Study guide: Finite difference methods for vibration problems

Hans Petter Langtangen1,2

Center for Biomedical Computing, Simula Research Laboratory1

Department of Informatics, University of Oslo2

Oct 12, 2015
A simple vibration problem

Implementation

Verification

Long time simulations
 - Long time simulations visualized with aid of Bokeh: coupled panning of multiple graphs
 - How does Bokeh plotting code look like?

Analysis of the numerical scheme

Alternative schemes based on 1st-order equations

Generalization: damping, nonlinear spring, and external excitation
A simple vibration problem

\[u''(t) + \omega^2 u = 0, \quad u(0) = l, \quad u'(0) = 0, \quad t \in (0, T] \]

Exact solution:

\[u(t) = l \cos(\omega t) \]

\(u(t) \) oscillates with constant amplitude \(l \) and (angular) frequency \(\omega \). Period: \(P = 2\pi / \omega \).
• Strategy: follow the **four steps** of the finite difference method.

 • Step 1: Introduce a time mesh, here uniform on \([0, T]\):
 \[t_n = n\Delta t \]

 • Step 2: Let the ODE be satisfied at each mesh point:
 \[u''(t_n) + \omega^2 u(t_n) = 0, \quad n = 1, \ldots, N_t \]
Step 3: Approximate derivative(s) by finite difference approximation(s). Very common (standard!) formula for u'':

$$u''(t_n) \approx \frac{u^{n+1} - 2u^n + u^{n-1}}{\Delta t^2}$$

Use this discrete initial condition together with the ODE at $t = 0$ to eliminate u^{-1}:

$$\frac{u^{n+1} - 2u^n + u^{n-1}}{\Delta t^2} = -\omega^2 u^n$$
Step 4: Formulate the computational algorithm. Assume u^{n-1} and u^n are known, solve for unknown u^{n+1}:

$$u^{n+1} = 2u^n - u^{n-1} - \Delta t^2 \omega^2 u^n$$

Nick names for this scheme: Störmer’s method or Verlet integration.
Computing the first step

- The formula breaks down for \(u^1 \) because \(u^{-1} \) is unknown and outside the mesh!
- And: we have not used the initial condition \(u'(0) = 0 \).

Discretize \(u'(0) = 0 \) by a centered difference

\[
\frac{u^1 - u^{-1}}{2\Delta t} = 0 \quad \Rightarrow \quad u^{-1} = u^1
\]

Inserted in the scheme for \(n = 0 \) gives

\[
u^1 = u^0 - \frac{1}{2}\Delta t^2 \omega^2 u^0
\]
The computational algorithm

1. \(u^0 = I \)

2. compute \(u^1 \)

3. for \(n = 1, 2, \ldots, N_t - 1 \):
 1. compute \(u^{n+1} \)

More precisely expressed in Python:

```python
import numpy as np

t = np.linspace(0, T, Nt+1)  # mesh points in time
dt = t[1] - t[0]             # constant time step.
u = np.zeros(Nt+1)          # solution

u[0] = I
u[1] = u[0] - 0.5*dt**2*w**2*u[0]
for n in range(1, Nt):
    u[n+1] = 2*u[n] - u[n-1] - dt**2*w**2*u[n]
```

Note: \(w \) is consistently used for \(\omega \) in my code.
Operator notation; ODE

With \([D_t D_t u]^n\) as the finite difference approximation to \(u''(t_n)\) we can write

\[
[D_t D_t u + \omega^2 u = 0]^n
\]

\([D_t D_t u]^n\) means applying a central difference with step \(\Delta t/2\) twice:

\[
[D_t(D_t u)]^n = \frac{[D_t u]^{n+\frac{1}{2}} - [D_t u]^{n-\frac{1}{2}}}{\Delta t}
\]

which is written out as

\[
\frac{1}{\Delta t} \left(\frac{u^{n+1} - u^n}{\Delta t} - \frac{u^n - u^{n-1}}{\Delta t} \right) = \frac{u^{n+1} - 2u^n + u^{n-1}}{\Delta t^2}.
\]
Operator notation; initial condition

\[u = I^0, \quad [D_{2t} u = 0]^0 \]

where \([D_{2t} u]^n\) is defined as

\[[D_{2t} u]^n = \frac{u^{n+1} - u^{n-1}}{2\Delta t}. \]
\(u \) is often displacement/position, \(u' \) is velocity and can be computed by

\[
u'(t_n) \approx \frac{u^{n+1} - u^{n-1}}{2\Delta t} = [D_{2t}u]^n
\]
A simple vibration problem

Implementation

Verification

Long time simulations
- Long time simulations visualized with aid of Bokeh: coupled panning of multiple graphs
- How does Bokeh plotting code look like?

Analysis of the numerical scheme

Alternative schemes based on 1st-order equations

Generalization: damping, nonlinear spring, and external excitation
```python
import numpy as np
import matplotlib.pyplot as plt

def solver(I, w, dt, T):
    r""" Solve \( u'' + w^2 u = 0 \) for \( t \) in \( (0, T] \), \( u(0)=I \) and \( u'(0)=0 \), by a central finite difference method with time step \( dt \).
    """
    dt = float(dt)
    Nt = int(round(T/dt))
    u = np.zeros(Nt+1)
    t = np.linspace(0, Nt*dt, Nt+1)
    u[0] = I
    u[1] = u[0] - 0.5*dt**2*w**2*u[0]
    for n in range(1, Nt):
        u[n+1] = 2*u[n] - u[n-1] - dt**2*w**2*u[n]
    return u, t
```
def u_exact(t, I, w):
 return I*np.cos(w*t)

def visualize(u, t, I, w):
 plt.plot(t, u, 'r--o')
 t_fine = np.linspace(0, t[-1], 1001) # very fine mesh for u_e
 u_e = u_exact(t_fine, I, w)
 plt.hold('on')
 plt.plot(t_fine, u_e, 'b-')
 plt.legend(['numerical', 'exact'], loc='upper left')
 plt.xlabel('t')
 plt.ylabel('u')
 dt = t[1] - t[0]
 plt.title('dt=%g' % dt)
 umin = 1.2*u.min(); umax = -umin
 plt.axis([t[0], t[-1], umin, umax])
 plt.savefig('tmp1.png'); plt.savefig('tmp1.pdf')
Main program

I = 1
w = 2*pi
dt = 0.05
num_periods = 5
P = 2*pi/w # one period
T = P*num_periods
u, t = solver(I, w, dt, T)
visualize(u, t, I, w, dt)
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--I', type=float, default=1.0)
parser.add_argument('--w', type=float, default=2*pi)
parser.add_argument('--dt', type=float, default=0.05)
parser.add_argument('--num_periods', type=int, default=5)
a = parser.parse_args()
I, w, dt, num_periods = a.I, a.w, a.dt, a.num_periods
Running the program

vib_undamped.py:

```bash
Terminal> python vib_undamped.py --dt 0.05 --num_periods 40
```

Generates frames `tmp_vib%04d.png` in files. Can make movie:

```bash
Terminal> ffmpeg -r 12 -i tmp_vib%04d.png -c:v flv movie.flv
```

Can use `avconv` instead of `ffmpeg`.

<table>
<thead>
<tr>
<th>Format</th>
<th>Codec and filename</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flash</td>
<td>-c:v flv movie.flv</td>
</tr>
<tr>
<td>MP4</td>
<td>-c:v libx264 movie.mp4</td>
</tr>
<tr>
<td>Webm</td>
<td>-c:v libvpx movie.webm</td>
</tr>
<tr>
<td>Ogg</td>
<td>-c:v libtheora movie.ogg</td>
</tr>
</tbody>
</table>
1 A simple vibration problem

2 Implementation

3 Verification

4 Long time simulations
 - Long time simulations visualized with aid of Bokeh: coupled panning of multiple graphs
 - How does Bokeh plotting code look like?

5 Analysis of the numerical scheme

6 Alternative schemes based on 1st-order equations

7 Generalization: damping, nonlinear spring, and external excitation
First steps for testing and debugging

- **Testing very simple solutions**: \(u = \text{const} \) or \(u = ct + d \) do not apply here (without a force term in the equation: \(u'' + \omega^2 u = f \)).

- **Hand calculations**: calculate \(u^1 \) and \(u^2 \) and compare with program.
The next function estimates convergence rates, i.e., it

- performs \(m \) simulations with halved time steps: \(2^{-k} \Delta t \), \(k = 0, \ldots, m - 1 \),
- computes the \(L_2 \) norm of the error,
 \[
 E = \sqrt{\Delta t_i \sum_{n=0}^{N_t-1} (u^n - u_e(t_n))^2}
 \]
 in each case,
- estimates the rates \(r_i \) from two consecutive experiments \((\Delta t_{i-1}, E_{i-1}) \) and \((\Delta t_i, E_i) \), assuming \(E_i = C \Delta t_i^{r_i} \) and \(E_{i-1} = C \Delta t_{i-1}^{r_i} \):
def convergence_rates(m, solver_function, num_periods=8):

 ""
 Return m-1 empirical estimates of the convergence rate based on m simulations, where the time step is halved for each simulation.
 solver_function(I, w, dt, T) solves each problem, where T is based on simulation for num_periods periods.
 ""

 from math import pi
 w = 0.35; I = 0.3 # just chosen values
 P = 2*pi/w # period
 dt = P/30 # 30 time step per period 2*pi/w
 T = P*num_periods

 dt_values = []
 E_values = []
 for i in range(m):
 u, t = solver_function(I, w, dt, T)
 u_e = u_exact(t, I, w)
 E = np.sqrt(dt*np.sum((u_e-u)**2))
 dt_values.append(dt)
 E_values.append(E)
 dt = dt/2

 r = [np.log(E_values[i-1]/E_values[i])/
 np.log(dt_values[i-1]/dt_values[i])
 for i in range(1, m, 1)]
 return r

Result: r contains values equal to 2.00 - as expected!
Use final $r[-1]$ in a unit test:

```python
def test_convergence_rates():
    r = convergence_rates(m=5, solver_function=solver, num_periods=8)
    # Accept rate to 1 decimal place
    tol = 0.1
    assert abs(r[-1] - 2.0) < tol
```

Complete code in `vib_undamped.py`.
A simple vibration problem

Implementation

Verification

Long time simulations
 - Long time simulations visualized with aid of Bokeh: coupled panning of multiple graphs
 - How does Bokeh plotting code look like?

Analysis of the numerical scheme

Alternative schemes based on 1st-order equations

Generalization: damping, nonlinear spring, and external excitation
Effect of the time step on long simulations

- The numerical solution seems to have right amplitude.
- There is an angular frequency error (reduced by reducing the time step).
- The total angular frequency error seems to grow with time.
Using a moving plot window

- In long time simulations we need a plot window that follows the solution.
- Method 2: `scitools.avplotter` (ASCII vertical plotter).

Example:

Terminal> python vib_undamped.py --dt 0.05 --num_periods 40

Movie of the moving plot window.

!splot

- **Bokeh** is a Python plotting library for fancy web graphics
- Example here: long time series with many coupled graphs that can move simultaneously
1. A simple vibration problem

2. Implementation

3. Verification

4. Long time simulations
 - Long time simulations visualized with aid of Bokeh: coupled panning of multiple graphs
 - How does Bokeh plotting code look like?

5. Analysis of the numerical scheme

6. Alternative schemes based on 1st-order equations

7. Generalization: damping, nonlinear spring, and external excitation
Analysis of the numerical scheme

Can we understand the frequency error?

![Plots comparing numerical and exact solutions for different time steps](image)

- For $dt=0.1$ (left plot), the frequency error is observable due to the larger time step.
- For $dt=0.05$ (right plot), the frequency error is reduced compared to the larger time step.
Movie of the angular frequency error

\[u'' + \omega^2 u = 0, \quad u(0) = 1, \quad u'(0) = 0, \quad \omega = 2\pi, \quad u_e(t) = \cos(2\pi t), \quad \Delta t = 0.05 \text{ (20 intervals per period)} \]
We can derive an exact solution of the discrete equations

- We have a linear, homogeneous, difference equation for u^n.
- Has solutions $u^n \sim lA^n$, where A is unknown (number).
- Here: $u_e(t) = l \cos(\omega t) \sim l \exp(i\omega t) = l(e^{i\omega \Delta t})^n$
- Trick for simplifying the algebra: $u^n = lA^n$, with $A = \exp(i\tilde{\omega} \Delta t)$, then find $\tilde{\omega}$
- $\tilde{\omega}$: unknown *numerical frequency* (easier to calculate than A)
- $\omega - \tilde{\omega}$ is the angular *frequency error*
- Use the real part as the physical relevant part of a complex expression
Calculations of an exact solution of the discrete equations

\[u^n = I A^n = I \exp (\tilde{\omega} \Delta t \, n) = I \exp (\tilde{\omega} t) = I \cos(\tilde{\omega} t) + i I \sin(\tilde{\omega} t). \]

\[[D_t D_t u]^n = \frac{u^{n+1} - 2u^n + u^{n-1}}{\Delta t^2} \]

\[= I \frac{A^{n+1} - 2A^n + A^{n-1}}{\Delta t^2} \]

\[= I \frac{\exp (i \tilde{\omega} (t + \Delta t)) - 2 \exp (i \tilde{\omega} t) + \exp (i \tilde{\omega} (t - \Delta t))}{\Delta t^2} \]

\[= I \exp (i \tilde{\omega} t) \frac{1}{\Delta t^2} (\exp (i \tilde{\omega} (\Delta t)) + \exp (i \tilde{\omega} (-\Delta t)) - 2) \]

\[= I \exp (i \tilde{\omega} t) \frac{2}{\Delta t^2} (\cosh (i \tilde{\omega} \Delta t) - 1) \]

\[= I \exp (i \tilde{\omega} t) \frac{2}{\Delta t^2} (\cos(\tilde{\omega} \Delta t) - 1) \]

\[= -I \exp (i \tilde{\omega} t) \frac{4}{\Delta t^2} \sin^2 \left(\frac{\tilde{\omega} \Delta t}{2} \right) \]
Solving for the numerical frequency

The scheme with \(u^n = I \exp(i \omega \Delta t n) \) inserted gives

\[
- I \exp(i \tilde{\omega} t) \frac{4}{\Delta t^2} \sin^2\left(\frac{\tilde{\omega} \Delta t}{2}\right) + \omega^2 I \exp(i \tilde{\omega} t) = 0
\]

which after dividing by \(I \exp(i \tilde{\omega} t) \) results in

\[
\frac{4}{\Delta t^2} \sin^2\left(\frac{\tilde{\omega} \Delta t}{2}\right) = \omega^2
\]

Solve for \(\tilde{\omega} \):

\[
\tilde{\omega} = \pm \frac{2}{\Delta t} \sin^{-1}\left(\frac{\omega \Delta t}{2}\right)
\]

- Frequency error because \(\tilde{\omega} \neq \omega \).
- Note: dimensionless number \(p = \omega \Delta t \) is the key parameter (i.e., no of time intervals per period is important, not \(\Delta t \) itself)
- But how good is the approximation \(\tilde{\omega} \) to \(\omega \)?
Taylor series expansion for small Δt gives a formula that is easier to understand:

```python
>>> from sympy import *
>>> dt, w = symbols('dt w')
>>> w_tilde = asin(w*dt/2).series(dt, 0, 4)*2/dt
>>> print w_tilde
(dt*w + dt**3*w**3/24 + O(dt**4))/dt  # note the final "/dt"
```

The numerical frequency is too large (too fast oscillations).
Recommendation: 25-30 points per period.
Exact discrete solution

\[u^n = I \cos (\tilde{\omega} n \Delta t), \quad \tilde{\omega} = \frac{2}{\Delta t} \sin^{-1} \left(\frac{\omega \Delta t}{2} \right) \]

The error mesh function,

\[e^n = u_e(t_n) - u^n = I \cos (\omega n \Delta t) - I \cos (\tilde{\omega} n \Delta t) \]

is ideal for verification and further analysis!

\[e^n = I \cos (\omega n \Delta t) - I \cos (\tilde{\omega} n \Delta t) = -2I \sin \left(t \frac{1}{2} (\omega - \tilde{\omega}) \right) \sin \left(t \frac{1}{2} (\omega + \tilde{\omega}) \right) \]
Can easily show convergence:

\[e^n \to 0 \text{ as } \Delta t \to 0, \]

because

\[\lim_{\Delta t \to 0} \tilde{\omega} = \lim_{\Delta t \to 0} \frac{2}{\Delta t} \sin^{-1} \left(\frac{\omega \Delta t}{2} \right) = \omega, \]

by L’Hopital’s rule or simply asking sympy: or WolframAlpha:

```python
>>> import sympy as sym
>>> dt, w = sym.symbols('x w')
>>> sym.limit((2/dt)*sym.asin(w*dt/2), dt, 0, dir='+')
w
```
Observations:

- Numerical solution has constant amplitude (desired!), but an angular frequency error
- Constant amplitude requires $\sin^{-1}(\omega \Delta t/2)$ to be real-valued
 $\Rightarrow |\omega \Delta t/2| \leq 1$
- $\sin^{-1}(x)$ is complex if $|x| > 1$, and then $\tilde{\omega}$ becomes complex

What is the consequence of complex $\tilde{\omega}$?

- Set $\tilde{\omega} = \tilde{\omega}_r + i\tilde{\omega}_i$
- Since $\sin^{-1}(x)$ has a *negative* imaginary part for $x > 1$, $\exp(i\omega t) = \exp(-\tilde{\omega}_i t) \exp(i\tilde{\omega}_r t)$ leads to exponential growth $e^{-\tilde{\omega}_i t}$ when $-\tilde{\omega}_i t > 0$
- This is instability because the qualitative behavior is wrong
The stability criterion

Cannot tolerate growth and must therefore demand a stability criterion

$$\frac{\omega \Delta t}{2} \leq 1 \quad \Rightarrow \quad \Delta t \leq \frac{2}{\omega}$$

Try $\Delta t = \frac{2}{\omega} + 9.01 \cdot 10^{-5}$ (slightly too big!):
Summary of the analysis

We can draw three important conclusions:

1. The key parameter in the formulas is \(p = \omega \Delta t \) (dimensionless)
 - Period of oscillations: \(P = \frac{2\pi}{\omega} \)
 - Number of time steps per period: \(N_P = \frac{P}{\Delta t} \)
 - \(\Rightarrow \quad p = \omega \Delta t = \frac{2\pi}{N_P} \approx \frac{1}{N_P} \)
 - The smallest possible \(N_P \) is 2 \(\Rightarrow \quad p \in (0, \pi] \)

2. For \(p \leq 2 \) the amplitude of \(u^n \) is constant (stable solution)

3. \(u^n \) has a relative frequency error \(\tilde{\omega}/\omega \approx 1 + \frac{1}{24} p^2 \), making numerical peaks occur too early
1 A simple vibration problem

2 Implementation

3 Verification

4 Long time simulations
 - Long time simulations visualized with aid of Bokeh: coupled panning of multiple graphs
 - How does Bokeh plotting code look like?

5 Analysis of the numerical scheme

6 Alternative schemes based on 1st-order equations

7 Generalization: damping, nonlinear spring, and external excitation
The vast collection of ODE solvers (e.g., in Odespy) cannot be applied to
\[u'' + \omega^2 u = 0 \]
unless we write this higher-order ODE as a system of 1st-order ODEs.

Introduce an auxiliary variable \(v = u' \):

\[u' = v, \quad (1) \]
\[v' = -\omega^2 u . \quad (2) \]

Initial conditions: \(u(0) = I \) and \(v(0) = 0 \).
The Forward Euler scheme

We apply the Forward Euler scheme to each component equation:

\[
[D_t^+ u = v]^n,
\]
\[
[D_t^+ v = -\omega^2 u]^n,
\]

or written out,

\[
u^{n+1} = u^n + \Delta t v^n,
\]
\[
\nu^{n+1} = \nu^n - \Delta t \omega^2 u^n.
\]
We apply the Backward Euler scheme to each component equation:

\[
D_\tau^- u = \nu
\]

\[
D_\tau^- \nu = -\omega u
\]

Written out:

\[
u^{n+1} - \Delta t \nu^{n+1} = u^n,\]

\[
u^{n+1} + \Delta t \omega^2 u^{n+1} = \nu^n.
\]

This is a coupled 2 \times 2 system for the new values at \(t = t_{n+1} \)!
The Crank-Nicolson scheme

\[[D_t u = \bar{v}^t]^{n+\frac{1}{2}}, \]
(9)

\[[D_t v = -\omega \bar{u}^t]^{n+\frac{1}{2}}. \]
(10)

The result is also a coupled system:

\[u^{n+1} - \frac{1}{2} \Delta t v^{n+1} = u^n + \frac{1}{2} \Delta t v^n, \]
(11)

\[v^{n+1} + \frac{1}{2} \Delta t \omega^2 u^{n+1} = v^n - \frac{1}{2} \Delta t \omega^2 u^n. \]
(12)
Can use Odespy to compare many methods for first-order schemes:

```python
import odespy
import numpy as np

def f(u, t, w=1):
    u, v = u  # u is array of length 2 holding our [u, v]
    return [v, -w**2*u]

def run_solvers_and_plot(solvers, timesteps_per_period=20,
                          num_periods=1, I=1, w=2*np.pi):
    P = 2*np.pi/w  # duration of one period
    dt = P/timesteps_per_period
    Nt = num_periods*timesteps_per_period
    T = Nt*dt
    t_mesh = np.linspace(0, T, Nt+1)

    legends = []
    for solver in solvers:
        solver.set(f_kwargs={'w': w})
        solver.set_initial_condition([I, 0])
        u, t = solver.solve(t_mesh)
```
solvers = [
 odespy.ForwardEuler(f),
 # Implicit methods must use Newton solver to converge
 odespy.BackwardEuler(f, nonlinear_solver='Newton'),
 odespy.CrankNicolson(f, nonlinear_solver='Newton'),
]

Two plot types:

- \(u(t) \) vs \(t \)
- Parameterized curve \((u(t), v(t))\) in phase space
- Exact curve is an ellipse: \((l \cos \omega t, -\omega l \sin \omega t)\), closed and periodic
Note: CrankNicolson in Odespy leads to the name MidpointImplicit in plots.
Figure: Comparison of classical schemes.
Observations from the figures

- **Forward Euler** has growing amplitude and outward \((u, v)\) spiral - pumps energy into the system.
- **Backward Euler** is opposite: decreasing amplitude, inward spiral, extracts energy.
- **Forward and Backward Euler are useless for vibrations.**
- **Crank-Nicolson** (Midpoint Implicit) looks much better.
Runge-Kutta methods of order 2 and 4; short time series
Runge-Kutta methods of order 2 and 4; longer time series
Crank-Nicolson; longer time series

(MidpointImplicit means CrankNicolson in Odespy)
4th-order Runge-Kutta is very accurate, also for large Δt.

2th-order Runge-Kutta is almost as bad as Forward and Backward Euler.

Crank-Nicolson is accurate, but the amplitude is not as accurate as the difference scheme for $u'' + \omega^2 u = 0$.
The model

\[u'' + \omega^2 u = 0, \quad u(0) = I, \quad u'(0) = V, \]

has the nice energy conservation property that

\[E(t) = \frac{1}{2} (u')^2 + \frac{1}{2} \omega^2 u^2 = \text{const}. \]

This can be used to check solutions.
Derivation of the energy conservation property

Multiply \(u'' + \omega^2 u = 0 \) by \(u' \) and integrate:

\[
\int_0^T u'' u' \, dt + \int_0^T \omega^2 uu' \, dt = 0 .
\]

Observing that

\[
u'' u' = \frac{d}{dt} \frac{1}{2} (u')^2, \quad uu' = \frac{d}{dt} \frac{1}{2} u^2 ,
\]

we get

\[
\int_0^T \left(\frac{d}{dt} \frac{1}{2} (u')^2 + \frac{d}{dt} \frac{1}{2} \omega^2 u^2 \right) dt = E(T) - E(0),
\]

where

\[
E(t) = \frac{1}{2} (u')^2 + \frac{1}{2} \omega^2 u^2
\]
Remark about $E(t)$

$E(t)$ does not measure energy, energy per mass unit.

Starting with an ODE coming directly from Newton’s 2nd law $F = ma$ with a spring force $F = -ku$ and $ma = mu''$ (a: acceleration, u: displacement), we have

$$mu'' + ku = 0$$

Integrating this equation gives a physical energy balance:

$$E(t) = \frac{1}{2}mv^2 + \frac{1}{2}ku^2 = E(0), \quad v = u'$$

kinetic energy potential energy

Note: the balance is not valid if we add other terms to the ODE.
The Euler-Cromer method; idea

2x2 system for $u'' + \omega^2 u = 0$:

$$v' = -\omega^2 u$$
$$u' = v$$

Forward-backward discretization:

- Update v with Forward Euler
- Update u with Backward Euler, using latest v

$$[D_t^+ v = -\omega^2 u]^n$$
$$[D_t^- u = v]^{n+1}$$ (13) (14)
The Euler-Cromer method; complete formulas

Written out:

\begin{align*}
u^0 &= I, & (15) \\
v^0 &= 0, & (16) \\
v^{n+1} &= v^n - \Delta t \omega^2 u^n & (17) \\
u^{n+1} &= u^n + \Delta t v^{n+1} & (18)
\end{align*}

Euler-Cromer is equivalent to the scheme for $u'' + \omega^2 u = 0$

- Forward Euler and Backward Euler have error $O(\Delta t)$
- What about the overall scheme? Expect $O(\Delta t)$...

We can eliminate v^n and v^{n+1}, resulting in

$$u^{n+1} = 2u^n - u^{n-1} - \Delta t^2 \omega^2 u^n$$

which is the centered finite difference scheme for $u'' + \omega^2 u = 0$!
The schemes are not equivalent wrt the initial conditions $u' = v = 0 \Rightarrow v^0 = 0$,

so

$$v^1 = v^0 - \Delta t \omega^2 u^0 = -\Delta t \omega^2 u^0$$
$$u^1 = u^0 + \Delta t v^1 = u^0 - \Delta t \omega^2 u^0! = \underbrace{u^0 - \frac{1}{2} \Delta t \omega^2 u^0}_{\text{from } [D_tD_t u + \omega^2 u = 0]^n \text{ and } [D_2 u = 0]^0}$$

The exact discrete solution derived earlier does not fit the Euler-Cromer scheme because of mismatch for u^1.
1 A simple vibration problem

2 Implementation

3 Verification

4 Long time simulations

 • Long time simulations visualized with aid of Bokeh: coupled panning of multiple graphs

 • How does Bokeh plotting code look like?

5 Analysis of the numerical scheme

6 Alternative schemes based on 1st-order equations

7 Generalization: damping, nonlinear spring, and external excitation
Generalization: damping, nonlinear spring, and external excitation

\[mu'' + f(u') + s(u) = F(t), \quad u(0) = I, \quad u'(0) = V, \quad t \in (0, T] \]

Input data: \(m, f(u'), s(u), F(t), I, V, \) and \(T \).

Typical choices of \(f \) and \(s \):

- linear damping \(f(u') = bu \), or
- quadratic damping \(f(u') = bu'|u'| \)
- linear spring \(s(u) = cu \)
- nonlinear spring \(s(u) \sim \sin(u) \) (pendulum)
A centered scheme for linear damping

\[[mD_t D_t u + f(D_{2t} u) + s(u) = F]^n \]

Written out

\[
m \frac{u^{n+1} - 2u^n + u^{n-1}}{\Delta t^2} + f(\frac{u^{n+1} - u^{n-1}}{2\Delta t}) + s(u^n) = F^n
\]

Assume \(f(u') \) is linear in \(u' = v \):

\[
u^{n+1} = \left(2mu^n + \left(\frac{b}{2} \Delta t - m\right)u^{n-1} + \Delta t^2 (F^n - s(u^n))\right) \left(m + \frac{b}{2} \Delta t\right)^{-1}
\]
Initial conditions

\[u(0) = l, \quad u'(0) = V: \]

\[
\begin{align*}
[u = l]^0 &\Rightarrow u^0 = l \\
[D_2t u = V]^0 &\Rightarrow u^{-1} = u^1 - 2\Delta t V
\end{align*}
\]

End result:

\[
u^1 = u^0 + \Delta t V + \frac{\Delta t^2}{2m} (-bV - s(u^0) + F^0)
\]

Same formula for \(u^1 \) as when using a centered scheme for \(u'' + \omega u = 0. \)
\[f(u') = bu' |u'| \] leads to a quadratic equation for \(u^{n+1} \)

Instead of solving the quadratic equation, we use a geometric mean approximation

In general, the geometric mean approximation reads

\[(w^2)^n \approx w^{n-\frac{1}{2}} w^{n+\frac{1}{2}}. \]

For \(|u'| u' \) at \(t_n \):

\[[u'|u'|]^n \approx u'(t_n + \frac{1}{2}) |u'(t_n - \frac{1}{2})|. \]

For \(u' \) at \(t_{n\pm1/2} \) we use centered difference:

\[u'(t_{n+1/2}) \approx [Dt u]^{n+\frac{1}{2}}, \quad u'(t_{n-1/2}) \approx [Dt u]^{n-\frac{1}{2}}. \]
After some algebra:

\[u^{n+1} = \left(m + b|u^n - u^{n-1}| \right)^{-1} \times \]
\[(2mu^n - mu^{n-1} + bu^n|u^n - u^{n-1}| + \Delta t^2(F^n - s(u^n))) \]
Initial condition for quadratic damping

Simply use that \(u' = V \) in the scheme when \(t = 0 \) \((n = 0)\):

\[
[mD_t D_t u + b V |V| + s(u) = F]^0
\]

which gives

\[
u^1 = u^0 + \Delta t V + \frac{\Delta t^2}{2m} (-b V |V| - s(u^0) + F^0)
\]
Algorithm

1. $u^0 = l$
2. compute u^1 (formula depends on linear/quadratic damping)
3. for $n = 1, 2, \ldots, N_t - 1$:
 1. compute u^{n+1} from formula (depends on linear/quadratic damping)
def solver(I, V, m, b, s, F, dt, T, damping='linear'):
 dt = float(dt); b = float(b); m = float(m) # avoid integer div.
 Nt = int(round(T/dt))
 u = zeros(Nt+1)
 t = linspace(0, Nt*dt, Nt+1)

 u[0] = I
 if damping == 'linear':
 u[1] = u[0] + dt*V + dt**2/(2*m)*(-b*V - s(u[0]) + F(t[0]))
 elif damping == 'quadratic':
 u[1] = u[0] + dt*V +
 dt**2/(2*m)*(-b*V*abs(V) - s(u[0]) + F(t[0]))

 for n in range(1, Nt):
 if damping == 'linear':
 u[n+1] = (2*m*u[n] + (b*dt/2 - m)*u[n-1] +
 dt**2*(F(t[n]) - s(u[n])))/(m + b*dt/2)
 elif damping == 'quadratic':
 u[n+1] = (2*m*u[n] - m*u[n-1] + b*u[n]*abs(u[n] - u[n-1]) +
 dt**2*(F(t[n]) - s(u[n]))) /
 (m + b*abs(u[n] - u[n-1]))

 return u, t
Verification

- **Constant solution** $u_e = I (V = 0)$ fulfills the ODE problem and the discrete equations. Ideal for debugging!
- **Linear solution** $u_e = Vt + I$ fulfills the ODE problem and the discrete equations.
- **Quadratic solution** $u_e = bt^2 + Vt + I$ fulfills the ODE problem and the discrete equations with linear damping, but not for quadratic damping. A special discrete source term can allow u_e to also fulfill the discrete equations with quadratic damping.
Demo program

`vib.py` supports input via the command line:

```
Terminal> python vib.py --s 'sin(u)' --F '3*cos(4*t)' --c 0.03
```

This results in a moving window following the function on the screen.
We rewrite

\[mu'' + f(u') + s(u) = F(t), \quad u(0) = l, \quad u'(0) = V, \quad t \in (0, T] \]

as a first-order ODE system

\[u' = v \]
\[v' = m^{-1} (F(t) - f(v) - s(u)) \]
Staggered grid

- u is unknown at t_n: u^n
- v is unknown at $t_{n+1/2}$: $v^{n+\frac{1}{2}}$
- All derivatives are approximated by centered differences

\[
[D_t u = v]^{n-\frac{1}{2}}
\]
\[
[D_t v = m^{-1} (F(t) - f(v) - s(u))]^n
\]

Written out,

\[
\frac{u^n - u^{n-1}}{\Delta t} = v^{n-\frac{1}{2}}
\]
\[
\frac{v^{n+\frac{1}{2}} - v^{n-\frac{1}{2}}}{\Delta t} = m^{-1} (F^n - f(v^n) - s(u^n))
\]

Problem: $f(v^n)$
Linear damping

With \(f(v) = bv \), we can use an arithmetic mean for \(bv^n \) a la Crank-Nicolson schemes.

\[
\begin{align*}
 u^n &= u^{n-1} + \Delta t v^{n-\frac{1}{2}}, \\
 v^{n+\frac{1}{2}} &= \left(1 + \frac{b}{2m} \Delta t \right)^{-1} \left(v^{n-\frac{1}{2}} + \Delta tm^{-1} \left(F^n - \frac{1}{2} f\left(v^{n-\frac{1}{2}}\right) - s(u^n) \right) \right)
\end{align*}
\]
Quadratic damping

With \(f(v) = b|v| \), we can use a geometric mean

\[
b|v^n|v^n \approx b|v^{n-\frac{1}{2}}|v^{n+\frac{1}{2}},
\]

resulting in

\[
u^n = u^{n-1} + \Delta tv^{n-\frac{1}{2}},
\]

\[
v^{n+\frac{1}{2}} = \left(1 + \frac{b}{m}|v^{n-\frac{1}{2}}|\Delta t\right)^{-1} \left(v^{n-\frac{1}{2}} + \Delta tm^{-1} (F^n - s(u^n))\right).
\]
Initial conditions

\[u^0 = I \]

\[\nu^\frac{1}{2} = V - \frac{1}{2} \Delta t \omega^2 I \]