
Scientific software engineering; wave
equation model

Hans Petter Langtangen1,2

1Center for Biomedical Computing, Simula Research Laboratory
2Department of Informatics, University of Oslo

Oct 20, 2015

Warning.

This document is in a very incomplete state!

Contents
1 A 1D wave equation simulator 2

1.1 Mathematical model . 2
1.2 Numerical discretization . 3
1.3 A solver function . 3

2 Saving large arrays in files 6
2.1 Using savez to store arrays in files 6
2.2 Using joblib to store arrays in files 7
2.3 Using a hash to create a file or directory name 8

3 Software for the 1D wave equation 9
3.1 Making hash strings from input data 10
3.2 Avoiding rerunning previously run cases 11
3.3 Verification . 12

4 Programming the solver with classes 12
4.1 Class Problem . 12
4.2 Class Mesh . 12
4.3 Class Function . 15
4.4 Class Solver . 17

5 Migrating loops to Cython 17
5.1 Declaring variables and annotating the code 18
5.2 Visual inspection of the C translation 20
5.3 Building the extension module 21
5.4 Calling the Cython function from Python 22

6 Migrating loops to Fortran 23
6.1 The Fortran subroutine . 23
6.2 Building the Fortran module with f2py 24
6.3 How to avoid array copying . 26

7 Migrating loops to C via Cython 27
7.1 Translating index pairs to single indices 28
7.2 The complete C code . 28
7.3 The Cython interface file . 29
7.4 Building the extension module 30

8 Migrating loops to C via f2py 30
8.1 Migrating loops to C++ via f2py 31

9 Exercises 32

References 33

Index 34

1 A 1D wave equation simulator
1.1 Mathematical model
Let ut, utt, ux, uxx denote derivatives of u with respect to the subscript, i.e., utt

is a second-order time derivative and ux is a first-order space derivative. The
initial-boundary value problem implemented in the wave1D_dn_vc.py code is

utt = (q(x)ux)x + f(x, t), x ∈ (0, L), t ∈ (0, T] (1)
u(x, 0) = I(x), x ∈ [0, L] (2)

ut(x, 0) = V (t), x ∈ [0, L] (3)
u(0, t) = U0(t) or ux(0, t) = 0, t ∈ (0, T] (4)
u(L, t) = UL(t) or ux(L, t) = 0, t ∈ (0, T] (5)

We allow variable wave velocity c2(x) = q(x), and Dirichlet or homogeneous
Neumann conditions at the boundaries.

2

1.2 Numerical discretization
The PDE is discretized by second-order finite differences in time and space, with
arithmetic mean for the variable coefficient

[DtDtu = %−1DxqxDxu + f]ni . (6)

The Neumann boundary conditions are discretized by

[D2xu]ni = 0,

at a boundary point i. The details of how the numerical scheme is worked out
are described in Sections 6 and 7 in [1].

1.3 A solver function
The general initial-boundary value problem (1)-(5) solved by finite difference
methods can be implemented in the following solver function (taken from the
file wave1D_dn_vc.py). This function builds on simpler versions described in
Sections 3, 4 6, and 7 in [1]. There are several quite advanced constructs that
will be commented upon later.

def solver(I, V, f, c, U_0, U_L, L, dt, C, T,
user_action=None, version=’scalar’,
stability_safety_factor=1.0):

"""Solve u_tt=(c^2*u_x)_x + f on (0,L)x(0,T]."""
Nt = int(round(T/dt))
t = np.linspace(0, Nt*dt, Nt+1) # Mesh points in time

Find max(c) using a fake mesh and adapt dx to C and dt
if isinstance(c, (float,int)):

c_max = c
elif callable(c):

c_max = max([c(x_) for x_ in linspace(0, L, 101)])
dx = dt*c_max/(stability_safety_factor*C)
Nx = int(round(L/dx))
x = np.linspace(0, L, Nx+1) # Mesh points in space

Treat c(x) as array
if isinstance(c, (float,int)):

c = np.zeros(x.shape) + c
elif callable(c):

Call c(x) and fill array c
c_ = np.zeros(x.shape)
for i in range(Nx+1):

c_[i] = c(x[i])
c = c_

q = c**2
C2 = (dt/dx)**2; dt2 = dt*dt # Help variables in the scheme

Wrap user-given f, I, V, U_0, U_L if None or 0
if f is None or f == 0:

f = (lambda x, t: 0) if version == ’scalar’ else \
lambda x, t: np.zeros(x.shape)

if I is None or I == 0:
I = (lambda x: 0) if version == ’scalar’ else \

3

http://tinyurl.com/nm5587k/wave/wave1D/wave_dn_vc.py

lambda x: np.zeros(x.shape)
if V is None or V == 0:

V = (lambda x: 0) if version == ’scalar’ else \
lambda x: np.zeros(x.shape)

if U_0 is not None:
if isinstance(U_0, (float,int)) and U_0 == 0:

U_0 = lambda t: 0
if U_L is not None:

if isinstance(U_L, (float,int)) and U_L == 0:
U_L = lambda t: 0

Make hash of all input data
import hashlib, inspect
data = inspect.getsource(I) + ’_’ + inspect.getsource(V) + \

’_’ + inspect.getsource(f) + ’_’ + str(c) + ’_’ + \
(’None’ if U_0 is None else inspect.getsource(U_0)) + \
(’None’ if U_L is None else inspect.getsource(U_L)) + \
’_’ + str(L) + str(dt) + ’_’ + str(C) + ’_’ + str(T) + \
’_’ + str(stability_safety_factor)

hashed_input = hashlib.sha1(data).hexdigest()
if os.path.isfile(’.’ + hashed_input + ’_archive.npz’):

Simulation is already run
return -1, hashed_input

u = np.zeros(Nx+1) # Solution array at new time level
u_1 = np.zeros(Nx+1) # Solution at 1 time level back
u_2 = np.zeros(Nx+1) # Solution at 2 time levels back

import time; t0 = time.clock() # CPU time measurement

Ix = range(0, Nx+1)
It = range(0, Nt+1)

Load initial condition into u_1
for i in range(0,Nx+1):

u_1[i] = I(x[i])

if user_action is not None:
user_action(u_1, x, t, 0)

Special formula for the first step
for i in Ix[1:-1]:

u[i] = u_1[i] + dt*V(x[i]) + \
0.5*C2*(0.5*(q[i] + q[i+1])*(u_1[i+1] - u_1[i]) - \

0.5*(q[i] + q[i-1])*(u_1[i] - u_1[i-1])) + \
0.5*dt2*f(x[i], t[0])

i = Ix[0]
if U_0 is None:

Set boundary values (x=0: i-1 -> i+1 since u[i-1]=u[i+1]
when du/dn = 0, on x=L: i+1 -> i-1 since u[i+1]=u[i-1])
ip1 = i+1
im1 = ip1 # i-1 -> i+1
u[i] = u_1[i] + dt*V(x[i]) + \

0.5*C2*(0.5*(q[i] + q[ip1])*(u_1[ip1] - u_1[i]) - \
0.5*(q[i] + q[im1])*(u_1[i] - u_1[im1])) + \

0.5*dt2*f(x[i], t[0])
else:

u[i] = U_0(dt)

i = Ix[-1]
if U_L is None:

im1 = i-1
ip1 = im1 # i+1 -> i-1

4

u[i] = u_1[i] + dt*V(x[i]) + \
0.5*C2*(0.5*(q[i] + q[ip1])*(u_1[ip1] - u_1[i]) - \

0.5*(q[i] + q[im1])*(u_1[i] - u_1[im1])) + \
0.5*dt2*f(x[i], t[0])

else:
u[i] = U_L(dt)

if user_action is not None:
user_action(u, x, t, 1)

Update data structures for next step
#u_2[:] = u_1; u_1[:] = u # safe, but slower
u_2, u_1, u = u_1, u, u_2

for n in It[1:-1]:
Update all inner points
if version == ’scalar’:

for i in Ix[1:-1]:
u[i] = - u_2[i] + 2*u_1[i] + \

C2*(0.5*(q[i] + q[i+1])*(u_1[i+1] - u_1[i]) - \
0.5*(q[i] + q[i-1])*(u_1[i] - u_1[i-1])) + \

dt2*f(x[i], t[n])

elif version == ’vectorized’:
u[1:-1] = - u_2[1:-1] + 2*u_1[1:-1] + \
C2*(0.5*(q[1:-1] + q[2:])*(u_1[2:] - u_1[1:-1]) -

0.5*(q[1:-1] + q[:-2])*(u_1[1:-1] - u_1[:-2])) + \
dt2*f(x[1:-1], t[n])

else:
raise ValueError(’version=%s’ % version)

Insert boundary conditions
i = Ix[0]
if U_0 is None:

Set boundary values
x=0: i-1 -> i+1 since u[i-1]=u[i+1] when du/dn=0
x=L: i+1 -> i-1 since u[i+1]=u[i-1] when du/dn=0
ip1 = i+1
im1 = ip1
u[i] = - u_2[i] + 2*u_1[i] + \

C2*(0.5*(q[i] + q[ip1])*(u_1[ip1] - u_1[i]) - \
0.5*(q[i] + q[im1])*(u_1[i] - u_1[im1])) + \

dt2*f(x[i], t[n])
else:

u[i] = U_0(t[n+1])

i = Ix[-1]
if U_L is None:

im1 = i-1
ip1 = im1
u[i] = - u_2[i] + 2*u_1[i] + \

C2*(0.5*(q[i] + q[ip1])*(u_1[ip1] - u_1[i]) - \
0.5*(q[i] + q[im1])*(u_1[i] - u_1[im1])) + \

dt2*f(x[i], t[n])
else:

u[i] = U_L(t[n+1])

if user_action is not None:
if user_action(u, x, t, n+1):

break

Update data structures for next step
#u_2[:] = u_1; u_1[:] = u # safe, but slower
u_2, u_1, u = u_1, u, u_2

5

Important to correct the mathematically wrong u=u_2 above
before returning u
u = u_1
cpu_time = t0 - time.clock()
return cpu_time, hashed_input

Or maybe copy section by section...?

2 Saving large arrays in files
Numerical simulations produce large arrays as results and the software needs
to store these arrays on disk. Several methods are available in Python. We
recommend to use tailored solutions for large arrays and not standard file storage
tools such as pickle (cPickle for speed in Python version 2) and shelve.

2.1 Using savez to store arrays in files
Storing individual arrays. The numpy.storez function can store a set of
arrays to a named file in a zip archive. An associated function numpy.load
can be used to read the file later. Basically, we call numpy.storez(filename,
**kwargs), where kwargs is a dictionary containing array names as keys and
the corresponding array objects as values. Very often, the solution at a time
point is given a natural name where the name of the variable and the time level
counter are combined, e.g., u11 or v39. Suppose n is the time level counter and
we have two solution arrays, u and v, that we want to save to a zip archive. The
appropriate code is

import numpy as np
u_name = ’u%04d’ % n # array name
v_name = ’v%04d’ % n # array name
kwargs = {u_name: u, v_name: v} # keyword args for savez
fname = ’.mydata%04d.dat’ % n
np.savez(fname, **kwargs)
if n == 0: # store x once

np.savez(’.mydata_x.dat’, x=x)

Since the name of the array must be given as a keyword argument to savez,
and the name must be constructed as shown, it becomes a little tricky to do the
call, but with a dictionary kwargs and **kwargs, which sends each key-value
pair as individual keyword arguments, the task gets accomplished.

Merging zip archives. Each separate call to np.savez creates a new file (zip
archive) with extension .npz. It is very convenient if collect all results in one
archive instead. This can be done by merging all the individual .npz files into a
single zip archive:

def merge_zip_archives(individual_archives, archive_name):
"""
Merge individual zip archives made with numpy.savez into

6

one archive with name archive_name.
The individual archives can be given as a list of names
or as a Unix wild chard filename expression for glob.glob.
The result of this function is that all the individual
archives are deleted and the new single archive made.
"""
import zipfile
archive = zipfile.ZipFile(

archive_name, ’w’, zipfile.ZIP_DEFLATED,
allowZip64=True)

if isinstance(individual_archives, (list,tuple)):
filenames = individual_archives

elif isinstance(individual_archives, str):
filenames = glob.glob(individual_archives)

Open each archive and write to the common archive
for filename in filenames:

f = zipfile.ZipFile(filename, ’r’,
zipfile.ZIP_DEFLATED)

for name in f.namelist():
data = f.open(name, ’r’)
Save under name without .npy
archive.writestr(name[:-4], data.read())

f.close()
os.remove(filename)

archive.close()

Here we remark that savez automatically adds the .npz extension to the names
of the arrays we store. We do not want this extension in the final archive.

Reading arrays from zip archives. Archives created by savez or the
merged archive we describe above with name of the form myarchive.npz can
be conveniently read by the numpy.load function:

import numpy as np
array_names = np.load(‘myarchive.npz‘)
for array_name in array_names:

array_names[array_name] is the array itself
e.g. plot(array_names[’t’], array_names[array_name])

2.2 Using joblib to store arrays in files
The Python package joblib has nice functionality for efficient storage of arrays
on disk. The following class applies this functionality so that one can save an
array, or in fact any Python data structure (e.g., a dictionary of arrays), to disk
under a certain name. Later, we can retrieve the object from its name. The
name of the directory under which the arrays are stored by joblib can be given
by the user.

class Storage(object):
"""
Store large data structures (e.g. numpy arrays) efficiently
using joblib.

Use:

7

>>> from Storage import Storage
>>> storage = Storage(cachedir=’tmp_u01’, verbose=1)
>>> import numpy as np
>>> a = np.linspace(0, 1, 100000) # large array
>>> b = np.linspace(0, 1, 100000) # large array
>>> storage.save(’a’, a)
>>> storage.save(’b’, b)
>>> # later
>>> a = storage.retrieve(’a’)
>>> b = storage.retrieve(’b’)
"""
def __init__(self, cachedir=’tmp’, verbose=1):

"""
Parameters

cachedir: str

Name of directory where objects are stored in files.
verbose: bool, int

Let joblib and this class speak when storing files
to disk.

"""
import joblib
self.memory = joblib.Memory(cachedir=cachedir,

verbose=verbose)
self.verbose = verbose
self.retrieve = self.memory.cache(

self.retrieve, ignore=[’data’])
self.save = self.retrieve

def retrieve(self, name, data=None):
if self.verbose > 0:

print ’joblib save of’, name
return data

The retrive and save functions, which do the work, seem quite magic. The
idea is that joblib looks at the name parameter and saves the return value data
to disk if the name parameter has not been used in a previous call. Otherwise, if
name is already registered, joblib fetches the data object from file and returns
it (this is example of a memoize function, see Section ??in [2]).

2.3 Using a hash to create a file or directory name
The user of array storage techniques like those outlined in Sections 2.2 and 2.1
demand the user to assign a name for the file(s) or directory where the solution
is to be stored. Ideally, this name should reflect parameters in the problem
such that one can recognize an already run simulation. One technique is to
make a hash string out of the input data. A hash string is a 40-character long
hexadecimal string that uniquely reflects another potentially much longer string.
(You may be used to hash strings from the Git version control system: every
committed version of the files in Git is recognized by a hash string.)

Suppose you have some input data in the form of functions, numpy arrays,
and other objects. To turn these input data into a string we may grab the source
code of the functions, use a very efficient hash method for potentially large
arrays, and simply convert all other objects via str to a string representation.

8

The final string, merging all input data, is then converted to an SHA1 hash
string such that we represent the input with a 40-character long string.

def myfunction(func1, func2, array1, array2, obj1, obj2):
Convert arguments to hash
import inspect, joblib, hashlib
data = (inspect.getsource(func1),

inspect.getsource(func2),
joblib.hash(array1),
joblib.hash(array2),
str(obj1),
str(obj2))

hash_input = hashlib.sha1(data).hexdigest()

It is wise to use joblib.hash and not try to do a str(array1), since that string
can be very long, and joblib.hash is more efficient than hashlib to turn these
data into a hash.

Remark: turning function objects into their source code is unre-
liable!
The idea of turning a function object into a string via its source code may
look smart, but is not a completely reliable solution. Suppose we have
some function

x0 = 0.1
f = lambda x: 0 of x <= x0 else 1

The source code will be f = lambda x: 0 of x <= x0 else 1, so if the
calling code changes the value of x0 (which f remembers - it is a closure),
the source remains unchanged, the hash is the same, and the change in input
data is unnoticed. Consequently, the technique above must be used with
care. The user can always just remove the stored files in disk and thereby
force a recomputation (provided the software applies to hash to test if a
zip archive or joblib subdirectory exists and if so avoids recomputation).

3 Software for the 1D wave equation
We use numpy.storez to store the solution at each time level on disk. Such
actions must be taken care of outside the solver function, more precisely in the
user_action function that is called at every time level.

We have in the wave1D_dn_vc.py code implemented the user_action call-
back function as a class PlotAndStoreSolution with a __call__(self, x, t, t, n)
method for the user_action function. Basically, __call__ stores and plots
the solution. The storage makes use of the numpy.savez function for saving
a set of arrays to a zip archive. Here, in this callback function, we want to
save one array, u. Since there will be many such arrays, we introduce the array

9

http://tinyurl.com/nm5587k/wave/wave1D/wave_dn_vc.py

names ’u%04d’ % n and closely related filenames. The usage of numpy.savez
in __call__ goes like this:

from numpy import savez
name = ’u%04d’ % n # array name
kwargs = {name: u} # keyword args for savez
fname = ’.’ + self.filename + ’_’ + name + ’.dat’
self.t.append(t[n]) # store corresponding time value
savez(fname, **kwargs)
if n == 0: # store x once

savez(’.’ + self.filename + ’_x.dat’, x=x)

For example, if n is 10 and self.filename is tmp, the above call to savez
becomes savez(’.tmp_u0010.dat’, u0010=u). The actual filename becomes
.tmp_u0010.dat.npz. The actual array name becomes u0010.npy.

Each savez call results in a file, so after the simulation we have one file
per time level. Each file produced by savez is a zip archive. It makes sense
to merge all the files into one. This is done in the close_file method in the
PlotAndStoreSolution class. The code goes as follows.

class PlotAndStoreSolution:
...
def close_file(self, hashed_input):

"""
Merge all files from savez calls into one archive.
hashed_input is a string reflecting input data
for this simulation (made by solver).
"""
if self.filename is not None:

Save all the time points where solutions are saved
savez(’.’ + self.filename + ’_t.dat’,

t=array(self.t, dtype=float))
Merge all savez files to one zip archive
archive_name = ’.’ + hashed_input + ’_archive.npz’
filenames = glob.glob(’.’ + self.filename + ’*.dat.npz’)
merge_zip_archives(filenames, archive_name)

We use various ZipFile functionality to extract the content of the individual
files (each with name filename) and write it to the merged archive (archive).
There is only one array in each individual file (filename) so strictly speaking,
there is no need for the loop for name in f.namelist() (as f.namelist()
returns a list of length 1). However, in other applications where we compute
more arrays at each time level, savez will store all these and then there is need
for iterating over f.namelist().

Instead of merging the archives written by savez we could make an alternative
implementation that writes all our arrays into one archive. This is the subject
of Exercise 1.

3.1 Making hash strings from input data
The hashed_input argument, used to name the resulting archive file with all
solutions, is supposed to be a hash reflecting all import parameters in the problem
such that this simulation has a unique name. The hashed_input string is made

10

in the solver function, using the hashlib and inspect modules, based on the
arguments to solver:

Make hash of all input data
import hashlib, inspect
data = inspect.getsource(I) + ’_’ + inspect.getsource(V) + \

’_’ + inspect.getsource(f) + ’_’ + str(c) + ’_’ + \
(’None’ if U_0 is None else inspect.getsource(U_0)) + \
(’None’ if U_L is None else inspect.getsource(U_L)) + \
’_’ + str(L) + str(dt) + ’_’ + str(C) + ’_’ + str(T) + \
’_’ + str(stability_safety_factor)

hashed_input = hashlib.sha1(data).hexdigest()

NOTE: All this is now explained!
To get the source code of a function f as a string, we use inspect.getsource(f).

All input, functions as well as variables, is then merged to a string data, and then
hashlib.sha1 makes a unique, much shorter (40 characters long), fixed-length
string out of data that we can use in the archive filename.

Remark.
Note that the construction of the data string is not fool proof: if, e.g., I
is a formula with parameters and the parameters change, the source code
is still the same and data and hence the hash remains unaltered. The
implementation must therefore be used with care!

3.2 Avoiding rerunning previously run cases
If the archive file whose name is based on hashed_input already exists, the
simulation with the current set of parameters has been done before and one
can avoid redoing the work. The solver function returns the CPU time and
hashed_input, and a negative CPU time means that no simulation was run.
In that case we should not call the close_file method above (otherwise we
overwrite the archive with just the self.t array). The typical usage goes like

action = PlotAndStoreSolution(...)
dt = (L/Nx)/C # choose the stability limit with given Nx
cpu, hashed_input = solver(

I=lambda x: ...,
V=0, f=0, c=1, U_0=lambda t: 0, U_L=None, L=1,
dt=dt, C=C, T=T,
user_action=action, version=’vectorized’,
stability_safety_factor=1)

action.make_movie_file()
if cpu > 0: # did we generate new data?

action.close_file(hashed_input)

11

http://tinyurl.com/nm5587k/wave/wave1D/wave_dn_vc.py

3.3 Verification
Exact solutions of the numerical equations are always attractive for verification
purposes since the software should reproduce such solutions to machine precision.
With Dirichlet boundary conditions we can construct a function that is linear
in t and quadratic in x that is an exact solution of the scheme, while with
Neumann conditions are left with testing just a constant solution (see comments
in Section 6.5 in [1]).

A more general method for verification is to check the convergence rates.
Do convergence rates here! It is general...

4 Programming the solver with classes
Many who knows about class programming prefer to organize their software in
terms of classes. We can easily port our function-based code in ... to a class
version.

We will create a class Problem to hold the physical parameters of the problem
and a class Solver to hold the numerical parameters and the solver function. In
addition, it is convenient to collect the arrays that describe the mesh in a special
Mesh class and make a class Function for a mesh function (mesh point values
and its mesh).

4.1 Class Problem
4.2 Class Mesh
The Mesh class can be made valid for a space-time mesh in any number of space
dimensions. To make versatile, the constructor accepts either a tuple/list of
number of cells in each spatial dimension or a tuple/list of cell spacings. In
addition, we need the size of the hypercube mesh as a tuple/list of 2-tuples
with lower and upper limits of the mesh coordinates in each direction. For 1D
meshes it is more natural to just write the number of cells or the cell size and
not wrap it in a list. We also need the time interval from t0 to T. Giving no
spatial discretization information implies a time mesh only, and vice versa. The
Mesh class with documentation and a doc test should now be self-explanatory:

import numpy as np

class Mesh(object):
"""
Holds data structures for a uniform mesh on a hypercube in
space, plus a uniform mesh in time.

======== ==
Argument Explanation
======== ==
L List of 2-lists of min and max coordinates

in each spatial direction.
T Final time in time mesh.
Nt Number of cells in time mesh.

12

dt Time step. Either Nt or dt must be given.
N List of number of cells in the spatial directions.
d List of cell sizes in the spatial directions.

Either N or d must be given.
======== ==

Users can access all the parameters mentioned above, plus
‘‘x[i]‘‘ and ‘‘t‘‘ for the coordinates in direction ‘‘i‘‘
and the time coordinates, respectively.

Examples:

>>> from UniformFDMesh import Mesh
>>>
>>> # Simple space mesh
>>> m = Mesh(L=[0,1], N=4)
>>> print m.dump()
space: [0,1] N=4 d=0.25
>>>
>>> # Simple time mesh
>>> m = Mesh(T=4, dt=0.5)
>>> print m.dump()
time: [0,4] Nt=8 dt=0.5
>>>
>>> # 2D space mesh
>>> m = Mesh(L=[[0,1], [-1,1]], d=[0.5, 1])
>>> print m.dump()
space: [0,1]x[-1,1] N=2x2 d=0.5,1
>>>
>>> # 2D space mesh and time mesh
>>> m = Mesh(L=[[0,1], [-1,1]], d=[0.5, 1], Nt=10, T=3)
>>> print m.dump()
space: [0,1]x[-1,1] N=2x2 d=0.5,1 time: [0,3] Nt=10 dt=0.3

"""
def __init__(self,

L=None, T=None, t0=0,
N=None, d=None,
Nt=None, dt=None):

if N is None and d is None:
No spatial mesh
if Nt is None and dt is None:

raise ValueError(
’Mesh constructor: either Nt or dt must be given’)

if T is None:
raise ValueError(
’Mesh constructor: T must be given’)

if Nt is None and dt is None:
if N is None and d is None:

raise ValueError(
’Mesh constructor: either N or d must be given’)

if L is None:
raise ValueError(
’Mesh constructor: L must be given’)

Allow 1D interface without nested lists with one element
if L is not None and isinstance(L[0], (float,int)):

Only an interval was given
L = [L]

if N is not None and isinstance(N, (float,int)):
N = [N]

if d is not None and isinstance(d, (float,int)):
d = [d]

13

Set all attributes to None
self.x = None
self.t = None
self.Nt = None
self.dt = None
self.N = None
self.d = None
self.t0 = t0

if N is None and d is not None and L is not None:
self.L = L
if len(d) != len(L):

raise ValueError(
’d has different size (no of space dim.) from ’
’L: %d vs %d’, len(d), len(L))

self.d = d
self.N = [int(round(float(self.L[i][1] -

self.L[i][0])/d[i]))
for i in range(len(d))]

if d is None and N is not None and L is not None:
self.L = L
if len(N) != len(L):

raise ValueError(
’N has different size (no of space dim.) from ’
’L: %d vs %d’, len(N), len(L))

self.N = N
self.d = [float(self.L[i][1] - self.L[i][0])/N[i]

for i in range(len(N))]

if Nt is None and dt is not None and T is not None:
self.T = T
self.dt = dt
self.Nt = int(round(T/dt))

if dt is None and Nt is not None and T is not None:
self.T = T
self.Nt = Nt
self.dt = T/float(Nt)

if self.N is not None:
self.x = [np.linspace(

self.L[i][0], self.L[i][1], self.N[i]+1)
for i in range(len(self.L))]

if Nt is not None:
self.t = np.linspace(self.t0, self.T, self.Nt+1)

def get_num_space_dim(self):
return len(self.d) if self.d is not None else 0

def has_space(self):
return self.d is not None

def has_time(self):
return self.dt is not None

def dump(self):
s = ’’
if self.has_space():

s += ’space: ’ + \
’x’.join([’[%g,%g]’ % (self.L[i][0], self.L[i][1])

for i in range(len(self.L))]) + ’ N=’
s += ’x’.join([str(Ni) for Ni in self.N]) + ’ d=’
s += ’,’.join([str(di) for di in self.d])

if self.has_space() and self.has_time():
s += ’ ’

14

if self.has_time():
s += ’time: ’ + ’[%g,%g]’ % (self.t0, self.T) + \

’ Nt=%g’ % self.Nt + ’ dt=%g’ % self.dt
return s

We rely on attribute access - not get/set functions!

Java programmers in particular are used to get/set functions in classes
to access internal data. In Python, we usually apply direct access of the
attribute, such as m.N[i] if m is a Mesh object. A widely used convention is
to do this as long as access to an attribute does not require additional code.
In that case, one applies a property construction. The original interface
remains the same after a property is introduced (in contrast to Java), so
user will not notice a change to properties.

The only argument against direct attribute access in class Mesh is
that the attributes are read-only so we could avoid offering a set function.
Instead, we rely on the user that she does not assign new values to the
attributes.

4.3 Class Function
A class Function is handy to hold a mesh and corresponding values for a scalar
or vector function over the mesh. Since we may have a time or space mesh, or a
combined time and space mesh, with one or more components in the function,
some if tests are needed for allocating the right array sizes. To help the user,
an indices attribute with the name of the indices in the final array u for the
function values is made. The examples in the doc string should explain the
functionality.

class Function(object):
"""
A scalar or vector function over a mesh (of class Mesh).

========== ===
Argument Explanation
========== ===
mesh Class Mesh object: spatial and/or temporal mesh.
num_comp Number of components in function (1 for scalar).
space_only True if the function is defined on the space mesh

only (to save space). False if function has values
in space and time.

========== ===

The indexing of ‘‘u‘‘, which holds the mesh point values of the
function, depends on whether we have a space and/or time mesh.

Examples:

>>> from UniformFDMesh import Mesh, Function
>>>
>>> # Simple space mesh

15

>>> m = Mesh(L=[0,1], N=4)
>>> print m.dump()
space: [0,1] N=4 d=0.25
>>> f = Function(m)
>>> f.indices
[’x0’]
>>> f.u.shape
(5,)
>>> f.u[4] # space point 4
0.0
>>>
>>> # Simple time mesh for two components
>>> m = Mesh(T=4, dt=0.5)
>>> print m.dump()
time: [0,4] Nt=8 dt=0.5
>>> f = Function(m, num_comp=2)
>>> f.indices
[’time’, ’component’]
>>> f.u.shape
(9, 2)
>>> f.u[3,1] # time point 3, comp=1 (2nd comp.)
0.0
>>>
>>> # 2D space mesh
>>> m = Mesh(L=[[0,1], [-1,1]], d=[0.5, 1])
>>> print m.dump()
space: [0,1]x[-1,1] N=2x2 d=0.5,1
>>> f = Function(m)
>>> f.indices
[’x0’, ’x1’]
>>> f.u.shape
(3, 3)
>>> f.u[1,2] # space point (1,2)
0.0
>>>
>>> # 2D space mesh and time mesh
>>> m = Mesh(L=[[0,1],[-1,1]], d=[0.5,1], Nt=10, T=3)
>>> print m.dump()
space: [0,1]x[-1,1] N=2x2 d=0.5,1 time: [0,3] Nt=10 dt=0.3
>>> f = Function(m, num_comp=2, space_only=False)
>>> f.indices
[’time’, ’x0’, ’x1’, ’component’]
>>> f.u.shape
(11, 3, 3, 2)
>>> f.u[2,1,2,0] # time step 2, space point (1,2), comp=0
0.0
>>> # Function with space data only
>>> f = Function(m, num_comp=1, space_only=True)
>>> f.indices
[’x0’, ’x1’]
>>> f.u.shape
(3, 3)
>>> f.u[1,2] # space point (1,2)
0.0
"""
def __init__(self, mesh, num_comp=1, space_only=True):

self.mesh = mesh
self.num_comp = num_comp
self.indices = []

Create array(s) to store mesh point values
if (self.mesh.has_space() and not self.mesh.has_time()) or \

(self.mesh.has_space() and self.mesh.has_time() and \
space_only):

16

Space mesh only
if num_comp == 1:

self.u = np.zeros(
[self.mesh.N[i] + 1
for i in range(len(self.mesh.N))])

self.indices = [
’x’+str(i) for i in range(len(self.mesh.N))]

else:
self.u = np.zeros(

[self.mesh.N[i] + 1
for i in range(len(self.mesh.N))] +

[num_comp])
self.indices = [

’x’+str(i)
for i in range(len(self.mesh.N))] +\
[’component’]

if not self.mesh.has_space() and self.mesh.has_time():
Time mesh only
if num_comp == 1:

self.u = np.zeros(self.mesh.Nt+1)
self.indices = [’time’]

else:
Need num_comp entries per time step
self.u = np.zeros((self.mesh.Nt+1, num_comp))
self.indices = [’time’, ’component’]

if self.mesh.has_space() and self.mesh.has_time() \
and not space_only:
Space-time mesh
size = [self.mesh.Nt+1] + \

[self.mesh.N[i]+1
for i in range(len(self.mesh.N))]

if num_comp > 1:
self.indices = [’time’] + \

[’x’+str(i)
for i in range(len(self.mesh.N))] +\

[’component’]
size += [num_comp]

else:
self.indices = [’time’] + [’x’+str(i)

for i in range(len(self.mesh.N))]
self.u = np.zeros(size)

4.4 Class Solver
With the Mesh and Function classes in place, we can rewrite the solver function,
but we put it as a method in class Solver:

5 Migrating loops to Cython
We now consider the wave2D_u0.py code for solving the 2D linear wave equation
with constant wave velocity and homogeneous Dirichlet boundary conditions
u = 0. This code contains a solver function, which calls and advance_*
function to advance the numerical scheme one level forward in time. The function
advance_scalar applies standard Python loops to implement the scheme, while
advance_vectorized performs corresponding vectorized arithmetics with array

17

http://tinyurl.com/nm5587k/wave/wave2D_u0/wave2D_u0.py

slices. The statements of this solver are explained in Section 12, in particular
Sections 12.1 and 12.2 in [1].

Although vectorization can bring down the CPU time dramatically compared
with scalar code, there is still some factor 5-10 to win in these types of applications
by implementing the finite difference scheme in compiled code, typically in
Fortran, C, or C++. This can quite easily be done by adding a little extra code
to our program. Cython is an extension of Python that offers the easiest way to
nail our Python loops in the scalar code down to machine code and achieve the
efficiency of C.

Cython can be viewed as an extended Python language where variables are
declared with types and where functions are marked to be implemented in C.
Migrating Python code to Cython is done by copying the desired code segments
to functions (or classes) and placing them in one or more separate files with
extension .pyx.

5.1 Declaring variables and annotating the code
Our starting point is the plain advance_scalar function for a scalar implemen-
tation of the updating algorithm for new values un+1

i,j :

def advance_scalar(u, u_1, u_2, f, x, y, t, n, Cx2, Cy2, dt2,
V=None, step1=False):

Ix = range(0, u.shape[0]); Iy = range(0, u.shape[1])
if step1:

dt = sqrt(dt2) # save
Cx2 = 0.5*Cx2; Cy2 = 0.5*Cy2; dt2 = 0.5*dt2 # redefine
D1 = 1; D2 = 0

else:
D1 = 2; D2 = 1

for i in Ix[1:-1]:
for j in Iy[1:-1]:

u_xx = u_1[i-1,j] - 2*u_1[i,j] + u_1[i+1,j]
u_yy = u_1[i,j-1] - 2*u_1[i,j] + u_1[i,j+1]
u[i,j] = D1*u_1[i,j] - D2*u_2[i,j] + \

Cx2*u_xx + Cy2*u_yy + dt2*f(x[i], y[j], t[n])
if step1:

u[i,j] += dt*V(x[i], y[j])
Boundary condition u=0
j = Iy[0]
for i in Ix: u[i,j] = 0
j = Iy[-1]
for i in Ix: u[i,j] = 0
i = Ix[0]
for j in Iy: u[i,j] = 0
i = Ix[-1]
for j in Iy: u[i,j] = 0
return u

We simply take a copy of this function and put it in a file wave2D_u0_loop_cy.pyx.
The relevant Cython implementation arises from declaring variables with types
and adding some important annotations to speed up array computing in Cython.
Let us first list the complete code in the .pyx file:

18

import numpy as np
cimport numpy as np
cimport cython
ctypedef np.float64_t DT # data type

@cython.boundscheck(False) # turn off array bounds check
@cython.wraparound(False) # turn off negative indices (u[-1,-1])
cpdef advance(

np.ndarray[DT, ndim=2, mode=’c’] u,
np.ndarray[DT, ndim=2, mode=’c’] u_1,
np.ndarray[DT, ndim=2, mode=’c’] u_2,
np.ndarray[DT, ndim=2, mode=’c’] f,
double Cx2, double Cy2, double dt2):

cdef:
int Ix_start = 0
int Iy_start = 0
int Ix_end = u.shape[0]-1
int Iy_end = u.shape[1]-1
int i, j
double u_xx, u_yy

for i in range(Ix_start+1, Ix_end):
for j in range(Iy_start+1, Iy_end):

u_xx = u_1[i-1,j] - 2*u_1[i,j] + u_1[i+1,j]
u_yy = u_1[i,j-1] - 2*u_1[i,j] + u_1[i,j+1]
u[i,j] = 2*u_1[i,j] - u_2[i,j] + \

Cx2*u_xx + Cy2*u_yy + dt2*f[i,j]
Boundary condition u=0
j = Iy_start
for i in range(Ix_start, Ix_end+1): u[i,j] = 0
j = Iy_end
for i in range(Ix_start, Ix_end+1): u[i,j] = 0
i = Ix_start
for j in range(Iy_start, Iy_end+1): u[i,j] = 0
i = Ix_end
for j in range(Iy_start, Iy_end+1): u[i,j] = 0
return u

This example may act as a recipe on how to transform array-intensive code
with loops into Cython.

1. Variables are declared with types: for example, double v in the argument
list instead of just v, and cdef double v for a variable v in the body of
the function. A Python float object is declared as double for translation
to C by Cython, while an int object is declared by int.

2. Arrays need a comprehensive type declaration involving

• the type np.ndarray,
• the data type of the elements, here 64-bit floats, abbreviated as DT

through ctypedef np.float64_t DT (instead of DT we could use the
full name of the data type: np.float64_t, which is a Cython-defined
type),

• the dimensions of the array, here ndim=2 and ndim=1,
• specification of contiguous memory for the array (mode=’c’).

19

3. Functions declared with cpdef are translated to C but are also accessible
from Python.

4. In addition to the standard numpy import we also need a special Cython
import of numpy: cimport numpy as np, to appear after the standard
import.

5. By default, array indices are checked to be within their legal limits. To
speed up the code one should turn off this feature for a specific function
by placing @cython.boundscheck(False) above the function header.

6. Also by default, array indices can be negative (counting from the end), but
this feature has a performance penalty and is therefore here turned off by
writing @cython.wraparound(False) right above the function header.

7. The use of index sets Ix and Iy in the scalar code cannot be success-
fully translated to C. One reason is that constructions like Ix[1:-1]
involve negative indices, and these are now turned off. Another reason
is that Cython loops must take the form for i in xrange or for i in
range for being translated into efficient C loops. We have therefore in-
troduced Ix_start as Ix[0] and Ix_end as Ix[-1] to hold the start
and end of the values of index i. Similar variables are introduced for
the j index. A loop for i in Ix is with these new variables written as
for i in range(Ix_start, Ix_end+1).

Array declaration syntax in Cython.

We have used the syntax np.ndarray[DT, ndim=2, mode=’c’] to declare
numpy arrays in Cython. There is a simpler, alternative syntax, employ-
ing typed memory views, where the declaration looks like double [:,:].
However, the full support for this functionality is not yet ready, and in this
text we use the full array declaration syntax.

5.2 Visual inspection of the C translation
Cython can visually explain how successfully it translated a code from Python
to C. The command

Terminal

Terminal> cython -a wave2D_u0_loop_cy.pyx

produces an HTML file wave2D_u0_loop_cy.html, which can be loaded into a
web browser to illustrate which lines of the code that have been translated to C.
Figure 1 shows the illustrated code. Yellow lines indicate the lines that Cython
did not manage to translate to efficient C code and that remain in Python. For

20

http://docs.cython.org/src/userguide/memoryviews.html

the present code we see that Cython is able to translate all the loops with array
computing to C, which is our primary goal.

Figure 1: Visual illustration of Cython’s ability to translate Python to C.

You can also inspect the generated C code directly, as it appears in the file
wave2D_u0_loop_cy.c. Nevertheless, understanding this C code requires some
familiarity with writing Python extension modules in C by hand. Deep down in
the file we can see in detail how the compute-intensive statements have been
translated into some complex C code that is quite different from what a human
would write (at least if a direct correspondence to the mathematical notation
was intended).

5.3 Building the extension module
Cython code must be translated to C, compiled, and linked to form what is known
in the Python world as a C extension module. This is usually done by making a
setup.py script, which is the standard way of building and installing Python
software. For an extension module arising from Cython code, the following
setup.py script is all we need to build and install the module:

from distutils.core import setup
from distutils.extension import Extension
from Cython.Distutils import build_ext

cymodule = ’wave2D_u0_loop_cy’
setup(

name=cymodule
ext_modules=[Extension(cymodule, [cymodule + ’.pyx’],)],
cmdclass={’build_ext’: build_ext},

)

We run the script by

Terminal

21

Terminal> python setup.py build_ext --inplace

The –inplace option makes the extension module available in the current
directory as the file wave2D_u0_loop_cy.so. This file acts as a normal Python
module that can be imported and inspected:

>>> import wave2D_u0_loop_cy
>>> dir(wave2D_u0_loop_cy)
[’__builtins__’, ’__doc__’, ’__file__’, ’__name__’,
’__package__’, ’__test__’, ’advance’, ’np’]

The important output from the dir function is our Cython function advance
(the module also features the imported numpy module under the name np as well
as many standard Python objects with double underscores in their names).

The setup.py file makes use of the distutils package in Python and
Cython’s extension of this package. These tools know how Python was built on
the computer and will use compatible compiler(s) and options when building
other code in Cython, C, or C++. Quite some experience with building large
program systems is needed to do the build process manually, so using a setup.py
script is strongly recommended.

Simplified build of a Cython module.

When there is no need to link the C code with special libraries, Cython
offers a shortcut for generating and importing the extension module:

import pyximport; pyximport.install()

This makes the setup.py script redundant. However, in the wave2D_u0.py
code we do not use pyximport and require an explicit build process of this
and many other modules.

5.4 Calling the Cython function from Python
The wave2D_u0_loop_cy module contains our advance function, which we now
may call from the Python program for the wave equation:

import wave2D_u0_loop_cy
advance = wave2D_u0_loop_cy.advance
...
for n in It[1:-1: # time loop

f_a[:,:] = f(xv, yv, t[n]) # precompute, size as u
u = advance(u, u_1, u_2, f_a, x, y, t, Cx2, Cy2, dt2)

22

Efficiency. For a mesh consisting of 120× 120 cells, the scalar Python code
require 1370 CPU time units, the vectorized version requires 5.5, while the
Cython version requires only 1! For a smaller mesh with 60× 60 cells Cython is
about 1000 times faster than the scalar Python code, and the vectorized version
is about 6 times slower than the Cython version.

6 Migrating loops to Fortran
Instead of relying on Cython’s (excellent) ability to translate Python to C, we
can invoke a compiled language directly and write the loops ourselves. Let us
start with Fortran 77, because this is a language with more convenient array
handling than C (or plain C++). Or more precisely, we can with ease program
with the same multi-dimensional indices in the Fortran code as in the numpy
arrays in the Python code, while in C these arrays are one-dimensional and
requires us to reduce multi-dimensional indices to a single index.

6.1 The Fortran subroutine
We write a Fortran subroutine advance in a file wave2D_u0_loop_f77.f for
implementing the updating formula (117) and setting the solution to zero at the
boundaries:

subroutine advance(u, u_1, u_2, f, Cx2, Cy2, dt2, Nx, Ny)
integer Nx, Ny
real*8 u(0:Nx,0:Ny), u_1(0:Nx,0:Ny), u_2(0:Nx,0:Ny)
real*8 f(0:Nx,0:Ny), Cx2, Cy2, dt2
integer i, j
real*8 u_xx, u_yy

Cf2py intent(in, out) u

C Scheme at interior points
do j = 1, Ny-1

do i = 1, Nx-1
u_xx = u_1(i-1,j) - 2*u_1(i,j) + u_1(i+1,j)
u_yy = u_1(i,j-1) - 2*u_1(i,j) + u_1(i,j+1)
u(i,j) = 2*u_1(i,j) - u_2(i,j) + Cx2*u_xx + Cy2*u_yy +

& dt2*f(i,j)
end do

end do

C Boundary conditions
j = 0
do i = 0, Nx

u(i,j) = 0
end do
j = Ny
do i = 0, Nx

u(i,j) = 0
end do
i = 0
do j = 0, Ny

u(i,j) = 0
end do
i = Nx

23

http://tinyurl.com/nm5587k/wave/wave2D_u0/wave2D_u0_loop_f77.f

do j = 0, Ny
u(i,j) = 0

end do
return
end

This code is plain Fortran 77, except for the special Cf2py comment line, which
here specifies that u is both an input argument and an object to be returned
from the advance routine. Or more precisely, Fortran is not able return an array
from a function, but we need a wrapper code in C for the Fortran subroutine to
enable calling it from Python, and from this wrapper code one can return u to
the calling Python code.

Remark.
It is not strictly necessary to return u to the calling Python code since
the advance function will modify the elements of u, but the convention in
Python is to get all output from a function as returned values. That is,
the right way of calling the above Fortran subroutine from Python is

u = advance(u, u_1, u_2, f, Cx2, Cy2, dt2)

The less encouraged style, which works and resembles the way the Fortran
subroutine is called from Fortran, reads

advance(u, u_1, u_2, f, Cx2, Cy2, dt2)

6.2 Building the Fortran module with f2py
The nice feature of writing loops in Fortran is that, without much effort, the
tool f2py can produce a C extension module such that we can call the Fortran
version of advance from Python. The necessary commands to run are

Terminal

Terminal> f2py -m wave2D_u0_loop_f77 -h wave2D_u0_loop_f77.pyf \
--overwrite-signature wave2D_u0_loop_f77.f

Terminal> f2py -c wave2D_u0_loop_f77.pyf --build-dir build_f77 \
-DF2PY_REPORT_ON_ARRAY_COPY=1 wave2D_u0_loop_f77.f

The first command asks f2py to interpret the Fortran code and make a Fortran 90
specification of the extension module in the file wave2D_u0_loop_f77.pyf. The
second command makes f2py generate all necessary wrapper code, compile our
Fortran file and the wrapper code, and finally build the module. The build process
takes place in the specified subdirectory build_f77 so that files can be inspected
if something goes wrong. The option -DF2PY_REPORT_ON_ARRAY_COPY=1 makes

24

f2py write a message for every array that is copied in the communication between
Fortran and Python, which is very useful for avoiding unnecessary array copying
(see below). The name of the module file is wave2D_u0_loop_f77.so, and this
file can be imported and inspected as any other Python module:

>>> import wave2D_u0_loop_f77
>>> dir(wave2D_u0_loop_f77)
[’__doc__’, ’__file__’, ’__name__’, ’__package__’,
’__version__’, ’advance’]

>>> print wave2D_u0_loop_f77.__doc__
This module ’wave2D_u0_loop_f77’ is auto-generated with f2py....
Functions:

u = advance(u,u_1,u_2,f,cx2,cy2,dt2,
nx=(shape(u,0)-1),ny=(shape(u,1)-1))

Examine the doc strings!

Printing the doc strings of the module and its functions is extremely
important after having created a module with f2py. The reason is that
f2py makes Python interfaces to the Fortran functions that are different
from how the functions are declared in the Fortran code (!). The rationale
for this behavior is that f2py creates Pythonic interfaces such that Fortran
routines can be called in the same way as one calls Python functions.
Output data from Python functions is always returned to the calling
code, but this is technically impossible in Fortran. Also, arrays in Python
are passed to Python functions without their dimensions because that
information is packed with the array data in the array objects. This is not
possible in Fortran, however. Therefore, f2py removes array dimensions
from the argument list, and f2py makes it possible to return objects back
to Python.

Let us follow the advice of examining the doc strings and take a close look
at the documentation f2py has generated for our Fortran advance subroutine:

>>> print wave2D_u0_loop_f77.advance.__doc__
This module ’wave2D_u0_loop_f77’ is auto-generated with f2py
Functions:

u = advance(u,u_1,u_2,f,cx2,cy2,dt2,
nx=(shape(u,0)-1),ny=(shape(u,1)-1))

.
advance - Function signature:

u = advance(u,u_1,u_2,f,cx2,cy2,dt2,[nx,ny])
Required arguments:

u : input rank-2 array(’d’) with bounds (nx + 1,ny + 1)
u_1 : input rank-2 array(’d’) with bounds (nx + 1,ny + 1)
u_2 : input rank-2 array(’d’) with bounds (nx + 1,ny + 1)
f : input rank-2 array(’d’) with bounds (nx + 1,ny + 1)
cx2 : input float
cy2 : input float
dt2 : input float

Optional arguments:
nx := (shape(u,0)-1) input int

25

ny := (shape(u,1)-1) input int
Return objects:

u : rank-2 array(’d’) with bounds (nx + 1,ny + 1)

Here we see that the nx and ny parameters declared in Fortran are optional
arguments that can be omitted when calling advance from Python.

We strongly recommend to print out the documentation of every Fortran
function to be called from Python and make sure the call syntax is exactly as
listed in the documentation.

6.3 How to avoid array copying
Multi-dimensional arrays are stored as a stream of numbers in memory. For
a two-dimensional array consisting of rows and columns there are two ways
of creating such a stream: row-major ordering, which means that rows are
stored consecutively in memory, or column-major ordering, which means that the
columns are stored one after each other. All programming languages inherited
from C, including Python, apply the row-major ordering, but Fortran uses
column-major storage. Thinking of a two-dimensional array in Python or C as a
matrix, it means that Fortran works with the transposed matrix.

Fortunately, f2py creates extra code so that accessing u(i,j) in the Fortran
subroutine corresponds to the element u[i,j] in the underlying numpy array
(without the extra code, u(i,j) in Fortran would access u[j,i] in the numpy
array). Technically, f2py takes a copy of our numpy array and reorders the data
before sending the array to Fortran. Such copying can be costly. For 2D wave
simulations on a 60 × 60 grid the overhead of copying is a factor of 5, which
means that almost the whole performance gain of Fortran over vectorized numpy
code is lost!

To avoid having f2py to copy arrays with C storage to the corresponding
Fortran storage, we declare the arrays with Fortran storage:

order = ’Fortran’ if version == ’f77’ else ’C’
u = zeros((Nx+1,Ny+1), order=order) # solution array
u_1 = zeros((Nx+1,Ny+1), order=order) # solution at t-dt
u_2 = zeros((Nx+1,Ny+1), order=order) # solution at t-2*dt

In the compile and build step of using f2py, it is recommended to add an
extra option for making f2py report on array copying:

Terminal

Terminal> f2py -c wave2D_u0_loop_f77.pyf --build-dir build_f77 \
-DF2PY_REPORT_ON_ARRAY_COPY=1 wave2D_u0_loop_f77.f

It can sometimes be a challenge to track down which array that causes a
copying. There are two principal reasons for copying array data: either the array
does not have Fortran storage or the element types do not match those declared
in the Fortran code. The latter cause is usually effectively eliminated by using
real*8 data in the Fortran code and float64 (the default float type in numpy)

26

in the arrays on the Python side. The former reason is more common, and to
check whether an array before a Fortran call has the right storage one can print
the result of isfortran(a), which is True if the array a has Fortran storage.

Let us look at an example where we face problems with array storage. A
typical problem in the wave2D_u0.py code is to set

f_a = f(xv, yv, t[n])

before the call to the Fortran advance routine. This computation creates a new
array with C storage. An undesired copy of f_a will be produced when sending
f_a to a Fortran routine. There are two remedies, either direct insertion of data
in an array with Fortran storage,

f_a = zeros((Nx+1, Ny+1), order=’Fortran’)
...
f_a[:,:] = f(xv, yv, t[n])

or remaking the f(xv, yv, t[n]) array,

f_a = asarray(f(xv, yv, t[n]), order=’Fortran’)

The former remedy is most efficient if the asarray operation is to be performed
a large number of times.

Efficiency. The efficiency of this Fortran code is very similar to the Cython
code. There is usually nothing more to gain, from a computational efficiency
point of view, by implementing the complete Python program in Fortran or C.
That will just be a lot more code for all administering work that is needed in
scientific software, especially if we extend our sample program wave2D_u0.py to
handle a real scientific problem. Then only a small portion will consist of loops
with intensive array calculations. These can be migrated to Cython or Fortran
as explained, while the rest of the programming can be more conveniently done
in Python.

7 Migrating loops to C via Cython
The computationally intensive loops can alternatively be implemented in C
code. Just as Fortran calls for care regarding the storage of two-dimensional
arrays, working with two-dimensional arrays in C is a bit tricky. The reason is
that numpy arrays are viewed as one-dimensional arrays when transferred to C,
while C programmers will think of u, u_1, and u_2 as two dimensional arrays
and index them like u[i][j]. The C code must declare u as double* u and
translate an index pair [i][j] to a corresponding single index when u is viewed
as one-dimensional. This translation requires knowledge of how the numbers in
u are stored in memory.

27

7.1 Translating index pairs to single indices
Two-dimensional numpy arrays with the default C storage are stored row by row.
In general, multi-dimensional arrays with C storage are stored such that the last
index has the fastest variation, then the next last index, and so on, ending up
with the slowest variation in the first index. For a two-dimensional u declared
as zeros((Nx+1,Ny+1)) in Python, the individual elements are stored in the
following order:

u[0,0], u[0,1], u[0,2], ..., u[0,Ny], u[1,0], u[1,1], ...,
u[1,Ny], u[2,0], ..., u[Nx,0], u[Nx,1], ..., u[Nx, Ny]

Viewing u as one-dimensional, the index pair (i, j) translates to i(Ny + 1) + j.
So, where a C programmer would naturally write an index u[i][j], the indexing
must read u[i*(Ny+1) + j]. This is tedious to write, so it can be handy to
define a C macro,

#define idx(i,j) (i)*(Ny+1) + j

so that we can write u[idx(i,j)], which reads much better and is easier to
debug.

Be careful with macro definitions.
Macros just perform simple text substitutions: idx(hello,world) is ex-
panded to (hello)*(Ny+1) + world. The parenthesis in (i) are essential
- using the natural mathematical formula i*(Ny+1) + j in the macro
definition, idx(i-1,j) would expand to i-1*(Ny+1) + j, which is the
wrong formula. Macros are handy, but requires careful use. In C++, inline
functions are safer and replace the need for macros.

7.2 The complete C code
The C version of our function advance can be coded as follows.

#define idx(i,j) (i)*(Ny+1) + j

void advance(double* u, double* u_1, double* u_2, double* f,
double Cx2, double Cy2, double dt2, int Nx, int Ny)

{
int i, j;
double u_xx, u_yy;
/* Scheme at interior points */
for (i=1; i<=Nx-1; i++) {

for (j=1; j<=Ny-1; j++) {
u_xx = u_1[idx(i-1,j)] - 2*u_1[idx(i,j)] + u_1[idx(i+1,j)];
u_yy = u_1[idx(i,j-1)] - 2*u_1[idx(i,j)] + u_1[idx(i,j+1)];
u[idx(i,j)] = 2*u_1[idx(i,j)] - u_2[idx(i,j)] +

Cx2*u_xx + Cy2*u_yy + dt2*f[idx(i,j)];

28

}
}
/* Boundary conditions */
j = 0; for (i=0; i<=Nx; i++) u[idx(i,j)] = 0;
j = Ny; for (i=0; i<=Nx; i++) u[idx(i,j)] = 0;
i = 0; for (j=0; j<=Ny; j++) u[idx(i,j)] = 0;
i = Nx; for (j=0; j<=Ny; j++) u[idx(i,j)] = 0;

}

7.3 The Cython interface file
All the code above appears in a file wave2D_u0_loop_c.c. We need to compile
this file together with C wrapper code such that advance can be called from
Python. Cython can be used to generate appropriate wrapper code. The relevant
Cython code for interfacing C is placed in a file with extension .pyx. Here this
file, called wave2D_u0_loop_c_cy.pyx, looks like

import numpy as np
cimport numpy as np
cimport cython

cdef extern from "wave2D_u0_loop_c.h":
void advance(double* u, double* u_1, double* u_2, double* f,

double Cx2, double Cy2, double dt2,
int Nx, int Ny)

@cython.boundscheck(False)
@cython.wraparound(False)
def advance_cwrap(

np.ndarray[double, ndim=2, mode=’c’] u,
np.ndarray[double, ndim=2, mode=’c’] u_1,
np.ndarray[double, ndim=2, mode=’c’] u_2,
np.ndarray[double, ndim=2, mode=’c’] f,
double Cx2, double Cy2, double dt2):
advance(&u[0,0], &u_1[0,0], &u_2[0,0], &f[0,0],

Cx2, Cy2, dt2,
u.shape[0]-1, u.shape[1]-1)

return u

We first declare the C functions to be interfaced. These must also appear in a C
header file, wave2D_u0_loop_c.h,

extern void advance(double* u, double* u_1, double* u_2, double* f,
double Cx2, double Cy2, double dt2,
int Nx, int Ny);

The next step is to write a Cython function with Python objects as arguments.
The name advance is already used for the C function so the function to be called
from Python is named advance_cwrap. The contents of this function is simply
a call to the advance version in C. To this end, the right information from the
Python objects must be passed on as arguments to advance. Arrays are sent
with their C pointers to the first element, obtained in Cython as &u[0,0] (the
& takes the address of a C variable). The Nx and Ny arguments in advance are
easily obtained from the shape of the numpy array u. Finally, u must be returned
such that we can set u = advance(...) in Python.

29

http://tinyurl.com/nm5587k/wave//wave2D_u0/wave2D_u0_loop_c.c
http://tinyurl.com/nm5587k/wave/wave2D_u0/wave2D_u0_loop_c_cy.pyx
http://tinyurl.com/nm5587k/wave/wave2D_u0/wave2D_u0_loop_c.h

7.4 Building the extension module
It remains to build the extension module. An appropriate setup.py file is

from distutils.core import setup
from distutils.extension import Extension
from Cython.Distutils import build_ext

sources = [’wave2D_u0_loop_c.c’, ’wave2D_u0_loop_c_cy.pyx’]
module = ’wave2D_u0_loop_c_cy’
setup(

name=module,
ext_modules=[Extension(module, sources,

libraries=[], # C libs to link with
)],

cmdclass={’build_ext’: build_ext},
)

All we need to specify is the .c file(s) and the .pyx interface file. Cython is au-
tomatically run to generate the necessary wrapper code. Files are then compiled
and linked to an extension module residing in the file wave2D_u0_loop_c_cy.so.
Here is a session with running setup.py and examining the resulting module in
Python

Terminal

Terminal> python setup.py build_ext --inplace
Terminal> python
>>> import wave2D_u0_loop_c_cy as m
>>> dir(m)
[’__builtins__’, ’__doc__’, ’__file__’, ’__name__’, ’__package__’,
’__test__’, ’advance_cwrap’, ’np’]

The call to the C version of advance can go like this in Python:

import wave2D_u0_loop_c_cy
advance = wave2D_u0_loop_c_cy.advance_cwrap
...
f_a[:,:] = f(xv, yv, t[n])
u = advance(u, u_1, u_2, f_a, Cx2, Cy2, dt2)

Efficiency. In this example, the C and Fortran code runs at the same speed,
and there are no significant differences in the efficiency of the wrapper code. The
overhead implied by the wrapper code is negligible as long as we do not work
with very small meshes and consequently little numerical work in the advance
function.

8 Migrating loops to C via f2py
An alternative to using Cython for interfacing C code is to apply f2py. The C
code is the same, just the details of specifying how it is to be called from Python
differ. The f2py tool requires the call specification to be a Fortran 90 module

30

defined in a .pyf file. This file was automatically generated when we interfaced
a Fortran subroutine. With a C function we need to write this module ourselves,
or we can use a trick and let f2py generate it for us. The trick consists in writing
the signature of the C function with Fortran syntax and place it in a Fortran
file, here wave2D_u0_loop_c_f2py_signature.f:

subroutine advance(u, u_1, u_2, f, Cx2, Cy2, dt2, Nx, Ny)
Cf2py intent(c) advance

integer Nx, Ny, N
real*8 u(0:Nx,0:Ny), u_1(0:Nx,0:Ny), u_2(0:Nx,0:Ny)
real*8 f(0:Nx, 0:Ny), Cx2, Cy2, dt2

Cf2py intent(in, out) u
Cf2py intent(c) u, u_1, u_2, f, Cx2, Cy2, dt2, Nx, Ny

return
end

Note that we need a special f2py instruction, through a Cf2py comment line,
to specify that all the function arguments are C variables. We also need to tell
that the function is actually in C: intent(c) advance.

Since f2py is just concerned with the function signature and not the complete
contents of the function body, it can easily generate the Fortran 90 module
specification based solely on the signature above:

Terminal

Terminal> f2py -m wave2D_u0_loop_c_f2py \
-h wave2D_u0_loop_c_f2py.pyf --overwrite-signature \
wave2D_u0_loop_c_f2py_signature.f

The compile and build step is as for the Fortran code, except that we list C files
instead of Fortran files:

Terminal

Terminal> f2py -c wave2D_u0_loop_c_f2py.pyf \
--build-dir tmp_build_c \
-DF2PY_REPORT_ON_ARRAY_COPY=1 wave2D_u0_loop_c.c

As when interfacing Fortran code with f2py, we need to print out the doc string
to see the exact call syntax from the Python side. This doc string is identical
for the C and Fortran versions of advance.

8.1 Migrating loops to C++ via f2py
C++ is a much more versatile language than C or Fortran and has over the
last two decades become very popular for numerical computing. Many will
therefore prefer to migrate compute-intensive Python code to C++. This is, in
principle, easy: just write the desired C++ code and use some tool for interfacing
it from Python. A tool like SWIG can interpret the C++ code and generate
interfaces for a wide range of languages, including Python, Perl, Ruby, and Java.
However, SWIG is a comprehensive tool with a correspondingly steep learning

31

http://swig.org/

curve. Alternative tools, such as Boost Python, SIP, and Shiboken are similarly
comprehensive. Simpler tools include PyBindGen,

A technically much easier way of interfacing C++ code is to drop the
possibility to use C++ classes directly from Python, but instead make a C
interface to the C++ code. The C interface can be handled by f2py as shown
in the example with pure C code. Such a solution means that classes in Python
and C++ cannot be mixed and that only primitive data types like numbers,
strings, and arrays can be transferred between Python and C++. Actually, this
is often a very good solution because it forces the C++ code to work on array
data, which usually gives faster code than if fancy data structures with classes
are used. The arrays coming from Python, and looking like plain C/C++ arrays,
can be efficiently wrapped in more user-friendly C++ array classes in the C++
code, if desired.

9 Exercises
Exercise 1: Make an improved numpy.savez function
The numpy.savez function can save multiple arrays to a zip archive. Unfortu-
nately, if we want to use savez in time-dependent problems and call it multiple
times (once per time level), each call leads to a separate zip archive. It is more
convenient to have all arrays in one archive, which can be read by numpy.load.
Section 2 provides a recipe for merging all the individual zip archives into one
archive. An alternative is to write a new savez function that allows multiple
calls and storage into the same archive prior to a final close method to close
the archive and make it ready for reading. Implement such an improved savez
function as a class Savez.

The class should pass the following unit test:

def test_Savez():
import tempfile, os
tmp = ’tmp_testarchive’
database = Savez(tmp)
for i in range(4):

array = np.linspace(0, 5+i, 3)
kwargs = {’myarray_%02d’ % i: array}
database.savez(**kwargs)

database.close()

database = np.load(tmp+’.npz’)

expected = {
’myarray_00’: np.array([0. , 2.5, 5.]),
’myarray_01’: np.array([0., 3., 6.])
’myarray_02’: np.array([0. , 3.5, 7.]),
’myarray_03’: np.array([0., 4., 8.]),
}

for name in database:
computed = database[name]
diff = np.abs(expected[name] - computed).max()
assert diff < 1E-13

32

http://www.boost.org/doc/libs/1_51_0/libs/python/doc/index.html
http://riverbankcomputing.co.uk/software/sip/intro
http://qt-project.org/wiki/Category:LanguageBindings::PySide::Shiboken
http://code.google.com/p/pybindgen/

database.close
os.remove(tmp+’.npz’)

Hint. Study the source code for function savez (or more precisely, function
_savez).
Filename: Savez.

References
[1] H. P. Langtangen. Finite difference methods for wave motion. http://

tinyurl.com/k3sdbuv/pub/wave.

[2] H. P. Langtangen. Scaling of Differential Equations. 2015. http://tinyurl.
com/qfjgxmf/web.

33

https://github.com/numpy/numpy/blob/master/numpy/lib/npyio.py
http://tinyurl.com/k3sdbuv/pub/wave
http://tinyurl.com/k3sdbuv/pub/wave
http://tinyurl.com/qfjgxmf/web
http://tinyurl.com/qfjgxmf/web

Index
C extension module, 21
C/Python array storage, 26
column-major ordering, 26
Cython, 17
cython -a (Python-C translation in

HTML), 20

declaration of variables in Cython, 19
distutils, 21

Fortran array storage, 26
Fortran subroutine, 23

row-major ordering, 26

setup.py, 21

wrapper code, 23

34

	A 1D wave equation simulator
	Mathematical model
	Numerical discretization
	A solver function

	Saving large arrays in files
	Using savez to store arrays in files
	Using joblib to store arrays in files
	Using a hash to create a file or directory name

	Software for the 1D wave equation
	Making hash strings from input data
	Avoiding rerunning previously run cases
	Verification

	Programming the solver with classes
	Class Problem
	Class Mesh
	Class Function
	Class Solver

	Migrating loops to Cython
	Declaring variables and annotating the code
	Visual inspection of the C translation
	Building the extension module
	Calling the Cython function from Python

	Migrating loops to Fortran
	The Fortran subroutine
	Building the Fortran module with f2py
	How to avoid array copying

	Migrating loops to C via Cython
	Translating index pairs to single indices
	The complete C code
	The Cython interface file
	Building the extension module

	Migrating loops to C via f2py
	Migrating loops to C++ via f2py

	Exercises
	References
	Index

