WARNING: Preliminary version (expect typos!)
 Overview of truncation error analysis 
       Abstract problem setting 
       Error measures 
 Truncation errors in finite difference formulas 
       Example: The backward difference for \( u'(t) \) 
       Example: The forward difference for \( u'(t) \) 
       Example: The central difference for \( u'(t) \) 
       Overview of leading-order error terms in finite difference formulas 
       Software for computing truncation errors 
 Truncation errors in exponential decay ODE 
       Truncation error of the Forward Euler scheme 
       Truncation error of the Crank-Nicolson scheme 
       Truncation error of the \( \theta \)-rule 
       Using symbolic software 
       Empirical verification of the truncation error 
       Increasing the accuracy by adding correction terms 
       Extension to variable coefficients 
       Exact solutions of the finite difference equations 
       Computing truncation errors in nonlinear problems 
 Truncation errors in vibration ODEs 
       Linear model without damping 
       Model with damping and nonlinearity 
       Extension to quadratic damping 
       The general model formulated as first-order ODEs 
 Truncation errors in wave equations 
       Linear wave equation in 1D 
       Finding correction terms 
       Extension to variable coefficients 
       1D wave equation on a staggered mesh 
       Linear wave equation in 2D/3D 
 Truncation errors in diffusion equations 
       Linear diffusion equation in 1D 
       Linear diffusion equation in 2D/3D 
       A nonlinear diffusion equation in 2D 
 Exercises 
       Exercise 1: Truncation error of a weighted mean 
       Exercise 2: Simulate the error of a weighted mean 
       Exercise 3: Verify a truncation error formula 
       Exercise 4: Truncation error of the Backward Euler scheme 
       Exercise 5: Empirical estimation of truncation errors 
       Exercise 6: Correction term for a Backward Euler scheme 
       Exercise 7: Verify the effect of correction terms 
       Exercise 8: Truncation error of the Crank-Nicolson scheme 
       Exercise 9: Truncation error of \( u'=f(u,t) \) 
       Exercise 10: Truncation error of \( [D_t D_tu]^n \) 
       Exercise 11: Investigate the impact of approximating \( u'(0) \) 
       Exercise 12: Investigate the accuracy of a simplified scheme