 2
G+G <1

or

‘ Numerical dispersion relation in 2D (1)

2 . . o\ 3
= xgoin 1 ((Cfsmz Px + Cyzsm)‘j)z)

€

For visualization, introduce k = , /kf + k; and 6 such that

ky = ksin0, k, = kcos0, pX:%khcosﬂ, py:%khsinﬁ

Also: Ax = Ay = h. Then G = C, =cAt/h=C

Now & depends on

C reflecting the number cells a wave is displaced during a time
step

o kh reflecting the number of cells per wave length in space

o 0 expressing the direction of the wave

Numerical dispersion relation in 2D (3)

-0.345 >
-0.4205
70.495@
-0.570 ¢
-0.645 3
-0.720 2
-0.795°%
-0.870 £
-0.945 @

I -0.270

