Waves on a string can be modeled by the wave equation

\[\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2} \]

\(u(x, t) \) is the displacement of the string.

Demo of waves on a string.

The complete initial-boundary value problem

\[\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2} , \quad x \in (0, L), \quad t \in (0, T] \] (1)

\[u(x, 0) = I(x) , \quad x \in [0, L] \] (2)

\[\frac{\partial u}{\partial t}(x, 0) = 0 , \quad x \in [0, L] \] (3)

\[u(0, t) = 0 , \quad t \in [0, T] \] (4)

\[u(L, t) = 0 , \quad t \in [0, T] \] (5)

Input data in the problem

- Initial condition \(u(x, 0) = I(x) \): initial string shape
- Initial condition \(\partial u(x, 0)/\partial t = 0 \): string starts from rest

\(c = \sqrt{T/\rho} \): velocity of waves on the string

\(T \) is the tension in the string, \(\rho \) is density of the string.

Two boundary conditions on \(u \): \(u = 0 \) means fixed ends (no displacement).

Rule for number of initial and boundary conditions:

- \(u_{tt} \) in the PDE: two initial conditions, on \(u \) and \(u_t \)
- \(u_{xx} \) in the PDE: one boundary condition on \(u \) at each boundary point.

Demo of a vibrating string (\(C = 0.8 \))

• Our numerical method is sometimes exact (!)
• Our numerical method is sometimes subject to serious non-physical effects

Demo of a vibrating string (\(C = 1.0012 \))

Oops!
Step 1: Discretizing the domain

Mesh in time:
\[0 = t_0 < t_1 < t_2 < \cdots < t_{N_t} < t_{N_t} = T \]
(6)

Mesh in space:
\[0 = x_0 < x_1 < x_2 < \cdots < x_{N_x} < x_{N_x} = L \]
(7)

Uniform mesh with constant mesh spacings \(\Delta t \) and \(\Delta x \):
\[x_i = i \Delta x, \quad i = 0, \ldots, N_x, \quad t_n = n \Delta t, \quad n = 0, \ldots, N_t \]
(8)

Step 2: Fulfilling the equation at the mesh points

Let the PDE be satisfied at all interior mesh points:
\[\frac{\partial^2}{\partial t^2} u(x_i, t_n) = \frac{\partial^2}{\partial x^2} u(x_i, t_n) \]
(9)

for \(i = 1, \ldots, N_x - 1 \) and \(n = 1, \ldots, N_t - 1 \).

For \(n = 0 \) we have the initial conditions \(u = f(x) \) and \(u_t = 0 \), and at the boundaries \(i = 0, N_x \) we have the boundary condition \(u = 0 \).

Step 3: Algebraic version of the PDE

Replace derivatives by differences:
\[\frac{u^{n+1}_i - 2u^n_i + u^{n-1}_i}{\Delta t^2} = \frac{u^{n+1}_{i+1} - 2u^n_{i+1} + u^{n-1}_{i+1}}{\Delta x^2} \]
(10)

In operator notation:
\[[D_t D_t u]_{n,i} = c^2 [D_x D_x u]_{n,i} \]
(11)

Step 3: Algebraic version of the initial conditions

Need to replace the derivative in the initial condition
\[u_t(x,0) = 0 \]
by a finite difference approximation

The differences for \(u_0 \) and \(u_{N_x} \) have second-order accuracy

Use a centered difference for \(u_t(x,0) \):
\[[D_t u]_0^n = 0, \quad n = 0 \quad \Rightarrow \quad u^{n+1}_0 - u^{n-1}_0 = \frac{u^{n+1}_1 - u^{n+1}_0}{\Delta t}, \quad i = 0, \ldots, N_x \]

The other initial condition \(u(x,0) = f(x) \) can be computed by
\[u^n_i = f(x_i), \quad i = 0, \ldots, N_x \]
Step 4: Formulating a recursive algorithm

Nature of the algorithm: compute \(u \) in space at \(t = \Delta t, 2\Delta t, 3\Delta t, \ldots \)

Three time levels are involved in the general discrete equation:

\[
\begin{align*}
&n + 1, n, n - 1
&\text{are then already computed for } i = 0, \ldots, N_x, \text{ and }
\end{align*}
\]

\(u_{n+1}^i \) is the unknown quantity.

Write out \([D_t D_t u = c^2 D_x D_x]\) and solve for \(u_{n+1}^i \),

\[
\begin{align*}
&u_{n+1}^i = -u_{n-1}^i + 2u_n^i + C^2 (u_{n+1}^i - 2u_n^i + u_{n-1}^i)
\end{align*}
\]

(12)

The Courant number

\[
C = \frac{c \Delta t}{\Delta x}
\]

is known as the (dimensionless) Courant number.

Observe

There is only one parameter, \(C \), in the discrete model: \(C \) lumps mesh parameters \(\Delta t \) and \(\Delta x \) with the only physical parameter, the wave velocity \(c \). The value \(C \) and the smoothness of \(I(x) \) govern the quality of the numerical solution.

The finite difference stencil

The stencil for the first time level

Problem: the stencil for \(n = 1 \) involves \(u_{-1}^i \), but time \(t = -\Delta t \) is outside the mesh.

Remedy: use the initial condition \(u_t = 0 \) together with the stencil to eliminate \(u_{-1}^i \).

Initial condition:

\[
[2D_t u = 0] \Rightarrow \quad u_{-1}^i = u_0^i
\]

Insert it stencil \([D_t D_t u = c^2 D_x D_x]\) to get

\[
\begin{align*}
&u_1^i = u_0^i + \frac{C^2}{2} (u_{n+1}^i - 2u_n^i + u_{n-1}^i)
\end{align*}
\]

(14)

The algorithm

1. Compute \(u_0^i = I(x_i) \) for \(i = 0, \ldots, N_x \)
2. Compute \(u_1^i \) by (14) and set \(u_1^i = 0 \) for the boundary points \(i = 0 \) and \(i = N_x \) for \(n = 1, \ldots, N_t - 1 \),
3. For each time level \(n = 1, 2, \ldots, N_t - 1 \)
 a. Apply (2) to all \(u_n^i \) for \(i = 1, \ldots, N_x - 1 \)
 b. Set \(u_{n+1}^i = 0 \) for the boundary points \(i = 0, i = N_x \).

Moving finite difference stencil

web page or a movie file.
A slightly generalized model problem

Add source term and nonzero initial condition $u_0(x, 0)$:

$$
\begin{align*}
 u_1 &= c^2 u_{xx} + f(x, t), \\
 u(x, 0) &= I(x), \\
 u_t(x, 0) &= N(x), \\
 w(0, t) &= 0, \\
 w(L, t) &= 0
\end{align*}
$$

Discrete model for the generalized model problem

$$
[D, D] u = c^2 D_x^2 u + f^T
$$

Writing out and solving for the solution u^{n+1}:

$$
\begin{align*}
 u^{n+1} &= -u^n + 2u_t^n + C^2(u_{xx}^{n+1} - 2u^n + u_{xx}^n) + \Delta^2 f^T
\end{align*}
$$
Mo died equation for the first time level

General difference for \(u_t(x,0) = V(x) \):

\[
\left[D_{tt}u - V_{tt} \right]_n = u_{n+1}^t - u_{n+2}^t - 2\Delta t V_{tt}
\]

Inserting this into the stencil (21) for \(n = 0 \) leads to

\[
u_{1}^{t} = u_{0}^{t} - \Delta t V_{t} + \frac{1}{2}\Delta^{2} (u_{0}^{x} - 2u_{1}^{x} + u_{2}^{x}) + \frac{1}{2}\Delta^{2} f_{t}^{x}
\]

Using an analytical solution of physical significance

- Standing waves occur in real life on a string
- Can be analyzed mathematically (known exact solution)

\[
u_{m}(x,t) = \tilde{A} \sin \left(\frac{m}{L} \pi x \right) \cos \left(\frac{m}{C} \pi t \right)
\]

Testing a manufactured solution

- Introduce common mesh parameter: \(h = \Delta t, \Delta x = ch/C \)
- This \(h \) keeps \(C \) and \(\Delta t/\Delta x \) constant
- Select coarse mesh: \(h/h_0 \)
- Run experiments with \(h_0 = 2^{-i} h_0 \) (halving the cell size), \(i = 0, \ldots, m \)
- Record the error \(E_i \) and \(h_i \) in each experiment
- Compute pairwise convergence rates \(r_i = \ln E_{i+1}/E_i \) \(\ln h_{i+1}/h_i \)
- Verification: \(r_i \rightarrow 2 \) as \(i \) increases

Constructing an exact solution of the discrete equations

- Manufactured solution with computation of convergence rates: much manual work
- (Simpler and more powerful: use an exact solution for \(u \), if possible so \(\tilde{u} \) and \(\tilde{f} \))
- A linear or quadratic \(u_n \) and \(\tilde{f} \) is often a good candidate
Analytical work with the PDE problem

Here, choose \(u_e \) such that \(u_e(0,t) = u_e(L,t) = 0 \):

\[u_e(x,t) = x(L-x)(1 + \frac{1}{2} t) \]

Initial conditions:

\[f(x) = x(L-x) \]

\[V(x) = \frac{1}{2} x(L-x) \]

Analytical work with the discrete equations (1)

We want to show that \(u_e \) also solves the discrete equations!

Useful preliminary result:

\[\frac{D_t^2 u_e}{\Delta t^2} = \frac{D_x^2 u_e}{\Delta x^2} \]

Initial conditions:

\[f_i = x_i(L-x_i) \]

\[V_i = \frac{1}{2} x_i(L-x_i) \]

Later we show that the exact solution of the discrete equations can be obtained by \(C = 1 \).

Analytical work with the discrete equations (1)

For each time level \(n \):

1. Compute \(u_0^i = I(x_i) \) for \(i = 0, \ldots, N_x \)
2. Compute \(u_1^i \) by (14) and set \(u_1^i = 0 \) for the boundary points \(i = 0, i = N_x \)
3. Set \(N_{t+1} = 2, \ldots, N_t - 1 \)
4. Apply (12) to find \(u_{t+1}^i \) for \(i = 1, \ldots, N_t - 1 \)
5. \(u_{t+1}^i = 0 \) for the boundary points \(i = 0, i = N_t \)

Testing with the exact discrete solution

\[D_t^2 u_e = \frac{1}{\Delta t^2} \frac{D_x^2 u_e}{\Delta x^2} \]

Initial conditions:

\[I(x) = x(L-x), V(x) = \frac{1}{2} x(L-x) \]

\[u = x(L-x)(1 + \frac{1}{2} t) \]

\[V = \frac{1}{2} x(L-x) \]

Let's simulate with one choice of \(c, \Delta x, \) and \(\Delta t \).

The algorithm

1. Compute \(u_i^0 = I(x_i) \) for \(i = 0, \ldots, N_x \)
2. Compute \(u_i^1 \) by (14) and set \(u_i^1 = 0 \) for the boundary points \(i = 0, i = N_x \)
3. For each time level \(t = 1, \ldots, N_t - 1 \):
 - Apply (12) to find \(u_{t+1}^i \) for \(i = 1, \ldots, N_t - 1 \)
 - Set \(u_{t+1}^i = 0 \) for the boundary points \(i = 0, i = N_t \)
Making a solver function (1)

We specify Δt and C, and let the solver function compute $\Delta x = c \Delta t / C$.

```python
def solver(I, V, f, c, L, dt, C, T, user_action=None):
    ... # function definition ...
```
Making movie files

Storing spatial curve in a file, for each time level
Name files like 'something_%04d.png' % frame_counter
Combine files to a movie

Terminal> scitools movie encoder=html output_file=movie.html fps=4 frame_*.png # web page with a player
Terminal> avconv -r 4 -i frame_%04d.png -c:v flv movie.flv
Terminal> avconv -r 4 -i frame_%04d.png -c:v libtheora movie.ogg
Terminal> avconv -r 4 -i frame_%04d.png -c:v libx264 movie.mp4
Terminal> avconv -r 4 -i frame_%04d.png -c:v libpvx movie.webm

Important

Zero padding (%04d) is essential for correct sequence of frames in something_*.png (Unix alphanumeric sort)
Remove old frame_*.png files before making a new movie

Running a case

Vibrations of a guitar string
Triangular initial shape (at rest)

\[
I(x) = \begin{cases}
\frac{ax}{x_0}, & x < x_0 \\
\frac{a(L-x)}{(L-x_0)}, & \text{otherwise}
\end{cases}
\]

(26)

Appropriate data:

\[L = 75 \text{ cm}, \quad x_0 = 0.8L, \quad a = 5 \text{ mm}, \quad \text{time frequency} \nu = 440 \text{ Hz} \]

Program: wave1D_u0.py

Implementation of the case

def guitar(C):
 """Triangular wave (pulled guitar string)."""
 L = 0.75
 x0 = 0.8*L
 a = 0.005
 freq = 440
 wavelength = 2*L
 c = freq/wavelength
 num_periods = 1
 T = 2*pi/omega*num_periods
 # Choose dt the same as the stability limit for Nx=50
 dt = L/50./c
 def I(x):
 return a*x/x0 if x < x0 else a/(L-x0)*(L-x)
 umin = -1.2*a; umax = -umin
cpu = viz(I, 0, 0, c, L, dt, C, T, umin, umax, animate=True, tool='scitools')

Program: wave1D_u0.py

Resulting movie for C = 0.8

Movie of vibrating string

The benefits of scaling

It is difficult to figure out all the physical parameters of a case.
And it is not necessary because of a powerful scaling.

Introduce new \(x, t, \) and \(u \) without dimension:

\[
\tilde{x} = \frac{x}{L}, \quad \tilde{t} = \frac{c}{L} t, \quad \tilde{u} = \frac{u}{a}
\]

Insert this in the PDE (with \(f = 0 \)) and dropping bars

Initial condition: set \(a = 1, \quad L = 1, \) and \(xp \in [0.1] \) it (26).

In the code: set \(\omega = 0.04\pi, \ \omega = 0.8, \) and there is no need to calculate with wave heights and frequency to estimate c!
Just one challenge: determine the period of the waves and an appropriate end time (see the text for details).

Vectorization

Problem: Python loops over long arrays are slow
One remedy: use vectorized (numpy) code instead of explicit loops
Other remedies: use Cython, port spatial loops to Fortran or C
Speedup: 100-1000 (varies with \(N_x \))

Next: vectorized loops
Operations on slices of arrays

- Introductory example: compute \(d_i = u_{i+1} - u_i \)

\[n = u.size \]
\[\text{for } i \in \text{range}(0, n-1): \]
\[d[i] = u[i+1] - u[i] \]

- Note: all slice indices here are independent of each other.
- Example: \(d = (u_0, u_1, \ldots, u_{n-1}) \)
- If memory code: \(u[1:n] - u[0:n-2] \) or \(u[i+1] - u[i] \)

Vectorization of finite difference schemes (1)

Finite difference schemes basically contains differences between array elements with shifted indices. Consider the following formula:

\[u_2[i-1] - 2u_2[i] + u_2[i+1] = \text{f}(x[i]) \]

The vectorization consists of replacing the loop by arithmetics on slices of arrays of length 2:

\[u2[i-1] = u2[i-1] - 2u2[i] + u2[i+1] \]

Note: \(u2 \) has length 2.

If \(u2 \) is already an array of length 2, do update on "inner" elements:

\[u2[i-1] = u2[i-1] - 2u2[i] + u2[i+1] \]

Vectorized implementation in the solver function

Scalar loop:

\[\text{for } i \in \text{range}(1, \text{Nx}): \]
\[u[i] = 2u_1[i] - u_2[i] + \text{f}(x[i]) \]

Vectorized loop:

\[u[i-1] = u2[i-1] - 2u2[i] + u2[i+1] \]
\[\text{or} \]
\[u[i-1] = 2u_1[i] - u_2[i] + \text{f}(x[i]) \]

Program: wave1D_u0v.py

Vectorization of finite difference schemes (2)

Include a function evaluation too:

\[\text{def f(x): return } x^2 + 1 \]

The scalar \(f \) value needs careful coding: return constant array if vectorized code, else number.

Test the understanding

Newcomers to vectorization are encouraged to choose a small array, e.g., with five elements, and simulate with pen and paper both the loop version and the vectorized version.
Efficiency measurements

- Run wave1D_u0v.py for \(N \times \) as 50, 100, 200, 400, 800 and measuring the CPU time
- Observe substantial speed-up: vectorized version is about \(N / 5 \) times faster

Much bigger improvements for 2D and 3D codes!

Generalization: reflecting boundaries

- Boundary condition \(u = 0 \): changes sign
- Boundary condition \(u_x = 0 \): wave is perfectly reflected
- How can we implement \(u_x \)? (more complicated than \(u = 0 \))

Demo of boundary conditions

Neumann boundary condition

\[
\frac{\partial u}{\partial n} \equiv n \cdot \nabla u = 0 \quad (27)
\]

For a 1D domain \([0, L]\):

\[
\frac{\partial}{\partial n} \bigg|_{x=L} = \frac{\partial}{\partial x}, \quad \frac{\partial}{\partial n} \bigg|_{x=0} = -\frac{\partial}{\partial x}
\]

Boundary condition terminology:

- \(u \) specified: Neumann condition
- \(u_x \) specified: Dirichlet condition

Discretization of derivatives at the boundary (1)

Problem: \(u^n_{n-1} \) is outside the mesh (extraneous value)

Remedy: use the stencil at the boundary to eliminate \(u^n_{n-1} \); just replace \(u^n_{n-1} \) by \(u^n_{n} \)

\[
u^n_{n+1} = -v^{n-1} + 2q^i + 2C^2 (v^{n+1}_{i+1} - v^n_i), \quad i = 0 \quad (28)
\]

Discretization of derivatives at the boundary (2)

Visualization of modified boundary stencil

Introduction: for computing \(u^3_0 \) in terms of \(u^0_0 \), \(u^1_0 \), and \(u^2_1 \):

Animation in a web page or a movie file.
Implementation of Neumann conditions

* Use the general stencil for interior points also on the boundary
* Replace \(u_{n+1}^i \) by \(u_{n-1}^i \) for \(i = 0 \)
* Replace \(u_{n+1}^i \) by \(u_{n-1}^i \) for \(i = N_x \)

\[
\begin{align*}
\text{for } i \text{ in range(0, } N_x+1): \\
\text{ip1 = } i+1 \text{ if } i < N_x \text{ else } i-1 \\
im1 = i-1 \text{ if } i > 0 \text{ else } i+1 \\
u[i] = u_1[i] + C2*(u_1[im1] - 2*u_1[i] + u_1[ip1])
\end{align*}
\]

Program wave1D_dn0.py

Moving finite difference stencil

Index set notation

* Tedious to write index sets like \(i = 0, \ldots, N_x \) and \(n = 0, \ldots, N_t \)
* Notation not valid if \(i \) or \(n \) starts at 1 instead...
* Both in math and code it is advantageous to use index sets
 \(i \in I_x \) instead of \(i = 0, \ldots, N_x \)
 \(n \in I_t \)

Definition: \(I_x = \{0, \ldots, N_x\} \)
The first index: \(i \in I_0 \)
The last index: \(i \in I_{N_x-1} \)

All interior points: \(i \in I_x^1 \)
\(I_x^1 = \{1, \ldots, N_x - 1\} \)
\(I_x^0 \) means \(\{0, \ldots, N_x\} \)
\(I_x^-1 = \{0, \ldots, N_x - 1\} \)

Index sets in action (1)

Index sets for a problem in the \(x, t \) plane:

\[
I_x = \{0, \ldots, N_x\}, \quad I_t = \{0, \ldots, N_t\}
\]

Implemented in Python as

```python
Ix = range(0, Nx+1)
It = range(0, Nt+1)
```

Program wave1D_dn.py

Index sets in action (2)

A finite difference scheme can with the index set notation be specified as

\[
\begin{align*}
\phi^{n+1} &= -\phi^n + 2\phi^{n-1} + C^2 (\phi^{n+1}_i - 2\phi^n_i + \phi^{n-1}_i), \quad i \in I_x^1, \quad n \in I_t^1 \\
\phi^n &= 0, \quad i \in I_x^0, \quad n \in I_t^1 \\
\phi^{n+1} &= 0, \quad i \in I_x^-1, \quad n \in I_t^1
\end{align*}
\]

Corresponding implementation:

```python
for n in range(1): 
    for i in range(1, N_x): 
        \n        \n        \n        \n        Program wave1D_dn.py
Alternative implementation via ghost cells

Instead of modifying the stencil at the boundary, we extend the mesh to cover
\( u_{n-1} \) and \( u_{n+1} \).
- The extra left and right cell are called ghost cells.
- The extra points are called ghost points.
- The \( u_{n-1} \) and \( u_{n+1} \) values are called ghost values.

Update ghost values as
\[
\begin{align*}
  u_{n,i-1} &= u_{n,i+1} \quad \text{for } i = 0 \\
  u_{n,i+1} &= u_{n,i-1} \quad \text{for } i = N_x
\end{align*}
\]
Then the stencil becomes right at the boundary.

Implementation of ghost cells (1)

Add ghost points:
\[
u = \text{zeros}(N_x+3)
\]
\[
u_1 = \text{zeros}(N_x+3)
\]
\[
u_2 = \text{zeros}(N_x+3)
\]
\[
x = \text{linspace}(0, L, N_x+1)
\]
# Mesh points without ghost points

A major indexing problem arises with ghost cells since Python indices must start at 0.
\[ u[-1] \] will always mean the last element in \( u \).
Math indexing: \[-1, 0, 1, 2, \ldots, N_x+1\]
Python indexing: \[0, \ldots, N_x+2\]
Remedy: use index sets

Implementation of ghost cells (2)

\[
u = \text{zeros}(N_x+3)
\]
\[
I_x = \text{range}(1, u.\text{shape}[0]-1)
\]
# Boundary values: \( u[I_x[0]] \), \( u[I_x[-1]] \)
# Set initial conditions
for \( i \) in \( I_x \):
  \[
u_1[i] = \phi(x[I_x[0]]) \quad \text{# Note } i-I_x[0]
  \]
# Loop over all physical mesh points
for \( i \) in \( I_x \):
  \[
u[i] = - u_2[i] + 2*u_1[i] + C2*(u_1[i-1] - 2*u_1[i] + u_1[i+1])
  \]
# Update ghost values
\[
i = I_x[0] \quad \text{# x=0 boundary}
\]
\[
i = I_x[-1] \quad \text{# x=L boundary}
\]
Program: wave1D_dn0_ghost.py.

Generalization: variable wave velocity

Heterogeneous media: varying \( c = c(x) \)

The model PDE with a variable coefficient

\[
\frac{\partial^2 u}{\partial t^2} = \frac{\partial}{\partial x} \left( q(x) \frac{\partial u}{\partial x} \right) + f(x, t) \quad \text{(31)}
\]
This equation sampled at a mesh point \((x_i, t_n)\):
\[
\frac{\partial^2 u}{\partial t^2}(x_i, t_n) = \frac{\partial}{\partial x} \left( q(x_i) \frac{\partial u}{\partial x}(x_i, t_n) \right) + f(x_i, t_n)
\]

Discretizing the variable coefficient (1)

The principal idea is to first discretize the outer derivative.
Define
\[
\phi = q(x) \frac{\partial u}{\partial x}
\]
Then use a centered derivative around \( x = x_i \) for the derivative of \( \phi \)
\[
\left[ \frac{\phi}{\Delta x} \right]_i \approx \phi_{i+1} - \phi_{i-1} \frac{1}{\Delta x} = \left[ A_x \phi \right]_i
\]
Discretizing the variable coefficient (2)

Then discretize the inner operators:

\[ \phi_{i+\frac{1}{2}} - \phi_{i-\frac{1}{2}} \left( \frac{\partial}{\partial x} \right)^n_{x=j+\frac{1}{2}} \approx \frac{q_{i+\frac{1}{2}} - q_{i-\frac{1}{2}}}{\Delta x} = [D_x q_x u]_{i+\frac{1}{2}} \]

Similarly,

\[ \phi_{i+\frac{1}{2}} - \phi_{i-\frac{1}{2}} \left( \frac{\partial}{\partial x} \right)^n_{x=j+\frac{1}{2}} \approx \frac{q_{i+\frac{1}{2}} - q_{i-\frac{1}{2}}}{\Delta x} = [D_x q_x u]_{i+\frac{1}{2}} \]

Remark

Many are tempted to use the chain rule on the term \( \frac{\partial}{\partial x} (q(x)) \), but this is not a good idea!

Discretization of variable-coefficient wave equation in operator notation

These intermediate results are now combined to

\[ \left[ \frac{\partial}{\partial t} \left( q(x) \frac{\partial u}{\partial x} \right) \right]_{x} = \left[ \frac{1}{\Delta x^2} \left( q_{i+\frac{1}{2}} (q_{i+\frac{1}{2}} - q_{i-\frac{1}{2}}) - q_{i-\frac{1}{2}} (q_{i+\frac{1}{2}} - q_{i-\frac{1}{2}}) \right) \right] \]

Remark

We clearly see the type of finite differences and averaging!

I n operator notation:

\[ \left[ \frac{\partial}{\partial t} \left( q(x) \frac{\partial u}{\partial x} \right) \right]_{x} = \left[ \frac{1}{\Delta x^2} \left( q_{i+\frac{1}{2}} (q_{i+\frac{1}{2}} - q_{i-\frac{1}{2}}) - q_{i-\frac{1}{2}} (q_{i+\frac{1}{2}} - q_{i-\frac{1}{2}}) \right) \right] \]

Computing the coefficient between mesh points

Given \( q(x) \): compute \( q_{i+\frac{1}{2}} \) as \( q_{\frac{x}{2}} \)

Given \( x \) at the mesh points \( q_x \) use an average

\[ q_{i+\frac{1}{2}} = \frac{1}{2} \left( q_i + q_{i+1} \right) \]

(arithmetic mean) (34)

\[ q_{i+\frac{1}{2}} = \frac{1}{2} \left( \frac{1}{q_i} + \frac{1}{q_{i+1}} \right)^{\frac{1}{2}} \]

(la rynas mean) (35)

\[ q_{i+\frac{1}{2}} = \sqrt{q_i q_{i+1}} \]

(geometric mean) (36)

The arithmetic mean is (34) is by far the most used averaging technique.

Discretizing the variable coefficient (3)

These intermediate results are now combined to

\[ \left[ \frac{\partial}{\partial t} \left( q(x) \frac{\partial u}{\partial x} \right) \right]_{x} = \left[ \frac{1}{\Delta x^2} \left( q_{i+\frac{1}{2}} (q_{i+\frac{1}{2}} - q_{i-\frac{1}{2}}) - q_{i-\frac{1}{2}} (q_{i+\frac{1}{2}} - q_{i-\frac{1}{2}}) \right) \right] \]

Remark

Many are tempted to use the chain rule on the term \( \frac{\partial}{\partial x} (q(x) \frac{\partial u}{\partial x}) \)

Neumann condition and a variable coefficient

Consider \( \partial u / \partial x = 0 \) at \( x = L = N_x \Delta x \):

\[ q_{i+\frac{1}{2}} - q_{i-\frac{1}{2}} \left( \frac{\partial}{\partial x} \right)^n_{x=j+\frac{1}{2}} = 0 \]

There \( q_{i+\frac{1}{2}} = q_{i-\frac{1}{2}} \) in the stencil (30) for \( i = N_x \) and obtain

\[ q_{i+\frac{1}{2}} = q_{i-\frac{1}{2}} = q_{i-1} = q_{i+1} \]

(We have used \( q_{i+\frac{1}{2}} + q_{i-\frac{1}{2}} = 2 q_{i} \)).

Alternative: assume \( \partial u / \partial x = 0 \) (simpler).

Implementation of variable coefficients

Assume \( c[i] \) holds \( c_i \) the spatial mesh points:

\[ \text{for } i \in \text{range}(N_x), \text{ let:} \]

\[ q_{i+\frac{1}{2}} = q_{i+\frac{1}{2}} \left( \frac{\partial}{\partial x} \right)^n_{x=j+\frac{1}{2}} \]

In a nested format:

\[ q_{i+\frac{1}{2}} = q_{i+\frac{1}{2}} \left( \frac{\partial}{\partial x} \right)^n_{x=j+\frac{1}{2}} \]

For example:

\[ q_{i+\frac{1}{2}} = q_{i+\frac{1}{2}} \left( \frac{\partial}{\partial x} \right)^n_{x=j+\frac{1}{2}} \]

Neumann condition \( u_x = 0 \): same ideas as in 1D (modified stencil or ghost cell).
A more general model PDE with variable coefficients

\[ \rho(x)\frac{\partial^2 u}{\partial t^2} - \frac{\partial}{\partial x} \left( q(x) \frac{\partial u}{\partial x} \right) + f(x,t) \]  

(39)

A special case is

\[ \rho_{\text{eq}} \frac{\partial^2 u}{\partial t^2} = \frac{\partial}{\partial x} \left( q \frac{\partial u}{\partial x} \right) + f(x,t) \]  

(40)

Or

\[ \frac{\partial^2 u}{\partial t^2} - \frac{\partial}{\partial x} \left( q \frac{\partial u}{\partial x} \right) + f(x,t) \]  

(41)

No need to average \( \rho \), just sample at \( i \).

Generalization: damping

Why do waves die out?

Damping (non-elastic effects, air resistance)

2D/3D: conservation of energy makes an amplitude reduction by \( 1/\sqrt{t} \) (2D) or \( 1/t \) (3D)

Simplest damping model (for physical behavior, see demo):

\[ \rho(x)\frac{\partial^2 u}{\partial t^2} + \frac{\partial}{\partial x} \left( q(x) \frac{\partial u}{\partial x} \right) + f(x,t) \]  

(42)

\( \delta \geq 0 \): prescribed damping coefficient.

Dissipation via centered differences to ensure \( O(\Delta t^2) \) error:

\[ \frac{\partial^2 u}{\partial t^2} + \frac{\partial}{\partial x} \left( q \frac{\partial u}{\partial x} \right) + f(x,t) \]  

(43)

Need special formulas for \( s^2 \) + specialized (or ghost cells) for Neumann conditions.

Building a general 1D wave equation solver

The program `wave1D_dn_vc.py` solves a fairly general 1D wave equation:

\[
\begin{align*}
\rho(x)\frac{\partial^2 u}{\partial t^2} &= \frac{\partial}{\partial x} \left( q(x) \frac{\partial u}{\partial x} \right) + f(x,t) \\
\text{or} \\
\frac{\partial^2 u}{\partial t^2} &= \frac{\partial}{\partial x} \left( q \frac{\partial u}{\partial x} \right) + f(x,t)
\end{align*}
\]

(44)

(45)

No need to average \( \rho \), just sample at \( i \).

Collection of initial conditions

The function `pulse` in `wave1D_dn_vc.py` offers four initial conditions:

1. a rectangular pulse ("plug")
2. a Gaussian function (gaussian)
3. a "cosine hat": half a period of \( \cos(x) \), \( x \in [-1,1] \)
4. a "cosine hat": half a period of \( \cos(x) \), \( x \in [-\frac{1}{2}, \frac{1}{2}] \)

Can locate the initial pulse at \( x = 0 \) or in the middle

```
>>> import wave1D_dn_vc as w
>>> w.pulse(loc='left', pulse_tp='cosinehat', Nx=50, every_frame=10)
```

Finite difference methods for 2D and 3D wave equations

Consistent wave velocity:

\[ \frac{\partial^2 u}{\partial t^2} - c^2 \nabla^2 u \quad \text{for} \quad x \in \Omega \subset \mathbb{R}^2, \; t \in (0, T] \]  

(46)

Variable wave velocity:

\[ \frac{\partial^2 u}{\partial t^2} - \nabla \left( q \nabla u \right) + f \quad \text{for} \quad x \in \Omega \subset \mathbb{R}^2, \; t \in (0, T] \]  

(47)

Examples on wave equations written out in 2D/3D

\[
\begin{align*}
\nabla^2 u &= \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} \\
\text{2D, variable:} \\
q(x,y) \frac{\partial^2 u}{\partial x^2} &= \frac{\partial}{\partial x} \left( q(x,y) \frac{\partial u}{\partial x} \right) + \frac{\partial}{\partial y} \left( q(x,y) \frac{\partial u}{\partial y} \right) + f(x,y,t)
\end{align*}
\]

(51)

Compact notation:

\[
\begin{align*}
\nabla u &= (\partial_x u) + (\partial_y u) + (\partial_z u) + f \\
\nabla^2 u &= (\partial_x u)_x + (\partial_y u)_y + (\partial_z u)_z + f
\end{align*}
\]

(52)

(53)
Boundary and initial conditions

We need one boundary condition at each point on \( \partial \Omega \):
- \( u \) is prescribed \((u = 0 \) or known incoming wave)\)
- \( \partial u/\partial n - a \nabla u \) prescribed \((- \partial \) reflecting boundary)\)
- open boundary \( (\text{radiation}) \) condition: \( u + c \nabla u = 0 \) \( (\text{ke waves travel undisturbed out of the domain}) \)

PDEs with second-order time derivative need two initial conditions:
- \( u = I, \)
- \( u_t = V. \)

Discretization

\[ [(D_x D_x u) = c^2(D_x D_x u + D_y D_y u) + f_{ijk}]. \]

Write out in detail:
\[ \frac{u_{j}^{n+1} - 2u_{j}^{n} + u_{j}^{n-1}}{\Delta t^2} = c^2(u_{j+1}^{n+1} - 2u_{j}^{n+1} + u_{j-1}^{n+1}) \]
\[ + \frac{u_{j-1}^{n} - 2u_{j}^{n} + u_{j+1}^{n}}{\Delta t^2} + D_y D_y u \]

\( u_{j}^{n+1} \) and \( u_{j}^{n-1} \) are known; solve for \( u_{j}^{n+1} \):
\[ u_{j}^{n+1} = 2u_{j}^{n} - u_{j}^{n-1} + c^2 \Delta t^2(D_x D_x u + D_y D_y u) \]

Mesh

- Mesh points: \( (x, y, z, t_n) \)
- \( x \) direction: \( x_0 < x_1 < \cdots < x_N \)
- \( y \) direction: \( y_0 < y_1 < \cdots < y_M \)
- \( z \) direction: \( z_0 < z_1 < \cdots < z_S \)
- \( u_{j}^{n+1} = \phi(x, y, z, t_n) \)

Special stencil for the first time step

- The stencil for \( u_1 \) \((n=0)\) involves \( u_{j}^{1} \) which is outside the time mesh.
- For newly introduced \( u_1 \) \((v_1)\), use the discretized \( u_1 = V \) and the stencil for \( n = 0 \) to develop a special stencil (as in the 1D case).

\[ [(D_x D_x u) = v_{i}^{1} - v_{j}^{1} - 2\Delta x v_{j}] \]
\[ v_{j}^{1} = v_{j}^{0} - \Delta x v_{j} + \frac{1}{2} \Delta x^2 D_y D_y u + D_x D_y u v_{j} \]

Variable coefficients (1)

3D wave equation:
\[ \partial u_n = (\partial u_n) + (\partial x_n) + (\partial y_n) + f(x, y, z, t) \]

3D wave equation:
\[ [(D_x D_x u) = (D_x D_x u + D_y D_y u + D_z D_z u) + f_{ijk}]. \]

Need special formulas for \( v_{j}^{1} \) (use \([D_x u = V]\) and stencil for \( n = 0 \)).

Variable coefficients (2)

Write out:
\[ v_{j}^{1} = -v_{j}^{1} + 2v_{j}^{0} \]
\[ + \frac{\Delta x}{\Delta x} (\frac{1}{2} \Delta x^2 (q_{j+k} + q_{j+k} + q_{j+k} - q_{j+k})) \]
\[ + \frac{\Delta x}{\Delta x} (\frac{1}{2} \Delta x^2 (q_{j+k} + q_{j+k} + q_{j+k} - q_{j+k})) \]
\[ + \Delta x^2 (q_{j+k} + q_{j+k} + q_{j+k} - q_{j+k}). \]

\[ \Delta x^2 (q_{j+k} + q_{j+k} + q_{j+k} - q_{j+k}) + \]
Neumann boundary condition in 2D

Use ideas from 1D: Example: \[ \frac{\partial^2 u}{\partial x^2} = 0 \text{ at } x = 0, \quad \frac{\partial^2 u}{\partial y^2} = 0 \]

Boundary condition discretization:

\[ [-\partial_y u = 0] \quad \Rightarrow \quad \frac{u_{i}^{j+1} - u_{i}^{j}}{\Delta y} = 0, \quad i \in I_x \]

In 2D, \( u_{i}^{j} = u_{i}^{j-1} \) is the stencil for \( u_{i}^{j} \) so obtain a modified stencil for the boundary.

Pattern: use interior stencil also on the boundary, but replace \( j-1 \) by \( j+1 \).

Alternative: use ghost cells and ghost values

\[ \Omega = [0, L_x] \times [0, L_y] \]

Discretization:

\[ [D_t D_t u - c^2 (D_x D_x u + D_y D_y u) + f_{D_y}] \]

Implementation of 2D/3D problems

\[ u_{t} = c^2 (u_{x} + u_{y}) + f(x, y, t), \quad (x, y) \in \Omega, \quad t \in (0, T) \] (55)

\[ u(x, y, 0) = f(x, y), \quad (x, y) \in \Omega \] (56)

\[ u_{t}(x, y, 0) = v(x, y), \quad (x, y) \in \Omega \] (57)

\[ u = 0, \quad (x, y) \in \partial \Omega, \quad t \in (0, T) \] (58)

\[ \Omega = [0, L_x] \times [0, L_y] \]

Discretization:

\[ \frac{[D_t D_t u - c^2 (D_x D_x u + D_y D_y u) + f_{D_y}]}{\Delta t} \]

Scalar computations: mesh

Program: wave2D_u0.py

```python
def solver(I, V, f, c, Lx, Ly, Nx, Ny, dt, T, user_action=None, version='scalar'):
 # mesh points in x dir
 x = linspace(0, Lx, Nx+1)
 if user_action is not None:
 # mesh points in y dir
 y = linspace(0, Ly, Ny+1)
 for i in Ix:
 Iy = range(0, u.shape[0])
 for j in Iy:
 u_2 = zeros((Nx+1,Ny+1)) # solution at t-2*dt
 u_1 = zeros((Nx+1,Ny+1)) # solution at t-dt
 u = zeros((Nx+1,Ny+1)) # solution array
 u_2[i,j] = I(x[i], y[j])
 for j in Iy:
 y = linspace(0, Ly, Ny+1)
 for i in Ix:
 I = range(0, u.shape[1])
 u[I,0] = I(x[I], y[0])
 if user_action is not None:
 user_action(u[I,0], x[I], xv[I], y, yv[I], t, 0)
 Arguments xv and yv, for vectorized computations
```

Scalar computations: arrays

Since \( u_{i}^{j+1}, u_{i}^{j}, \) and \( u_{i}^{j-1} \) are in three two-dimensional arrays:

\[ u = zeros((Nx, Ny)) \quad \# solution array
u_2 = zeros((Nx, Ny)) \quad \# solution at t-2*dt
u_1 = zeros((Nx, Ny)) \quad \# solution at t-dt
u_0 = zeros((Nx, Ny)) \quad \# solution at t-0*dt
\]

\( u_{i}^{j+1} \) corresponds to \( u[I,j] \), etc.
Vectorized computations: primary stencil

```python
def advance_scalar(u, u_1, u_2, f, x, y, t, n, Cx2, Cy2, dt2, V=None, ... u_1[:,i,j] = I(xv, yv)
f_a[:,i,j] = f(xv, yv, t)
```

Vectorized computations: mesh coordinates

Mesh with 30 × 30 cells: vectorization reduces the CPU time by a factor of 10 (1).

Need special coordinate arrays x and y so that f(x, y) and f(x, y, t) can be vectorized:

```python
def I(x, y):...return f(xv, yv, t)
```

Verification: quadratic solution (1)

Manufactured solution:

\[ u_e(x, y, t) = x(L_x - x)y(L_y - y)(1 + \frac{1}{2}t) \]  

Requires f = 2c^2(1 + \frac{1}{2}t)(y(L_y - y) + x(L_x - x)).

This u_e is ideal because it also solves the discrete equations!

Analysis of the difference equations

- \([D_1,D_2]^T = 0\)
- \([D_1,D_2]f = 0\)
- \([D_1,D_2]^2 = 0\)
- \(D_1, D_2\) is a linear operator:

\[
[D_1,D_2](u + bv)^T = D_1(u,D_2u)^T + b[D_1,D_2]^T
\]

\[
[D_1,D_2]^T u_1^T = [y(y - y)(1 + \frac{1}{2}t)D_1,D_2 u_1^T]_{1}\]

\[
= y(y - y)(1 + \frac{1}{2}t)\]

Similar calculations for \([D_1,D_2]^T u_1^T\) and \([D_1,D_2]^T u_1^T\) terms

Must also check the equation for \(u_1\)
Properties of the solution of the wave equation

\[
\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2}
\]

Solutions:

\[
u(x, t) = g_L(x - ct) + g_R(x + ct)
\]

If \( u(x, 0) = f(x) \) and \( u_t(x, 0) = 0 \):

\[
u(x, t) = \frac{1}{2} f(x - ct) + \frac{1}{2} f(x + ct)
\]

Two waves: one traveling to the right and one to the left.

Let us change the shape of the initial condition slightly and see what happens.

A similar wave component is also a solution of the finite difference scheme (!)

Idea: a similar discrete solution (corresponding to the exact solution) solves

\[
[D, D_t u = c^2 \Delta x \Delta t u]
\]

Note: we expect numerical frequency \( \tilde{\omega} \neq \omega \)

- How accurate is \( \tilde{\omega} \) compared to \( \omega \)?
- What about the wave amplitude (can \( \tilde{\omega} \) become complex)?

Simulation of a case with variable wave velocity

A wave propagates perfectly (\( C = 1 \)) and hits a medium with 1/4 of the wave velocity (\( C = 0.25 \)). A part of the wave is reflected and the rest is transmitted.

Representation of waves as sum of sine/cosine waves

Build \( I(x) \) of wave components \( e^{ikx} = \cos(kx) + i \sin(kx) \):

\[
I(x) = \sum_{k \in K} b_k e^{ikx}
\]

- For \( b_k \) by least squares or projection method
- \( k \) is the frequency of a component (\( \lambda = 2\pi/k \) is the wave length in space)
- \( K \) is some set of all \( k \) needed to approximate \( I(x) \) well
- \( b_k \) must be computed (Fourier coefficients)

Since \( u(x, t) = \frac{1}{2} f(x - ct) + \frac{1}{2} f(x + ct) \), the exact solution is

\[
u(x, t) = \frac{1}{2} \sum_{k \in K} b_k e^{ik(x-ct)} + \frac{1}{2} \sum_{k \in K} b_k e^{ik(x+ct)}
\]

Our interest: one component \( e^{ik(x-ct)} \), \( \omega = kc \)

Preliminary results

\[
[D, D_t e^{ik \omega t}]^\Delta t = -\frac{4}{\Delta x^2} \sin^2 \left( \frac{\omega \Delta t}{2} \right) e^{ik \omega t}
\]

By \( \omega \to k \), \( t \to x \), \( n \to q \) it follows that

\[
[D, D_t e^{ikx}]^\Delta x = -\frac{4}{\Delta x^2} \sin^2 \left( \frac{k \Delta x}{2} \right) e^{ikx}
\]
The special case

Inserting the numerical wave component

Inserting a basic wave component \( u = e^{i(kx - \omega t)} \) in the scheme requires computation of

\[
[D_t D_t e^{i(kx - \omega t)}]_n = [D_t D_t e^{i(kx - \omega t)}]_n = -\frac{4}{\Delta t^2} \sin^2 \left( \frac{k \Delta x}{2} \right) e^{i(kx - \omega t)}
\]

\[
[D_t D_x e^{i(kx - \omega t)}]_n = [D_t D_x e^{i(kx - \omega t)}]_n = -\frac{4}{\Delta x^2} \sin^2 \left( \frac{k \Delta x}{2} \right) e^{i(kx - \omega t)}
\]

The equation for \( \omega \)

The complete scheme,

\[
[D_t D_t e^{i(kx - \omega t)}] = \frac{\partial^2}{\partial x^2} e^{i(kx - \omega t)}
\]

leads to an equation for \( \omega \) (which can readily be solved):

\[
\sin \left( \frac{\omega \Delta t}{2} \right) = C \sin \left( \frac{k \Delta x}{2} \right)
\]

Taking the square root:

\[
\sin \left( \frac{\omega \Delta t}{2} \right) = C \sin \left( \frac{k \Delta x}{2} \right)
\]

The numerical dispersion relation

Can easily solve for an explicit formula for \( \omega \):

\[\omega = \frac{2}{\Delta t} \sin^{-1} \left( C \sin \left( \frac{k \Delta x}{2} \right) \right)\]

Note:

- This \( \omega = \omega(k, c, \Delta x, \Delta t) \) is the numerical dispersion relation
- Inserting \( e^{i(kx - \omega t)} \) in the PDE leads to \( \omega = kc \), which is the analytical/exact dispersion relation
- Speed of waves might be easier to imagine:
  - Exact waves: \( c = \omega / k \)
  - Numerical waves: \( \tilde{c} = \omega / k \)
- We shall investigate \( \tilde{c} / c \) to see how wrong the speed of a numerical wave component is

Computing the error in wave velocity

- Introduce \( p = k \Delta x / 2 \) (the important dimensionless spatial discretization parameter)
- \( p \) measures no of mesh points in space per wave length in space
- Smallest possible wave length is mesh, \( \lambda = 2 \Delta x \), \( k = 2\pi / \lambda = \pi / \Delta x \) and \( p = k \Delta x / 2 = \pi / 2 \Rightarrow p \in [0, \pi / 2] \)
- Study error in wave velocity through \( \tilde{c} / c \) as function of \( p \)

\[
r(C, p) = \frac{\tilde{c}}{c} = \frac{2}{k \Delta x} \sin^{-1} (C \sin p) - \frac{2}{k \Delta x} \sin^{-1} \left( \frac{1}{\Delta x} \sin^2 p \right)
\]

Can plot \( r(C, p) \) for \( p \in [0, \pi / 2], C \in [0, 1] \)

Visualizing the error in wave velocity

Note: the slower waves have the larger error and vice versa.
Taylor expanding the error in wave velocity

For small $p$, Taylor expand $\tilde{\omega}$ as polynomial in $p$:

```python
>>> C, p = symbols('C p')
>>> rs = r(C, p).series(p, 0, 7)
>>> print rs
1 - p**2/6 + p**4/120 - p**6/5040 + C**2*p**2/6 - C**2*p**4/12 + 13*C**2*p**6/720 + 3*C**4*p**4/40 - C**4*p**6/16 + 5*C**6*p**6/112 + O(p**7)
```

>>>

# Drop the remainder $O(...)$ term
```python
>>> rs = rs.removeO()
```

# Factorize each term
```python
>>> rs = [factor(term) for term in rs.as_ordered_terms()]
>>> rs = sum(rs)
>>> print rs
p**6*(C - 1)*(C + 1)*(225*C**4 - 90*C**2 + 1)/5040 + p**4*(C - 1)*(C + 1)*(3*C - 1)*(3*C + 1)/120 + p**2*(C - 1)*(C + 1)/6 + 1
```

Leading error term is $1$.

Example on effect of wrong wave velocity (1)

- Smooth wave, few short waves (large $k$) in $I(x)$:
- Not so smooth wave, significant short waves (large $k$) in $I(x)$:

Stability

$$\sin \left( \frac{\Delta x}{2} \right) - C \sin \left( \frac{\Delta x}{2} \right)$$

- Exact $\omega$ is not.
- Complex $\tilde{\omega}$ will lead to exponential growth of the amplitude.
- Stability criterion: $\Re{\tilde{\omega}} < 0$.
- $\sin(\Delta x/2) \in [-1, 1]$.
- $\Delta x/2$ is always real, so right-hand side is in $[-C, C]$.
- Thus we must have $C \leq 1$.

Stability criterion:

$$C = \frac{c \Delta t}{\Delta x} \leq 1$$

Extending the analysis to 2D (and 3D)

Recall that right-hand side is in $[-C, C]$. Thus $C > 1$ means

$$\sin \left( \frac{\Delta x}{2} \right) - C \sin \left( \frac{\Delta x}{2} \right)$$

- $|\sin x| > 1$ implies complex $x$.
- Here $\tilde{\omega}$ complex: $\tilde{\omega} = \tilde{\omega}_R \pm i \tilde{\omega}_I$.
- If $\Delta x < 0$ gives $\exp\left(-i \tilde{\omega} \Delta t\right)$ and exponential growth.
- This wave component will after some time dominate the solution giving an overall exponentially increasing amplitude (non-physical).

Recall that right-hand side is in $[-C, C]$. Thus $C > 1$ means

$$\sin \left( \frac{\Delta x}{2} \right) - C \sin \left( \frac{\Delta x}{2} \right)$$

- $|\sin x| > 1$ implies complex $x$.
- Here $\tilde{\omega}$ complex: $\tilde{\omega} = \tilde{\omega}_R \pm i \tilde{\omega}_I$.
- If $\Delta x < 0$ gives $\exp\left(-i \tilde{\omega} \Delta t\right)$ and exponential growth.
- This wave component will after some time dominate the solution giving an overall exponentially increasing amplitude (non-physical).

Thus $C > 1$ leads to non-physical waves.

Why $C > 1$ leads to non-physical waves

Recall that right-hand side is in $[-C, C]$. Thus $C > 1$ means

$$\sin \left( \frac{\Delta x}{2} \right) - C \sin \left( \frac{\Delta x}{2} \right)$$

- $|\sin x| > 1$ implies complex $x$.
- Here $\tilde{\omega}$ complex: $\tilde{\omega} = \tilde{\omega}_R \pm i \tilde{\omega}_I$.
- If $\Delta x < 0$ gives $\exp\left(-i \tilde{\omega} \Delta t\right)$ and exponential growth.
- This wave component will after some time dominate the solution giving an overall exponentially increasing amplitude (non-physical).

Extending the analysis to 2D (and 3D)

Recall that right-hand side is in $[-C, C]$. Thus $C > 1$ means

$$\sin \left( \frac{\Delta x}{2} \right) - C \sin \left( \frac{\Delta x}{2} \right)$$

- $|\sin x| > 1$ implies complex $x$.
- Here $\tilde{\omega}$ complex: $\tilde{\omega} = \tilde{\omega}_R \pm i \tilde{\omega}_I$.
- If $\Delta x < 0$ gives $\exp\left(-i \tilde{\omega} \Delta t\right)$ and exponential growth.
- This wave component will after some time dominate the solution giving an overall exponentially increasing amplitude (non-physical).

Extended solutions by adding complex Fourier components of the form

$$\sum_k g_k e^{ik(x,y)} \phi_k$$

Recall that right-hand side is in $[-C, C]$. Thus $C > 1$ means

$$\sin \left( \frac{\Delta x}{2} \right) - C \sin \left( \frac{\Delta x}{2} \right)$$

- $|\sin x| > 1$ implies complex $x$.
- Here $\tilde{\omega}$ complex: $\tilde{\omega} = \tilde{\omega}_R \pm i \tilde{\omega}_I$.
- If $\Delta x < 0$ gives $\exp\left(-i \tilde{\omega} \Delta t\right)$ and exponential growth.
- This wave component will after some time dominate the solution giving an overall exponentially increasing amplitude (non-physical).

Extended solutions by adding complex Fourier components of the form

$$\sum_k g_k e^{ik(x,y)} \phi_k$$
Discrete wave components in 2D

\[ \Delta t, \Delta u = c^2(D_x^2 u + D_y^2 u) \]

This equation admits a Fourier component

\[ \tilde{q}_{\ell, \mu} = \int_\Omega q \, e^{-2\pi i (\ell x + \mu y)} \, dx \, dy \]

Inserting the Fourier component into the discrete 2D wave equation, and using formulas from the 1D analysis:

\[ \sin^2 \left( \frac{\tilde{c} \Delta t}{2} \right) = c^2 \sin^2 p_x + c^2 \sin^2 p_y \]

where

\[ c_x = \frac{c \Delta t}{\Delta x}, \quad c_y = \frac{c \Delta t}{\Delta y}, \quad \cos \theta = \frac{p_x - \frac{1}{2} k_x \Delta x, \quad \sin \theta = \frac{p_y - \frac{1}{2} k_y \Delta y}{2} \]

Numerical dispersion relation in 2D (1)

\[ \tilde{\omega} = 2 \Delta t \sin^{-1} \left( \sqrt{c_x^2 \sin^2 p_x + c_y^2 \sin^2 p_y} \right) \]

For visualization, introduce \( k = \sqrt{k_x^2 + k_y^2} \) and \( \theta \) such that

\[ k_x = k \sin \theta, \quad k_y = k \cos \theta, \quad p_x = \frac{1}{2} k \cos \theta, \quad p_y = \frac{1}{2} k \sin \theta \]

Also, \( \Delta x = \Delta y = h \). Then \( C_x = C_y = \frac{c \Delta t}{\Delta x} = C \).

Now \( \tilde{\omega} \) depends on:

- \( C \): reflecting the number cells a wave is displaced during a time step
- \( k \): reflecting the number of cells per wave length in space
- \( \theta \): expressing the direction of the wave

Stability criterion in 3D

\[ \Delta t \leq \frac{1}{\tilde{\omega}} \left( \frac{1}{\Delta x^2} + \frac{1}{\Delta y^2} + \frac{1}{\Delta z^2} \right)^{-1/2} \]

For \( c^2 = c^2(x) \) we must use the worst-case value

\[ c = \sqrt{\max_{x \in \Omega} c^2(x)} \]

and a safety factor \( \beta \leq 1 \):

\[ \Delta t \leq \beta \frac{1}{\tilde{\omega}} \left( \frac{1}{\Delta x^2} + \frac{1}{\Delta y^2} + \frac{1}{\Delta z^2} \right)^{-1/2} \]

Numerical dispersion relation in 2D (2)

\[ \tilde{\omega} = 2 \Delta t \sin^{-1} \left( \sqrt{c_x^2 \sin^2 p_x + c_y^2 \sin^2 p_y} \right) \]

Can make color contour plots of \( 1 - \tilde{\omega}/c \) in polar coordinates with \( \theta \) as the angular coordinate and \( k \) as the radial coordinate.