
Study guide: Truncation error analysis

Hans Petter Langtangen1,2

Center for Biomedical Computing, Simula Research Laboratory1

Department of Informatics, University of Oslo2

Oct 17, 2015

Overview of what truncation errors are

De�nition: The truncation error is the discrepancy that arises
from performing a �nite number of steps to approximate a
process with in�nitely many steps.

Widely used: truncation of in�nite series, �nite precision
arithmetic, �nite di�erences, and di�erential equations.

Why? The truncation error is an error measure that is easy to
compute.

Abstract problem setting
Consider an abstract di�erential equation

L(u) = 0

Example: L(u) = u′(t) + a(t)u(t)− b(t).

The corresponding discrete equation:

L∆(u) = 0

Let now

u be the numerical solution of the discrete equations,
computed at mesh points: un, n = 0, . . . ,Nt

ue the exact solution of the di�erential equation

L(ue) = 0

L∆(u) = 0

u is computed at mesh points

Various error measures

Dream: the true error e = ue − u, but usually impossible

Must �nd other error measures that are easier to calculate

Derive formulas for u in (very) special, simpli�ed cases
Compute empirical convergence rates for special choices of ue
(usually non-physical ue)

To what extent does ue ful�ll L∆(ue) = 0?

It does not �t, but we can measure the error L∆(ue) = R

R is the truncation error and it is easy to compute in general,
without considering special cases

Example: The backward di�erence for u′(t)

Backward di�erence approximation to u′:

[D−t u]n =
un − un−1

∆t
≈ u′(tn)

De�ne the truncation error of this approximation as

Rn = [D−t u]n − u′(tn)

The common way of calculating Rn is to

1 expand u(t) in a Taylor series around the point where the
derivative is evaluated, here tn,

2 insert this Taylor series in (??), and

3 collect terms that cancel and simplify the expression.

Taylor series

General Taylor series expansion from calculus:

f (x + h) =
∞∑

i=0

1

i !

d i f

dx i
(x)hi

Here: expand un−1 around tn:

u(tn−1) = u(t −∆t) =
∞∑

i=0

1

i !

d iu

dt i
(tn)(−∆t)i

= u(tn)− u′(tn)∆t +
1

2
u′′(tn)∆t2 +O(∆t3)

O(∆t3): power-series in ∆t where the lowest power is ∆t3

Small ∆t: ∆t � ∆t3 � ∆t4

Taylor series inserted in the backward di�erence
approximation

[D−t u]n − u′(tn) =
u(tn)− u(tn−1)

∆t
− u′(tn)

=
u(tn)− (u(tn)− u′(tn)∆t + 1

2u
′′(tn)∆t2 +O(∆t3))

∆t
− u′(tn)

= −1
2
u′′(tn)∆t +O(∆t2))

Result:

Rn = −1
2
u′′(tn)∆t +O(∆t2))

The di�erence approximation is of �rst order in ∆t. It is exact for
linear ue.

The forward di�erence for u′(t)

Now consider a forward di�erence:

u′(tn) ≈ [D+
t u]n =

un+1 − un

∆t

De�ne the truncation error:

Rn = [D+
t u]n − u′(tn)

Expand un+1 in a Taylor series around tn,

u(tn+1) = u(tn) + u′(tn)∆t +
1

2
u′′(tn)∆t2 +O(∆t3)

We get

R =
1

2
u′′(tn)∆t +O(∆t2)

The central di�erence for u′(t) (1)

For the central di�erence approximation,

u′(tn) ≈ [Dtu]n, [Dtu]n =
un+ 1

2 − un−
1

2

∆t
the truncation error is

Rn = [Dtu]n − u′(tn)

Expand u(tn+ 1

2

) and u(tn−1/2) in Taylor series around the point tn

where the derivative is evaluated:

u(tn+ 1

2

) =u(tn) + u′(tn)
1

2
∆t +

1

2
u′′(tn)(

1

2
∆t)2+

1

6
u′′′(tn)(

1

2
∆t)3 +

1

24
u′′′′(tn)(

1

2
∆t)4 +O(∆t5)

u(tn−1/2) =u(tn)− u′(tn)
1

2
∆t +

1

2
u′′(tn)(

1

2
∆t)2−

1

6
u′′′(tn)(

1

2
∆t)3 +

1

24
u′′′′(tn)(

1

2
∆t)4 +O(∆t5)

The central di�erence for u′(t) (1)

u(tn+ 1

2

)− u(tn−1/2) = u′(tn)∆t +
1

24
u′′′(tn)∆t3 +O(∆t5) .

By collecting terms in [Dtu]n − u(tn) we �nd Rn to be

Rn =
1

24
u′′′(tn)∆t2 +O(∆t4)

Note:

Second-order accuracy since the leading term is ∆t2

Only even powers of ∆t

Leading-order error terms in �nite di�erences (1)

[Dtu]n =
un+ 1

2 − un−
1

2

∆t
= u′(tn) + Rn

Rn =
1

24
u′′′(tn)∆t2 +O(∆t4)

[D2tu]n =
un+1 − un−1

2∆t
= u′(tn) + Rn

Rn =
1

6
u′′′(tn)∆t2 +O(∆t4)

[D−t u]n =
un − un−1

∆t
= u′(tn) + Rn

Rn = −1
2
u′′(tn)∆t +O(∆t2)

[D+
t u]n =

un+1 − un

∆t
= u′(tn) + Rn

Rn =
1

2
u′′(tn)∆t +O(∆t2)

Leading-order error terms in �nite di�erences (2)

[D̄tu]n+θ =
un+1 − un

∆t
= u′(tn+θ) + Rn+θ

Rn+θ =
1

2
(1− 2θ)u′′(tn+θ)∆t − 1

6
((1− θ)3 − θ3)u′′′(tn+θ)∆t2 +O(∆t3)

[D2−
t u]n =

3un − 4un−1 + un−2

2∆t
= u′(tn) + Rn

Rn = −1
3
u′′′(tn)∆t2 +O(∆t3)

[DtDtu]n =
un+1 − 2un + un−1

∆t2
= u′′(tn) + Rn

Rn =
1

12
u′′′′(tn)∆t2 +O(∆t4)

Leading-order error terms in mean values (1)

Weighted arithmetic mean:

[ut,θ]n+θ = θun+1 + (1− θ)un = u(tn+θ) + Rn+θ

Rn+θ =
1

2
u′′(tn+θ)∆t2θ(1− θ) +O(∆t3)

Standard arithmetic mean:

[ut]n =
1

2
(un−

1

2 + un+ 1

2) = u(tn) + Rn

Rn =
1

8
u′′(tn)∆t2 +

1

384
u′′′′(tn)∆t4 +O(∆t6)

Leading-order error terms in mean values (2)

Geometric mean:

[u2
t,g

]n = un−
1

2 un+ 1

2 = (un)2 + Rn

Rn = −1
4
u′(tn)2∆t2 +

1

4
u(tn)u′′(tn)∆t2 +O(∆t4)

Harmonic mean:

[ut,h]n = un =
2

1

un−
1

2

+ 1

un+ 1

2

+ Rn+ 1

2

Rn = −u′(tn)2

4u(tn)
∆t2 +

1

8
u′′(tn)∆t2

Software for computing truncation errors

Can use sympy to automate calculations with Taylor series.

Tool: course module truncation_errors

>>> from truncation_errors import TaylorSeries
>>> from sympy import *
>>> u, dt = symbols('u dt')
>>> u_Taylor = TaylorSeries(u, 4)
>>> u_Taylor(dt)
D1u*dt + D2u*dt**2/2 + D3u*dt**3/6 + D4u*dt**4/24 + u
>>> FE = (u_Taylor(dt) - u)/dt
>>> FE
(D1u*dt + D2u*dt**2/2 + D3u*dt**3/6 + D4u*dt**4/24)/dt
>>> simplify(FE)
D1u + D2u*dt/2 + D3u*dt**2/6 + D4u*dt**3/24

Notation: D1u for u′, D2u for u′′, etc.

See trunc/truncation_errors.py.

Symbolic computing with di�erence operators

A class DiffOp represents many common di�erence operators:

>>> from truncation_errors import DiffOp
>>> from sympy import *
>>> u = Symbol('u')
>>> diffop = DiffOp(u, independent_variable='t')
>>> diffop['geometric_mean']
-D1u**2*dt**2/4 - D1u*D3u*dt**4/48 + D2u**2*dt**4/64 + ...
>>> diffop['Dtm']
D1u + D2u*dt/2 + D3u*dt**2/6 + D4u*dt**3/24
>>> diffop.operator_names()
['geometric_mean', 'harmonic_mean', 'Dtm', 'D2t', 'DtDt',
'weighted_arithmetic_mean', 'Dtp', 'Dt']

Names in diffop: Dtp for D+
t , Dtm for D−t , Dt for Dt , D2t for

D2t , DtDt for DtDt .

Truncation errors in exponential decay ODE

u′(t) = −au(t)

Truncation error of the Forward Euler scheme

The Forward Euler scheme:

[D+
t u = −au]n .

De�nition of the truncation error Rn:

[D+
t ue + aue = R]n .

From (??)-(??):

[D+
t ue]n = u′

e
(tn) +

1

2
u′′
e

(tn)∆t +O(∆t2) .

Inserted in (??):

u′
e
(tn) +

1

2
u′′
e

(tn)∆t +O(∆t2) + aue(tn) = Rn .

Note: u′
e
(tn) + aun

e
= 0 since ue solves the ODE. Then

Rn =
1

2
u′′
e

(tn)∆t +O(∆t2) .

Truncation error of the Crank-Nicolson scheme

Crank-Nicolson:
[Dtu = −au]n+ 1

2

Truncation error:

[Dtue + aue
t = R]n+ 1

2

From (??)-(??) and (??)-(??):

[Dtue]n+ 1

2 = u′(tn+ 1

2

) +
1

24
u′′′
e

(tn+ 1

2

)∆t2 +O(∆t4)

[aue
t]n+ 1

2 = u(tn+ 1

2

) +
1

8
u′′(tn)∆t2 + +O(∆t4)

Inserted in the scheme we get

Rn+ 1

2 =

(
1

24
u′′′
e

(tn+ 1

2

) +
1

8
u′′(tn)

)
∆t2 +O(∆t4)

Rn = O(∆t2) (second-order scheme)

Test the understanding!

Analyze the the truncation error of the Backward Euler scheme and
show that it is O(∆t) (�rst order scheme).

Truncation error of the θ-rule

The θ-rule:
[D̄tu = −aut,θ]n+θ .

Truncation error:

[D̄tue + aue
t,θ = R]n+θ .

Use (??)-(??) and (??)-(??) along with u′
e
(tn+θ) + aue(tn+θ) = 0

to show

Rn+θ =(
1

2
− θ)u′′

e
(tn+θ)∆t +

1

2
θ(1− θ)u′′

e
(tn+θ)∆t2+

1

2
(θ2 − θ + 3)u′′′

e
(tn+θ)∆t2 +O(∆t3) (1)

Note: 2nd-order scheme if and only if θ = 1/2.

Using symbolic software

Can use sympy and the tools in truncation_errors.py:

def decay():
u, a = sm.symbols('u a')
diffop = DiffOp(u, independent_variable='t',

num_terms_Taylor_series=3)
D1u = diffop.D(1) # symbol for du/dt
ODE = D1u + a*u # define ODE

Define schemes
FE = diffop['Dtp'] + a*u
CN = diffop['Dt'] + a*u
BE = diffop['Dtm'] + a*u
Residuals (truncation errors)
R = {'FE': FE-ODE, 'BE': BE-ODE, 'CN': CN-ODE}
return R

The returned dictionary becomes

decay: {
'BE': D2u*dt/2 + D3u*dt**2/6,
'FE': -D2u*dt/2 + D3u*dt**2/6,
'CN': D3u*dt**2/24,
}

θ-rule: see truncation_errors.py (long expression, very
advantageous to automate the math!)

Empirical veri�cation of the truncation error (1)

Ideas:

Compute Rn numerically

Run a sequence of meshes

Estimate the convergence rate of Rn

For the Forward Euler scheme:

Rn = [D+
t ue + aue]n .

Insert correct ue(t) = Ie−at (or use method of manufactured
solution in more general cases).

Empirical veri�cation of the truncation error (2)

Assume Rn = C∆tr

C and r will vary with n - must estimate r for each mesh point

Use a sequence of meshes with Nt = 2−kN0 intervals,
k = 1, 2, . . .

Transform Rn data to the coarsest mesh and estimate r for
each coarse mesh point

See the text for more details and an implementation.

Empirical veri�cation of the truncation error in the Forward
Euler scheme

Figure: Estimated truncation error at mesh points for di�erent meshes.

Empirical veri�cation of the truncation error in the Forward
Euler scheme

Figure: Di�erence between theoretical and estimated truncation error at
mesh points for di�erent meshes.

Increasing the accuracy by adding correction terms

Question

Can we add terms in the di�erential equation that can help increase
the order of the truncation error?
To be precise for the Forward Euler scheme, can we �nd C to make
R O(∆t2)?

[D+
t ue + aue = C + R]n .

1

2
u′′
e

(tn)∆t − 1

6
u′′′
e

(tn)∆t2 +O(∆t3) = Cn + Rn .

Choosing

Cn =
1

2
u′′
e

(tn)∆t

makes

Rn =
1

6
u′′′
e

(tn)∆t2 +O(∆t3) .

Lowering the order of the derivative in the correction term

Cn contains u′′

Can discretize u′′ (requires un+1, un, and un−1)

Can also express u′′ in terms of u′ or u

u′ = −au, ⇒ u′′ = −au′ = a2u .

Result for u′′ = a2u: apply Forward Euler to a perturbed ODE,

u′ = −âu, â = a(1− 1

2
a∆t)

to make a second-order scheme!

With a correction term Forward Euler becomes
Crank-Nicolson

Use the other alternative u′′ = −au′:

u′ = −au − 1

2
a∆tu′ ⇒

(
1 +

1

2
a∆t

)
u′ = −au .

Apply Forward Euler:

(
1 +

1

2
a∆t

)
un+1 − un

∆t
= −aun

which after some algebra can be written as

un+1 =
1− 1

2a∆t

1 + 1
2a∆t

un .

This is a Crank-Nicolson scheme (of second order)!

Correction terms in the Crank-Nicolson scheme (1)

[Dtu = −aut]n+ 1

2

De�nition of the truncation error R and correction terms C :

[Dtue + aue
t = C + R]n+ 1

2 .

Must Taylor expand

the derivative

the arithmetic mean

Cn+ 1

2 + Rn+ 1

2 =
1

24
u′′′
e

(tn+ 1

2

)∆t2 +
a

8
u′′
e

(tn+ 1

2

)∆t2 +O(∆t4) .

Let Cn+ 1

2 cancel the ∆t2 terms:

Cn+ 1

2 =
1

24
u′′′
e

(tn+ 1

2

)∆t2 +
a

8
u′′
e

(tn)∆t2 .

Correction terms in the Crank-Nicolson scheme (2)

Must replace u′′′ and u′′ in correction term

Using u′ = −au: u′′ = a2u and u′′′ = −a3u

Result: solve the perturbed ODE by a Crank-Nicolson method,

u′ = −âu, â = a(1− 1

12
a2∆t2) .

and experience an error O(∆t4).

Extension to variable coe�cients

u′(t) = −a(t)u(t) + b(t)

Forward Euler:

[D+
t u = −au + b]n .

The truncation error is found from

[D+
t ue + aue − b = R]n .

Using (??)-(??):

u′
e
(tn)− 1

2
u′′
e

(tn)∆t +O(∆t2) + a(tn)ue(tn)− b(tn) = Rn .

Because of the ODE, u′
e
(tn) + a(tn)ue(tn)− b(tn) = 0, and

Rn = −1
2
u′′
e

(tn)∆t +O(∆t2) .

No problems with variable coe�cients!

Exact solutions of the �nite di�erence equations

How does the truncation error depend on ue in �nite di�erences?

One-sided di�erences: u′′
e

∆t (lowest order)

Centered di�erences: u′′′
e

∆t2 (lowest order)

Only harmonic and geometric mean involve u′
e
or ue

Consequence:

ue(t) = ct + d will very often give exact solution of the
discrete equations (R = 0)!

Ideal for veri�cation

Centered schemes allow quadratic ue

Problem: harmonic and geometric mean (error depends on u′
e
and

ue)

Computing truncation errors in nonlinear problems (1)

u′ = f (u, t)

Crank-Nicolson scheme:

[Dtu = f
t
]n+ 1

2

Truncation error:

[Dtue − f
t

= R]n+ 1

2 .

Using (??)-(??) for the arithmetic mean:

[f
t
]n+ 1

2 =
1

2
(f (un

e
, tn) + f (un+1

e
, tn+1))

= f (u
n+ 1

2

e , tn+ 1

2

) +
1

8
u′′
e

(tn+ 1

2

)∆t2 +O(∆t4) .

Computing truncation errors in nonlinear problems (2)

With (??)-(??), (??) leads to Rn+ 1

2 equal to

u′
e
(tn+ 1

2

)+
1

24
u′′′
e

(tn+ 1

2

)∆t2−f (u
n+ 1

2

e , tn+ 1

2

)−1
8
u′′
e

(tn+ 1

2

)∆t2+O(∆t4) .

Since u′
e
(tn+ 1

2

)− f (u
n+ 1

2

e , tn+ 1

2

) = 0, the truncation error becomes

Rn+ 1

2 = (
1

24
u′′′
e

(tn+ 1

2

)− 1

8
u′′
e

(tn+ 1

2

))∆t2 .

The computational techniques worked well even for this nonlinear
ODE!

Linear model without damping

u′′(t) + ω2u(t) = 0, u(0) = I , u′(0) = 0 .

Centered di�erence approximation:

[DtDtu + ω2u = 0]n

Truncation error:

[DtDtue + ω2ue = R]n .

Use (??)-(??) to expand [DtDtue]n:

[DtDtue]n = u′′
e

(tn) +
1

12
u′′′′
e

(tn)∆t2

Collect terms: u′′
e

(t) + ω2ue(t) = 0. Then,

Rn =
1

12
u′′′′
e

(tn)∆t2 +O(∆t4) .

Truncation errors in the initial condition

Initial conditions: u(0) = I , u′(0) = V

Need discretization of u′(0)

Standard, centered di�erence: [D2tu = V]0, R0 = O(∆t2)

Simpler, forward di�erence: [D+
t u = V]0, R0 = O(∆t)

Does the lower order of the forward scheme impact the order
of the whole simulation?

Answer: run experiments!

Computing correction terms

Can we add terms to the ODE such that the truncation error
is improved?

[DtDtue + ω2ue = C + R]n

Idea: choose Cn such that it absorbs the ∆t2 term in Rn,

Cn =
1

12
u′′′′
e

(tn)∆t2 .

Downside: got a u′′′′ term
Remedy: use the ODE u′′ = −ω2u to see that u′′′′ = ω4u.

Just apply the standard scheme to a modi�ed ODE:

[DtDtu + ω2(1− 1

12
ω2∆t2)u = 0]n

Accuracy is O(∆t4).

Model with damping and nonlinearity

Linear damping βu′, nonlinear spring force s(u), and excitation F :

mu′′ + βu′ + s(u) = F (t)

Central di�erence discretization:

[mDtDtu + βD2tu + s(u) = F]n .

Truncation error is de�ned by

[mDtDtue + βD2tue + s(ue) = F + R]n .

Carrying out the truncation error analysis

Using (??)-(??) and (??)-(??) we get

[mDtDtue + βD2tue]n = mu′′
e

(tn) + βu′
e
(tn)+

(
m

12
u′′′′
e

(tn) +
β

6
u′′′
e

(tn)

)
∆t2 +O(∆t4)

The terms

mu′′
e

(tn) + βu′
e
(tn) + ω2ue(tn) + s(ue(tn))− F n

correspond to the ODE (= zero).

Result: accuracy of O(∆t2) since

Rn =

(
m

12
u′′′′
e

(tn) +
β

6
u′′′
e

(tn)

)
∆t2 +O(∆t4)

Correction terms: complicated when the ODE has many terms...

Extension to quadratic damping

mu′′ + β|u′|u′ + s(u) = F (t)

Centered scheme: |u′|u′ gives rise to a nonlinearity.

Linearization trick: use a geometric mean,

[|u′|u′]n ≈ |[u′]n− 1

2 |[u′]n+ 1

2 .

Scheme:

[mDtDtu]n + β|[Dtu]n−
1

2 |[Dtu]n+ 1

2 + s(un) = F n .

The truncation error for quadratic damping (1)
De�nition of Rn:

[mDtDtue]n + β|[Dtue]n−
1

2 |[Dtue]n+ 1

2 + s(un
e

)− F n = Rn .

Truncation error of the geometric mean, see (??)-(??),

|[Dtue]n−
1

2 |[Dtue]n+ 1

2 = [|Dtue|Dtue]n − 1

4
u′(tn)2∆t2+

1

4
u(tn)u′′(tn)∆t2 +O(∆t4) .

Using (??)-(??) for the Dtue factors results in

[|Dtue|Dtue]n = |u′
e

+
1

24
u′′′
e

(tn)∆t2 +O(∆t4)|×

(u′
e

+
1

24
u′′′
e

(tn)∆t2 +O(∆t4))

The truncation error for quadratic damping (2)
For simplicity, remove the absolute value. The product becomes

[DtueDtue]n = (u′
e
(tn))2 +

1

12
ue(tn)u′′′

e
(tn)∆t2 +O(∆t4) .

With

m[DtDtue]n = mu′′
e

(tn) +
m

12
u′′′′
e

(tn)∆t2 +O(∆t4)

and using mu′′ + β(u′)2 + s(u) = F , we end up with

Rn = (
m

12
u′′′′
e

(tn) +
β

12
ue(tn)u′′′

e
(tn))∆t2 +O(∆t4) .

Second-order accuracy! Thanks to

di�erence approximation with error O(∆t2)

geometric mean approximation with error O(∆t2)

The general model formulated as �rst-order ODEs

mu′′ + β|u′|u′ + s(u) = F (t)

Rewritten as �rst-order system:

u′ = v

v ′ =
1

m
(F (t)− β|v |v − s(u))

To solution methods:

Forward-backward scheme

Centered scheme on a staggered mesh

The forward-backward scheme
Forward step for u, backward step for v :

[D+
t u = v]n

[D−t v =
1

m
(F (t)− β|v |v − s(u))]n+1

Note:

step u forward with known v in (??)
step v forward with known u in (??)

Problem: |v |v gives nonlinearity |vn+1|vn+1.

Remedy: linearized as |vn|vn+1

[D+
t u = v]n

[D−t v]n+1 =
1

m
(F (tn+1)− β|vn|vn+1 − s(un+1))

Truncation error analysis

Aim (as always): turn di�erence operators into derivatives +
truncation error terms

One-sided forward/backward di�erences: error O(∆t)

Linearization of |vn+1|vn+1 to |vn|vn+1: error O(∆t)

All errors are O(∆t)

First-order scheme? No!

"Symmetric" use of the O(∆t) building blocks yields in fact a
O(∆t2) scheme (!)

Why? See next slide...

A centered scheme on a staggered mesh

Staggered mesh:

u is computed at mesh points tn

v is computed at points tn+ 1

2

Centered di�erences in (??)-(??):

[Dtu = v]n−
1

2

[Dtv =
1

m
(F (t)− β|v |v − s(u))]n

Problem: |vn|vn because vn is not computed directly

Remedy: Geometric mean,

|vn|vn ≈ |vn− 1

2 |vn+ 1

2 .

Truncation error analysis (1)
Resulting scheme:

[Dtu]n−
1

2 = vn−
1

2

[Dtv]n =
1

m
(F (tn)− β|vn− 1

2 |vn+ 1

2 − s(un))

The truncation error in each equation is found from

[Dtue]n−
1

2 = ve(tn− 1

2

) + R
n− 1

2

u

[Dtve]n =
1

m
(F (tn)− β|ve(tn− 1

2

)|ve(tn+ 1

2

)− s(un)) + Rn
v .

Using (??)-(??) for derivatives and (??)-(??) for the geometric
mean:

u′
e
(tn− 1

2

) +
1

24
u′′′
e

(tn− 1

2

)∆t2 +O(∆t4) = ve(tn− 1

2

) + R
n− 1

2

u

and

v ′
e
(tn) =

1

m
(F (tn)− β|ve(tn)|ve(tn) +O(∆t2)− s(un)) + Rn

v .

Truncation error analysis (2)

Resulting truncation error is O(∆t2):

R
n− 1

2

u = O(∆t2), Rn
v = O(∆t2) .

Observation

Comparing The schemes (??)-(??) and (??)-(??) are equivalent.
Therefore, the forward/backward scheme with ad hoc linearization
is also O(∆t2)!

