Study guide: Computing with variational forms

Hans Petter Langtangen!:?

Center for Biomedical Computing, Simula Research Laboratory®

Department of Informatics, University of Oslo?

2016

@ Basic principles for approximating differential equations

We shall apply least squares, Galerkin/projection, and

collocation to differential equation models

Our aim is to extend the ideas for approximating f by u, or solving

u="f

to real, spatial differential equations like

—u"+bu="f, uw0)=C, J(L)=D

Emphasis will be on the Galerkin/projection method

Abstract differential equation

Abstract boundary conditions

Examples:
Bi(u) =u—g, Dirichlet condition
Bi(u) = —aﬂ - g, Neumann condition
dx
du : ..
Bi(u) = o h(u—g), Robin condition

Reminder about notation

ue(x) is the symbol for the exact solution of L(ue) = 0 and

Bi(ue) =

i
() denotes an approximate solution
= span{to(x), ..., ¥n(x)}, V has basis {1)i};c7
We seek u € V
Zs ={0,..., N} is an index set
u(x) = ZjeIs ¢jtj(x)

Inner product: (u,v) = [, uvdx

Norm: ||u|| = /(u, u)

New topics: variational formulation and boundary conditions

Much is similar to approximating a function (solving u = f), but
two new topics are needed:

@ Variational formulation of the differential equation problem
(including integration by parts)

e Handling of boundary conditions

Residual-minimizing principles

@ When solving u = f we knew the error e = f — u and could
use principles for minimizing the error

@ When solving £(ue) = 0 we do not know ue and cannot work
with the error e = ue — u

@ We can only know the error in the equation: the residual R

Inserting u = > _; ¢jt)j in L = 0 gives a residual R
L(u) =L cj) =R #0
J

Goal: minimize R with respect to {c;};c7, (and hope it makes a
small e too)

R =R(co,...,cn;x)

The least squares method

Idea: minimize

E=||R|]?>=(R,R) :/QR2dx

Minimization wrt {c;};c7 implies

0E OR OR .
/s‘2 8CI- y aicl) = 0, I € IS

N + 1 equations for N + 1 unknowns {c,-},-ezs

The Galerkin method

Idea: make R orthogonal to V,
(R,v)=0, VveV

This implies

(Rpi) =0, i€Ts

N + 1 equations for N + 1 unknowns {c;};c7,

The Method of Weighted Residuals

Generalization of the Galerkin method: demand R orthogonal to
some space W, possibly W # V:

(R,v)=0, WYveWw

If {wg,..., wn} is a basis for W:
(Ryw;) =0, ieTs

o N +1 equations for N + 1 unknowns {c¢;};c7.
o Weighted residual with w; = OR/0c; gives least squares

New terminology: test and trial functions

® tj used in ; cjibj is called trial function

@ 1; or w; used as weight in Galerkin’s method is called test
function

The collocation method

Idea: demand R =0 at N + 1 points in space

R(xi;co,.-.,cn) =0, i€Zs

The collocation method is a weighted residual method with delta
functions as weights

0= / R(x; co, ..., cn)d(x — xi) dx = R(xi; co, - - -, Cn)
Q

property of §(x) : / f(x)d(x — xi)dx = f(x;), xi €
Q

© Examples on using the principles

Examples on using the principles

Exemplify the least squares, Galerkin, and collocation methods in a
simple 1D problem with global basis functions.

The first model problem

—u"(x) =f(x), xe€Q=][0,L], u(0)=0, u(L)=0
Basis functions:
vilx) =sin ((i+)77), i€l

Residual:

R(x;co,...,cn) = u”"(x) + f(x),
d2
=2 | 2o g%t | + 10,
J€Ls
= Z cjwjl-/(x) + f(x)

J€ELs

Boundary conditions

Since u(0) = u(L) = 0 we must ensure that all ;(0) = ¢;(L) =0,
because then

u(0) = ¢uj(0) =0, wu(l) = ¢u(L)=0
J J

@ u known: Dirichlet boundary condition
@ v’ known: Neumann boundary condition

@ Must have t; = 0 where Dirichlet conditions apply

The least squares method; principle

Because:

0
dc; (covg + by + -+ + iy + it + ity + o+ endy) =
1

The least squares method; equation system

O v +f,4f)=0, i€,
J
Rearrangement:

> Wi W) =~(f.uf), i€
J€ELs
This is a linear system

ZA;JCj:b,', i €T
JETLs

The least squares method; matrix and right-hand side

expressions

Aij = (i, 47)
L X . . X
:7r4(i+1)2(j+1)2L4/0 sin ((i+1)7rz) sin ((J+1)7rz) dx

AR =
0, 1#]

bi = —(f, ") = (i + 1)272L 2 /OL f(x)sin ((i + 1)7%) dx

Orthogonality of the basis functions gives diagonal matrix

Useful property of the chosen basis functions:

L
X X L i=j
in ((i Nsin ((; X — L) 2
/sm ((l+1)7rL>sm ((j+1)7rL) dx = 0jj, dij { 0. it
0
= (/. ¢}) = dj, i.e., diagonal A;;, and we can easily solve for c;:

G = 71'2(12—|L—1)2/0L f(x)sin ((i+1)7r%> dx

Least squares method; solution

Let sympy do the work (f(x) = 2):

from sympy import *
import sys

, j = symbols(’i j’, integer=True)
= symbols(’x L’)

=2

= 2%L/ (pi**2% (i+1)**2)

_i = a*integrate(f*sin((i+1)#*pi*x/L), (x, 0, L))
_i = simplify(c_i)

print c_i

12((-1) +1) N2 .
_ _ . X
RS TN T) M kz_o w2k +1) " (2K + 1)

Fast decay: ¢, = ¢9/27, cs = ¢p/125 - only one term might be
good enough:

2
u(x) ~ 8Lﬁ sin (775\

The Galerkin method; principle

R=u"+"f:

(V' +f,v)=0, VYveyV,

or rearranged,

(u",v)=—(f,v), VveV

This is a variational formulation of the differential equation
problem.

Vv € V is equivalent with Vv € v;, i € T, resulting in

(Z G J/‘Iﬂ/Ji) = _(fawi)v 1€

JETLs

Z(J/'/ﬂl}i)cj = _(f,’QZ),‘), iGIS

JELs

The Galerkin method: solution

Since ¢! oc —1);, Galerkin's method gives the same linear system
and the same solution as the least squares method (in this
particular example).

The collocation method

R = 0 (i.e.,the differential equation) must be satisfied at N + 1
points:

—ZCJ (xi) =f(xi), i€Zs

JETLs

This is a linear system ZJ- A;j = b;i with entries

Aij = =] (x) = (+ 1P 2sin ((+ 1) ’Z) b =2
Choose: N =0, xg = L/2

co = 21?7

Comparison of the methods

@ Exact solution: u(x) = x(L — x)
o Galerkin or least squares (N = 0): u(x) = 8L273sin(7x/L)
e Collocation method (N = 0): u(x) = 2L27~2sin(7x/L).

>>>
>>>
>>>
>>>
>>>

>>>
>>>
>>>

>>>
>>>
0

import sympy as sym

Computing with Dirichlet conditions: -u’’=2 and sines

x, L = sym.symbols(’x L’)

e_Galerkin = x*(L-x) - 8*L**2*sym.pi**(-3)*sym.sin(sym.pi*x/L)
e_colloc = x*(L-x) - 2*L**2xsym.pi**(-2)*sym.sin(sym.pi*x/L)

Verify maz error for z=L/2
dedx_Galerkin = sym.diff(e_Galerkin, x)
dedx_Galerkin.subs(x, L/2)

dedx_colloc = sym.diff(e_colloc, x)
dedx_colloc.subs(x, L/2)

Compute maz error: z=L/2, evaluate numerical, and simplify

>>>

sym.simplify(e_Galerkin.subs(x, L/2).evalf(n=3))

-0.00812*L**2

>>>

sym.simplify(e_colloc.subs(x, L/2).evalf(n=3))

0.0473*%L**2

© Useful techniques

Integration by parts has many advantages

Second-order derivatives will hereafter be integrated by parts

L L
U”XVX X = — U/XV,XX VU/L
/0 (x)v(x)d /0 (x)v'(x)dx + [vu]§
L
= [o e D) - Y O0)

Motivation:

@ Lowers the order of derivatives
o Gives more symmetric forms (incl. matrices)
@ Enables easy handling of Neumann boundary conditions

o Finite element basis functions ¢; have discontinuous
derivatives (at cell boundaries) and are not suited for terms
with ¢

We use a boundary function to deal with non-zero Dirichlet

boundary conditions

e What about nonzero Dirichlet conditions? Say u(L) = D

o We always require ¥;(L) = 0 (i.e., ¥; = 0 where Dirichlet
conditions applies)

o Problem: u(L) =3 ; cjihj(L) =>;¢j-0=10# D - always!

@ Solution: u(x) = B(x) + >; ¢jvj(x)

@ B(x): user-constructed boundary function that fulfills the
Dirichlet conditions

o If u(L) = D, make sure B(L) =D

@ No restrictions of how B(x) varies in the interior of Q

Example on constructing a boundary function for two

Dirichlet conditions

Dirichlet conditions: u(0) = C and u(L) = D. Choose for example

B(x) = %(C(L —x)+Dx): B(0)=C, B(L)=D

u(x) = B(x) +) ciii(x),

JELs

Example on constructing a boundary function for one

Dirichlet condition

Dirichlet condition: u(L) = D. Choose for example

With a B(x), u ¢ V, but . qp; € V

o {ti};cz, is a basis for V

o JeTs Cjwj(X) cvVv

e But u¢g V!

@ Reason: say u(0) = C and v € V; any v € V has v(0) = C,
then 2u ¢ V because 2u(0) = 2C (wrong value)

® When u(x) = B(x) + >_jcz, ¢i¥j(x), B € V (in general) and
ugV, but (u—B)€ Vsince) gy € V

Abstract notation for variational formulations

The finite element literature (and much FEniCS documentation)
applies an abstract notation for the variational formulation:

Find (u — B) € V such that

a(u,v)=L(v) YveV

Example on abstract notation

Variational formulation:

/ u'v'dx :/ fudx—v(0)C or (J',v')=(f,v)-v(0)C VYveV
Q Q
Abstract formulation: find (v — B) € V such that

a(u,v)=1L(v) VvevVv

We identify

a(u,v) = (d,Vv'), L(v)=(f,v)—v(0)C

Bilinear and linear forms

e a(u,v) is a bilinear form

o L(v)is a linear form

Linear form means

L(Oq vi + O[2V2) = alL(vl) + OéQL(VQ),
Bilinear form means

a(aruy + apua, v) = aqa(ur, v) + aga(uz, v),

a(u,a1vi + aawva) = aga(u, vi) + aza(u, va)

In nonlinear problems: Find (v — B) € V such that
F(u;v)=0VveV

The linear system associated with the abstract form

a(u,v)=1L(v) YWweV < a(u)=LWi) i€Ts

We can now derive the corresponding linear system once and for all
by inserting u = B + 3, ¢jy;:
a(B+ Y ciy, i) = L(vi) i€
J€Ls

Because of linearity,

> a(ey,vi) ¢ = L) —a(B, i) i€

JEZLs

Aij bi

Equivalence with minimization problem

If ais symmetric: a(u,v) = a(v, u),
a(u,v)=L(v) YveV
is equivalent to minimizing the functional

F(v) = %a(v, v) = L(v)

over all functions v € V. That is,
F(u) < F(v) VveV

@ Much used in the early days of finite elements

@ Still much used in structural analysis and elasticity

o Not as general as Galerkin's method (since we require
a(u,v) = a(v, u))

@ Examples on variational formulations

Examples on variational formulations

Derive variational formulations for some prototype differential
equations in 1D that include

o variable coefficients

@ mixed Dirichlet and Neumann conditions

@ nonlinear coefficients

Variable coefficient; problem

Variable coefficient a(x)

V = span{vo,...,¥n}

Nonzero Dirichlet conditions at x =0 and x = L
Must have ¢;(0) = ¢;(L) =0

Any v € V has then v(0) = v(L) =0

B(x) = C+ (D — C)x

u(x) = B(x) +) civhi(x),

JELs

Variable coefficient; Galerkin principle

d du
R="u <dx) -f
Galerkin’s method:

(R,v)=0, VveV

or with integrals:

d du
/Q <_dx <adx) — f) vdx =0, VveV

Variable coefficient; integration by parts

d du du dv du 1"
—/de (a(x)dx> vdx:/ﬂa(x)dxdxdx— [adXvL

Boundary terms vanish since v(0) = v(L) =0

Variable coefficient; variational formulation

Variational formulation

Find (u — B) € V such that

du dv
/()dxdxd—/f Jvdx, VYveV

Compact notation:

(a/, V)= (f,v), VYveV
S 2
a(u,v) L(v)

Variable coefficient; linear system (the easy way)

With

a(u,v) = (ad', V'), L(v)=(f,v)

we can just use the formula for the linear system:

Aij = a(tj,) = (o),) = /Q oo dx = /Q Gloghdx (= a(ti ;)
bi = (F, 1) — (aB',) = /Q (Fi — al (D — C)) dx

Variable coefficient; linear system (full derivation)

v=1jand u= B+ iy

(@B +a > quhy)) = (f,¢i), i€

J€ELs

Reorder to form linear system:

> (ahi)e = (f,h) = (aLH(D = C),¢f), i€Ts

JELs

This is Zj A,'J'Cj = b; with

Aij = (@) = /Q A () (x)(x) dx
b= (F.) = L0 = €)= [(=BTt o

First-order derivative in the equation and boundary

condition; problem

—u"(x)+ b (x) = f(x), xe€Q=][0,L], u(0)=C, J/(L)=E
New features:

o first-order derivative v’ in the equation

e boundary condition with v": /(L) = E
Initial steps:
e Must force 1;(0) = 0 because of Dirichlet condition at x =0

e Boundary function: B(x) = C(L — x)/L or just B(x) = C

@ No requirements on (L) (no Dirichlet condition at x = L)

First-order derivative in the equation and boundary

condition; details

u=C+ Z cjvi(x)

JETLs

Galerkin's method: multiply by v, integrate over Q, integrate by

parts.
(—u" +bd —f,v)=0, VveV
(' V) + (b, v) = (F,v) +[u'v]s, YveV
u'vl§ = v'(L)v(L) — u'(0)v(0) = Ev(L) since v(0) = 0 and
0
v(L)=E

(u', V') + (b, v) = (f,v) + Ev(L), VYveV

First-order derivative in the equation and boundary

condition; observations

(v, V') + (bu',v) = (f,v) + Ev(L), YveV
Important observations:

@ The boundary term can be used to implement Neumann
conditions

o Forgetting the boundary term implies the condition v/ =0 (!)

@ Such conditions are called natural boundary conditions

First-order derivative in the equation and boundary

condition; abstract notation (optional)

Abstract notation:

a(u,v)=1L(v) VvevVv

With

(v, V') + (bu',v) = (f,v) + Ev(L), YveV

we have

a(u,v) = (', V') + (b, v)
L(v) = (f,v)+ Ev(L)

First-order derivative in the equation and boundary

condition; linear system

Insert u = C + 3, ¢jibj and v =9 in

(V) + (b, v) = (f,v) + Ev(L), VveV

and manipulate to get

D (W) + (bvf,vi)) 6 = (£,40) + Ey(L), i €I

JETLs b;

Aij

Observation: A;j is not symmetric because of the term

(buj,) = | bufnde £ [buigd = (v by

Terminology: natural and essential boundary conditions

(V') + (b, v) = (f,v) + ' (L)v(L) — u'(0)v(0)

o Note: forgetting the boundary terms implies /(L) = v/(0) =0
(unless prescribe a Dirichlet condition)

o Conditions on v’ are simply inserted in the variational form
and called natural conditions

e Conditions on u at x = 0 requires modifying V' (through
1i(0) = 0) and are known as essential conditions

Lesson learned
It is easy to forget the boundary term when integrating by parts.

That mistake may prescribe a condition on v'!

Nonlinear coefficient; problem

—(a(u)) =f(u), x€]0,L], u(0)=0, J/(L)=E

o V: basis {t;};cz. with ¥;(0) = 0 because of u(0) =0
@ How do the nonlinear coefficients a(u) and f(u) impact the

variational formulation?
(Not much!)

Nonlinear coefficient; variational formulation

Galerkin: multiply by v, integrate, integrate by parts

L L
/a(u)jij‘;dx—/ f(u)vdx + [a(u)v/]§ Vv eV

a(u(0))v(0)u'(0) = 0 since v(0)
a(u(L))v(L)u'(L) = a(u(L))v(L)E since u'(L) = E

L du dv
/a(u aavd —/ f(u)vdx + a(u(L))v(L)E YveV

or

(a(u)d',v') = (f(u),v) + a(u(L))v(L)E VveV

Nonlinear coefficient; where does the nonlinearity cause

challenges?

@ Abstract notation: no a(u,v) and L(v) because a and L get
nonlinear

o Abstract notation for nonlinear problems: F(u;v) =0Vv e V

e What about forming a linear system? We get a nonlinear
system of algebraic equations

@ Must use methods like Picard iteration or Newton’s method to
solve nonlinear algebraic equations

@ But: the variational formulation was not much affected by
nonlinearities

© Examples on detailed computations by hand

Dirichlet and Neumann conditions; problem

—u"(x)=f(x), xeQ=][0,1], J(0)=C, u(l)=D

Use a global polynomial basis 1; ~ x' on [0, 1]
Because of u(1) = D: ¢;(1) =0

Basis: ;(x) = (1 —x)'T!, eI

Boundary function: B(x) = Dx

u(x) = BO) + Yyer, Gty = Dx + Yoz, (1 — x)H

Variational formulation: find (v — B) € V such that

(v 7)) = (f, i) — Ci(0), i € Is

Dirichlet and Neumann conditions; linear system

Insert u(x) = B(x) + >_cz, ¢jtbj and derive

ZA;JC_,':b,', I €L
JELs

with

Ai,j = (%’ﬂﬁf)
bi = (fa ¢I) - (Dﬂ/’f) - C¢:(O)

Dirichlet and Neumann conditions; integration

1 1 L.
Aij = (W) = /0 G (x)dx = /0 (i +1)(+1)(1 - x) ™ dx

Choose f(x) = 2:

bi = (2,¢i) — (D, ¥) — C4i(0)
= /1 (2(1 — x)"™*t — D(i +1)(1 — x)") dx — C2;(0)
0

Dirichlet and Neumann conditions; 2 x 2 system

Can easily do the integrals with sympy. N =1 and Z; = {0,1}:

11 o) [-C+D+1
1 4/3)\ a) \2/3-Cc+D
CQZ—C+D+2, C1:—1,

u(x)=1-x>+D+ C(x —1) (exact solution)

When the numerical method is exact?

Assume that apart from boundary conditions, wue lies in the same
space V as where we seek u:

u=B+F, FeV
a(B+ F,v)=1L(v), YveV
uu=B+E, EcV
a(B+E,v)=1L(v), YveV

Subtract: a(F —E,v)=0 = E=F and u = ue

@ Computing with finite elements

Computing with finite elements

Tasks:

o Address the model problem —u”(x) =2, u(0) = u(L) =0
@ Uniform finite element mesh with P1 elements

@ Show all finite element computations in detail

Variational formulation

—u"(x) =2, x¢€(0,L), u(0)=u(L)=0,

Variational formulation:

(V,v)=(2,v) VveV

How to deal with the boundary conditions?

Since u(0) =0 and u(L) = 0, we must force

v(0) =v(L) =0, ¢i(0)=4i(L)=0

Let's choose the obvious finite element basis: ¢; = ¢;,
i=0,... Ny—1

Problem: ¢g(0) # 0 and ¢p,—1(L) #0

Solution: we just exclude ¢g and ¢y, 1 from the basis and work
with

Vi= i1, i=0,...,N=N,—3

Introduce index mapping v(i): 1 = Pu(i)

U= coug, i=0,...,N, v(j)=j+1
JEZLs

Computation in the global physical domain; formulas

L L
AiJ:/O @i (X)j1 (x)dx, bi:/o 2¢i41(x)dx

Many will prefer to change indices to obtain a ;¢! product:
I+1—=ij+1—j

L L
Aic1j-1 =/ pi(x)pj(x)dx, bi :/ 2ipi(x) dx
0 0

Computation in the global physical domain; details

4

i~ £h™!

Airia=h22h=2h"", Ay o=h""(—h"")h=—h""

and Aj_1; = Ai—1,i-2

1, 1
bi-1 =2(5h+ 5h) = 2h

Co

(o)}

Computation in the global physical domain; linear system

2h

2h

Write out the corresponding difference equation

General equation at node i:

1 2 1
i1 + pCG T = 2h

Now, ¢; = u(Xjt+1) = ujt1. Writing out the equation at node i — 1,

1 2 1
—ZC,',Q + EC,',;[— EC,' =2h

translates directly to

1 2 1
i1 + pUi T Ui+ = 2h

Comparison with a finite difference discretization

The standard finite difference method for —u”’ =2 is

1 2 1
h2 uj—1 + h2 h2 ul-‘rl — 2
Multiply by h!

The finite element method and the finite difference method are
identical in this example. J

(Remains to study the equations at the end points, which involve
boundary values - but these are also the same for the two methods)

Cellwise computations; formulas

@ Repeat the previous example, but apply the cellwise algorithm
@ Work with one cell at a time

e Transform physical cell to reference cell X € [—1,1]

1
() _)0 Y N
A= [b= [SaSamzax,

Fo(X) = 51— X). Er(X)= (1 +X)

dgo 1 dp 1

dX 27 dX 2
From the chain rule

dp, dp dX 2dg,
dx dX dx hdX

Cellwise computations; details

1 ~ ~
(&) = () dx = [29Pr2dPsh o s
Aicrjo1 = /g(e) #ix)ej(x) dx = L hdX hdX 2 dX = Ars

1
h -
b = / 2i(x) dx = / 26:(X); X =B, i=qle.r). r=0,1
Qle) -1

Must run through all r,s =0,1 and r = 0,1 and compute each
entry in the element matrix and vector:

~ 1 1 -1 v 1
() — = (e) _
=) ()

Example:

1 ~ ~ 1
ae) _ [2dPo2dih o 2 1 21”/ _ 1
Aot = _1thth2dX_h(2)h22 _1dX_ h

Cellwise computations; details of boundary cells

@ The boundary cells involve only one unknown

o Q: left node value known, only a contribution from right
node

o QNe). right node value known, only a contribution from left
node

For e =0 and = N,:

A€ =2 (1), B®=h(1)

o> =

Only one degree of freedom ("node") in these cells (r = 0 counts
the only dof)

Cellwise computations; assembly

4 P1 elements:

vertices = [0, 0.5, 1, 1.5, 2]
cells = [[0, 11, [1, 21, [2, 3], [3, 4]]
dof_map = [[0], [0, 11, [1, 2], [2]] # only 1 dof in elm 0, 3

Python code for the assembly algorithm:

dele][r,s]: element matriz, bel[el][r]: element wvector
A[i,5]: coefficient matriz, b[i]: right-hand side

for e in range(len(Ae)):
for r in range(Ae[e].shape[0]):
for s in range(Ae[e].shape[1]):
A[dof_maple,r],dof_maple,s]] += Aelelli,j]
bldof_mapl[e,r]] += belel[i,]]

Result: same linear system as arose from computations in the
physical domain

General construction of a boundary function

o Now we address nonzero Dirichlet conditions

@ B(x) is not always easy to construct (i.e., extend to the
interior of Q), especially not in 2D and 3D

e With finite element basis functions, ¢;, B(x) can be
constructed in a completely general way (!)

Define

o [y: set of indices with nodes where v is known

@ U;: Dirichlet value of v at node i, i € I,

The general formula for B is now

B(x)=>_ Upi(x)

JE

Explanation

Suppose we have a Dirichlet condition u(xyx) = Uk, k € Ip:

uCa) =D Ui i) D G euyxe) = Uk

jelb jEIs

0 only for j=k =0, k¢Ts

Example with two nonzero Dirichlet values; variational
formulation

L L
/ u'v’dx:/ 2vdx Yv eV
0 0

(', V)y=(2,v) YveVv

Example with two Dirichlet values; boundary function

B(x) =Y Ujpj(x)

JEl

Here I, = {0, N, — 1}, Uy = C, Un,—1 = D; 9 are the internal ¢;
functions:

bi=guiy, v(i)=i+1, i€Zy=1{0,....,N=N, -3}

u(x) = Cpo + Dop,—1 + E CiPj+1
—_—— ¢
B(x) JELs

= Cpo + Dop,—1 + cop1 + crpp + - - + cnon,—2

Example with two Dirichlet values; details

Insert u = B+ }_; ¢j¢); in variational formulation:

(W' V) =@2v) = Q_quf) =(2v)—(B,¢) WeV
j

L
Airj1— /0 ()¢ (x) dx
L
by — /0 (FX)pilx) — B'()ei(x) dx, B(x) = Ch(x) + Dl -

fori,j=1,...,N+1=N,—2.

New boundary terms from — [B’} dx: add C/h to by and D/h to
by

Example with two Dirichlet values; cellwise computations

o All element matrices are as in the previous example

@ New element vector in the first and last cell

From the first cell:

1 ~ = 1
T _ s c2dP02dPi h _”/ s ax_c2 121
bo _/_1 <f¢1 Chax hax) 23X =32 | A dX=CR(=3)75

From the last cell:

1 ~ ~ 1
P(Ne) _ s p2df12d%e h _”/ s dx_p2l2]
bo _/1<f“’° Dhax hax) 2 X =32 PodX=Drsi(—3

Modification of the linear system; ideas

@ Method 1: incorporate Dirichlet values through a B(x)
function and demand ; = 0 where Dirichlet values apply

e Method 2: drop B(x), drop demands to v;, just assemble as if
there were no Dirichlet conditions, and modify the linear

system instead

Method 2: always choose 1); = p; for all i € Zs and set

u(x) =Y gpi(x), Ze={0,...,N=N, -1}
JEZs

Attractive way of incorporating Dirichlet conditions
u is treated as unknown at all boundaries when computing entries
in the linear system

Modification of the linear system; original system

1 -1 o0 0 o A
1 2 1 2h
0 -1 2 -1
0
1 —_
; —
0 -1 2 -1

0 :
2h
] h

Modification of the linear system; row replacement

@ Dirichlet condition u(xx) = Ux means ¢ = Uy
(since ¢x = u(xk))
@ Replace first row by ¢g =0

@ Replace last row by ¢y = D

0
1 2 2h
0 -1 2 -1
0
1 —_
h
0 -1 2 -1
0 :
2h
_1 D

Modification of the linear system; element matrix/vector

In cell 0 we know u for local node (degree of freedom) r = 0.
Replace the first cell equation by & = 0:

~ 1 h O ~ 0
0) _a_ = 0) _

In cell Ne we know u for local node r = 1. Replace the last
equation in the cell system by & = D:

~ 1/1 -1 - h
(Ne)— — (Ne)_
A=a=i (o) =)

Symmetric modification of the linear system; algorithm

@ The modification above destroys symmetry of the matrix: e.g.,
Ao1 # A1p

@ Symmetry is often important in 2D and 3D
(faster computations, less storage)

@ A more complex modification can preserve symmetry!
Algorithm for incorporating ¢; = U; in a symmetric way:

@ Subtract column i times U; from the right-hand side
@ Zero out column and row no J

© Place 1 on the diagonal

Q Set b = U;

Symmetric modification of the linear system; example

h 0 0 0 o
0
0 2 -1 2h
0 -1 2 -1
0
1 —_—
i -
0 -1 2 -1
0 :
2h+ 2
0 D"

Symmetric modification of the linear system; element level

Symmetric modification applied to A(Ve):

~ 1/10 5 h+D/h
(Ne)_ J— (Ne)_
A =A= ()7 b = ()

Boundary conditions: specified derivative

Neumann conditions

How can we incorporate u'(0) = C with finite elements?

@ 1;(L) = 0 because of Dirichlet condition u(L) = D
(or no demand and modify linear system)

e No demand to ;(0)

@ The condition v/(0) = C will be handled (as usual) through a
boundary term arising from integration by parts

The variational formulation

Galerkin's method:

L
/0 ("(x) + F))i(x)dx = 0, i€,

Integration of u”1); by parts:

L L
/ o ()4(x) dx— (o (L) (L) (0)14i(0)) / Fx)i(x) dx = 0
0 0

o u/(L)Yi(L) = 0since ¥;j(L) =0
e u/(0)y;(0) = Cv;(0) since u'(0) = C

Method 1: Boundary function and exclusion of Dirichlet

degrees of freedom

o =i i€Zs=10,....N=N,—2}
e B(x) =Dpp,-1(x), u= B+ZJN:0 GPj

L L
/ U (x)@h(x)dx = / f(x)pi(x)dx — Cypi(0), i€
0 0

N L L
> (/0 w?w}dX) ¢ = /0 (foi — Delyei) dx — Cp;i(0)

0
for i =0,...,N=N,—2.

Method 2: Use all ¢; and insert the Dirichlet condition in

the linear system

@ Now ¢); = ¢;, i =0,...,N =N, —1 (all nodes)

o wn(L) #0, 50 u/(L)pn(L) #0
o However, the term u'(L)pn(L) in by will be erased when we
insert the Dirichlet value in by = D

We can therefore forget about the term v/(L)p;(L)!

Boundary terms uv/; at points x; where Dirichlet values apply can
always be forgotten.

N=N,—-1

> (/ L A) 6 = [" F(eilx)d - Cgi(0)

Jj=0

How the Neumann condition impacts the element matrix

and vector

The extra term Cipg(0) affects only the element vector from the
first cell since g = 0 on all other cells.

; 1/ 11 : h—C
©O_a==) —
weag () =)

The finite element algorithm

The differential equation problem defines the integrals in the
variational formulation.

Request these functions from the user:

integrand_lhs(phi, r, s, x)
boundary_lhs(phi, r, s, x)
integrand_rhs(phi, r, x)
boundary_rhs(phi, r, x)

Must also have a mesh with vertices, cells, and dof_map

Python pseudo code; the element matrix and vector

<Declare global matrix, global rhs: A, b>

Loop over all cells
for e in range(len(cells)):

Compute element matriz and vector

n = len(dof_maplel) # no of dofs in this element

h = vertices[cells[e]l[1]] - vertices[cells[e] [0]]

<Declare element matrix, element vector: A_e, b_e>

Integrate over the reference cell
points, weights = <numerical integration rule>
for X, w in zip(points, weights):
phi = <basis functions + derivatives at X>
detJ = h/2
x = <affine mapping from X>
for r in range(n):
for s in range(n):
A_e[r,s] += integrand_lhs(phi, r, s, x)*detJ*w
b_e[r] += integrand_rhs(phi, r, x)*detJ*w

Add boundary terms
for r in range(n):
for s in range(n):
A_e[r,s] += boundary_lhs(phi, r, s, x)*detJ*w
b_e[r] += boundary_rhs(phi, r, x)*detJ*w

Python pseudo code; boundary conditions and assembly

for e in range(len(cells)):

Incorporate essential boundary conditions
for r in range(n):
global_dof = dof_mapl[e] [r]
if global_dof in essbc_dofs:
dof r 15 subject to an essential condition
value = essbc_docs[global_dof]
Symmetric modification

b_e -= value*A_e[:,r]
A_el[r,:] =0
A_el[:,r] =0
A_e[r,r] =1

b_el[r] = value

Adssemble
for r in range(n):
for s in range(n):
A[dof_maplel [r], dof_maplel[r]] += A_elr,s]
b[dof_map[e] [r] += b_e[r]

<solve linear system>

@ Variational formulations in 2D and 3D

Variational formulations in 2D and 3D

Major differences when going from 1D to 2D /3D

@ The integration by part formula is different

o Cells have different geometry

Integration by parts

Rule for multi-dimensional integration by parts

/V x)Vu) vdx—/ a(x)Vu - Vvdx—/ a—vds
Q

o [o()dx: area (2D) or volume (3D) integral
o [50()ds: line(2D) or surface (3D) integral

@ 0Qpu: Neumann conditions —ag” =

o 0Qp: Dirichlet conditions u = ug
@ v € V must vanish on 9Qp (in method 1)

Example on integration by parts; problem

v-Vu+pBu=V-(aVu)+f, xeQ
u = up, x € 0Qp

ou
—a— =g, x € 00y

on

@ Known: o, 8, f, ug, and g.

@ Second-order PDE: must have exactly one boundary condition
at each point of the boundary

Method 1 with boundary function and ¢; = 0 on 9Qp (ensures
u = ugp condition):

u(x) = B(x)+ Y thi(x), B(x) = uo(x)

J€ETs

Example on integration by parts in 1D/2D/3D

Galerkin's method: multiply by v € V and integrate over Q,

/Q(V-Vu—&—ﬁu)vdx:/QV-(CMVu)vdx—l—/vadx

Integrate the second-order term by parts according to the formula:

/V-(aVu)vdx:—/aVu-Vvdx—i—/ OA@Vds7
Q Q oo On

Galerkin's method then gives

/(V‘V”+»B”)dez_/aVU'VVdX-f—/ Ozauvds—f—/ fv dx
Q Q o On Q

Incorporation of the Neumann condition in the variational

formulation
Note: v # 0 only on 9Qp (since v =0 on 0Qp):

/ ozguvds:/ aauvds:—/ gvds
aq On aQy O oQu

The final variational form:

/(v-Vu—i—ﬂu)vdx——/aVu-Vvdx—/ gvds+/ fv dx
Q Q QN Q

Or with inner product notation:

(v-Vu,v)+ (Bu,v) = —(aVu,Vv) — (g,v)y + (f,v)

(g, v)p: line or surface integral over Q.

Derivation of the linear system

e Vv € V is replaced by for all ¢;, i € Zg

@ Insert u =B+ Zjezs cjtbj, B = up, in the variational form
o Identify /,j terms (matrix) and / terms (right-hand side)

o Write on form Ziezs Aijcj=bj, i €I

AiJ = (V : VT/U##:) + (51/1171/}:) + (av¢javwl)

bi = (g, ¥i)n + (f, i) — (v - Vo, 9i) + (Buo, i) + (aVuwo, Vi)

Transformation to a reference cell in 2D/3D (1)

We want to compute an integral in the physical domain by
integrating over the reference cell.

/ a(x)Vei - Vejdx
Qe)

Mapping from reference to physical coordinates:

x(X)
with Jacobian J,

0x;

1= ox;

Transformation to a reference cell in 2D/3D (2)

dx — det JdX.

Must express V; by an expression with @,, i = g(e, r):
Vg (X)

We want V,@,(X) (derivatives wrt x)

What we readily have is Vx@,(X) (derivative wrt X)
Need to transform Vx@,(X) to V@, (X)

Transformation to a reference cell in 2D /3D (3)

Can derive

Vxpr=J -Vxp;
Vi = Va@r(X) = J71 - Vx3,(X)

Integral transformation from physical to reference coordinates:

/ a(x)chp;~Vx<pjdX:/ a(x(X)(J1-Vxp,)-(J71-V@s) det JdX
Qle) 9]

Numerical integration

Numerical integration over reference cell triangles and tetrahedra:

Module numint . py contains different rules:

>>> import numint

>>> x, w = numint.quadrature_for_triangles (num_points=3)

>>> x

[(0.16666666666666666, 0.16666666666666666) ,
(0.66666666666666666, 0.16666666666666666) ,
(0.16666666666666666, 0.66666666666666666)]

>>> W

[0.16666666666666666, 0.16666666666666666, 0.16666666666666666]

@ Triangle: rules with n =1,3,4,7 integrate exactly polynomials
of degree 1,2,3,4, resp.

o Tetrahedron: rules with n = 1,4 5,11 integrate exactly
polynomials of degree 1,2, 3,4, resp.

http://tinyurl.com/nm5587k/approx/numint.py

	Basic principles for approximating differential equations
	Examples on using the principles
	Useful techniques
	Examples on variational formulations
	Examples on detailed computations by hand
	Computing with finite elements
	Variational formulations in 2D and 3D

