$$
\newcommand{\half}{\frac{1}{2}}
\newcommand{\tp}{\thinspace .}
\newcommand{\uex}{{u_{\small\mbox{e}}}}
\newcommand{\normalvec}{\boldsymbol{n}}
\newcommand{\x}{\boldsymbol{x}}
\newcommand{\X}{\boldsymbol{X}}
\renewcommand{\v}{\boldsymbol{v}}
\newcommand{\V}{\boldsymbol{V}}
\newcommand{\dfc}{\alpha} % diffusion coefficient
\newcommand{\If}{\mathcal{I}_s} % for FEM
\newcommand{\Ifb}{{I_b}} % for FEM
\newcommand{\sequencei}[1]{\left\{ {#1}_i \right\}_{i\in\If}}
\newcommand{\sequencej}[1]{\left\{ {#1}_j \right\}_{j\in\If}}
\newcommand{\basphi}{\varphi}
\newcommand{\baspsi}{\psi}
\newcommand{\refphi}{\tilde\basphi}
\newcommand{\sinL}[1]{\sin\left((#1+1)\pi\frac{x}{L}\right)}
\newcommand{\xno}[1]{x_{#1}}
\newcommand{\yno}[1]{y_{#1}}
\newcommand{\dX}{\, \mathrm{d}X}
\newcommand{\dx}{\, \mathrm{d}x}
\newcommand{\ds}{\, \mathrm{d}s}
\newcommand{\Real}{\mathbb{R}}
$$
Bibliography
- H. P. Langtangen.
Approximation of functions,
http://tinyurl.com/k3sdbuv/pub/approx.
- M. G. Larson and F. Bengzon.
The Finite Element Method: Theory, Implementation, and Applications,
Texts in Computational Science and Engineering,
Springer,
2013.
- D. Braess.
Finite Elements: Theory, Fast Solvers, and Applications in Solid Mechanics,
third edition,
Cambridge University Press,
2007.
- S. Brenner and R. Scott.
The Mathematical Theory of Finite Element Methods,
third edition,
Springer,
2007.
- C. Johnson.
Numerical Solution of Partial Differential Equations by the Finite Element Method,
Dover,
2009.
- K. Eriksson, D. Estep, P. Hansbo and C. Johnson.
Computational Differential Equations,
second edition,
Cambridge University Press,
1996.
- A. Quarteroni and A. Valli.
Numerical Approximation of Partial Differential Equations,
Springer,
1994.