Finite difference methods for waves on a string
The complete initial-boundary value problem
Input data in the problem
Demo of a vibrating string (\( C=0.8 \))
Demo of a vibrating string (\( C=1.0012 \))
Step 1: Discretizing the domain
The discrete solution
Step 2: Fulfilling the equation at the mesh points
Step 3: Replacing derivatives by finite differences
Step 3: Algebraic version of the PDE
Step 3: Algebraic version of the initial conditions
Step 4: Formulating a recursive algorithm
The Courant number
The finite difference stencil
The stencil for the first time level
The algorithm
Moving finite difference stencil
Sketch of an implementation (1)
PDE solvers should save memory
Sketch of an implementation (2)
Verification
A slightly generalized model problem
Discrete model for the generalized model problem
Modified equation for the first time level
Using an analytical solution of physical significance
Manufactured solution: principles
Manufactured solution: example
Testing a manufactured solution
Constructing an exact solution of the discrete equations
Analytical work with the PDE problem
Analytical work with the discrete equations (1)
Analytical work with the discrete equations (1)
Testing with the exact discrete solution
Implementation
The algorithm
What do to with the solution?
Making a solver function
Verification: exact quadratic solution
Visualization: animating \( u(x,t) \)
Making movie files
Running a case
Implementation of the case
Resulting movie for \( C=0.8 \)
The benefits of scaling
Vectorization
Operations on slices of arrays
Test the understanding
Vectorization of finite difference schemes (1)
Vectorization of finite difference schemes (2)
Vectorized implementation in the solver function
Verification of the vectorized version
Efficiency measurements
Generalization: reflecting boundaries
Neumann boundary condition
Discretization of derivatives at the boundary (1)
Discretization of derivatives at the boundary (2)
Visualization of modified boundary stencil
Implementation of Neumann conditions
Moving finite difference stencil
Index set notation
Index set notation in code
Index sets in action (1)
Index sets in action (2)
Alternative implementation via ghost cells
Implementation of ghost cells (1)
Implementation of ghost cells (2)
Generalization: variable wave velocity
The model PDE with a variable coefficient
Discretizing the variable coefficient (1)
Discretizing the variable coefficient (2)
Discretizing the variable coefficient (3)
Computing the coefficient between mesh points
Discretization of variable-coefficient wave equation in operator notation
Neumann condition and a variable coefficient
Implementation of variable coefficients
A more general model PDE with variable coefficients
Generalization: damping
Building a general 1D wave equation solver
Collection of initial conditions
Finite difference methods for 2D and 3D wave equations
Examples on wave equations written out in 2D/3D
Boundary and initial conditions
Example: 2D propagation of Gaussian function
Mesh
Discretization
Special stencil for the first time step
Variable coefficients (1)
Variable coefficients (2)
Neumann boundary condition in 2D
Implementation of 2D/3D problems
Algorithm
Scalar computations: mesh
Scalar computations: arrays
Scalar computations: initial condition
Scalar computations: primary stencil
Vectorized computations: mesh coordinates
Vectorized computations: stencil
Verification: quadratic solution (1)
Verification: quadratic solution (2)
Analysis of the difference equations
Properties of the solution of the wave equation
Demo of the splitting of \( I(x) \) into two waves
Simulation of a case with variable wave velocity
Let us change the shape of the initial condition slightly and see what happens
Representation of waves as sum of sine/cosine waves
A similar wave component is also a solution of the finite difference scheme (!)
Preliminary results
Insertion of the numerical wave component
The equation for \( \tilde\omega \)
The numerical dispersion relation
The special case \( C=1 \) gives the exact solution
Computing the error in wave velocity
Visualizing the error in wave velocity
Taylor expanding the error in wave velocity
Example on effect of wrong wave velocity (1)
Example on effect of wrong wave velocity (1)
Stability
Why \( C>1 \) leads to non-physical waves
Extending the analysis to 2D (and 3D)
Discrete wave components in 2D
Stability criterion in 2D
Stability criterion in 3D
Numerical dispersion relation in 2D (1)
Numerical dispersion relation in 2D (2)
Numerical dispersion relation in 2D (3)
Waves on a string can be modeled by the wave equation $$ \frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2} $$
\( u(x,t) \) is the displacement of the string
Ooops!
Mesh in time: $$ \begin{equation} 0 = t_0 < t_1 < t_2 < \cdots < t_{N_t-1} < t_{N_t} = T \label{_auto1} \end{equation} $$
Mesh in space: $$ \begin{equation} 0 = x_0 < x_1 < x_2 < \cdots < x_{N_x-1} < x_{N_x} = L \label{_auto2} \end{equation} $$
Uniform mesh with constant mesh spacings \( \Delta t \) and \( \Delta x \): $$ \begin{equation} x_i = i\Delta x,\ i=0,\ldots,N_x,\quad t_i = n\Delta t,\ n=0,\ldots,N_t \label{_auto3} \end{equation} $$
Let the PDE be satisfied at all interior mesh points: $$ \begin{equation} \frac{\partial^2}{\partial t^2} u(x_i, t_n) = c^2\frac{\partial^2}{\partial x^2} u(x_i, t_n), \label{wave:pde1:step2} \end{equation} $$ for \( i=1,\ldots,N_x-1 \) and \( n=1,\ldots,N_t-1 \).
For \( n=0 \) we have the initial conditions \( u=I(x) \) and \( u_t=0 \), and at the boundaries \( i=0,N_x \) we have the boundary condition \( u=0 \).
Widely used finite difference formula for the second-order derivative: $$ \frac{\partial^2}{\partial t^2}u(x_i,t_n)\approx \frac{u_i^{n+1} - 2u_i^n + u^{n-1}_i}{\Delta t^2}= [D_tD_t u]^n_i$$
and $$ \frac{\partial^2}{\partial x^2}u(x_i,t_n)\approx \frac{u_{i+1}^{n} - 2u_i^n + u^{n}_{i-1}}{\Delta x^2} = [D_xD_x u]^n_i $$
Replace derivatives by differences: $$ \begin{equation} \frac{u_i^{n+1} - 2u_i^n + u^{n-1}_i}{\Delta t^2} = c^2\frac{u_{i+1}^{n} - 2u_i^n + u^{n}_{i-1}}{\Delta x^2}, \label{wave:pde1:step3b} \end{equation} $$
In operator notation: $$ \begin{equation} [D_tD_t u = c^2 D_xD_x]^{n}_i \label{wave:pde1:step3a} \end{equation} $$
The other initial condition \( u(x,0)=I(x) \) can be computed by $$ u_i^0 = I(x_i),\quad i=0,\ldots,N_x$$
There is only one parameter, \( C \), in the discrete model: \( C \) lumps mesh parameters \( \Delta t \) and \( \Delta x \) with the only physical parameter, the wave velocity \( c \). The value \( C \) and the smoothness of \( I(x) \) govern the quality of the numerical solution.
Insert in stencil \( [D_tD_tu = c^2D_xD_x]^0_i \) to get $$ \begin{equation} u_i^1 = u^0_i + \half C^2\left(u^{n}_{i+1}-2u^{n}_{i} + u^{n}_{i-1}\right) \label{wave:pde1:step4:1} \end{equation} $$
web page or a movie file.
u[i]
stores \( u^{n+1}_i \)u_1[i]
stores \( u^n_i \)u_2[i]
stores \( u^{n-1}_i \)
u
is the unknown to be computed (a spatial mesh
function), u_1
denotes the latest computed time level, u_2
corresponds to one time step back in time.
The algorithm only needs to access the three most recent time levels, so we need only three arrays for \( u_i^{n+1} \), \( u_i^n \), and \( u_i^{n-1} \), \( i=0,\ldots,N_x \). Storing all the solutions in a two-dimensional array of size \( (N_x+1)\times (N_t+1) \) would be possible in this simple one-dimensional PDE problem, but not in large 2D problems and not even in small 3D problems.
# Given mesh points as arrays x and t (x[i], t[n])
dx = x[1] - x[0]
dt = t[1] - t[0]
C = c*dt/dx # Courant number
Nt = len(t)-1
C2 = C**2 # Help variable in the scheme
# Set initial condition u(x,0) = I(x)
for i in range(0, Nx+1):
u_1[i] = I(x[i])
# Apply special formula for first step, incorporating du/dt=0
for i in range(1, Nx):
u[i] = u_1[i] + 0.5*C**2(u_1[i+1] - 2*u_1[i] + u_1[i-1])
u[0] = 0; u[Nx] = 0 # Enforce boundary conditions
# Switch variables before next step
u_2[:], u_1[:] = u_1, u
for n in range(1, Nt):
# Update all inner mesh points at time t[n+1]
for i in range(1, Nx):
u[i] = 2*u_1[i] - u_2[i] + \
C**2(u_1[i+1] - 2*u_1[i] + u_1[i-1])
# Insert boundary conditions
u[0] = 0; u[Nx] = 0
# Switch variables before next step
u_2[:], u_1[:] = u_1, u
Add source term \( f \) and nonzero initial condition \( u_t(x,0) \): $$ \begin{align} u_{tt} &= c^2 u_{xx} + f(x,t), \label{wave:pde2}\\ u(x,0) &= I(x), \quad &x\in [0,L] \label{wave:pde2:ic:u}\\ u_t(x,0) &= V(x), \quad &x\in [0,L] \label{wave:pde2:ic:ut}\\ u(0,t) & = 0, \quad & t>0, \label{wave:pde2:bc:0}\\ u(L,t) & = 0, \quad &t>0 \label{wave:pde2:bc:L} \end{align} $$
Writing out and solving for the unknown \( u^{n+1}_i \): $$ \begin{equation} u^{n+1}_i = -u^{n-1}_i + 2u^n_i + C^2 (u^{n}_{i+1}-2u^{n}_{i} + u^{n}_{i-1}) + \Delta t^2 f^n_i \label{wave:pde2:step3b} \end{equation} $$
Centered difference for \( u_t(x,0) = V(x) \): $$ [D_{2t}u = V]^0_i\quad\Rightarrow\quad u^{-1}_i = u^{1}_i - 2\Delta t V_i,$$
Inserting this in the stencil \eqref{wave:pde2:step3b} for \( n=0 \) leads to $$ \begin{equation} u^{1}_i = u^0_i - \Delta t V_i + {\half} C^2 \left(u^{n}_{i+1}-2u^{n}_{i} + u^{n}_{i-1}\right) + \half\Delta t^2 f^n_i \label{wave:pde2:step3c} \end{equation} $$
PDE \( u_{tt}=c^2u_{xx}+f \): $$ -x(L-x)\sin t = -2\sin t + f\quad\Rightarrow f = (2 - x(L-x))\sin t$$
Implied initial conditions: $$ \begin{align*} u(x,0) &= I(x) = 0\\ u_t(x,0) &= V(x) = - x(L-x) \end{align*} $$
Boundary conditions: $$ u(0,t) = u(L,t) = 0 $$
Here, choose \( \uex \) such that \( \uex(0,t)=\uex(L,t)=0 \): $$ \uex (x,t) = x(L-x)(1+{\half}t), $$
Insert in the PDE and find \( f \): $$ f(x,t)=2(1+t)c^2$$
Initial conditions: $$ I(x) = x(L-x),\quad V(x)={\half}x(L-x) $$
We want to show that \( \uex \) also solves the discrete equations!
Useful preliminary result: $$ \begin{align} \lbrack D_tD_t t^2\rbrack^n &= \frac{t_{n+1}^2 - 2t_n^2 + t_{n-1}^2}{\Delta t^2} = (n+1)^2 -n^2 + (n-1)^2 = 2 \label{_auto5}\\ \lbrack D_tD_t t\rbrack^n &= \frac{t_{n+1} - 2t_n + t_{n-1}}{\Delta t^2} = \frac{((n+1) -n + (n-1))\Delta t}{\Delta t^2} = 0 \label{_auto6} \end{align} $$
Hence, $$ [D_tD_t \uex]^n_i = x_i(L-x_i)[D_tD_t (1+{\half}t)]^n = x_i(L-x_i){\half}[D_tD_t t]^n = 0$$
Now, \( f^n_i = 2(1+{\half}t_n)c^2 \) and we get $$ [D_tD_t \uex - c^2D_xD_x\uex - f]^n_i = 0 - c^2(-1)2(1 + {\half}t_n) + 2(1+{\half}t_n)c^2 = 0$$
Moreover, \( \uex(x_i,0)=I(x_i) \), \( \partial \uex/\partial t = V(x_i) \) at \( t=0 \), and \( \uex(x_0,t)=\uex(x_{N_x},t)=0 \). Also the modified scheme for the first time step is fulfilled by \( \uex(x_i,t_n) \).
def user_action(u, x, t, n):
# u[i] at spatial mesh points x[i] at time t[n]
# plot u
# or store u
import numpy as np
def solver(I, V, f, c, L, dt, C, T, user_action=None):
"""Solve u_tt=c^2*u_xx + f on (0,L)x(0,T]."""
Nt = int(round(T/dt))
t = np.linspace(0, Nt*dt, Nt+1) # Mesh points in time
dx = dt*c/float(C)
Nx = int(round(L/dx))
x = np.linspace(0, L, Nx+1) # Mesh points in space
C2 = C**2 # Help variable in the scheme
if f is None or f == 0 :
f = lambda x, t: 0
if V is None or V == 0:
V = lambda x: 0
u = np.zeros(Nx+1) # Solution array at new time level
u_1 = np.zeros(Nx+1) # Solution at 1 time level back
u_2 = np.zeros(Nx+1) # Solution at 2 time levels back
import time; t0 = time.clock() # for measuring CPU time
# Load initial condition into u_1
for i in range(0,Nx+1):
u_1[i] = I(x[i])
if user_action is not None:
user_action(u_1, x, t, 0)
# Special formula for first time step
n = 0
for i in range(1, Nx):
u[i] = u_1[i] + dt*V(x[i]) + \
0.5*C2*(u_1[i-1] - 2*u_1[i] + u_1[i+1]) + \
0.5*dt**2*f(x[i], t[n])
u[0] = 0; u[Nx] = 0
if user_action is not None:
user_action(u, x, t, 1)
# Switch variables before next step
u_2[:] = u_1; u_1[:] = u
for n in range(1, Nt):
# Update all inner points at time t[n+1]
for i in range(1, Nx):
u[i] = - u_2[i] + 2*u_1[i] + \
C2*(u_1[i-1] - 2*u_1[i] + u_1[i+1]) + \
dt**2*f(x[i], t[n])
# Insert boundary conditions
u[0] = 0; u[Nx] = 0
if user_action is not None:
if user_action(u, x, t, n+1):
break
# Switch variables before next step
u_2[:] = u_1; u_1[:] = u
cpu_time = t0 - time.clock()
return u, x, t, cpu_time
Exact solution of the PDE problem and the discrete equations: \( \uex (x,t) = x(L-x)(1+{\half}t) \)
def test_quadratic():
"""Check that u(x,t)=x(L-x)(1+t/2) is exactly reproduced."""
def u_exact(x, t):
return x*(L-x)*(1 + 0.5*t)
def I(x):
return u_exact(x, 0)
def V(x):
return 0.5*u_exact(x, 0)
def f(x, t):
return 2*(1 + 0.5*t)*c**2
L = 2.5
c = 1.5
C = 0.75
Nx = 6 # Very coarse mesh for this exact test
dt = C*(L/Nx)/c
T = 18
def assert_no_error(u, x, t, n):
u_e = u_exact(x, t[n])
diff = np.abs(u - u_e).max()
tol = 1E-13
assert diff < tol
solver(I, V, f, c, L, dt, C, T,
user_action=assert_no_error)
Make a viz
function for animating the curve, with plotting
in a user_action
function plot_u
:
def viz(
I, V, f, c, L, dt, C, T, # PDE paramteres
umin, umax, # Interval for u in plots
animate=True, # Simulation with animation?
tool='matplotlib', # 'matplotlib' or 'scitools'
solver_function=solver, # Function with numerical algorithm
):
"""Run solver and visualize u at each time level."""
def plot_u_st(u, x, t, n):
"""user_action function for solver."""
plt.plot(x, u, 'r-',
xlabel='x', ylabel='u',
axis=[0, L, umin, umax],
title='t=%f' % t[n], show=True)
# Let the initial condition stay on the screen for 2
# seconds, else insert a pause of 0.2 s between each plot
time.sleep(2) if t[n] == 0 else time.sleep(0.2)
plt.savefig('frame_%04d.png' % n) # for movie making
class PlotMatplotlib:
def __call__(self, u, x, t, n):
"""user_action function for solver."""
if n == 0:
plt.ion()
self.lines = plt.plot(x, u, 'r-')
plt.xlabel('x'); plt.ylabel('u')
plt.axis([0, L, umin, umax])
plt.legend(['t=%f' % t[n]], loc='lower left')
else:
self.lines[0].set_ydata(u)
plt.legend(['t=%f' % t[n]], loc='lower left')
plt.draw()
time.sleep(2) if t[n] == 0 else time.sleep(0.2)
plt.savefig('tmp_%04d.png' % n) # for movie making
if tool == 'matplotlib':
import matplotlib.pyplot as plt
plot_u = PlotMatplotlib()
elif tool == 'scitools':
import scitools.std as plt # scitools.easyviz interface
plot_u = plot_u_st
import time, glob, os
# Clean up old movie frames
for filename in glob.glob('tmp_*.png'):
os.remove(filename)
# Call solver and do the simulaton
user_action = plot_u if animate else None
u, x, t, cpu = solver_function(
I, V, f, c, L, dt, C, T, user_action)
# Make video files
fps = 4 # frames per second
codec2ext = dict(flv='flv', libx264='mp4', libvpx='webm',
libtheora='ogg') # video formats
filespec = 'tmp_%04d.png'
movie_program = 'ffmpeg' # or 'avconv'
for codec in codec2ext:
ext = codec2ext[codec]
cmd = '%(movie_program)s -r %(fps)d -i %(filespec)s '\
'-vcodec %(codec)s movie.%(ext)s' % vars()
os.system(cmd)
if tool == 'scitools':
# Make an HTML play for showing the animation in a browser
plt.movie('tmp_*.png', encoder='html', fps=fps,
output_file='movie.html')
return cpu
Note: plot_u
is function inside function and remembers the
local variables in viz
(known as a closure).
'something_%04d.png' % frame_counter
Terminal> scitools movie encoder=html output_file=movie.html \
fps=4 frame_*.png # web page with a player
Terminal> avconv -r 4 -i frame_%04d.png -c:v flv movie.flv
Terminal> avconv -r 4 -i frame_%04d.png -c:v libtheora movie.ogg
Terminal> avconv -r 4 -i frame_%04d.png -c:v libx264 movie.mp4
Terminal> avconv -r 4 -i frame_%04d.png -c:v libpvx movie.webm
%04d
) is essential for correct sequence of
frames in something_*.png
(Unix alphanumeric sort)frame_*.png
files before making a new movie
Appropriate data:
def guitar(C):
"""Triangular wave (pulled guitar string)."""
L = 0.75
x0 = 0.8*L
a = 0.005
freq = 440
wavelength = 2*L
c = freq*wavelength
omega = 2*pi*freq
num_periods = 1
T = 2*pi/omega*num_periods
# Choose dt the same as the stability limit for Nx=50
dt = L/50./c
def I(x):
return a*x/x0 if x < x0 else a/(L-x0)*(L-x)
umin = -1.2*a; umax = -umin
cpu = viz(I, 0, 0, c, L, dt, C, T, umin, umax,
animate=True, tool='scitools')
Program: wave1D_u0.py.
Insert this in the PDE (with \( f=0 \)) and dropping bars $$ u_{tt} = u_{xx}$$
Initial condition: set \( a=1 \), \( L=1 \), and \( x_0\in [0,1] \) in \eqref{wave:pde1:guitar:I}.
In the code: set a=c=L=1
, x0=0.8
, and there is no need to calculate with
wavelengths and frequencies to estimate \( c \)!
Just one challenge: determine the period of the waves and an appropriate end time (see the text for details).
numpy
) code instead of explicit loops
n = u.size
for i in range(0, n-1):
d[i] = u[i+1] - u[i]
numpy
code: u[1:n] - u[0:n-1]
or just u[1:] - u[:-1]
Newcomers to vectorization are encouraged to choose
a small array u
, say with five elements,
and simulate with pen and paper
both the loop version and the vectorized version.
Finite difference schemes basically contains differences between array elements with shifted indices. Consider the updating formula
for i in range(1, n-1):
u2[i] = u[i-1] - 2*u[i] + u[i+1]
The vectorization consists of replacing the loop by arithmetics on
slices of arrays of length n-2
:
u2 = u[:-2] - 2*u[1:-1] + u[2:]
u2 = u[0:n-2] - 2*u[1:n-1] + u[2:n] # alternative
Note: u2
gets length n-2
.
If u2
is already an array of length n
, do update on "inner" elements
u2[1:-1] = u[:-2] - 2*u[1:-1] + u[2:]
u2[1:n-1] = u[0:n-2] - 2*u[1:n-1] + u[2:n] # alternative
Include a function evaluation too:
def f(x):
return x**2 + 1
# Scalar version
for i in range(1, n-1):
u2[i] = u[i-1] - 2*u[i] + u[i+1] + f(x[i])
# Vectorized version
u2[1:-1] = u[:-2] - 2*u[1:-1] + u[2:] + f(x[1:-1])
Scalar loop:
for i in range(1, Nx):
u[i] = 2*u_1[i] - u_2[i] + \
C2*(u_1[i-1] - 2*u_1[i] + u_1[i+1])
Vectorized loop:
u[1:-1] = - u_2[1:-1] + 2*u_1[1:-1] + \
C2*(u_1[:-2] - 2*u_1[1:-1] + u_1[2:])
or
u[1:Nx] = 2*u_1[1:Nx]- u_2[1:Nx] + \
C2*(u_1[0:Nx-1] - 2*u_1[1:Nx] + u_1[2:Nx+1])
Program: wave1D_u0v.py
def test_quadratic():
"""
Check the scalar and vectorized versions work for
a quadratic u(x,t)=x(L-x)(1+t/2) that is exactly reproduced.
"""
# The following function must work for x as array or scalar
u_exact = lambda x, t: x*(L - x)*(1 + 0.5*t)
I = lambda x: u_exact(x, 0)
V = lambda x: 0.5*u_exact(x, 0)
# f is a scalar (zeros_like(x) works for scalar x too)
f = lambda x, t: np.zeros_like(x) + 2*c**2*(1 + 0.5*t)
L = 2.5
c = 1.5
C = 0.75
Nx = 3 # Very coarse mesh for this exact test
dt = C*(L/Nx)/c
T = 18
def assert_no_error(u, x, t, n):
u_e = u_exact(x, t[n])
tol = 1E-13
diff = np.abs(u - u_e).max()
assert diff < tol
solver(I, V, f, c, L, dt, C, T,
user_action=assert_no_error, version='scalar')
solver(I, V, f, c, L, dt, C, T,
user_action=assert_no_error, version='vectorized')
Note:
wave1D_u0v.py
for \( N_x \) as 50,100,200,400,800
and measuring the CPU time
For a 1D domain \( [0,L] \): $$ \left.\frac{\partial}{\partial n}\right\vert_{x=L} = \frac{\partial}{\partial x},\quad \left.\frac{\partial}{\partial n}\right\vert_{x=0} = - \frac{\partial}{\partial x} $$
Boundary condition terminology:
Discrete equation for computing \( u^3_0 \) in terms of \( u^2_0 \), \( u^1_0 \), and \( u^2_1 \):
Animation in a web page or a movie file.
i = 0
ip1 = i+1
im1 = ip1 # i-1 -> i+1
u[i] = u_1[i] + C2*(u_1[im1] - 2*u_1[i] + u_1[ip1])
i = Nx
im1 = i-1
ip1 = im1 # i+1 -> i-1
u[i] = u_1[i] + C2*(u_1[im1] - 2*u_1[i] + u_1[ip1])
# Or just one loop over all points
for i in range(0, Nx+1):
ip1 = i+1 if i < Nx else i-1
im1 = i-1 if i > 0 else i+1
u[i] = u_1[i] + C2*(u_1[im1] - 2*u_1[i] + u_1[ip1])
Program wave1D_dn0.py
web page or a movie file.
Notation | Python |
---|---|
\( \Ix \) | Ix |
\( \setb{\Ix} \) | Ix[0] |
\( \sete{\Ix} \) | Ix[-1] |
\( \setr{\Ix} \) | Ix[1:] |
\( \setl{\Ix} \) | Ix[:-1] |
\( \seti{\Ix} \) | Ix[1:-1] |
Index sets for a problem in the \( x,t \) plane: $$ \begin{equation} \Ix = \{0,\ldots,N_x\},\quad \It = \{0,\ldots,N_t\}, \label{_auto8} \end{equation} $$
Implemented in Python as
Ix = range(0, Nx+1)
It = range(0, Nt+1)
A finite difference scheme can with the index set notation be specified as $$ \begin{align*} u^{n+1}_i &= -u^{n-1}_i + 2u^n_i + C^2 \left(u^{n}_{i+1}-2u^{n}_{i}+u^{n}_{i-1}\right), \quad i\in\seti{\Ix},\ n\in\seti{\It}\\ u^{n+1}_i &= 0, \quad i=\setb{\Ix},\ n\in\seti{\It}\\ u^{n+1}_i &= 0, \quad i=\sete{\Ix},\ n\in\seti{\It} \end{align*} $$
Corresponding implementation:
for n in It[1:-1]:
for i in Ix[1:-1]:
u[i] = - u_2[i] + 2*u_1[i] + \
C2*(u_1[i-1] - 2*u_1[i] + u_1[i+1])
i = Ix[0]; u[i] = 0
i = Ix[-1]; u[i] = 0
Program wave1D_dn.py
Add ghost points:
u = zeros(Nx+3)
u_1 = zeros(Nx+3)
u_2 = zeros(Nx+3)
x = linspace(0, L, Nx+1) # Mesh points without ghost points
u[-1]
will always mean the last element in u
0,..,Nx+2
u = zeros(Nx+3)
Ix = range(1, u.shape[0]-1)
# Boundary values: u[Ix[0]], u[Ix[-1]]
# Set initial conditions
for i in Ix:
u_1[i] = I(x[i-Ix[0]]) # Note i-Ix[0]
# Loop over all physical mesh points
for i in Ix:
u[i] = - u_2[i] + 2*u_1[i] + \
C2*(u_1[i-1] - 2*u_1[i] + u_1[i+1])
# Update ghost values
i = Ix[0] # x=0 boundary
u[i-1] = u[i+1]
i = Ix[-1] # x=L boundary
u[i+1] = u[i-1]
Program: wave1D_dn0_ghost.py.
Heterogeneous media: varying \( c=c(x) \)
This equation sampled at a mesh point \( (x_i,t_n) \): $$ \frac{\partial^2 }{\partial t^2} u(x_i,t_n) = \frac{\partial}{\partial x}\left( q(x_i) \frac{\partial}{\partial x} u(x_i,t_n)\right) + f(x_i,t_n), $$
The principal idea is to first discretize the outer derivative.
Define $$ \phi = q(x) \frac{\partial u}{\partial x} $$
Then use a centered derivative around \( x=x_i \) for the derivative of \( \phi \): $$ \left[\frac{\partial\phi}{\partial x}\right]^n_i \approx \frac{\phi_{i+\half} - \phi_{i-\half}}{\Delta x} = [D_x\phi]^n_i $$
Then discretize the inner operators: $$ \phi_{i+\half} = q_{i+\half} \left[\frac{\partial u}{\partial x}\right]^n_{i+\half} \approx q_{i+\half} \frac{u^n_{i+1} - u^n_{i}}{\Delta x} = [q D_x u]_{i+\half}^n $$
Similarly, $$ \phi_{i-\half} = q_{i-\half} \left[\frac{\partial u}{\partial x}\right]^n_{i-\half} \approx q_{i-\half} \frac{u^n_{i} - u^n_{i-1}}{\Delta x} = [q D_x u]_{i-\half}^n $$
These intermediate results are now combined to $$ \begin{equation} \left[ \frac{\partial}{\partial x}\left( q(x) \frac{\partial u}{\partial x}\right)\right]^n_i \approx \frac{1}{\Delta x^2} \left( q_{i+\half} \left({u^n_{i+1} - u^n_{i}}\right) - q_{i-\half} \left({u^n_{i} - u^n_{i-1}}\right)\right) \label{wave:pde2:var:c:formula} \end{equation} $$
In operator notation: $$ \begin{equation} \left[ \frac{\partial}{\partial x}\left( q(x) \frac{\partial u}{\partial x}\right)\right]^n_i \approx [D_xq D_x u]^n_i \label{wave:pde2:var:c:formula:op} \end{equation} $$
Many are tempted to use the chain rule on the term \( \frac{\partial}{\partial x}\left( q(x) \frac{\partial u}{\partial x}\right) \), but this is not a good idea!
The arithmetic mean in \eqref{wave:pde2:var:c:mean:arithmetic} is by far the most used averaging technique.
We clearly see the type of finite differences and averaging!
Write out and solve wrt \( u_i^{n+1} \): $$ \begin{align} u^{n+1}_i &= - u_i^{n-1} + 2u_i^n + \left(\frac{\Delta t}{\Delta x}\right)^2\times \nonumber\\ &\quad \left( \half(q_{i} + q_{i+1})(u_{i+1}^n - u_{i}^n) - \half(q_{i} + q_{i-1})(u_{i}^n - u_{i-1}^n)\right) + \nonumber\\ & \quad \Delta t^2 f^n_i \label{wave:pde2:var:c:scheme:impl} \end{align} $$
Consider \( \partial u/\partial x=0 \) at \( x=L=N_x\Delta x \): $$ \frac{u_{i+1}^{n} - u_{i-1}^n}{2\Delta x} = 0\quad u_{i+1}^n = u_{i-1}^n, \quad i=N_x $$
Insert \( u_{i+1}^n=u_{i-1}^n \) in the stencil \eqref{wave:pde2:var:c:scheme:impl} for \( i=N_x \) and obtain $$ u^{n+1}_i \approx - u_i^{n-1} + 2u_i^n + \left(\frac{\Delta t}{\Delta x}\right)^2 2q_{i}(u_{i-1}^n - u_{i}^n) + \Delta t^2 f^n_i $$
(We have used \( q_{i+\half} + q_{i-\half}\approx 2q_i \).)
Alternative: assume \( dq/dx=0 \) (simpler).
Assume c[i]
holds \( c_i \) the spatial mesh points
for i in range(1, Nx):
u[i] = - u_2[i] + 2*u_1[i] + \
C2*(0.5*(q[i] + q[i+1])*(u_1[i+1] - u_1[i]) - \
0.5*(q[i] + q[i-1])*(u_1[i] - u_1[i-1])) + \
dt2*f(x[i], t[n])
Here: C2=(dt/dx)**2
Vectorized version:
u[1:-1] = - u_2[1:-1] + 2*u_1[1:-1] + \
C2*(0.5*(q[1:-1] + q[2:])*(u_1[2:] - u_1[1:-1]) -
0.5*(q[1:-1] + q[:-2])*(u_1[1:-1] - u_1[:-2])) + \
dt2*f(x[1:-1], t[n])
Neumann condition \( u_x=0 \): same ideas as in 1D (modified stencil or ghost cells).
A natural scheme is $$ \begin{equation} [\varrho D_tD_t u = D_x\overline{q}^xD_x u + f]^n_i \label{_auto9} \end{equation} $$
Or $$ \begin{equation} [D_tD_t u = \varrho^{-1}D_x\overline{q}^xD_x u + f]^n_i \label{_auto10} \end{equation} $$
No need to average \( \varrho \), just sample at \( i \)
Why do waves die out?
\( b \geq 0 \): prescribed damping coefficient.
Discretization via centered differences to ensure \( \Oof{\Delta t^2} \) error: $$ \begin{equation} [D_tD_t u + bD_{2t}u = c^2D_xD_x u + f]^n_i \label{wave:pde3:fd} \end{equation} $$
Need special formula for \( u^1_i \) + special stencil (or ghost cells) for Neumann conditions.
The program wave1D_dn_vc.py solves a fairly general 1D wave equation: $$ \begin{align} u_{tt} &= (c^2(x)u_x)_x + f(x,t),\quad &x\in (0,L),\ t\in (0,T] \label{wave:pde2:software:ueq}\\ u(x,0) &= I(x),\quad &x\in [0,L] \label{wave:pde2:software:u0}\\ u_t(x,0) &= V(t),\quad &x\in [0,L] \label{wave:pde2:software:ut0}\\ u(0,t) &= U_0(t)\hbox{ or } u_x(0,t)=0,\quad &t\in (0,T] \label{wave:pde2:software:bc0}\\ u(L,t) &= U_L(t)\hbox{ or } u_x(L,t)=0,\quad &t\in (0,T] \label{wave:pde2:software:bcL} \end{align} $$
Can be adapted to many needs.
The function pulse
in wave1D_dn_vc.py
offers four
initial conditions:
gaussian
)
>>> import wave1D_dn_vc as w
>>> w.pulse(loc='left', pulse_tp='cosinehat', Nx=50, every_frame=10)
Constant wave velocity \( c \): $$ \begin{equation} \frac{\partial^2 u}{\partial t^2} = c^2\nabla^2 u\hbox{ for }\xpoint\in\Omega\subset\Real^d,\ t\in (0,T] \label{wave:2D3D:model1} \end{equation} $$
Variable wave velocity: $$ \begin{equation} \varrho\frac{\partial^2 u}{\partial t^2} = \nabla\cdot (q\nabla u) + f\hbox{ for }\xpoint\in\Omega\subset\Real^d,\ t\in (0,T] \label{wave:2D3D:model2} \end{equation} $$
3D, constant \( c \): $$ \begin{equation*} \nabla^2 u = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} \end{equation*} $$
2D, variable \( c \): $$ \begin{equation} \varrho(x,y) \frac{\partial^2 u}{\partial t^2} = \frac{\partial}{\partial x}\left( q(x,y) \frac{\partial u}{\partial x}\right) + \frac{\partial}{\partial y}\left( q(x,y) \frac{\partial u}{\partial y}\right) + f(x,y,t) \label{_auto11} \end{equation} $$
Compact notation: $$ \begin{align} u_{tt} &= c^2(u_{xx} + u_{yy} + u_{zz}) + f, \label{wave:2D3D:model1:v2}\\ \varrho u_{tt} &= (q u_x)_x + (q u_z)_z + (q u_z)_z + f \label{wave:2D3D:model2:v2} \end{align} $$
We need one boundary condition at each point on \( \partial\Omega \):
\( u^{n-1}_{i,j} \) and \( u^n_{i,j} \) are known, solve for \( u^{n+1}_{i,j} \): $$ u^{n+1}_{i,j} = 2u^n_{i,j} + u^{n-1}_{i,j} + c^2\Delta t^2[D_xD_x u + D_yD_y u]^n_{i,j}$$
3D wave equation: $$ \varrho u_{tt} = (qu_x)_x + (qu_y)_y + (qu_z)_z + f(x,y,z,t) $$
Just apply the 1D discretization for each term: $$ \begin{equation} [\varrho D_tD_t u = (D_x\overline{q}^x D_x u + D_y\overline{q}^y D_yu + D_z\overline{q}^z D_z u) + f]^n_{i,j,k} \label{_auto12} \end{equation} $$
Need special formula for \( u^1_{i,j,k} \) (use \( [D_{2t}u=V]^0 \) and stencil for \( n=0 \)).
Written out: $$ \begin{align*} u^{n+1}_{i,j,k} &= - u^{n-1}_{i,j,k} + 2u^{n}_{i,j,k} \\ &+ \frac{\Delta t^2}{\varrho_{i,j,k}}\frac{1}{\Delta x^2} ( \half(q_{i,j,k} + q_{i+1,j,k})(u^{n}_{i+1,j,k} - u^{n}_{i,j,k}) - \\ &\qquad\quad \half(q_{i-1,j,k} + q_{i,j,k})(u^{n}_{i,j,k} - u^{n}_{i-1,j,k})) \\ &+ \frac{\Delta t^2}{\varrho_{i,j,k}}\frac{1}{\Delta y^2} ( \half(q_{i,j,k} + q_{i,j+1,k})(u^{n}_{i,j+1,k} - u^{n}_{i,j,k}) - \\ &\qquad\quad\half(q_{i,j-1,k} + q_{i,j,k})(u^{n}_{i,j,k} - u^{n}_{i,j-1,k})) \\ &+ \frac{\Delta t^2}{\varrho_{i,j,k}}\frac{1}{\Delta z^2} ( \half(q_{i,j,k} + q_{i,j,k+1})(u^{n}_{i,j,k+1} - u^{n}_{i,j,k}) -\\ &\qquad\quad \half(q_{i,j,k-1} + q_{i,j,k})(u^{n}_{i,j,k} - u^{n}_{i,j,k-1})) + \\ &+\qquad \Delta t^2 f^n_{i,j,k} \end{align*} $$
Use ideas from 1D! Example: \( \frac{\partial u}{\partial n}=0 \) at \( y=0 \), \( \frac{\partial u}{\partial n} = -\frac{\partial u}{\partial y} \)
Boundary condition discretization: $$ [-D_{2y} u = 0]^n_{i,0}\quad\Rightarrow\quad \frac{u^n_{i,1}-u^n_{i,-1}}{2\Delta y} = 0,\ i\in\Ix $$
Insert \( u^n_{i,-1}=u^n_{i,1} \) in the stencil for \( u^{n+1}_{i,j=0} \) to obtain a modified stencil on the boundary.
Pattern: use interior stencil also on the bundary, but replace \( j-1 \) by \( j+1 \)
Alternative: use ghost cells and ghost values
\( \Omega = [0,L_x]\times [0,L_y] \)
Discretization: $$ [D_t D_t u = c^2(D_xD_x u + D_yD_y u) + f]^n_{i,j}, $$
Program: wave2D_u0.py
def solver(I, V, f, c, Lx, Ly, Nx, Ny, dt, T,
user_action=None, version='scalar'):
Mesh:
x = linspace(0, Lx, Nx+1) # mesh points in x dir
y = linspace(0, Ly, Ny+1) # mesh points in y dir
dx = x[1] - x[0]
dy = y[1] - y[0]
Nt = int(round(T/float(dt)))
t = linspace(0, N*dt, N+1) # mesh points in time
Cx2 = (c*dt/dx)**2; Cy2 = (c*dt/dy)**2 # help variables
dt2 = dt**2
Store \( u^{n+1}_{i,j} \), \( u^{n}_{i,j} \), and \( u^{n-1}_{i,j} \) in three two-dimensional arrays:
u = zeros((Nx+1,Ny+1)) # solution array
u_1 = zeros((Nx+1,Ny+1)) # solution at t-dt
u_2 = zeros((Nx+1,Ny+1)) # solution at t-2*dt
\( u^{n+1}_{i,j} \) corresponds to u[i,j]
, etc.
Ix = range(0, u.shape[0])
Iy = range(0, u.shape[1])
It = range(0, t.shape[0])
for i in Ix:
for j in Iy:
u_1[i,j] = I(x[i], y[j])
if user_action is not None:
user_action(u_1, x, xv, y, yv, t, 0)
Arguments xv
and yv
: for vectorized computations
def advance_scalar(u, u_1, u_2, f, x, y, t, n, Cx2, Cy2, dt2,
V=None, step1=False):
Ix = range(0, u.shape[0]); Iy = range(0, u.shape[1])
if step1:
dt = sqrt(dt2) # save
Cx2 = 0.5*Cx2; Cy2 = 0.5*Cy2; dt2 = 0.5*dt2 # redefine
D1 = 1; D2 = 0
else:
D1 = 2; D2 = 1
for i in Ix[1:-1]:
for j in Iy[1:-1]:
u_xx = u_1[i-1,j] - 2*u_1[i,j] + u_1[i+1,j]
u_yy = u_1[i,j-1] - 2*u_1[i,j] + u_1[i,j+1]
u[i,j] = D1*u_1[i,j] - D2*u_2[i,j] + \
Cx2*u_xx + Cy2*u_yy + dt2*f(x[i], y[j], t[n])
if step1:
u[i,j] += dt*V(x[i], y[j])
# Boundary condition u=0
j = Iy[0]
for i in Ix: u[i,j] = 0
j = Iy[-1]
for i in Ix: u[i,j] = 0
i = Ix[0]
for j in Iy: u[i,j] = 0
i = Ix[-1]
for j in Iy: u[i,j] = 0
return u
D1
and D2
: allow advance_scalar
to be used also for \( u^1_{i,j} \):
u = advance_scalar(u, u_1, u_2, f, x, y, t,
n, 0.5*Cx2, 0.5*Cy2, 0.5*dt2, D1=1, D2=0)
Mesh with \( 30\times 30 \) cells: vectorization reduces the CPU time by a factor of 70 (!).
Need special coordinate arrays xv
and yv
such that \( I(x,y) \)
and \( f(x,y,t) \) can be vectorized:
from numpy import newaxis
xv = x[:,newaxis]
yv = y[newaxis,:]
u_1[:,:] = I(xv, yv)
f_a[:,:] = f(xv, yv, t)
def advance_vectorized(u, u_1, u_2, f_a, Cx2, Cy2, dt2,
V=None, step1=False):
if step1:
dt = sqrt(dt2) # save
Cx2 = 0.5*Cx2; Cy2 = 0.5*Cy2; dt2 = 0.5*dt2 # redefine
D1 = 1; D2 = 0
else:
D1 = 2; D2 = 1
u_xx = u_1[:-2,1:-1] - 2*u_1[1:-1,1:-1] + u_1[2:,1:-1]
u_yy = u_1[1:-1,:-2] - 2*u_1[1:-1,1:-1] + u_1[1:-1,2:]
u[1:-1,1:-1] = D1*u_1[1:-1,1:-1] - D2*u_2[1:-1,1:-1] + \
Cx2*u_xx + Cy2*u_yy + dt2*f_a[1:-1,1:-1]
if step1:
u[1:-1,1:-1] += dt*V[1:-1, 1:-1]
# Boundary condition u=0
j = 0
u[:,j] = 0
j = u.shape[1]-1
u[:,j] = 0
i = 0
u[i,:] = 0
i = u.shape[0]-1
u[i,:] = 0
return u
def quadratic(Nx, Ny, version):
"""Exact discrete solution of the scheme."""
def exact_solution(x, y, t):
return x*(Lx - x)*y*(Ly - y)*(1 + 0.5*t)
def I(x, y):
return exact_solution(x, y, 0)
def V(x, y):
return 0.5*exact_solution(x, y, 0)
def f(x, y, t):
return 2*c**2*(1 + 0.5*t)*(y*(Ly - y) + x*(Lx - x))
Lx = 5; Ly = 2
c = 1.5
dt = -1 # use longest possible steps
T = 18
def assert_no_error(u, x, xv, y, yv, t, n):
u_e = exact_solution(xv, yv, t[n])
diff = abs(u - u_e).max()
tol = 1E-12
msg = 'diff=%g, step %d, time=%g' % (diff, n, t[n])
assert diff < tol, msg
new_dt, cpu = solver(
I, V, f, c, Lx, Ly, Nx, Ny, dt, T,
user_action=assert_no_error, version=version)
return new_dt, cpu
def test_quadratic():
# Test a series of meshes where Nx > Ny and Nx < Ny
versions = 'scalar', 'vectorized', 'cython', 'f77', 'c_cy', 'c_f2py'
for Nx in range(2, 6, 2):
for Ny in range(2, 6, 2):
for version in versions:
print 'testing', version, 'for %dx%d mesh' % (Nx, Ny)
quadratic(Nx, Ny, version)
def run_efficiency(nrefinements=4):
def I(x, y):
return sin(pi*x/Lx)*sin(pi*y/Ly)
Lx = 10; Ly = 10
c = 1.5
T = 100
versions = ['scalar', 'vectorized', 'cython', 'f77',
'c_f2py', 'c_cy']
print ' '*15, ''.join(['%-13s' % v for v in versions])
for Nx in 15, 30, 60, 120:
cpu = {}
for version in versions:
dt, cpu_ = solver(I, None, None, c, Lx, Ly, Nx, Nx,
-1, T, user_action=None,
version=version)
cpu[version] = cpu_
cpu_min = min(list(cpu.values()))
if cpu_min < 1E-6:
print 'Ignored %dx%d grid (too small execution time)' \
% (Nx, Nx)
else:
cpu = {version: cpu[version]/cpu_min for version in cpu}
print '%-15s' % '%dx%d' % (Nx, Nx),
print ''.join(['%13.1f' % cpu[version] for version in versions])
def gaussian(plot_method=2, version='vectorized', save_plot=True):
"""
Initial Gaussian bell in the middle of the domain.
plot_method=1 applies mesh function, =2 means surf, =0 means no plot.
"""
# Clean up plot files
for name in glob('tmp_*.png'):
os.remove(name)
Lx = 10
Ly = 10
c = 1.0
def I(x, y):
"""Gaussian peak at (Lx/2, Ly/2)."""
return exp(-0.5*(x-Lx/2.0)**2 - 0.5*(y-Ly/2.0)**2)
if plot_method == 3:
from mpl_toolkits.mplot3d import axes3d
import matplotlib.pyplot as plt
from matplotlib import cm
plt.ion()
fig = plt.figure()
u_surf = None
def plot_u(u, x, xv, y, yv, t, n):
if t[n] == 0:
time.sleep(2)
if plot_method == 1:
mesh(x, y, u, title='t=%g' % t[n], zlim=[-1,1],
caxis=[-1,1])
elif plot_method == 2:
surfc(xv, yv, u, title='t=%g' % t[n], zlim=[-1, 1],
colorbar=True, colormap=hot(), caxis=[-1,1],
shading='flat')
elif plot_method == 3:
print 'Experimental 3D matplotlib...under development...'
#plt.clf()
ax = fig.add_subplot(111, projection='3d')
u_surf = ax.plot_surface(xv, yv, u, alpha=0.3)
#ax.contourf(xv, yv, u, zdir='z', offset=-100, cmap=cm.coolwarm)
#ax.set_zlim(-1, 1)
# Remove old surface before drawing
if u_surf is not None:
ax.collections.remove(u_surf)
plt.draw()
time.sleep(1)
if plot_method > 0:
time.sleep(0) # pause between frames
if save_plot:
filename = 'tmp_%04d.png' % n
savefig(filename) # time consuming!
Nx = 40; Ny = 40; T = 20
dt, cpu = solver(I, None, None, c, Lx, Ly, Nx, Ny, -1, T,
user_action=plot_u, version=version)
if __name__ == '__main__':
test_quadratic()
Manufactured solution: $$ \begin{equation} \uex(x,y,t) = x(L_x-x)y(L_y-y)(1+{\half}t) \label{wave2D3D:impl:verify:quadratic} \end{equation} $$
Requires \( f=2c^2(1+{\half}t)(y(L_y-y) + x(L_x-x)) \).
This \( \uex \) is ideal because it also solves the discrete equations!
Solutions: $$ u(x,t) = g_R(x-ct) + g_L(x+ct) $$
If \( u(x,0)=I(x) \) and \( u_t(x,0)=0 \): $$ u(x,t) = \half I(x-ct) + \half I(x+ct) $$
Two waves: one traveling to the right and one to the left
A wave propagates perfectly (\( C=1 \)) and hits a medium with 1/4 of the wave velocity (\( C=0.25 \)). A part of the wave is reflected and the rest is transmitted.
Build \( I(x) \) of wave components \( e^{ikx} = \cos kx + i\sin kx \): $$ I(x) \approx \sum_{k\in K} b_k e^{ikx} $$
Our interest: one component \( e^{i(kx -\omega t)} \), \( \omega = kc \)
Idea: a similar discrete \( u^n_q = e^{i(kx_q - \tilde\omega t_n)} \) solution (corresponding to the exact \( e^{i(kx - \omega t)} \)) solves $$ [D_tD_t u = c^2 D_xD_x u]^n_q $$
Note: we expect numerical frequency \( \tilde\omega\neq\omega \)
By \( \omega\rightarrow k \), \( t\rightarrow x \), \( n\rightarrow q \)) it follows that $$ [D_xD_x e^{ikx}]_q = -\frac{4}{\Delta x^2}\sin^2\left( \frac{k\Delta x}{2}\right)e^{ikq\Delta x} $$
Inserting a basic wave component \( u=e^{i(kx_q-\tilde\omega t_n)} \) in the scheme requires computation of $$ \begin{align*} \lbrack D_tD_t e^{ikx}e^{-i\tilde\omega t}\rbrack^n_q &= \lbrack D_tD_t e^{-i\tilde\omega t}\rbrack^ne^{ikq\Delta x}\nonumber\\ &= -\frac{4}{\Delta t^2}\sin^2\left( \frac{\tilde\omega\Delta t}{2}\right)e^{-i\tilde\omega n\Delta t}e^{ikq\Delta x}\\ \lbrack D_xD_x e^{ikx}e^{-i\tilde\omega t}\rbrack^n_q &= \lbrack D_xD_x e^{ikx}\rbrack_q e^{-i\tilde\omega n\Delta t}\nonumber\\ &= -\frac{4}{\Delta x^2}\sin^2\left( \frac{k\Delta x}{2}\right)e^{ikq\Delta x}e^{-i\tilde\omega n\Delta t} \end{align*} $$
The complete scheme, $$ \lbrack D_tD_t e^{ikx}e^{-i\tilde\omega t} = c^2D_xD_x e^{ikx}e^{-i\tilde\omega t}\rbrack^n_q $$
leads to an equation for \( \tilde\omega \) (which can readily be solved): $$ \sin^2\left(\frac{\tilde\omega\Delta t}{2}\right) = C^2\sin^2\left(\frac{k\Delta x}{2}\right),\quad C = \frac{c\Delta t}{\Delta x} \mbox{ (Courant number)} $$
Taking the square root: $$ \sin\left(\frac{\tilde\omega\Delta t}{2}\right) = C\sin\left(\frac{k\Delta x}{2}\right) $$
Can easily solve for an explicit formula for \( \tilde\omega \): $$ \tilde\omega = \frac{2}{\Delta t} \sin^{-1}\left( C\sin\left(\frac{k\Delta x}{2}\right)\right) $$
Note:
Can plot \( r(C,p) \) for \( p\in (0,\pi/2] \), \( C\in (0,1] \)
def r(C, p):
return 1/(C*p)*asin(C*sin(p))
Note: the shortest waves have the largest error, and short waves move too slowly.
For small \( p \), Taylor expand \( \tilde\omega \) as polynomial in \( p \):
>>> C, p = symbols('C p')
>>> rs = r(C, p).series(p, 0, 7)
>>> print rs
1 - p**2/6 + p**4/120 - p**6/5040 + C**2*p**2/6 -
C**2*p**4/12 + 13*C**2*p**6/720 + 3*C**4*p**4/40 -
C**4*p**6/16 + 5*C**6*p**6/112 + O(p**7)
>>> # Drop the remainder O(...) term
>>> rs = rs.removeO()
>>> # Factorize each term
>>> rs = [factor(term) for term in rs.as_ordered_terms()]
>>> rs = sum(rs)
>>> print rs
p**6*(C - 1)*(C + 1)*(225*C**4 - 90*C**2 + 1)/5040 +
p**4*(C - 1)*(C + 1)*(3*C - 1)*(3*C + 1)/120 +
p**2*(C - 1)*(C + 1)/6 + 1
Leading error term is \( \frac{1}{6}(C^2-1)p^2 \) or $$ \frac{1}{6}\left(\frac{k\Delta x}{2}\right)^2(C^2-1) = \frac{k^2}{24}\left( c^2\Delta t^2 - \Delta x^2\right) = \Oof{\Delta t^2, \Delta x^2} $$
Smooth wave, few short waves (large \( k \)) in \( I(x) \):
Not so smooth wave, significant short waves (large \( k \)) in \( I(x) \):
Recall that right-hand side is in \( [-C,C] \). Then \( C>1 \) means $$ \underbrace{\sin\left(\frac{\tilde\omega\Delta t}{2}\right)}_{>1} = C\sin\left(\frac{k\Delta x}{2}\right) $$
is a typically solution of $$ u_{tt} = c^2(u_{xx} + u_{yy}) $$
Can build solutions by adding complex Fourier components of the form $$ e^{i(k_xx + k_yy - \omega t)} $$
This equation admits a Fourier component $$ u^n_{q,r} = e^{i(k_x q\Delta x + k_y r\Delta y - \tilde\omega n\Delta t)} $$
Inserting the Fourier component into the dicrete 2D wave equation, and using formulas from the 1D analysis: $$ \sin^2\left(\frac{\tilde\omega\Delta t}{2}\right) = C_x^2\sin^2 p_x + C_y^2\sin^2 p_y $$
where $$ C_x = \frac{c\Delta t}{\Delta x},\quad C_y = \frac{c\Delta t}{\Delta y}, \quad p_x = \frac{k_x\Delta x}{2},\quad p_y = \frac{k_y\Delta y}{2} $$
Ensuring real-valued \( \tilde\omega \) requires $$ C_x^2 + C_y^2 \leq 1 $$
or $$ \Delta t \leq \frac{1}{c} \left( \frac{1}{\Delta x^2} + \frac{1}{\Delta y^2}\right)^{-\halfi} $$
For \( c^2=c^2(\xpoint) \) we must use the worst-case value \( \bar c = \sqrt{\max_{\xpoint\in\Omega} c^2(\xpoint)} \) and a safety factor \( \beta\leq 1 \): $$ \Delta t \leq \beta \frac{1}{\bar c} \left( \frac{1}{\Delta x^2} + \frac{1}{\Delta y^2} + \frac{1}{\Delta z^2}\right)^{-\halfi} $$
For visualization, introduce \( k=\sqrt{k_x^2+k_y^2} \) and \( \theta \) such that $$ k_x = k\sin\theta,\quad k_y=k\cos\theta, \quad p_x=\half kh\cos\theta,\quad p_y=\half kh\sin\theta$$
Also: \( \Delta x=\Delta y=h \). Then \( C_x=C_y=c\Delta t/h\equiv C \).
Now \( \tilde\omega \) depends on
Can make color contour plots of \( 1-\tilde c/c \) in polar coordinates with \( \theta \) as the angular coordinate and \( kh \) as the radial coordinate.