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@ Basic principles for approximating differential equations



We shall apply least squares, Galerkin/projection, and

collocation to differential equation models

Our aim is to extend the ideas for approximating f by u, or solving

u="f

to real, spatial differential equations like

—u"+bu="f, uw0)=C, J(L)=D

Emphasis will be on the Galerkin/projection method




Abstract differential equation



Abstract boundary conditions

Examples:
Bi(u) =u—g, Dirichlet condition
Bi(u) = —aﬂ - g, Neumann condition
dx
du : ..
Bi(u) = o h(u—g), Robin condition



Reminder about notation

ue(x) is the symbol for the exact solution of L(ue) = 0 and

Bi(ue) =

i
( ) denotes an approximate solution
= span{to(x), ..., ¥n(x)}, V has basis {1)i};c7
We seek u € V
Zs ={0,..., N} is an index set
u(x) = ZjeIs ¢jtj(x)

Inner product: (u,v) = [, uvdx

Norm: ||u|| = /(u, u)



New topics: variational formulation and boundary conditions

Much is similar to approximating a function (solving u = f), but
two new topics are needed:

@ Variational formulation of the differential equation problem
(including integration by parts)

e Handling of boundary conditions



Residual-minimizing principles

@ When solving u = f we knew the error e = f — u and could
use principles for minimizing the error

@ When solving £(ue) = 0 we do not know ue and cannot work
with the error e = ue — u

@ We can only know the error in the equation: the residual R

Inserting u = > _; ¢jt)j in L = 0 gives a residual R
L(u) =L cj) =R #0
J

Goal: minimize R with respect to {c;};c7, (and hope it makes a
small e too)

R =R(co,...,cn;x)



The least squares method

Idea: minimize

E=||R|]?>=(R,R) :/QR2dx

Minimization wrt {c;};c7 implies

0E OR OR .
/s‘2 8CI- y aicl) = 0, I € IS

N + 1 equations for N + 1 unknowns {c,-},-ezs



The Galerkin method

Idea: make R orthogonal to V,
(R,v)=0, VveV

This implies

(Rpi) =0, i€Ts

N + 1 equations for N + 1 unknowns {c;};c7,



The Method of Weighted Residuals

Generalization of the Galerkin method: demand R orthogonal to
some space W, possibly W # V:

(R,v)=0, WYveWw

If {wg,..., wn} is a basis for W:
(Ryw;) =0, ieTs

o N +1 equations for N + 1 unknowns {c¢;};c7.
o Weighted residual with w; = OR/0c; gives least squares



New terminology: test and trial functions

® tj used in ; cjibj is called trial function

@ 1; or w; used as weight in Galerkin’s method is called test
function



The collocation method

Idea: demand R =0 at N + 1 points in space

R(xi;co,.-.,cn) =0, i€Zs

The collocation method is a weighted residual method with delta
functions as weights

0= / R(x; co, ..., cn)d(x — xi) dx = R(xi; co, - - -, Cn)
Q

property of §(x) : / f(x)d(x — xi)dx = f(x;), xi €
Q




© Examples on using the principles



Examples on using the principles

Exemplify the least squares, Galerkin, and collocation methods in a
simple 1D problem with global basis functions.




The first model problem

—u"(x) =f(x), xe€Q=][0,L], u(0)=0, u(L)=0
Basis functions:
vilx) =sin ((i+ )77 ), i€l

Residual:

R(x;co,...,cn) = u”"(x) + f(x),
d2
=2 | 2o g%t | + 10,
J€Ls
= Z cjwjl-/(x) + f(x)

J€ELs



Boundary conditions

Since u(0) = u(L) = 0 we must ensure that all ;(0) = ¢;(L) =0,
because then

u(0) = ¢uj(0) =0, wu(l) = ¢u(L)=0
J J

@ u known: Dirichlet boundary condition
@ v’ known: Neumann boundary condition

@ Must have t; = 0 where Dirichlet conditions apply



The least squares method; principle

Because:

0
dc; (covg + by + -+ + iy + it + ity + o+ endy) =
1



The least squares method; equation system

O v +f,4f)=0, i€,
J
Rearrangement:

> Wi W) =~(f.uf), i€
J€ELs
This is a linear system

ZA;JCj:b,', i €T
JETLs



The least squares method; matrix and right-hand side

expressions

Aij = (i, 47)
L X . . X
:7r4(i+1)2(j+1)2L4/0 sin ((i+1)7rz) sin ((J+1)7rz) dx

AR =
0, 1#]

bi = —(f, ") = (i + 1)272L 2 /OL f(x)sin ((i + 1)7%) dx



Orthogonality of the basis functions gives diagonal matrix

Useful property of the chosen basis functions:

L
X X L i=j
in ((i Nsin ((; X — L) 2
/sm ((l+1)7rL>sm ((j+1)7rL) dx = 0jj, dij { 0. it
0
= (/. ¢}) = dj, i.e., diagonal A;;, and we can easily solve for c;:

G = 71'2(12—|L—1)2/0L f(x)sin ((i+1)7r%> dx



Least squares method; solution

Let sympy do the work (f(x) = 2):

from sympy import *
import sys

, j = symbols(’i j’, integer=True)
= symbols(’x L’)

=2

= 2%L/ (pi**2% (i+1)**2)

_i = a*integrate(f*sin((i+1)#*pi*x/L), (x, 0, L))
_i = simplify(c_i)

print c_i

12((-1) +1) N2 .
_ _ . X
RS TN T ) M kz_o w2k +1) " (2K + 1)

Fast decay: ¢, = ¢9/27, cs = ¢p/125 - only one term might be
good enough:

2
u(x) ~ 8Lﬁ sin (775\




The Galerkin method; principle

R=u"+"f:

(V' +f,v)=0, VYveyV,

or rearranged,

(u",v)=—(f,v), VveV

This is a variational formulation of the differential equation
problem.

Vv € V is equivalent with Vv € v;, i € T, resulting in

(Z G J/‘Iﬂ/Ji) = _(fawi)v 1€

JETLs

Z( J/'/ﬂl}i)cj = _(f,’QZ),‘), iGIS

JELs



The Galerkin method: solution

Since ¢! oc —1);, Galerkin's method gives the same linear system
and the same solution as the least squares method (in this
particular example).



The collocation method

R = 0 (i.e.,the differential equation) must be satisfied at N + 1
points:

—ZCJ (xi) =f(xi), i€Zs

JETLs

This is a linear system ZJ- A;j = b;i with entries

Aij = =] (x) = ( + 1P 2sin ((+ 1) ’Z) b =2
Choose: N =0, xg = L/2

co = 21?7



Comparison of the methods

@ Exact solution: u(x) = x(L — x)
o Galerkin or least squares (N = 0): u(x) = 8L273sin(7x/L)
e Collocation method (N = 0): u(x) = 2L27~2sin(7x/L).

>>>
>>>
>>>
>>>
>>>

>>>
>>>
>>>

>>>
>>>
0

import sympy as sym

# Computing with Dirichlet conditions: -u’’=2 and sines

x, L = sym.symbols(’x L’)

e_Galerkin = x*(L-x) - 8*L**2*sym.pi**(-3)*sym.sin(sym.pi*x/L)
e_colloc = x*(L-x) - 2*L**2xsym.pi**(-2)*sym.sin(sym.pi*x/L)

# Verify maz error for z=L/2
dedx_Galerkin = sym.diff(e_Galerkin, x)
dedx_Galerkin.subs(x, L/2)

dedx_colloc = sym.diff(e_colloc, x)
dedx_colloc.subs(x, L/2)

# Compute maz error: z=L/2, evaluate numerical, and simplify

>>>

sym.simplify(e_Galerkin.subs(x, L/2).evalf(n=3))

-0.00812*L**2

>>>

sym.simplify(e_colloc.subs(x, L/2).evalf(n=3))

0.0473*%L**2



© Useful techniques



Integration by parts has many advantages

Second-order derivatives will hereafter be integrated by parts

L L
U”XVX X = — U/XV,XX VU/L
/0 (x)v(x)d /0 (x)v'(x)dx + [vu]§
L
= [ o e D) - Y O0)

Motivation:

@ Lowers the order of derivatives
o Gives more symmetric forms (incl. matrices)
@ Enables easy handling of Neumann boundary conditions

o Finite element basis functions ¢; have discontinuous
derivatives (at cell boundaries) and are not suited for terms
with ¢



We use a boundary function to deal with non-zero Dirichlet

boundary conditions

e What about nonzero Dirichlet conditions? Say u(L) = D

o We always require ¥;(L) = 0 (i.e., ¥; = 0 where Dirichlet
conditions applies)

o Problem: u(L) =3 ; cjihj(L) =>;¢j-0=10# D - always!

@ Solution: u(x) = B(x) + >; ¢jvj(x)

@ B(x): user-constructed boundary function that fulfills the
Dirichlet conditions

o If u(L) = D, make sure B(L) =D

@ No restrictions of how B(x) varies in the interior of Q



Example on constructing a boundary function for two

Dirichlet conditions

Dirichlet conditions: u(0) = C and u(L) = D. Choose for example

B(x) = %(C(L —x)+Dx):  B(0)=C, B(L)=D

u(x) = B(x) + ) ciii(x),

JELs



Example on constructing a boundary function for one

Dirichlet condition

Dirichlet condition: u(L) = D. Choose for example



With a B(x), u ¢ V, but . qp; € V

o {ti};cz, is a basis for V

o JeTs Cjwj(X) cvVv

e But u¢g V!

@ Reason: say u(0) = C and v € V; any v € V has v(0) = C,
then 2u ¢ V because 2u(0) = 2C (wrong value)

® When u(x) = B(x) + >_jcz, ¢i¥j(x), B € V (in general) and
ugV, but (u—B)€ Vsince ) gy € V



Abstract notation for variational formulations

The finite element literature (and much FEniCS documentation)
applies an abstract notation for the variational formulation:

Find (u — B) € V such that

a(u,v)=L(v) YveV




Example on abstract notation

Variational formulation:

/ u'v'dx :/ fudx—v(0)C or (J',v')=(f,v)-v(0)C VYveV
Q Q
Abstract formulation: find (v — B) € V such that

a(u,v)=1L(v) VvevVv

We identify

a(u,v) = (d,Vv'), L(v)=(f,v)—v(0)C



Bilinear and linear forms

e a(u,v) is a bilinear form

o L(v)is a linear form

Linear form means

L(Oq vi + O[2V2) = alL(vl) + OéQL(VQ),
Bilinear form means

a(aruy + apua, v) = aqa(ur, v) + aga(uz, v),

a(u,a1vi + aawva) = aga(u, vi) + aza(u, va)

In nonlinear problems: Find (v — B) € V such that
F(u;v)=0VveV



The linear system associated with the abstract form

a(u,v)=1L(v) YWweV < a(u)=LWi) i€Ts

We can now derive the corresponding linear system once and for all
by inserting u = B + 3, ¢jy;:
a(B+ Y ciy, i) = L(vi) i€
J€Ls

Because of linearity,

> a(ey,vi) ¢ = L) —a(B, i) i€

JEZLs

Aij bi




Equivalence with minimization problem

If ais symmetric: a(u,v) = a(v, u),
a(u,v)=L(v) YveV
is equivalent to minimizing the functional

F(v) = %a(v, v) = L(v)

over all functions v € V. That is,
F(u) < F(v) VveV

@ Much used in the early days of finite elements

@ Still much used in structural analysis and elasticity

o Not as general as Galerkin's method (since we require
a(u,v) = a(v, u))



@ Examples on variational formulations



Examples on variational formulations

Derive variational formulations for some prototype differential
equations in 1D that include

o variable coefficients

@ mixed Dirichlet and Neumann conditions

@ nonlinear coefficients




Variable coefficient; problem

Variable coefficient a(x)

V = span{vo,...,¥n}

Nonzero Dirichlet conditions at x =0 and x = L
Must have ¢;(0) = ¢;(L) =0

Any v € V has then v(0) = v(L) =0

B(x) = C+ (D — C)x

u(x) = B(x) + ) civhi(x),

JELs



Variable coefficient; Galerkin principle

d du
R="u <dx) -f
Galerkin’s method:

(R,v)=0, VveV

or with integrals:

d du
/Q <_dx <adx) — f) vdx =0, VveV



Variable coefficient; integration by parts

d du du dv du 1"
—/de (a(x)dx> vdx:/ﬂa(x)dxdxdx— [adXvL

Boundary terms vanish since v(0) = v(L) =0



Variable coefficient; variational formulation

Variational formulation

Find (u — B) € V such that

du dv
/()dxdxd—/f Jvdx, VYveV

Compact notation:

(a/, V)= (f,v), VYveV
S 2
a(u,v) L(v)




Variable coefficient; linear system (the easy way)

With

a(u,v) = (ad', V'), L(v)=(f,v)

we can just use the formula for the linear system:

Aij = a(tj, ) = (o), ) = /Q oo dx = /Q Gloghdx (= a(ti ;)
bi = (F, 1) — (aB', ) = /Q (Fi — al (D — C)) dx



Variable coefficient; linear system (full derivation)

v=1jand u= B+ iy

(@B +a > quhy)) = (f,¢i), i€

J€ELs

Reorder to form linear system:

> (ahi)e = (f,h) = (aLH(D = C),¢f), i€Ts

JELs

This is Zj A,'J'Cj = b; with

Aij = (@) = /Q A () (x)(x) dx
b= (F.) = L0 = €)= [ (=BTt o




First-order derivative in the equation and boundary

condition; problem

—u"(x)+ b (x) = f(x), xe€Q=][0,L], u(0)=C, J/(L)=E
New features:

o first-order derivative v’ in the equation

e boundary condition with v": /(L) = E
Initial steps:
e Must force 1;(0) = 0 because of Dirichlet condition at x =0

e Boundary function: B(x) = C(L — x)/L or just B(x) = C

@ No requirements on (L) (no Dirichlet condition at x = L)



First-order derivative in the equation and boundary

condition; details

u=C+ Z cjvi(x)

JETLs

Galerkin's method: multiply by v, integrate over Q, integrate by

parts.
(—u" +bd —f,v)=0, VveV
(' V) + (b, v) = (F,v) +[u'v]s, YveV
u'vl§ = v'(L)v(L) — u'(0)v(0) = Ev(L) since v(0) = 0 and
0
v(L)=E

(u', V') + (b, v) = (f,v) + Ev(L), VYveV



First-order derivative in the equation and boundary

condition; observations

(v, V') + (bu',v) = (f,v) + Ev(L), YveV
Important observations:

@ The boundary term can be used to implement Neumann
conditions

o Forgetting the boundary term implies the condition v/ =0 (!)

@ Such conditions are called natural boundary conditions



First-order derivative in the equation and boundary

condition; abstract notation (optional)

Abstract notation:

a(u,v)=1L(v) VvevVv

With

(v, V') + (bu',v) = (f,v) + Ev(L), YveV

we have

a(u,v) = (', V') + (b, v)
L(v) = (f,v)+ Ev(L)



First-order derivative in the equation and boundary

condition; linear system

Insert u = C + 3, ¢jibj and v =9 in

(V) + (b, v) = (f,v) + Ev(L), VveV

and manipulate to get

D (W) + (bvf,vi)) 6 = (£,40) + Ey(L), i €I

JETLs b;

Aij

Observation: A;j is not symmetric because of the term

(buj, ) = | bufnde £ [ buigd = (v by



Terminology: natural and essential boundary conditions

(V') + (b, v) = (f,v) + ' (L)v(L) — u'(0)v(0)

o Note: forgetting the boundary terms implies /(L) = v/(0) =0
(unless prescribe a Dirichlet condition)

o Conditions on v’ are simply inserted in the variational form
and called natural conditions

e Conditions on u at x = 0 requires modifying V' (through
1i(0) = 0) and are known as essential conditions

Lesson learned
It is easy to forget the boundary term when integrating by parts.

That mistake may prescribe a condition on v'!




Nonlinear coefficient; problem

—(a(u)) =f(u), x€]0,L], u(0)=0, J/(L)=E

o V: basis {t;};cz. with ¥;(0) = 0 because of u(0) =0
@ How do the nonlinear coefficients a(u) and f(u) impact the

variational formulation?
(Not much!)



Nonlinear coefficient; variational formulation

Galerkin: multiply by v, integrate, integrate by parts

L L
/a(u)jij‘;dx—/ f(u)vdx + [a(u)v/]§ Vv eV

a(u(0))v(0)u'(0) = 0 since v(0)
a(u(L))v(L)u'(L) = a(u(L))v(L)E since u'(L) = E

L du dv
/a(u aavd —/ f(u)vdx + a(u(L))v(L)E YveV

or

(a(u)d',v') = (f(u),v) + a(u(L))v(L)E VveV



Nonlinear coefficient; where does the nonlinearity cause

challenges?

@ Abstract notation: no a(u,v) and L(v) because a and L get
nonlinear

o Abstract notation for nonlinear problems: F(u;v) =0Vv e V

e What about forming a linear system? We get a nonlinear
system of algebraic equations

@ Must use methods like Picard iteration or Newton’s method to
solve nonlinear algebraic equations

@ But: the variational formulation was not much affected by
nonlinearities



© Examples on detailed computations by hand



Dirichlet and Neumann conditions; problem

—u"(x)=f(x), xeQ=][0,1], J(0)=C, u(l)=D

Use a global polynomial basis 1; ~ x' on [0, 1]
Because of u(1) = D: ¢;(1) =0

Basis: ;(x) = (1 —x)'T!, eI

Boundary function: B(x) = Dx

u(x) = BO) + Yyer, Gty = Dx + Yoz, (1 — x)H

Variational formulation: find (v — B) € V such that

(v 7)) = (f, i) — Ci(0), i € Is



Dirichlet and Neumann conditions; linear system

Insert u(x) = B(x) + >_cz, ¢jtbj and derive

ZA;JC_,':b,', I €L
JELs

with

Ai,j = (%’ﬂﬁf)
bi = (fa ¢I) - (Dﬂ/’f) - C¢:(O)



Dirichlet and Neumann conditions; integration

1 1 L.
Aij = (W) = /0 G (x)dx = /0 (i +1)( +1)(1 - x) ™ dx

Choose f(x) = 2:

bi = (2,¢i) — (D, ¥) — C4i(0)
= /1 (2(1 — x)"™*t — D(i +1)(1 — x)") dx — C2;(0)
0



Dirichlet and Neumann conditions; 2 x 2 system

Can easily do the integrals with sympy. N =1 and Z; = {0,1}:

11 o) [ -C+D+1
1 4/3 )\ a ) \2/3-Cc+D
CQZ—C+D+2, C1:—1,

u(x)=1-x>+D+ C(x —1) (exact solution)



When the numerical method is exact?

Assume that apart from boundary conditions, wue lies in the same
space V as where we seek u:

u=B+F, FeV
a(B+ F,v)=1L(v), YveV
uu=B+E, EcV
a(B+E,v)=1L(v), YveV

Subtract: a(F —E,v)=0 = E=F and u = ue



@ Computing with finite elements



Computing with finite elements

Tasks:

o Address the model problem —u”(x) =2, u(0) = u(L) =0
@ Uniform finite element mesh with P1 elements

@ Show all finite element computations in detail



Variational formulation

—u"(x) =2, x¢€(0,L), u(0)=u(L)=0,

Variational formulation:

(V,v)=(2,v) VveV



How to deal with the boundary conditions?

Since u(0) =0 and u(L) = 0, we must force

v(0) =v(L) =0, ¢i(0)=4i(L)=0

Let's choose the obvious finite element basis: ¢; = ¢;,
i=0,... Ny—1

Problem: ¢g(0) # 0 and ¢p,—1(L) #0

Solution: we just exclude ¢g and ¢y, 1 from the basis and work
with

Vi= i1, i=0,...,N=N,—3

Introduce index mapping v(i): 1 = Pu(i)

U= coug, i=0,...,N, v(j)=j+1
JEZLs



Computation in the global physical domain; formulas

L L
AiJ:/O @i (X)j1 (x)dx, bi:/o 2¢i41(x)dx

Many will prefer to change indices to obtain a ;¢! product:
I+1—=ij+1—j

L L
Aic1j-1 =/ pi(x)pj(x)dx,  bi :/ 2ipi(x) dx
0 0



Computation in the global physical domain; details

4

i~ £h™!

Airia=h22h=2h"", Ay o=h""(—h"")h=—h""

and Aj_1; = Ai—1,i-2

1, 1
bi-1 =2(5h+ 5h) = 2h



Co

(o)}

Computation in the global physical domain; linear system

2h

2h




Write out the corresponding difference equation

General equation at node i:

1 2 1
i1 + pCG T = 2h

Now, ¢; = u(Xjt+1) = ujt1. Writing out the equation at node i — 1,

1 2 1
—ZC,',Q + EC,',;[ — EC,' =2h

translates directly to

1 2 1
i1 + pUi T Ui+ = 2h



Comparison with a finite difference discretization

The standard finite difference method for —u”’ =2 is

1 2 1
h2 uj—1 + h2 h2 ul-‘rl — 2
Multiply by h!

The finite element method and the finite difference method are
identical in this example. J

(Remains to study the equations at the end points, which involve
boundary values - but these are also the same for the two methods)



Cellwise computations; formulas

@ Repeat the previous example, but apply the cellwise algorithm
@ Work with one cell at a time

e Transform physical cell to reference cell X € [—1,1]

1
() _ )0 Y N
A= [ b= [ SaSamzax,

Fo(X) = 51— X). Er(X)= (1 +X)

dgo 1 dp 1

dX 27 dX 2
From the chain rule

dp,  dp dX  2dg,
dx  dX dx  hdX




Cellwise computations; details

1 ~ ~
(&) = () dx = [ 29Pr2dPsh o s
Aicrjo1 = /g(e) #ix)ej(x) dx = L hdX hdX 2 dX = Ars

1
h -
b = / 2i(x) dx = / 26:(X); X =B, i=qle.r). r=0,1
Qle) -1

Must run through all r,s =0,1 and r = 0,1 and compute each
entry in the element matrix and vector:

~ 1 1 -1 v 1
() — = (e) _
=) ()

Example:

1 ~ ~ 1
ae) _ [ 2dPo2dih o 2 1 21”/ _ 1
Aot = _1thth2dX_h( 2)h22 _1dX_ h



Cellwise computations; details of boundary cells

@ The boundary cells involve only one unknown

o Q: left node value known, only a contribution from right
node

o QNe). right node value known, only a contribution from left
node

For e =0 and = N,:

A€ =2 (1), B®=h(1)

o> =

Only one degree of freedom ("node") in these cells (r = 0 counts
the only dof)



Cellwise computations; assembly

4 P1 elements:

vertices = [0, 0.5, 1, 1.5, 2]
cells = [[0, 11, [1, 21, [2, 3], [3, 4]]
dof_map = [[0], [0, 11, [1, 2], [2]] # only 1 dof in elm 0, 3

Python code for the assembly algorithm:

# dele][r,s]: element matriz, bel[el][r]: element wvector
# A[i,5]: coefficient matriz, b[i]: right-hand side

for e in range(len(Ae)):
for r in range(Ae[e].shape[0]):
for s in range(Ae[e].shape[1]):
A[dof_maple,r],dof_maple,s]] += Aelelli,j]
bldof_mapl[e,r]] += belel[i,]]

Result: same linear system as arose from computations in the
physical domain



General construction of a boundary function

o Now we address nonzero Dirichlet conditions

@ B(x) is not always easy to construct (i.e., extend to the
interior of Q), especially not in 2D and 3D

e With finite element basis functions, ¢;, B(x) can be
constructed in a completely general way (!)

Define

o [y: set of indices with nodes where v is known

@ U;: Dirichlet value of v at node i, i € I,

The general formula for B is now

B(x)=>_ Upi(x)

JE



Explanation

Suppose we have a Dirichlet condition u(xyx) = Uk, k € Ip:

uCa) =D Ui i) D G euyxe) = Uk

jelb jEIs

0 only for j=k =0, k¢Ts



Example with two nonzero Dirichlet values; variational
formulation

L L
/ u'v’dx:/ 2vdx Yv eV
0 0

(', V)y=(2,v) YveVv



Example with two Dirichlet values; boundary function

B(x) =Y Ujpj(x)

JEl

Here I, = {0, N, — 1}, Uy = C, Un,—1 = D; 9 are the internal ¢;
functions:

bi=guiy, v(i)=i+1, i€Zy=1{0,....,N=N, -3}

u(x) = Cpo + Dop,—1 + E CiPj+1
—_—— ¢
B(x) JELs

= Cpo + Dop,—1 + cop1 + crpp + - - + cnon,—2



Example with two Dirichlet values; details

Insert u = B+ }_; ¢j¢); in variational formulation:

(W' V) =@2v) = Q_quf ) =(2v)—(B,¢) WeV
j

L
Airj1— /0 ()¢ (x) dx
L
by — /0 (FX)pilx) — B'()ei(x) dx,  B(x) = Ch(x) + Dl -

fori,j=1,...,N+1=N,—2.

New boundary terms from — [ B’} dx: add C/h to by and D/h to
by



Example with two Dirichlet values; cellwise computations

o All element matrices are as in the previous example

@ New element vector in the first and last cell

From the first cell:

1 ~ = 1
T _ s c2dP02dPi h _”/ s ax_c2 121
bo _/_1 <f¢1 Chax hax ) 23X =32 | A dX=CR(=3)75

From the last cell:

1 ~ ~ 1
P(Ne) _ s p2df12d%e h _”/ s dx_p2l2 ]
bo _/1<f“’° Dhax hax ) 2 X =32 PodX=Drsi(—3



Modification of the linear system; ideas

@ Method 1: incorporate Dirichlet values through a B(x)
function and demand ; = 0 where Dirichlet values apply

e Method 2: drop B(x), drop demands to v;, just assemble as if
there were no Dirichlet conditions, and modify the linear

system instead

Method 2: always choose 1); = p; for all i € Zs and set

u(x) =Y gpi(x), Ze={0,...,N=N, -1}
JEZs

Attractive way of incorporating Dirichlet conditions
u is treated as unknown at all boundaries when computing entries
in the linear system




Modification of the linear system; original system

1 -1 o0 0 o A
1 2 1 2h
0 -1 2 -1
0
1 —_
; —
0 -1 2 -1

0 :
2h
_]_ h




Modification of the linear system; row replacement

@ Dirichlet condition u(xx) = Ux means ¢ = Uy
(since ¢x = u(xk))
@ Replace first row by ¢g =0

@ Replace last row by ¢y = D

0
1 2 2h
0 -1 2 -1
0
1 —_
h
0 -1 2 -1
0 :
2h
_1 D




Modification of the linear system; element matrix/vector

In cell 0 we know u for local node (degree of freedom) r = 0.
Replace the first cell equation by & = 0:

~ 1 h O ~ 0
0) _a_ = 0) _

In cell Ne we know u for local node r = 1. Replace the last
equation in the cell system by & = D:

~ 1/1 -1 - h
(Ne)— — (Ne)_
A=a=i (o ) =)



Symmetric modification of the linear system; algorithm

@ The modification above destroys symmetry of the matrix: e.g.,
Ao1 # A1p

@ Symmetry is often important in 2D and 3D
(faster computations, less storage)

@ A more complex modification can preserve symmetry!
Algorithm for incorporating ¢; = U; in a symmetric way:

@ Subtract column i times U; from the right-hand side
@ Zero out column and row no J

© Place 1 on the diagonal

Q Set b = U;



Symmetric modification of the linear system; example

h 0 0 0 o
0
0 2 -1 2h
0 -1 2 -1
0
1 —_—
i -
0 -1 2 -1
0 :
2h+ 2
0 D"




Symmetric modification of the linear system; element level

Symmetric modification applied to A(Ve):

~ 1/10 5 h+D/h
(Ne)_ J— (Ne)_
A =A= ( )7 b = ( )



Boundary conditions: specified derivative

Neumann conditions

How can we incorporate u'(0) = C with finite elements?

@ 1;(L) = 0 because of Dirichlet condition u(L) = D
(or no demand and modify linear system)

e No demand to ;(0)

@ The condition v/(0) = C will be handled (as usual) through a
boundary term arising from integration by parts



The variational formulation

Galerkin's method:

L
/0 ("(x) + F))i(x)dx = 0, i€,

Integration of u”1); by parts:

L L
/ o ()4(x) dx— (o (L) (L) (0)14i(0)) / Fx)i(x) dx = 0
0 0

o u/(L)Yi(L) = 0since ¥;j(L) =0
e u/(0)y;(0) = Cv;(0) since u'(0) = C



Method 1: Boundary function and exclusion of Dirichlet

degrees of freedom

o =i i€Zs=10,....N=N,—2}
e B(x) =Dpp,-1(x), u= B+ZJN:0 GPj

L L
/ U (x)@h(x)dx = / f(x)pi(x)dx — Cypi(0), i€
0 0

N L L
> (/0 w?w}dX) ¢ = /0 (foi — Delyei) dx — Cp;i(0)

0
for i =0,...,N=N,—2.



Method 2: Use all ¢; and insert the Dirichlet condition in

the linear system

@ Now ¢); = ¢;, i =0,...,N =N, —1 (all nodes)

o wn(L) #0, 50 u/(L)pn(L) #0
o However, the term u'(L)pn(L) in by will be erased when we
insert the Dirichlet value in by = D

We can therefore forget about the term v/(L)p;(L)!

Boundary terms uv/; at points x; where Dirichlet values apply can
always be forgotten.

N=N,—-1

> (/ L A ) 6 = [ " F(eilx)d - Cgi(0)

Jj=0



How the Neumann condition impacts the element matrix

and vector

The extra term Cipg(0) affects only the element vector from the
first cell since g = 0 on all other cells.

; 1/ 11 : h—C
©O_a== ) —
weag () =)



The finite element algorithm

The differential equation problem defines the integrals in the
variational formulation.

Request these functions from the user:

integrand_lhs(phi, r, s, x)
boundary_lhs(phi, r, s, x)
integrand_rhs(phi, r, x)
boundary_rhs(phi, r, x)

Must also have a mesh with vertices, cells, and dof_map



Python pseudo code; the element matrix and vector

<Declare global matrix, global rhs: A, b>

# Loop over all cells
for e in range(len(cells)):

# Compute element matriz and vector

n = len(dof_maplel) # no of dofs in this element

h = vertices[cells[e]l[1]] - vertices[cells[e] [0]]

<Declare element matrix, element vector: A_e, b_e>

# Integrate over the reference cell
points, weights = <numerical integration rule>
for X, w in zip(points, weights):
phi = <basis functions + derivatives at X>
detJ = h/2
x = <affine mapping from X>
for r in range(n):
for s in range(n):
A_e[r,s] += integrand_lhs(phi, r, s, x)*detJ*w
b_e[r] += integrand_rhs(phi, r, x)*detJ*w

# Add boundary terms
for r in range(n):
for s in range(n):
A_e[r,s] += boundary_lhs(phi, r, s, x)*detJ*w
b_e[r] += boundary_rhs(phi, r, x)*detJ*w



Python pseudo code; boundary conditions and assembly

for e in range(len(cells)):

# Incorporate essential boundary conditions
for r in range(n):
global_dof = dof_mapl[e] [r]
if global_dof in essbc_dofs:
# dof r 15 subject to an essential condition
value = essbc_docs[global_dof]
# Symmetric modification

b_e -= value*A_e[:,r]
A_el[r,:] =0
A_el[:,r] =0
A_e[r,r] =1

b_el[r] = value

# Adssemble
for r in range(n):
for s in range(n):
A[dof_maplel [r], dof_maplel[r]] += A_elr,s]
b[dof_map[e] [r] += b_e[r]

<solve linear system>



@ Variational formulations in 2D and 3D



Variational formulations in 2D and 3D

Major differences when going from 1D to 2D /3D

@ The integration by part formula is different

o Cells have different geometry




Integration by parts

Rule for multi-dimensional integration by parts

/V x)Vu) vdx—/ a(x)Vu - Vvdx—/ a—vds
Q

o [o()dx: area (2D) or volume (3D) integral
o [50()ds: line(2D) or surface (3D) integral

@ 0Qpu: Neumann conditions —ag” =

o 0Qp: Dirichlet conditions u = ug
@ v € V must vanish on 9Qp (in method 1)



Example on integration by parts; problem

v-Vu+pBu=V-(aVu)+f, xeQ
u = up, x € 0Qp

ou
—a— =g, x € 00y

on

@ Known: o, 8, f, ug, and g.

@ Second-order PDE: must have exactly one boundary condition
at each point of the boundary

Method 1 with boundary function and ¢; = 0 on 9Qp (ensures
u = ugp condition):

u(x) = B(x)+ Y thi(x),  B(x) = uo(x)

J€ETs



Example on integration by parts in 1D/2D/3D

Galerkin's method: multiply by v € V and integrate over Q,

/Q(V-Vu—&—ﬁu)vdx:/QV-(CMVu)vdx—l—/vadx

Integrate the second-order term by parts according to the formula:

/V-(aVu)vdx:—/aVu-Vvdx—i—/ OA@Vds7
Q Q oo On

Galerkin's method then gives

/(V‘V”+»B”)dez_/aVU'VVdX-f—/ Ozauvds—f—/ fv dx
Q Q o On Q



Incorporation of the Neumann condition in the variational

formulation
Note: v # 0 only on 9Qp (since v =0 on 0Qp):

/ ozguvds:/ aauvds:—/ gvds
aq On aQy O oQu

The final variational form:

/(v-Vu—i—ﬂu)vdx——/aVu-Vvdx—/ gvds+/ fv dx
Q Q QN Q

Or with inner product notation:

(v-Vu,v)+ (Bu,v) = —(aVu,Vv) — (g,v)y + (f,v)

(g, v)p: line or surface integral over Q.



Derivation of the linear system

e Vv € V is replaced by for all ¢;, i € Zg

@ Insert u =B+ Zjezs cjtbj, B = up, in the variational form
o Identify /,j terms (matrix) and / terms (right-hand side)

o Write on form Ziezs Aijcj=bj, i €I

AiJ = (V : VT/U##:) + (51/1171/}:) + (av¢javwl)

bi = (g, ¥i)n + (f, i) — (v - Vo, 9i) + (Buo, i) + (aVuwo, Vi)



Transformation to a reference cell in 2D/3D (1)

We want to compute an integral in the physical domain by
integrating over the reference cell.

/ a(x)Vei - Vejdx
Qe)

Mapping from reference to physical coordinates:

x(X)
with Jacobian J,

0x;

1= ox;




Transformation to a reference cell in 2D/3D (2)

dx — det JdX.

Must express V; by an expression with @,, i = g(e, r):
Vg (X)

We want V,@,(X) (derivatives wrt x)

What we readily have is Vx@,(X) (derivative wrt X)
Need to transform Vx@,(X) to V@, (X)



Transformation to a reference cell in 2D /3D (3)

Can derive

Vxpr=J -Vxp;
Vi = Va@r(X) = J71 - Vx3,(X)

Integral transformation from physical to reference coordinates:

/ a(x)chp;~Vx<pjdX:/ a(x(X)(J1-Vxp,)-(J71-V@s) det JdX
Qle) 9]



Numerical integration

Numerical integration over reference cell triangles and tetrahedra:

Module numint . py contains different rules:

>>> import numint

>>> x, w = numint.quadrature_for_triangles (num_points=3)

>>> x

[(0.16666666666666666, 0.16666666666666666) ,
(0.66666666666666666, 0.16666666666666666) ,
(0.16666666666666666, 0.66666666666666666) ]

>>> W

[0.16666666666666666, 0.16666666666666666, 0.16666666666666666]

@ Triangle: rules with n =1,3,4,7 integrate exactly polynomials
of degree 1,2,3,4, resp.

o Tetrahedron: rules with n = 1,4 5,11 integrate exactly
polynomials of degree 1,2, 3,4, resp.


http://tinyurl.com/nm5587k/approx/numint.py
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