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Teaching material on scientific computing has traditionally been very focused
on the mathematics and the applications, while details on how the computer
is programmed to solve the problems have received little attention. Many end
up writing as simple programs as possible, without being aware of much useful
computer science technology that would increase the fun, efficiency, and reliability
of the their scientific computing activities.

This document demonstrates a series of good practices and tools from modern
computer science, using a very simple mathematical problem with a very simple
implementation such that we minimize the mathematical details. Our goal is to
increase the technological quality of computer programming and make it match
the more well-established quality of the mathematics of scientific computing.

More specifically we address the following topics:

• How to structure a code in terms of functions

• How to make a module

• How to read input data flexibly from the command line

• How to create graphical/web user interfaces

• How to write unit tests (test functions or doctests)

• How to refactor code in terms of classes (instead of functions only)

• How to conduct and automate large-scale numerical experiments
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• How to write scientific reports in various formats (LATEX, HTML)

The conventions and techniques outlined here will save you a lot of time when
you incrementally extend software over time from simpler to more complicated
problems. In particular, you will benefit from many good habits:

• new code is added in a modular fashion to a library (modules),

• programs are run through convenient user interfaces,

• it takes one quick command to let all your code undergo heavy testing,

• tedious manual work with running programs is automated,

• your scientific investigations are reproducible,

• scientific reports with top quality typesetting are produced both for paper
and electronic devices.

1 Basic implementations
1.1 Mathematical problem and solution technique
We address the perhaps simplest possible differential equation problem

u′(t) = −au(t), t ∈ (0, T ], (1)
u(0) = I, (2)

where a, I, and T are prescribed parameters, and u(t) is the unknown function
to be estimated. This mathematical model is relevant for physical phenomena
featuring exponential decay in time, e.g., vertical pressure variation in the
atmosphere, cooling of an object, and radioactive decay.

The time domain is discretized with points 0 = t0 < t1 · · · < tNt = T ,
here with a constant spacing ∆t between the mesh points: ∆t = tn − tn−1,
n = 1, . . . , Nt. Let un be the numerical approximation to the exact solution at
tn. A family of popular numerical methods can be written in the form

un+1 = 1− (1− θ)a∆t
1 + θa∆t un, (3)

for n = 0, 1, . . . , Nt − 1. This numerical scheme corresponds to the Forward
Euler1 scheme when θ = 0, the Backward Euler2 scheme when θ = 1, and the
Crank-Nicolson3 scheme when θ = 1/2. The initial condition (2) is key to start
the recursion with a value for u0.

1http://en.wikipedia.org/wiki/Forward_Euler_method
2http://en.wikipedia.org/wiki/Backward_Euler_method
3http://en.wikipedia.org/wiki/Crank-Nicolson
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1.2 A first, quick implementation
Solving (3) in a program is very straightforward: just make a loop over n and
evaluate the formula. The u(tn) values for discrete n can be stored in an array.
This makes it easy to also plot the solution. It would be natural to also add the
exact solution curve u(t) = Ie−at to the plot.

We apply the Python programming language since it gives code close to that
of other popular languages such as MATLAB and R. The programming habits
of many students and engineers would lead them to write a program like this:

from numpy import *
from matplotlib.pyplot import *

A = 1
a = 2
T = 4
dt = 0.2
N = int(round(T/dt))
y = zeros(N+1)
t = linspace(0, T, N+1)
theta = 1
y[0] = A
for n in range(0, N):

y[n+1] = (1 - (1-theta)*a*dt)/(1 + theta*dt*a)*y[n]

y_e = A*exp(-a*t) - y
error = y_e - y
E = sqrt(dt*sum(error**2))
print ’Norm of the error: %.3E’ % E
plot(t, y, ’r--o’)
t_e = linspace(0, T, 1001)
y_e = A*exp(-a*t_e)
plot(t_e, y_e, ’b-’)
legend([’numerical, theta=%g’ % theta, ’exact’])
xlabel(’t’)
ylabel(’y’)
show()

This program is easy to read, and as long it is correct, many will claim that
it has sufficient quality. Nevertheless, the program suffers from two serious flaws:

1. The notation in the program does not correspond exactly to the notation
in the mathematical problem: the solution is called y and corresponds to
u in the mathematical description, the variable A corresponds to the math-
ematical parameter I, N in the program is called Nt in the mathematics.

2. There are no comments in the program.

These kind of flaws quickly become crucial if present in code for complicated
mathematical problems and code that is meant to be extended to other problems.

We also note that the program is “flat” in the sense that it does not contain
functions. Usually, this is a bad habit, but let us correct the two mentioned
flaws first.
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1.3 A more decent program
A code of better quality arises from fixing the notation and adding comments:

from numpy import *
from matplotlib.pyplot import *

I = 1
a = 2
T = 4
dt = 0.2
Nt = int(round(T/dt)) # no of time intervals
u = zeros(Nt+1) # array of u[n] values
t = linspace(0, T, Nt+1) # time mesh
theta = 1 # Backward Euler method

u[0] = I # assign initial condition
for n in range(0, Nt): # n=0,1,...,Nt-1

u[n+1] = (1 - (1-theta)*a*dt)/(1 + theta*dt*a)*u[n]

# Compute norm of the error
u_e = I*exp(-a*t) - u # exact u at the mesh points
error = u_e - u
E = sqrt(dt*sum(error**2))
print ’Norm of the error: %.3E’ % E

# Compare numerical (u) and exact solution (u_e) in a plot
plot(t, u, ’r--o’)
t_e = linspace(0, T, 1001) # very fine mesh for u_e
u_e = I*exp(-a*t_e)
plot(t_e, u_e, ’b-’)
legend([’numerical, theta=%g’ % theta, ’exact’])
xlabel(’t’)
ylabel(’u’)
show()

Comments. There is obviously not just one way to comment a program, and
opinions may differ as to what code should be accomplished by comments. The
guiding principle is, however, that comments should make the program easy to
understand for human eye. Do not comment obvious constructions, but focus
on ideas and (“what happens in the next statements?”) and on explaining code
that can be interpreted as complicated.

Refactoring into functions. At first sight, our updated program seems like
a good starting point for playing around with the mathematical problem: we
can just change parameters and rerun. Although such edit-and-rerun sessions
are good for initial exploration, one will soon extend the experiments and start
developing the code further. Say we want to compare θ = 0, 1, 0.5 in the same
plot. This extension requires changes all over the code and quickly leads to errors.
To do something serious with this program, we have to break it into smaller
pieces and make sure each piece is well tested, and ensure that the program is
sufficiently general and can be reused in new contexts without changes. The
next natural step is therefore to isolate the numerical computations and the
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Figure 1: Experimental code in a notebook.

visualization in separate Python functions. Such a rewrite of a code, without
essentially changing the functionality, but just improve the quality of the code,
is known as refactoring. After one has quickly put some code down and tested
it, it is a common step to refactor it so it is better prepared for extensions.

Program file vs IDE vs notebook. There are basically three different ways
of working with Python code:

1. One writes the code in a file, using a text editor (such as Emacs or Vim)
and runs it in a terminal window.

2. One applies an Integrated Development Environment (the simplest is IDLE,
which comes with standard Python) containing a graphical user interface
with an editor and an element where Python code can be run.

3. One applies the Jupyter Notebook (previously known as IPython Note-
book), which offers an interactive environment for Python code where plots
are automatically inserted after the code, see Figure 1.

It appears that method 1 and 2 are quite equivalent, but the notebook encourages
more experimental code in flat programs. Therefore, notebook users will normally
need to think more about refactoring code and increase the use of functions.
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1.4 Implementing the numerical algorithm in a function
The solution formula (3) is completely general and should be available as a
Python function solver with all input data as function arguments and all
output data returned to the calling code. With this solver function we can
solve all types of problems (1)-(2) by an easy-to-read one-line statement:

u, t = solver(I=1, a=2, T=4, dt=0.2, theta=0.5)

Refactoring the numerical method in the previous flat program in terms of a
solver function leads to this code:

def solver(I, a, T, dt, theta):
"""Solve u’=-a*u, u(0)=I, for t in (0,T] with steps of dt."""
dt = float(dt) # avoid integer division
Nt = int(round(T/dt)) # no of time intervals
T = Nt*dt # adjust T to fit time step dt
u = np.zeros(Nt+1) # array of u[n] values
t = np.linspace(0, T, Nt+1) # time mesh

u[0] = I # assign initial condition
for n in range(0, Nt): # n=0,1,...,Nt-1

u[n+1] = (1 - (1-theta)*a*dt)/(1 + theta*dt*a)*u[n]
return u, t

Tip: Always use a doc string to document a function!

Python has a convention for documenting the purpose and usage of a
function in a doc string: simply place the documentation in a one- or
multi-line triple-quoted string right after the function header.

Be careful with unintended integer division!

Note that we in the solver function explicitly covert dt to a float object.
If not, the updating formula for u[n+1] may evaluate to zero because of
integer division when theta, a, and dt are integers!

1.5 Do not have several versions of a code
One of the most serious flaws in computational work is to have several slightly
different implementations of the same computational algorithms lying around
in various program files. This is very likely to happen, because busy scientists
often want to test a slight variation of a code to see what happens. A quick
copy-and-edit does the task, but such quick hacks tend to survive. When a
real correction is needed in the implementation, it is difficult to ensure that
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the correction is done in all relevant files. In fact, this is a general problem in
programming, which has led to an important principle.

The DRY principle: Don’t repeat yourself!

When implementing a particular functionality in a computer program,
make sure this functionality and its variations are implemented in just one
piece of code. That is, if you need to revise the implementation, there
should be one and only one place to edit. It follows that you should never
duplicate code (don’t repeat yourself!), and code snippets that are similar
should be factored into one piece (function) and parameterized (by function
arguments).

The DRY principle means that our solver function should not be copied
to a new file if we need some modifications. Instead, we should try to extend
solver such that the new and old needs are met by a single function. Sometimes
this process requires a new refactoring, but having a numerical method in one
and only one place is a great advantage.

1.6 Making a module
As soon as you start making Python functions in a program, you should make
sure the program file fulfills the requirement of a module. This means that you
can import and reuse your functions in other programs too. For example, if our
solver function resides in a module file decay.py, another program may reuse
of the function either by

from decay import solver
u, t = solver(I=1, a=2, T=4, dt=0.2, theta=0.5)

or by a slightly different import statement, combined with a subsequent prefix
of the function name by the name of the module:

import decay
u, t = decay.solver(I=1, a=2, T=4, dt=0.2, theta=0.5)

The requirements for a program file to also qualify for a module are simple:

1. The filename without .py must be a valid Python variable name.

2. The main program must be executed (through statements or a function
call) in the test block.

The test block is normally placed at the end of a module file:

8



if __name__ == ’__main__’:
# Statements

When the module file is executed as a stand-alone program, the if test is true
and the indented statements are run. If the module file is imported, however,
__name__ equals the module name and the test block is not executed.

To demonstrate the difference, consider the trivial module file hello.py with
one function and a call to this function as main program:

def hello(arg=’World!’):
print ’Hello, ’ + arg

if __name__ == ’__main__’:
hello()

Without the test block, the code reads

def hello(arg=’World!’):
print ’Hello, ’ + arg

hello()

With this latter version of the file, any attempt to import hello will, at the same
time, execute the call hello() and hence write “Hello, World!” to the screen.
Such output is not desired when importing a module! To make import and
execution of code independent for another program that wants to use the function
hello, the module hello must be written with a test block. Furthermore,
running the file itself as python hello.py will make the block active and lead
to the desired printing.

All coming functions are placed in a module!

The many functions to be explained in the following text are put in one
module file decay.pya.

ahttp://tinyurl.com/nm5587k/softeng1/decay.py

What more than the solver function is needed in our decay module to do
everything we did in the previous, flat program? We need import statements
for numpy and matplotlib as well as another function for producing the plot.
It can also be convenient to put the exact solution in a Python function. Our
module decay.py then looks like this:

from numpy import *
from matplotlib.pyplot import *

def solver(I, a, T, dt, theta):
...

def exact_solution(t, I, a):
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return I*exp(-a*t)

def experiment_compare_numerical_and_exact():
I = 1; a = 2; T = 4; dt = 0.4; theta = 1
u, t = solver(I, a, T, dt, theta)

t_e = linspace(0, T, 1001) # very fine mesh for u_e
u_e = exact_solution(t_e, I, a)

plot(t, u, ’r--o’) # dashed red line with circles
plot(t_e, u_e, ’b-’) # blue line for u_e
legend([’numerical, theta=%g’ % theta, ’exact’])
xlabel(’t’)
ylabel(’u’)
plotfile = ’tmp’
savefig(plotfile + ’.png’); savefig(plotfile + ’.pdf’)

error = exact_solution(t, I, a) - u
E = sqrt(dt*sum(error**2))
print ’Error norm:’, E

if __name__ == ’__main__’:
experiment_compare_numerical_and_exact()

This module file does exactly the same as the previous, flat program, but now
it becomes much easier to extend the code with more functions that produce
other plots, other experiments, etc. Even more important, though, is that the
numerical algorithm is coded and tested once and for all in the solver function,
and any need to solve the mathematical problem is a matter of one function call.

1.7 Prefixing imported functions by the module name
Import statements of the form from module import * import all functions
and variables in module.py into the current file. This is often referred to as
“import star”, and many find this convenient, but it is not considered as a good
programming style in Python. For example, when doing

from numpy import *
from matplotlib.pyplot import *

we get mathematical functions like sin and exp as well as MATLAB-style
functions like linspace and plot, which can be called by these well-known names.
Unfortunately, it sometimes becomes confusing to know where a particular
function comes from, i.e., what modules you need to import. Is a desired
function from numpy or matplotlib.pyplot? Or is it our own function? These
questions are easy to answer if functions in modules are prefixed by the module
name. Doing an additional from math import * is really crucial: now sin,
cos, and other mathematical functions are imported and their names hide those
previously imported from numpy. That is, sin is now a sine function that accepts
a float argument, not an array.

Doing the import such that module functions must have a prefix is generally
recommended:
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import numpy
import matplotlib.pyplot

t = numpy.linspace(0, T, Nt+1)
u_e = I*numpy.exp(-a*t)
matplotlib.pyplot.plot(t, u_e)

The modules numpy and matplotlib.pyplot are frequently used, and since
their full names are quite tedious to write, two standard abbreviations have
evolved in the Python scientific computing community:

import numpy as np
import matplotlib.pyplot as plt

t = np.linspace(0, T, Nt+1)
u_e = I*np.exp(-a*t)
plt.plot(t, u_e)

The downside of prefixing functions by the module name is that mathematical
expressions like e−at sin(2πt) get cluttered with module names,

numpy.exp(-a*t)*numpy.sin(2(numpy.pi*t)
# or
np.exp(-a*t)*np.sin(2*np.pi*t)

Such an expression looks like exp(-a*t)*sin(2*pi*t) in most other program-
ming languages. Similarly, np.linspace and plt.plot look less familiar to
people who are used to MATLAB and who have not adopted Python’s prefix
style. Whether to do from module import * or import module depends on
personal taste and the problem at hand. In these writings we use from module
import in more basic, shorter programs where similarity with MATLAB could
be an advantage. Prefix of mathematical functions in formulas is something
we often avoid to obtain a one-to-one correspondence between mathematical
formulas and the Python code.

Our decaymodule can be edited to use the module prefix for matplotlib.pyplot
and numpy:

import numpy as np
import matplotlib.pyplot as plt

def solver(I, a, T, dt, theta):
...

def exact_solution(t, I, a):
return I*np.exp(-a*t)

def experiment_compare_numerical_and_exact():
I = 1; a = 2; T = 4; dt = 0.4; theta = 1
u, t = solver(I, a, T, dt, theta)

t_e = np.linspace(0, T, 1001) # very fine mesh for u_e
u_e = exact_solution(t_e, I, a)
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plt.plot(t, u, ’r--o’) # dashed red line with circles
plt.plot(t_e, u_e, ’b-’) # blue line for u_e
plt.legend([’numerical, theta=%g’ % theta, ’exact’])
plt.xlabel(’t’)
plt.ylabel(’u’)
plotfile = ’tmp’
plt.savefig(plotfile + ’.png’); plt.savefig(plotfile + ’.pdf’)

error = exact_solution(t, I, a) - u
E = np.sqrt(dt*np.sum(error**2))
print ’Error norm:’, E

if __name__ == ’__main__’:
experiment_compare_numerical_and_exact()

Without the prefix, the import and mathematical formulas read

from numpy import exp, sum, sqrt

def exact_solution(t, I, a):
return I*exp(-a*t)

error = exact_solution(t, I, a) - u
E = sqrt(dt*sum(error**2))

1.8 Example on extending the module code
Let us specifically demonstrate one extension of the flat program in Section 1.2
that would require substantial editing of the flat code (Section 1.3), while in
a structured module (Section 1.6), we can simply add a new function without
affecting the existing code.

Our example that illustrates the extension is to make a comparison between
the numerical solutions for various schemes (θ values) and the exact solution:

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
0.0

0.2

0.4

0.6

0.8

1.0
theta=0
theta=1
theta=0.5
exact
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Wait a minute!
Look at the flat program in Section 1.2, and try to imagine which edits
that are required to solve this new problem.

With the solver function at hand, we can simply create a function with a
loop over theta values and add the necessary plot statements:

def experiment_compare_schemes():
"""Compare theta=0,1,0.5 in the same plot."""
I = 1; a = 2; T = 4; dt = 0.4
legends = []
for theta in [0, 1, 0.5]:

u, t = solver(I, a, T, dt, theta)
plt.plot(t, u, ’--o’)
legends.append(’theta=%g’ % theta)

t_e = np.linspace(0, T, 1001) # very fine mesh for u_e
u_e = exact_solution(t_e, I, a)
plt.plot(t_e, u_e, ’b-’)
legends.append(’exact’)
plt.legend(legends, loc=’upper right’)
plotfile = ’tmp’
plt.savefig(plotfile + ’.png’); plt.savefig(plotfile + ’.pdf’)

A call to this experiment_compare_schemes function must be placed in the
test block, or you can run the program from IPython instead:

In[1]: from decay import *

In[2]: experiment_compare_schemes()

We do not present how the flat program from Section 1.3 must be refactored
to produce the desired plots, but simply state that the danger of introducing
bugs is significantly larger than when just writing an additional function in the
decay module.

1.9 Documenting functions and modules
We have already emphasized the importance of documenting functions with a
doc string (see Section 1.4). Now it is time to show how doc strings should be
structured in order to take advantage of the documentation utilities in the numpy
module. The idea is to follow a convention that in itself makes a good pure text
doc string in the terminal window and at the same time can be translated to
beautiful HTML manuals for the web.

The conventions for numpy style doc strings are well documented4, so here
we just present a basic example that the reader can adopt. Input arguments to
a function are listed under the heading Parameters, while returned values are
listed under Returns. It is a good idea to also add an Examples section on the

4https://github.com/numpy/numpy/blob/master/doc/HOWTO_DOCUMENT.rst.txt
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usage of the function. More complicated software may have additional sections,
see pydoc numpy.load for an example. The markup language available for doc
strings is Sphinx-extended reStructuredText. The example below shows typical
constructs: 1) how inline mathematics is written with the :math: directive, 2)
how arguments to the functions are referred to using single backticks (inline
monospace font for code applies double backticks), and 3) how arguments and
return values are listed with types and explanation.

def solver(I, a, T, dt, theta):
"""
Solve :math:‘u’=-au‘ with :math:‘u(0)=I‘ for :math:‘t \in (0,T]‘
with steps of ‘dt‘ and the method implied by ‘theta‘.

Parameters
----------
I: float

Initial condition.
a: float

Parameter in the differential equation.
T: float

Total simulation time.
theta: float, int

Parameter in the numerical scheme. 0 gives
Forward Euler, 1 Backward Euler, and 0.5
the centered Crank-Nicolson scheme.

Returns
-------
‘u‘: array

Solution array.
‘t‘: array

Array with time points corresponding to ‘u‘.

Examples
--------
Solve :math:‘u’ = -\\frac{1}{2}u, u(0)=1.5‘
with the Crank-Nicolson method:

>>> u, t = solver(I=1.5, a=0.5, T=9, theta=0.5)
>>> import matplotlib.pyplot as plt
>>> plt.plot(t, u)
>>> plt.show()
"""

If you follow such doc string conventions in your software, you can easily produce
nice manuals that meet the standard expected within the Python scientific
computing community.

Sphinx5 requires quite a number of manual steps to prepare a manual, so it
is recommended to use a premade script6 to automate the steps. (You need to
do a pip install of sphinx and numpydoc to make the script work.) Figure 2
provides an example of what the above doc strings look like when Sphinx has
transformed them to HTML.

5http://sphinx-doc.org/
6http://tinyurl.com/nm5587k/softeng1/make_sphinx_api.py
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Figure 2: Example on Sphinx API manual in HTML.

2 User interfaces
It is good programming practice to let programs read input from some user
interface, rather than requiring users to edit parameter values in the source code.
With effective user interfaces it becomes easier and safer to apply the code for
scientific investigations and in particular to automate large-scale investigations
by other programs (see Section 6).

Reading input data can be done in many ways. We have to decide on the
functionality of the user interface, i.e., how we want to operate the program
when providing input. Thereafter, we use appropriate tools to implement that
particular user interface. There are four basic types of user interface, listed here
according to implementational complexity, from lowest to highest:

1. Questions and answers in the terminal window

2. Command-line arguments

3. Reading data from files

4. Graphical user interfaces (GUIs)

Personal preferences of user interfaces differ substantially, and it is difficult
to present recommendations or pros and cons. Alternatives 2 and 4 are most
popular and will be addressed next. The goal is to make it easy for the user to
set physical and numerical parameters in our decay.py program. We use a little
toy program, called prog.py, as introductory example:

delta = 0.5
p = 2
from math import exp
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result = delta*exp(-p)
print result

The essential content is that prog.py has two input parameters: delta and p.
A user interface will replace the first two assignments to delta and p.

2.1 Command-line arguments
The command-line arguments are all the words that appear on the command
line after the program name. Running a program prog.py as python prog.py
arg1 arg2 means that there are two command-line arguments (separated by
white space): arg1 and arg2. Python stores all command-line arguments in a
special list sys.argv. (The name argv stems from the C language and stands for
“argument values”. In C there is also an integer variable called argc reflecting the
number of arguments, or “argument counter”. A lot of programming languages
have adopted the variable name argv for the command-line arguments.) Here
is an example on a program what_is_sys_argv.py that can show us what the
command-line arguments are

import sys
print sys.argv

A sample run goes like

Terminal> python what_is_sys_argv.py 5.0 ’two words’ -1E+4
[’what_is_sys_argv.py’, ’5.0’, ’two words’, ’-1E+4’]

We make two observations:

• sys.argv[0] is the name of the program, and the sublist sys.argv[1:]
contains all the command-line arguments.

• Each command-line argument is available as a string. A conversion to
float is necessary if we want to compute with the numbers 5.0 and 104.

There are, in principle, two ways of programming with command-line arguments
in Python:

• Positional arguments: Decide upon a sequence of parameters on the
command line and read their values directly from the sys.argv[1:] list.

• Option-value pairs: Use –option value on the command line to replace
the default value of an input parameter option by value (and utilize the
argparse.ArgumentParser tool for implementation).

Suppose we want to run some program prog.py with specification of two pa-
rameters p and delta on the command line. With positional command-line
arguments we write
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Terminal> python prog.py 2 0.5

and must know that the first argument 2 represents p and the next 0.5 is the
value of delta. With option-value pairs we can run

Terminal> python prog.py --delta 0.5 --p 2

Now, both p and delta are supposed to have default values in the program, so
we need to specify only the parameter that is to be changed from its default
value, e.g.,

Terminal> python prog.py --p 2 # p=2, default delta
Terminal> python prog.py --delta 0.7 # delta-0.7, default a
Terminal> python prog.py # default a and delta

How do we extend the prog.py code for positional arguments and option-
value pairs? Positional arguments require very simple code:

import sys
p = float(sys.argv[1])
delta = float(sys.argv[2])

from math import exp
result = delta*exp(-p)
print result

If the user forgets to supply two command-line arguments, Python will raise
an IndexError exception and produce a long error message. To avoid that, we
should use a try-except construction:

import sys
try:

p = float(sys.argv[1])
delta = float(sys.argv[2])

except IndexError:
print ’Usage: %s p delta’ % sys.argv[0]
sys.exit(1)

from math import exp
result = delta*exp(-p)
print result

Using sys.exit(1) aborts the program. The value 1 (actually any value different
from 0) notifies the operating system that the program failed.

17



Command-line arguments are strings!

Note that all elements in sys.argv are string objects. If the values will
enter mathematical computations, we need to explicitly convert the strings
to numbers.

Option-value pairs requires more programming and is actually better ex-
plained in a more comprehensive example below. Minimal code for our prog.py
program reads

import argparse
parser = argparse.ArgumentParser()
parser.add_argument(’--p’, default=1.0)
parser.add_argument(’--delta’, default=0.1)

args = parser.parse_args()
p = args.p
delta = args.delta

from math import exp
result = delta*exp(-p)
print result

Because the default values of delta and p are float numbers, the args.delta
and args.p variable are automatically of type float.

Our next task is to use these basic code constructs to equip our decay.py
module with command-line interfaces.

2.2 Positional command-line arguments
For our decay.py module file, we want include functionality such that we can
read I, a, T , θ, and a range of ∆t values from the command line. A plot is then
to be made, comparing the different numerical solutions for different ∆t values
against the exact solution. The technical details of getting the command-line
information into the program is covered in the next two sections.

The simplest way of reading the input parameters is to decide on their
sequence on the command line and just index the sys.argv list accordingly.
Say the sequence of input data for some functionality in decay.py is I, a, T , θ
followed by an arbitrary number of ∆t values. This code extracts these positional
command-line arguments:

def read_command_line_positional():
if len(sys.argv) < 6:

print ’Usage: %s I a T on/off BE/FE/CN dt1 dt2 dt3 ...’ % \
sys.argv[0]; sys.exit(1) # abort

I = float(sys.argv[1])
a = float(sys.argv[2])
T = float(sys.argv[3])
theta = float(sys.argv[4])
dt_values = [float(arg) for arg in sys.argv[5:]]
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return I, a, T, theta, dt_values

Note that we may use a try-except construction instead of the if test.
A run like

Terminal> python decay.py 1 0.5 4 0.5 1.5 0.75 0.1

results in

sys.argv = [’decay.py’, ’1’, ’0.5’, ’4’, ’0.5’, ’1.5’, ’0.75’, ’0.1’]

and consequently the assignments I=1.0, a=0.5, T=4.0, thet=0.5, and dt_values = [1.5, 0.75, 0.1].
Instead of specifying the θ value, we could be a bit more sophisticated and let

the user write the name of the scheme: BE for Backward Euler, FE for Forward
Euler, and CN for Crank-Nicolson. Then we must map this string to the proper
θ value, an operation elegantly done by a dictionary:

scheme = sys.argv[4]
scheme2theta = {’BE’: 1, ’CN’: 0.5, ’FE’: 0}
if scheme in scheme2theta:

theta = scheme2theta[scheme]
else:

print ’Invalid scheme name:’, scheme; sys.exit(1)

Now we can do

Terminal> python decay.py 1 0.5 4 CN 1.5 0.75 0.1

and get ‘theta=0.5‘in the code.

2.3 Option-value pairs on the command line
Now we want to specify option-value pairs on the command line, using –I for I
(I), –a for a (a), –T for T (T ), –scheme for the scheme name (BE, FE, CN), and
–dt for the sequence of dt (∆t) values. Each parameter must have a sensible
default value so that we specify the option on the command line only when the
default value is not suitable. Here is a typical run:

Terminal> python decay.py --I 2.5 --dt 0.1 0.2 0.01 --a 0.4

Observe the major advantage over positional command-line arguments: the input
is much easier to read and much easier to write. With positional arguments it is

19



easy to mess up the sequence of the input parameters and quite challenging to
detect errors too, unless there are just a couple of arguments.

Python’s ArgumentParser tool in the argparse module makes it easy to
create a professional command-line interface to any program. The documentation
of ArgumentParser7 demonstrates its versatile applications, so we shall here
just list an example containing the most basic features. It always pays off
to use ArgumentParser rather than trying to manually inspect and interpret
option-value pairs in sys.argv!

The use of ArgumentParser typically involves three steps:

import argparse
parser = argparse.ArgumentParser()

# Step 1: add arguments
parser.add_argument(’--option_name’, ...)

# Step 2: interpret the command line
args = parser.parse_args()

# Step 3: extract values
value = args.option_name

A function for setting up all the options is handy:

def define_command_line_options():
import argparse
parser = argparse.ArgumentParser()
parser.add_argument(

’--I’, ’--initial_condition’, type=float,
default=1.0, help=’initial condition, u(0)’,
metavar=’I’)

parser.add_argument(
’--a’, type=float, default=1.0,
help=’coefficient in ODE’, metavar=’a’)

parser.add_argument(
’--T’, ’--stop_time’, type=float,
default=1.0, help=’end time of simulation’,
metavar=’T’)

parser.add_argument(
’--scheme’, type=str, default=’CN’,
help=’FE, BE, or CN’)

parser.add_argument(
’--dt’, ’--time_step_values’, type=float,
default=[1.0], help=’time step values’,
metavar=’dt’, nargs=’+’, dest=’dt_values’)

return parser

Each command-line option is defined through the parser.add_argument
method8. Alternative options, like the short –I and the more explaining version
--initial_condition can be defined. Other arguments are type for the Python

7http://docs.python.org/library/argparse.html
8We use the expression method here, because parser is a class variable and functions in

classes are known as methods in Python and many other languages. Readers not familiar with
class programming can just substitute this use of method by function.
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object type, a default value, and a help string, which gets printed if the command-
line argument -h or –help is included. The metavar argument specifies the
value associated with the option when the help string is printed. For example,
the option for I has this help output:

Terminal> python decay.py -h
...
--I I, --initial_condition I

initial condition, u(0)
...

The structure of this output is
--I metavar, --initial_condition metavar

help-string

Finally, the –dt option demonstrates how to allow for more than one value
(separated by blanks) through the nargs=’+’ keyword argument. After the
command line is parsed, we get an object where the values of the options are
stored as attributes. The attribute name is specified by the dist keyword
argument, which for the –dt option is dt_values. Without the dest argument,
the value of an option –opt is stored as the attribute opt.

The code below demonstrates how to read the command line and extract the
values for each option:

def read_command_line_argparse():
parser = define_command_line_options()
args = parser.parse_args()
scheme2theta = {’BE’: 1, ’CN’: 0.5, ’FE’: 0}
data = (args.I, args.a, args.T, scheme2theta[args.scheme],

args.dt_values)
return data

As seen, the values of the command-line options are available as attributes
in args: args.opt holds the value of option –opt, unless we used the dest
argument (as for --dt_values) for specifying the attribute name. The args.opt
attribute has the object type specified by type (str by default).

The making of the plot is not dependent on whether we read data from the
command line as positional arguments or option-value pairs:

def experiment_compare_dt(option_value_pairs=False):
I, a, T, theta, dt_values = \

read_command_line_argparse() if option_value_pairs else \
read_command_line_positional()

legends = []
for dt in dt_values:

u, t = solver(I, a, T, dt, theta)
plt.plot(t, u)
legends.append(’dt=%g’ % dt)

t_e = np.linspace(0, T, 1001) # very fine mesh for u_e
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u_e = exact_solution(t_e, I, a)
plt.plot(t_e, u_e, ’--’)
legends.append(’exact’)
plt.legend(legends, loc=’upper right’)
plt.title(’theta=%g’ % theta)
plotfile = ’tmp’
plt.savefig(plotfile + ’.png’); plt.savefig(plotfile + ’.pdf’)

2.4 Creating a graphical web user interface
The Python package Parampool9 can be used to automatically generate a web-
based graphical user interface (GUI) for our simulation program. Although
the programming technique dramatically simplifies the efforts to create a GUI,
the forthcoming material on equipping our decay module with a GUI is quite
technical and of significantly less importance than knowing how to make a
command-line interface.

Making a compute function. The first step is to identify a function that
performs the computations and that takes the necessary input variables as
arguments. This is called the compute function in Parampool terminology. The
purpose of this function is to take values of I, a, T together with a sequence of
∆t values and a sequence of θ and plot the numerical against the exact solution
for each pair of (θ,∆t). The plots can be arranged as a table with the columns
being scheme type (θ value) and the rows reflecting the discretization parameter
(∆t value). Figure 3 displays what the graphical web interface may look like
after results are computed (there are 3× 3 plots in the GUI, but only 2× 2 are
visible in the figure).

To tell Parampool what type of input data we have, we assign default values
of the right type to all arguments in the compute function, here called main_GUI:

def main_GUI(I=1.0, a=.2, T=4.0,
dt_values=[1.25, 0.75, 0.5, 0.1],
theta_values=[0, 0.5, 1]):

The compute function must return the HTML code we want for displaying
the result in a web page. Here we want to show a table of plots. Assume for now
that the HTML code for one plot and the value of the norm of the error can
be computed by some other function compute4web. The main_GUI function can
then loop over ∆t and θ values and put each plot in an HTML table. Appropriate
code goes like

def main_GUI(I=1.0, a=.2, T=4.0,
dt_values=[1.25, 0.75, 0.5, 0.1],
theta_values=[0, 0.5, 1]):

# Build HTML code for web page. Arrange plots in columns
# corresponding to the theta values, with dt down the rows
theta2name = {0: ’FE’, 1: ’BE’, 0.5: ’CN’}

9https://github.com/hplgit/parampool
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Figure 3: Automatically generated graphical web interface.

html_text = ’<table>\n’
for dt in dt_values:

html_text += ’<tr>\n’
for theta in theta_values:

E, html = compute4web(I, a, T, dt, theta)
html_text += """

<td>
<center><b>%s, dt=%g, error: %.3E</b></center><br>
%s
</td>
""" % (theta2name[theta], dt, E, html)

html_text += ’</tr>\n’
html_text += ’</table>\n’
return html_text

Making one plot is done in compute4web. The statements should be straight-
forward from earlier examples, but there is one new feature: we use a tool in
Parampool to embed the PNG code for a plot file directly in an HTML image
tag. The details are hidden from the programmer, who can just rely on relevant
HTML code in the string html_text. The function looks like

def compute4web(I, a, T, dt, theta=0.5):
"""
Run a case with the solver, compute error measure,
and plot the numerical and exact solutions in a PNG
plot whose data are embedded in an HTML image tag.
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"""
u, t = solver(I, a, T, dt, theta)
u_e = exact_solution(t, I, a)
e = u_e - u
E = np.sqrt(dt*np.sum(e**2))

plt.figure()
t_e = np.linspace(0, T, 1001) # fine mesh for u_e
u_e = exact_solution(t_e, I, a)
plt.plot(t, u, ’r--o’)
plt.plot(t_e, u_e, ’b-’)
plt.legend([’numerical’, ’exact’])
plt.xlabel(’t’)
plt.ylabel(’u’)
plt.title(’theta=%g, dt=%g’ % (theta, dt))
# Save plot to HTML img tag with PNG code as embedded data
from parampool.utils import save_png_to_str
html_text = save_png_to_str(plt, plotwidth=400)

return E, html_text

Generating the user interface. The web GUI is automatically generated
by the following code, placed in the file decay_GUI_generate.py10.

from parampool.generator.flask import generate
from decay import main_GUI
generate(main_GUI,

filename_controller=’decay_GUI_controller.py’,
filename_template=’decay_GUI_view.py’,
filename_model=’decay_GUI_model.py’)

Running the decay_GUI_generate.py program results in three new files whose
names are specified in the call to generate:

1. decay_GUI_model.py defines HTML widgets to be used to set input data
in the web interface,

2. templates/decay_GUI_views.py defines the layout of the web page,

3. decay_GUI_controller.py runs the web application.

We only need to run the last program, and there is no need to look into these
files.

Running the web application. The web GUI is started by

Terminal> python decay_GUI_controller.py

10http://tinyurl.com/nm5587k/softeng1/decay_GUI_generate.py
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Open a web browser at the location 127.0.0.1:5000. Input fields for I, a,
T, dt_values, and theta_values are presented. Figure 3 shows a part of the
resulting page if we run with the default values for the input parameters. With
the techniques demonstrated here, one can easily create a tailored web GUI for
a particular type of application and use it to interactively explore physical and
numerical effects.

3 Tests for verifying implementations
Any module with functions should have a set of tests that can check the cor-
rectness of the implementations. There exists well-established procedures and
corresponding tools for automating the execution of such tests. These tools allow
large test sets to be run with a one-line command, making it easy to check of
the still software works (as far as the tests tell!). Here we shall illustrate two
important software testing techniques: doctest and unit testing. The first one
is Python specific, while unit testing is the dominating test technique in the
software industry today.

3.1 Doctests
A doc string, the first string after the function header, is used to document the
purpose of functions and their arguments (see Section 1.4). Very often it is
instructive to include an example in the doc string on how to use the function.
Interactive examples in the Python shell are most illustrative as we can see
the output resulting from the statements and expressions. For example, in the
solver function, we can include an example on calling this function and printing
the computed u and t arrays:

def solver(I, a, T, dt, theta):
"""
Solve u’=-a*u, u(0)=I, for t in (0,T] with steps of dt.

>>> u, t = solver(I=0.8, a=1.2, T=1.5, dt=0.5, theta=0.5)
>>> for n in range(len(t)):
... print ’t=%.1f, u=%.14f’ % (t[n], u[n])
t=0.0, u=0.80000000000000
t=0.5, u=0.43076923076923
t=1.0, u=0.23195266272189
t=1.5, u=0.12489758761948
"""
...

When such interactive demonstrations are inserted in doc strings, Python’s
doctest11 module can be used to automate running all commands in interactive
sessions and compare new output with the output appearing in the doc string.
All we have to do in the current example is to run the module file decay.py with

11http://docs.python.org/library/doctest.html
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Terminal> python -m doctest decay.py

This command imports the doctest module, which runs all doctests found
in the file and reports discrepancies between expected and computed output.
Alternatively, the test block in a module may run all doctests by

if __name__ == ’__main__’:
import doctest
doctest.testmod()

Doctests can also be embedded in nose/pytest unit tests as explained in the next
section.

Doctests prevent command-line arguments!

No additional command-line argument is allowed when running doctests.
If your program relies on command-line input, make sure the doctests can
be run without such input on the command line.

However, you can simulate command-line input by filling sys.argv
with values, e.g.,

import sys; sys.argv = ’--I 1.0 --a 5’.split()

The execution command above will report any problem if a test fails. As
an illustration, let us alter the u value at t=1.5 in the output of the doctest by
replacing the last digit 8 by 7. This edit triggers a report:

Terminal> python -m doctest decay.py
********************************************************
File "decay.py", line ...
Failed example:

for n in range(len(t)):
print ’t=%.1f, u=%.14f’ % (t[n], u[n])

Expected:
t=0.0, u=0.80000000000000
t=0.5, u=0.43076923076923
t=1.0, u=0.23195266272189
t=1.5, u=0.12489758761948

Got:
t=0.0, u=0.80000000000000
t=0.5, u=0.43076923076923
t=1.0, u=0.23195266272189
t=1.5, u=0.12489758761947
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Pay attention to the number of digits in doctest results!

Note that in the output of t and u we write u with 14 digits. Writing
all 16 digits is not a good idea: if the tests are run on different hardware,
round-off errors might be different, and the doctest module detects that
the numbers are not precisely the same and reports failures. In the present
application, where 0 < u(t) ≤ 0.8, we expect round-off errors to be of size
10−16, so comparing 15 digits would probably be reliable, but we compare
14 to be on the safe side. On the other hand, comparing a small number of
digits may hide software errors.

Doctests are highly encouraged as they do two things: 1) demonstrate how a
function is used and 2) test that the function works.

3.2 Unit tests and test functions
The unit testing technique consists of identifying smaller units of code and writing
one or more tests for each unit. One unit can typically be a function. Each test
should, ideally, not depend on the outcome of other tests. The recommended
practice is actually to design and write the unit tests first and then implement
the functions!

In scientific computing it is not always obvious how to best perform unit
testing. The units are naturally larger than in non-scientific software. Very often
the solution procedure of a mathematical problem identifies a unit, such as our
solver function.

Two Python test frameworks: nose and pytest. Python offers two very
easy-to-use software frameworks for implementing unit tests: nose and pytest.
These work (almost) in the same way, but our recommendation is to go for
pytest.

Test function requirements. For a test to qualify as a test function in nose
or pytest, three rules must be followed:

1. The function name must start with test_.

2. Function arguments are not allowed.

3. An AssertionError exception must be raised if the test fails.

A specific example might be illustrative before proceeding. We have the following
function that we want to test:

def double(n):
return 2*n

The corresponding test function could, in principle, have been written as
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def test_double():
"""Test that double(n) works for one specific n."""
n = 4
expected = 2*4
computed = double(4)
if expected != computed:

raise AssertionError

The last two lines, however, are never written like this in test functions. Instead,
Python’s assert statement is used: assert success, msg, where success is a
boolean variable, which is False if the test fails, and msg is an optional message
string that is printed when the test fails. A better version of the test function is
therefore

def test_double():
"""Test that double(n) works for one specific n."""
n = 4
expected = 2*4
computed = double(4)
msg = ’expected %g, computed %g’ % (expected, computed)
success = expected == computed
assert success, msg

Comparison of real numbers. Because of the finite precision arithmetics on
a computer, which gives rise to round-off errors, the == operator is not suitable
for checking whether two real numbers are equal. Obviously, this principle
also applies to tests in test functions. We must therefore replace a == b by
a comparison based on a tolerance tol: abs(a-b) < tol. The next example
illustrates the problem and its solution.

Here is a slightly different function that we want to test:

def third(x):
return x/3.

We write a test function where the expected result is computed as 1
3x rather

than x/3:

def test_third():
"""Check that third(x) works for many x values."""
for x in np.linspace(0, 1, 21):

expected = (1/3.0)*x
computed = third(x)
success = expected == computed
assert success

This test_third function executes silently, i.e., no failure, until x becomes 0.15.
Then round-off errors make the == comparison False. In fact, seven of the
x values above face this problem. The solution is to compare expected and
computed with a small tolerance:
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def test_third():
"""Check that third(x) works for many x values."""
for x in np.linspace(0, 1, 21):

expected = (1/3.)*x
computed = third(x)
tol = 1E-15
success = abs(expected - computed) < tol
assert success

Always compare real numbers with a tolerance!

Real numbers should never be compared with the == operator, but always
with the absolute value of the difference and a tolerance. So, replace a ==
b, if a and/or b is float, by

tol = 1E-14
abs(a - b) < tol

The suitable size of tol depends on the size of a and b (see Problem 5).

Special assert functions from nose. Test frameworks often contain more
tailored assert functions that can be called instead of using the assert statement.
For example, comparing two objects within a tolerance, as in the present case,
can be done by the assert_almost_equal from the nose framework:

import nose.tools as nt

def test_third():
x = 0.15
expected = (1/3.)*x
computed = third(x)
nt.assert_almost_equal(

expected, computed, delta=1E-15,
msg=’diff=%.17E’ % (expected - computed))

Whether to use the plain assert statement with a comparison based on a
tolerance or to use the ready-made function assert_almost_equal depends on
the programmer’s preference. The examples used in the documentation of the
pytest framework stick to the plain assert statement.

Locating test functions. Test functions can reside in a module together with
the functions they are supposed to verify, or the test functions can be collected
in separate files having names starting with test. Actually, nose and pytest can
recursively run all test functions in all test*.py files in the current directory,
as well as in all subdirectories!
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The decay.py12 module file features test functions in the module, but we
could equally well have made a subdirectory tests and put the test functions in
tests/test_decay.py13.

Running tests. To run all test functions in the file decay.py do

Terminal> nosetests -s -v decay.py
Terminal> py.test -s -v decay.py

The -s option ensures that output from the test functions is printed in the
terminal window, while -v prints the outcome of each individual test function.

Alternatively, if the test functions are located in some separate test*.py
files, we can just write

Terminal> py.test -s -v

to recursively run all test functions in the current directory tree. The corre-
sponding

Terminal> nosetests -s -v

command does the same, but requires subdirectory names to start with test
or end with _test or _tests (which is a good habit anyway). An example of a
tests directory with a test*.py file is found in src/softeng1/tests14.

Embedding doctests in a test function. Doctests can also be executed
from nose/pytest unit tests. Here is an example of a file test_decay_doctest.
py15 where we in the test block run all the doctests in the imported module
decay, but we also include a local test function that does the same:

import sys, os
sys.path.insert(0, os.pardir)
import decay
import doctest

def test_decay_module_with_doctest():
"""Doctest embedded in a nose/pytest unit test."""
# Test all functions with doctest in module decay
failure_count, test_count = doctest.testmod(m=decay)
assert failure_count == 0

12http://tinyurl.com/nm5587k/softeng1/decay.py
13http://tinyurl.com/nm5587k/softeng1/tests/test_decay.py
14http://tinyurl.com/nm5587k/softeng1/tests
15http://tinyurl.com/nm5587k/softeng1/tests/test_decay_doctest.py
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if __name__ == ’__main__’:
# Run all functions with doctests in this module
failure_count, test_count = doctest.testmod(m=decay)

Running this file as a program from the command line triggers the doctest.testmod
call in the test block, while applying py.test or nosetests to the file triggers an
import of the file and execution of the test function test_decay_modue_with_doctest.

Installing nose and pytest. With pip available, it is trivial to install nose
and/or pytest: sudo pip install nose and sudo pip install pytest.

3.3 Test function for the solver
Finding good test problems for verifying the implementation of numerical meth-
ods is a topic on its own. The challenge is that we very seldom know what the
numerical errors are. For the present model problem (1)-(2) solved by (3) one
can, fortunately, derive a formula for the numerical approximation:

un = I

(
1− (1− θ)a∆t

1 + θa∆t

)n
.

Then we know that the implementation should produce numbers that agree with
this formula to machine precision. The formula for un is known as an exact
discrete solution of the problem and can be coded as

def exact_discrete_solution(n, I, a, theta, dt):
"""Return exact discrete solution of the numerical schemes."""
dt = float(dt) # avoid integer division
A = (1 - (1-theta)*a*dt)/(1 + theta*dt*a)
return I*A**n

A test function can evaluate this solution on a time mesh and check that the u
values produced by the solver function do not deviate with more than a small
tolerance:

def test_exact_discrete_solution():
"""Check that solver reproduces the exact discr. sol."""
theta = 0.8; a = 2; I = 0.1; dt = 0.8
Nt = int(8/dt) # no of steps
u, t = solver(I=I, a=a, T=Nt*dt, dt=dt, theta=theta)

# Evaluate exact discrete solution on the mesh
u_de = np.array([exact_discrete_solution(n, I, a, theta, dt)

for n in range(Nt+1)])

# Find largest deviation
diff = np.abs(u_de - u).max()
tol = 1E-14
success = diff < tol
assert success
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Among important things to consider when constructing test functions is
testing the effect of wrong input to the function being tested. In our solver
function, for example, integer values of a, ∆t, and θ may cause unintended integer
division. We should therefore add a test to make sure our solver function does
not fall into this potential trap:

def test_potential_integer_division():
"""Choose variables that can trigger integer division."""
theta = 1; a = 1; I = 1; dt = 2
Nt = 4
u, t = solver(I=I, a=a, T=Nt*dt, dt=dt, theta=theta)
u_de = np.array([exact_discrete_solution(n, I, a, theta, dt)

for n in range(Nt+1)])
diff = np.abs(u_de - u).max()
assert diff < 1E-14

3.4 Test function for reading positional command-line ar-
guments

The function read_command_line_positional extracts numbers from the com-
mand line. To test it, we must decide on a set of values for the input data, fill
sys.argv accordingly, and check that we get the expected values:

def test_read_command_line_positional():
# Decide on a data set of input parameters
I = 1.6; a = 1.8; T = 2.2; theta = 0.5
dt_values = [0.1, 0.2, 0.05]
# Expected return from read_command_line_positional
expected = [I, a, T, theta, dt_values]
# Construct corresponding sys.argv array
sys.argv = [sys.argv[0], str(I), str(a), str(T), ’CN’] + \

[str(dt) for dt in dt_values]
computed = read_command_line_positional()
for expected_arg, computed_arg in zip(expected, computed):

assert expected_arg == computed_arg

Note that sys.argv[0] is always the program name and that we have to copy
that string from the original sys.argv array to the new one we construct in the
test function. (Actually, this test function destroys the original sys.argv that
Python fetched from the command line.)

Any numerical code writer should always be skeptical to the use of the exact
equality operator == in test functions, since round-off errors often come into play.
Here, however, we set some real values, convert them to strings and convert back
again to real numbers (of the same precision). This string-number conversion
does not involve any finite precision arithmetics effects so we can safely use ==
in tests. Note also that the last element in expected and computed is the list
dt_values, and == works for comparing two lists as well.
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3.5 Test function for reading option-value pairs
The function read_command_line_argparse can be verified with a test func-
tion that has the same setup as test_read_command_line_positional above.
However, the construction of the command line is a bit more complicated. We
find it convenient to construct the line as a string and then split the line into
words to get the desired list sys.argv:

def test_read_command_line_argparse():
I = 1.6; a = 1.8; T = 2.2; theta = 0.5
dt_values = [0.1, 0.2, 0.05]
# Expected return from read_command_line_argparse
expected = [I, a, T, theta, dt_values]
# Construct corresponding sys.argv array
command_line = ’%s --a %s --I %s --T %s --scheme CN --dt ’ % \

(sys.argv[0], a, I, T)
command_line += ’ ’.join([str(dt) for dt in dt_values])
sys.argv = command_line.split()
computed = read_command_line_argparse()
for expected_arg, computed_arg in zip(expected, computed):

assert expected_arg == computed_arg

Recall that the Python function zip enables iteration over several lists, tuples,
or arrays at the same time.

Let silent test functions speak up during development!

When you develop test functions in a module, it is common to use IPython
for interactive experimentation:

In[1]: import decay

In[2]: decay.test_read_command_line_argparse()

Note that a working test function is completely silent! Many find it
psychologically annoying to convince themselves that a completely silent
function is doing the right things. It can therefore, during development of
a test function, be convenient to insert print statements in the function to
monitor that the function body is indeed executed. For example, one can
print the expected and computed values in the terminal window:

def test_read_command_line_argparse():
...
for expected_arg, computed_arg in zip(expected, computed):

print expected_arg, computed_arg
assert expected_arg == computed_arg

After performing this edit, we want to run the test again, but in IPython
the module must first be reloaded (reimported):
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In[3]: reload(decay) # force new import

In[2]: decay.test_read_command_line_argparse()
1.6 1.6
1.8 1.8
2.2 2.2
0.5 0.5
[0.1, 0.2, 0.05] [0.1, 0.2, 0.05]

Now we clearly see the objects that are compared.

3.6 Classical class-based unit testing
The test functions written for the nose and pytest frameworks are very straight-
forward and to the point, with no framework-required boilerplate code. We just
write the statements we need to get the computations and comparisons done,
before applying the required assert.

The classical way of implementing unit tests (which derives from the JUnit
object-oriented tool in Java) leads to much more comprehensive implementations
with a lot of boilerplate code. Python comes with a built-in module unittest
for doing this type of classical unit tests. Although nose or pytest are much
more convenient to use than unittest, class-based unit testing in the style of
unittest has a very strong position in computer science and is so widespread
in the software industry that even computational scientists should have an idea
how such unit test code is written. A short demo of unittest is therefore
included next. (Readers who are not familiar with object-oriented programming
in Python may find the text hard to understand, but one can safely jump to the
next section.)

Suppose we have a function double(x) in a module file mymod.py:

def double(x):
return 2*x

Unit testing with the aid of the unittest module consists of writing a file
test_mymod.py for testing the functions in mymod.py. The individual tests
must be methods with names starting with test_ in a class derived from class
TestCase in unittest. With one test method for the function double, the
test_mymod.py file becomes

import unittest
import mymod

class TestMyCode(unittest.TestCase):
def test_double(self):

x = 4
expected = 2*x
computed = mymod.double(x)
self.assertEqual(expected, computed)
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if __name__ == ’__main__’:
unittest.main()

The test is run by executing the test file test_mymod.py as a standard Python
program. There is no support in unittest for automatically locating and
running all tests in all test files in a directory tree.

We could use the basic assert statement as we did with nose and pytest
functions, but those who write code based on unittest almost exclusively use the
wide range of built-in assert functions such as assertEqual, assertNotEqual,
assertAlmostEqual, to mention some of them.

Translation of the test functions from the previous sections to unittest
means making a new file test_decay.py file with a test class TestDecay where
the stand-alone functions for nose/pytest now become methods in this class.

import unittest
import decay
import numpy as np

def exact_discrete_solution(n, I, a, theta, dt):
...

class TestDecay(unittest.TestCase):

def test_exact_discrete_solution(self):
theta = 0.8; a = 2; I = 0.1; dt = 0.8
Nt = int(8/dt) # no of steps
u, t = decay.solver(I=I, a=a, T=Nt*dt, dt=dt, theta=theta)
# Evaluate exact discrete solution on the mesh
u_de = np.array([exact_discrete_solution(n, I, a, theta, dt)

for n in range(Nt+1)])
diff = np.abs(u_de - u).max() # largest deviation
self.assertAlmostEqual(diff, 0, delta=1E-14)

def test_potential_integer_division(self):
...
self.assertAlmostEqual(diff, 0, delta=1E-14)

def test_read_command_line_positional(self):
...
for expected_arg, computed_arg in zip(expected, computed):

self.assertEqual(expected_arg, computed_arg)

def test_read_command_line_argparse(self):
...

if __name__ == ’__main__’:
unittest.main()

4 Sharing the software with other users
As soon as you have some working software that you intend to share with others,
you should package your software in a standard way such that users can easily
download your software, install it, improve it, and ask you to approve their
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improvements in new versions of the software. During recent years, the software
development community has established quite firm tools and rules for how all
this is done. The following subsections cover three steps in sharing software:

1. Organizing the software for public distribution.

2. Uploading the software to a cloud service (here GitHub).

3. Downloading and installing the software.

4.1 Organizing the software directory tree
We start with organizing our software as a directory tree. Our software consists
of one module file, decay.py, and possibly some unit tests in a separate file
located in a directory tests.

The decay.py can be used as a module or as a program. For distribution to
other users who install the program decay.py in system directories, we need to
insert the following line at the top of the file:

#!/usr/bin/env python

This line makes it possible to write just the filename and get the file executed
by the python program (or more precisely, the first python program found in
the directories in the PATH environment variable).

Distributing just a module file. Let us start out with the minimum solution
alternative: distributing just the decay.py file. Then the software is just one
file and all we need is a directory with this file. Users will also this directory
to contain an installation script setup.py and a README file telling what the
software is about, the author’s email address, a URL for downloading the software,
and other useful information.

The setup.py file can be as short as

from distutils.core import setup
setup(name=’decay’,

version=’0.1’,
py_modules=[’decay’],
scripts=[’decay.py’],
)

The py_modules argument specifies a list of modules to be installed, while
scripts specifies stand-alone programs. Our decay.py can be used either as a
module or as an executable program, so we want users to have both possibilities.
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Distributing a package. If the software consists of more files than one or
two modules, one should make a Python package out of it. In our case we make
a package decay containing one module, also called decay.

To make a package decay, create a directory decay and an empty file in
it with name __init__.py. A setup.py script must now specify the directory
name of the package and also an executable program (scripts=) in case we
want to run decay.py as a stand-alone application:

from distutils.core import setup
import os

setup(name=’decay’,
version=’0.1’,
author=’Hans Petter Langtangen’,
author_email=’hpl@simula.no’,
url=’https://github.com/hplgit/decay-package/’,
packages=[’decay’],
scripts=[os.path.join(’decay’, ’decay.py’)]

)

We have also added some author and download information. The reader is
referred to the Distutils documentation16 for more information on how to write
setup.py scripts.

Remark about the executable file.
The executable program, decay.py, is above taken to be the complete
module file decay.py. It would normally be preferred to instead write a
very short script essentially importing decay and running the test block in
decay.py. In this way, we distribute a module and a very short file, say
decay-main.py, as an executable program:

#!/usr/bin/env python
import decay
decay.decay.experiment_compare_dt(True)
decay.decay.plt.show()

In this package example, we move the unit tests out of the decay.py module
to a separate file, test_decay.py, and place this file in a directory tests. Then
the nosetests and py.test programs will automatically find and execute the
tests.

The complete directory structure reads

Terminal> /bin/ls -R
.:

16https://docs.python.org/2/distutils/setupscript.html
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decay README setup.py

./decay:
decay.py __init__.py tests

./decay/tests:
test_decay.py

4.2 Publishing the software at GitHub
The leading site today for publishing open source software projects is GitHub at
http://github.com, provided you want your software to be open to the world.
With a paid GitHub account, you can have private projects too.

Sign up for a GitHub account if you do not already have one. Go to your
account settings and provide an SSH key (typically the file ~/.ssh/id_rsa.pub)
such that you can communicate with GitHub without being prompted for your
password. All communication between your computer and GitHub goes via the
version control system Git. This may at first sight look tedious, but this is the
way professionals work with software today. With Git you have full control of
the history of your files, i.e., “who did what when”. The technology makes Git
superior to simpler alternatives like Dropbox and Google Drive, especially when
you collaborate with others. There is a reason why Git has gained the position
it has, and there is no reason why you should not adopt this tool.

To create a new project, click on New repository on the main page and fill
out a project name. Click on the check button Initialize this repository with a
README, and click on Create repository. The next step is to clone (copy) the
GitHub repo (short for repository) to your own computer(s) and fill it with files.
The typical clone command is

Terminal> git clone git://github.com:username/projname.git

where username is your GitHub username and projname is the name of the repo
(project). The result of git clone is a directory projname. Go to this directory
and add files. As soon as the repo directory is populated with files, run

Terminal> git add .
Terminal> git commit -am ’First registration of project files’
Terminal> git push origin master

The above git commands look cryptic, but these commands plus 2-3 more are
the essence of what you need in your daily work with files in small or big software
projects. I strongly encourage you to learn more about version control systems
and project hosting sites17 [1].

17http://hplgit.github.io/teamods/bitgit/html/
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Your project files are now stored in the cloud at https://github.com/
username/projname. Anyone can get the software by the listed git clone
command you used above, or by clicking on the links for zip and tar files.

Every time you update the project files, you need to register the update at
GitHub by

Terminal> git commit -am ’Description of the changes you made...’
Terminal> git push origin master

The files at GitHub are now synchronized with your local ones. Similarly, every
time you start working on files in this project, make sure you have the latest
version: git pull origin master.

You are recommended to read a quick intro18 that makes you up and going
with this style of professional work. And you should put all your writings and
programming projects in repositories in the cloud!

4.3 Downloading and installing the software
Users of your software go to the Git repo at github.com and clone the repository.
One can use either SSH or HTTP for communication. Most users will use the
latter, typically

Terminal> git clone https://github.com/username/projname.git

The result is a directory projname with the files in the repo.

Installing just a module file. The software package is in the case above a
directory decay with three files

Terminal> ls decay
README decay.py setup.py

To install the decay.py file, a user just runs setup.py:

Terminal> sudo python setup.py install

This command will install the software in system directories, so the user needs
to run the command as root on Unix systems (therefore the command starts
with sudo). The user can now import the module by import decay and run
the program by

18http://hplgit.github.io/teamods/bitgit/html/
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Terminal> decay.py

A user can easily install the software on her personal account if a system-wide
installation is not desirable. We refer to the installation documentation19 for
the many arguments that can be given to setup.py. Note that if the software is
installed on a personal account, the PATH and PYTHONPATH environment variables
must contain the relevant directories.

Our setup.py file specifies a module decay to be installed as well as a
program decay.py. Modules are typically installed in some lib directory on
the computer system, e.g., /usr/local/lib/python2.7/dist-packages, while
executable programs go to /usr/local/bin.

Installing a package. When the software is organized as a Python package,
the installation is done by running setup.py exactly as explained above, but
the use of a module decay in a package decay requires the following syntax:

import decay
u, t = decay.decay.solver(...)

That is, the call goes like packagename.modulename.functionname.

Package import in __init__.py

One can ease the use of packages by providing a somewhat simpler import
like

import decay
u, t = decay.solver(...)

# or
from decay import solver
u, t = solver(...)

This is accomplished by putting an import statement in the __init__.py
file, which is always run when doing the package import import decay or
from decay import. The __init__.py file must now contain

from decay import *

Obviously, it is the package developer who decides on such an __init__.py
file or if it should just be empty.

19https://docs.python.org/2/install/index.html#alternate-installation
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5 Classes for problem and solution method
The numerical solution procedure was compactly and conveniently implemented
in a Python function solver in Section 1.1. In more complicated problems it
might be beneficial to use classes instead of functions only. Here we shall describe
a class-based software design well suited for scientific problems where there is a
mathematical model of some physical phenomenon and some numerical methods
to solve the equations involved in the model.

We introduce a class Problem to hold the definition of the physical problem,
and a class Solver to hold the data and methods needed to numerically solve
the problem. The forthcoming text will explain the inner workings of these
classes and how they represent an alternative to the solver and experiment_*
functions in the decay module.

Explaining the details of class programming in Python is considered far
beyond the scope of this text. Readers who are unfamiliar with Python class
programming should first consult one of the many electronic Python tutorials
or textbooks to come up to speed with concepts and syntax of Python classes
before reading on. The author has a gentle introduction to class programming
for scientific applications in [2], see Chapter 7 and 9 and Appendix E20. Other
useful resources are

• The Python Tutorial: http://docs.python.org/2/tutorial/classes.
html

• Wiki book on Python Programming: http://en.wikibooks.org/wiki/
Python_Programming/Classes

• tutorialspoint.com: http://www.tutorialspoint.com/python/python_
classes_objects.htm

5.1 The problem class
The purpose of the problem class is to store all information about the mathe-
matical model. This usually means the physical parameters and formulas in the
problem. Looking at our model problem (1)-(2), the physical data cover I, a,
and T . Since we have an analytical solution of the ODE problem, we may add
this solution in terms of a Python function (or method) to the problem class as
well. A possible problem class is therefore

from numpy import exp

class Problem(object):
def __init__(self, I=1, a=1, T=10):

self.T, self.I, self.a = I, float(a), T

def u_exact(self, t):
I, a = self.I, self.a
return I*exp(-a*t)

20http://hplgit.github.io/primer.html/doc/web/index.html
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We could in the u_exact method have written self.I*exp(-self.a*t), but
using local variables I and a allows the nicer formula I*exp(-a*t), which looks
much closer to the mathematical expression Ie−at. This is not an important
issue with the current compact formula, but is beneficial in more complicated
problems with longer formulas to obtain the closest possible relationship between
code and mathematics. The coding style in this standalone is to strip off the
self prefix when the code expresses mathematical formulas.

The class data can be set either as arguments in the constructor or at any
time later, e.g.,

problem = Problem(T=5)
problem.T = 8
problem.dt = 1.5

(Some programmers prefer set and get functions for setting and getting data in
classes, often implemented via properties in Python, but this author considers
that overkill when there are just a few data items in a class.)

It would be convenient if class Problem could also initialize the data from the
command line. To this end, we add a method for defining a set of command-line
options and a method that sets the local attributes equal to what was found on
the command line. The default values associated with the command-line options
are taken as the values provided to the constructor. Class Problem now becomes

class Problem(object):
def __init__(self, I=1, a=1, T=10):

self.T, self.I, self.a = I, float(a), T

def define_command_line_options(self, parser=None):
"""Return updated (parser) or new ArgumentParser object."""
if parser is None:

import argparse
parser = argparse.ArgumentParser()

parser.add_argument(
’--I’, ’--initial_condition’, type=float,
default=1.0, help=’initial condition, u(0)’,
metavar=’I’)

parser.add_argument(
’--a’, type=float, default=1.0,
help=’coefficient in ODE’, metavar=’a’)

parser.add_argument(
’--T’, ’--stop_time’, type=float,
default=1.0, help=’end time of simulation’,
metavar=’T’)

return parser

def init_from_command_line(self, args):
"""Load attributes from ArgumentParser into instance."""
self.I, self.a, self.T = args.I, args.a, args.T

def u_exact(self, t):
"""Return the exact solution u(t)=I*exp(-a*t)."""
I, a = self.I, self.a
return I*exp(-a*t)
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Observe that if the user already has an ArgumentParser object it can be supplied,
but if she does not have any, class Problem makes one. Python’s None object is
used to indicate that a variable is not initialized with a proper value.

5.2 The solver class
The solver class stores parameters related to the numerical solution method and
provides a function solve for solving the problem. For convenience, a problem
object is given to the constructor in a solver object such that the object gets
access to the physical data. In the present example, the numerical solution
method involves the parameters ∆t and θ, which then constitute the data part
of the solver class. We include, as in the problem class, functionality for reading
∆t and θ from the command line:

class Solver(object):
def __init__(self, problem, dt=0.1, theta=0.5):

self.problem = problem
self.dt, self.theta = float(dt), theta

def define_command_line_options(self, parser):
"""Return updated (parser) or new ArgumentParser object."""
parser.add_argument(

’--scheme’, type=str, default=’CN’,
help=’FE, BE, or CN’)

parser.add_argument(
’--dt’, ’--time_step_values’, type=float,
default=[1.0], help=’time step values’,
metavar=’dt’, nargs=’+’, dest=’dt_values’)

return parser

def init_from_command_line(self, args):
"""Load attributes from ArgumentParser into instance."""
self.dt, self.theta = args.dt, args.theta

def solve(self):
self.u, self.t = solver(

self.problem.I, self.problem.a, self.problem.T,
self.dt, self.theta)

def error(self):
"""Return norm of error at the mesh points."""
u_e = self.problem.u_exact(self.t)
e = u_e - self.u
E = np.sqrt(self.dt*np.sum(e**2))
return E

Note that we see no need to repeat the body of the previously developed and
tested solver function. We just call that function from the solve method.
In this way, class Solver is merely a class wrapper of the stand-alone solver
function. With a single object of class Solver we have all the physical and
numerical data bundled together with the numerical solution method.
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Combining the objects. Eventually we need to show how the classes Problem
and Solver play together. We read parameters from the command line and
make a plot with the numerical and exact solution:

def experiment_classes():
problem = Problem()
solver = Solver(problem)

# Read input from the command line
parser = problem.define_command_line_options()
parser = solver. define_command_line_options(parser)
args = parser.parse_args()
problem.init_from_command_line(args)
solver. init_from_command_line(args)

# Solve and plot
solver.solve()
import matplotlib.pyplot as plt
t_e = np.linspace(0, T, 1001) # very fine mesh for u_e
u_e = problem.u_exact(t_e)
print ’Error:’, solver.error()

plt.plot(t, u, ’r--o’)
plt.plot(t_e, u_e, ’b-’)
plt.legend([’numerical, theta=%g’ % theta, ’exact’])
plt.xlabel(’t’)
plt.ylabel(’u’)
plotfile = ’tmp’
plt.savefig(plotfile + ’.png’); plt.savefig(plotfile + ’.pdf’)
plt.show()

5.3 Improving the problem and solver classes
The previous Problem and Solver classes containing parameters soon get much
repetitive code when the number of parameters increases. Much of this code can
be parameterized and be made more compact. For this purpose, we decide to
collect all parameters in a dictionary, self.prm, with two associated dictionaries
self.type and self.help for holding associated object types and help strings.
The reason is that processing dictionaries is easier than processing a set of
individual attributes. For the specific ODE example we deal with, the three
dictionaries in the problem class are typically

self.prm = dict(I=1, a=1, T=10)
self.type = dict(I=float, a=float, T=float)
self.help = dict(I=’initial condition, u(0)’,

a=’coefficient in ODE’,
T=’end time of simulation’)

Provided a problem or solver class defines these three dictionaries in the con-
structor, we can create a super class Parameters with general code for defining
command-line options and reading them as well as methods for setting and
getting each parameter. A Problem or Solver for a particular mathematical
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problem can then inherit most of the needed functionality and code from the
Parameters class. For example,

class Problem(Parameters):
def __init__(self):

self.prm = dict(I=1, a=1, T=10)
self.type = dict(I=float, a=float, T=float)
self.help = dict(I=’initial condition, u(0)’,

a=’coefficient in ODE’,
T=’end time of simulation’)

def u_exact(self, t):
I, a = self[’I a’.split()]
return I*np.exp(-a*t)

class Solver(Parameters):
def __init__(self, problem):

self.problem = problem # class Problem object
self.prm = dict(dt=0.5, theta=0.5)
self.type = dict(dt=float, theta=float)
self.help = dict(dt=’time step value’,

theta=’time discretization parameter’)

def solve(self):
from decay import solver
I, a, T = self.problem[’I a T’.split()]
dt, theta = self[’dt theta’.split()]
self.u, self.t = solver(I, a, T, dt, theta)

By inheritance, these classes can automatically do a lot more when it comes to
reading and assigning parameter values:

problem = Problem()
solver = Solver(problem)

# Read input from the command line
parser = problem.define_command_line_options()
parser = solver. define_command_line_options(parser)
args = parser.parse_args()
problem.init_from_command_line(args)
solver. init_from_command_line(args)

# Other syntax for setting/getting parameter values
problem[’T’] = 6
print ’Time step:’, solver[’dt’]

solver.solve()
u, t = solver.u, solver.t

A generic class for parameters. A simplified version of the parameter class
looks as follows:

class Parameters(object):
def __getitem__(self, name):

"""obj[name] syntax for getting parameters."""
if isinstance(name, (list,tuple)): # get many?
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return [self.prm[n] for n in name]
else:

return self.prm[name]

def __setitem__(self, name, value):
"""obj[name] = value syntax for setting a parameter."""
self.prm[name] = value

def define_command_line_options(self, parser=None):
"""Automatic registering of options."""
if parser is None:

import argparse
parser = argparse.ArgumentParser()

for name in self.prm:
tp = self.type[name] if name in self.type else str
help = self.help[name] if name in self.help else None
parser.add_argument(

’--’ + name, default=self.get(name), metavar=name,
type=tp, help=help)

return parser

def init_from_command_line(self, args):
for name in self.prm:

self.prm[name] = getattr(args, name)

The file decay_oo.py21 contains a slightly more advanced version of class
Parameters where we in the functions for getting and setting parameters test
for valid parameter names and raise exceptions with informative messages if any
name is not registered.

We have already sketched the Problem and Solver classes that build on
inheritance from Parameters. We have also shown how they are used. The only
remaining code is to make the plot, but this code is identical to previous versions
when the numerical solution is available in an object t and the exact one in u_e.

The advantage with the Parameters class is that it scales to problems with
a large number of physical and numerical parameters: as long as the parameters
are defined once via a dictionary, the compact code in class Parameters can
handle any collection of parameters of any size.

6 Automating scientific experiments
Empirical scientific investigations based on running computer programs require
careful design of the experiments and accurate reporting of results. Although
there is a strong tradition to do such investigations manually, the extreme
requirements to scientific accuracy make a program much better suited to
conduct the experiments. We shall in this section outline how we can write such
programs, often called scripts, for running other programs and archiving the
results.

21http://tinyurl.com/nm5587k/softeng1/decay_oo.py
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Scientific investigation.

The purpose of the investigations is to explore the quality of numerical
solutions to an ordinary differential equation. More specifically, we solve
the initial-value problem

u′(t) = −au(t), u(0) = I, t ∈ (0, T ], (4)

by the θ-rule:

un+1 = 1− (1− θ)a∆t
1 + θa∆t un, u0 = I . (5)

This scheme corresponds to well-known methods: θ = 0 gives the Forward
Euler (FE) scheme, θ = 1 gives the Backward Euler (BE) scheme, and
θ = 1

2 gives the Crank-Nicolson (CN) or midpoint/centered scheme.
For chosen constants I, a, and T , we run the three schemes for various

values of ∆t, and present the following results in a report:

1. visual comparison of the numerical and exact solution in a plot for
each ∆t and θ = 0, 1, 1

2 ,

2. a table and a plot of the norm of the numerical error versus ∆t for
θ = 0, 1, 1

2 .

The report will also document the mathematical details of the problem
under investigation.

6.1 Available software
Appropriate software for implementing (5) is available in a program model.py22,
which is run as

Terminal> python model.py --I 1.5 --a 0.25 --T 6 --dt 1.25 0.75 0.5

The command-line input corresponds to setting I = 1.5, a = 0.25, T = 6, and
run three values of ∆t: 1.25, 0.75, ad 0.5.

The results of running this model.py command are text in the terminal
window and a set of plot files. The plot files have names M_D.E, where M denotes
the method (FE, BE, CN for θ = 0, 1, 1

2 , respectively), D the time step length (here
1.25, 0.75, or 0.5), and E is the plot file extension png or pdf. The text output
in the terminal window looks like

0.0 1.25: 5.998E-01
0.0 0.75: 1.926E-01

22http://tinyurl.com/nc4upel/doconce_src/model.py
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0.0 0.50: 1.123E-01
0.0 0.10: 1.558E-02
0.5 1.25: 6.231E-02
0.5 0.75: 1.543E-02
0.5 0.50: 7.237E-03
0.5 0.10: 2.469E-04
1.0 1.25: 1.766E-01
1.0 0.75: 8.579E-02
1.0 0.50: 6.884E-02
1.0 0.10: 1.411E-02

The first column is the θ value, the next the ∆t value, and the final column
represents the numerical error E (the norm of discrete error function on the
mesh).

6.2 Required new results
The results we need for our investigations are slightly different than what is
directly produced by model.py:

1. We need to collect all the plots for one numerical method (FE, BE, CN) in
a single plot. For example, if 4 ∆t values are run, the summarizing plot for
the BE method has 2× 2 subplots, with the subplot corresponding to the
largest ∆t in the upper left corner and the smallest in the bottom right
corner.

2. We need to create a table containing ∆t values in the first column and the
numerical error E for θ = 0, 0.5, 1 in the next three columns. This table
should be available as a standard CSV file.

3. We need to plot the numerical error E versus ∆t in a log-log plot.

Consequently, we must write a script that can run model.py as described and
produce the results 1-3 above. This requires combining multiple plot files into
one file and interpreting the output from model.py as data for plotting and file
storage.

If the script’s name is exper1.py, we run it with the desired ∆t values as
positional command-line arguments:

Terminal> python exper1.py 0.5 0.25 0.1 0.05

This run will then generate eight plot files: FE.png and FE.pdf summarizing the
plots with the FE method, BE.png and BE.pdf with the BE method, CN.png and
CN.pdf with the CN method, and error.png and error.pdf with the log-log
plot of the numerical error versus ∆t. In addition, the table with numerical
errors is written to a file error.csv.
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Reproducible and replicable science.

A script that automates running our computer experiments will ensure
that the experiments can easily be rerun by anyone in the future, either to
confirm the same results or redo the experiments with other input data.
Also, whatever we did to produce the results is documented in every detail
in the script.

A project where anyone can easily repeat the experiments with the
same data is referred to as being replicable, and replicability should be a
fundamental requirement in scientific computing work. Of more scientific
interest is reproducibilty, which means that we can also run alternative
experiments to arrive at the same conclusions. This requires more than an
automating script.

6.3 Combining plot files
The script for running experiments needs to combine multiple image files into
one. The montage23 and convert24 programs in the ImageMagick software suite
can be used to combine image files. However, these programs are best suited for
PNG files. For vector plots in PDF format one needs other tools to preserve the
quality: pdftk, pdfnup, and pdfcrop.

Suppose you have four files f1.png, f2.png, f3.png, and f4.png and want
to combine them into a 2× 2 table of subplots in a new file f.png, see Figure 4
for an example.

The appropriate ImageMagick commands are

Terminal> montage -background white -geometry 100% -tile 2x \
f1.png f2.png f3.png f4.png f.png

Terminal> convert -trim f.png f.png
Terminal> convert f.png -transparent white f.png

The first command mounts the four files in one, the next convert command
removes unnecessary surrounding white space, and the final convert command
makes the white background transparent.

High-quality montage of PDF files f1.pdf, f2.pdf, f3.pdf, and f4.pdf into
f.pdf goes like

Terminal> pdftk f1.pdf f2.pdf f3.pdf f4.pdf output tmp.pdf
Terminal> pdfnup --nup 2x2 --outfile tmp.pdf tmp.pdf
Terminal> pdfcrop tmp.pdf f.pdf
Terminal> rm -f tmp.pdf

23http://www.imagemagick.org/script/montage.php
24http://www.imagemagick.org/script/convert.php
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Figure 4: Illustration of the Backward Euler method for four time step values.

6.4 Running a program from Python
The script for automating experiments needs to run the model.py program with
appropriate command-line options. Python has several tools for executing an
arbitrary command in the operating systems. Let cmd be a string containing the
desired command. In the present case study, cmd could be ’python model.py
–I 1 –dt 0.5 0.2’. The following code executes cmd and loads the text output
into a string output:

from subprocess import Popen, PIPE, STDOUT
p = Popen(cmd, shell=True, stdout=PIPE, stderr=STDOUT)
output, _ = p.communicate()

# Check if the execution was successful
failure = p.returncode
if failure:

print ’Command failed:’, cmd; sys.exit(1)

Unsuccessful execution usually makes it meaningless to continue the program,
and therefore we abort the program with sys.exit(1). Any argument different
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from 0 signifies to the computer’s operating system that our program stopped
with a failure.

Programming tip: use _ for dummy variable.

Sometimes we need to unpack tuples or lists in separate variables, but we
are not interested in all the variables. One example is

output, error = p.communicate()

but error is of no interest. One can then use underscore _ as variable
name for the dummy (uninteresting) variable(s):

output, _ = p.communicate()

Here is another example where we iterate over a list of three-tuples, but
the interest is limited to the second element in each three-tuple:

for _, value, _ in list_of_three_tuples:
# work with value

We need to interpret the contents of the string output and store the data
in an appropriate data structure for further processing. Since the content is
basically a table and will be transformed to a spread sheet format, we let the
columns in the table be represented by lists in the program, and we collect these
columns in a dictionary whose keys are natural column names: dt and the three
values of θ. The following code translates the output of cmd (output) to such a
dictionary of lists (errors):

errors = {’dt’: dt_values, 1: [], 0: [], 0.5: []}
for line in output.splitlines():

words = line.split()
if words[0] in (’0.0’, ’0.5’, ’1.0’): # line with E?

# typical line: 0.0 1.25: 7.463E+00
theta = float(words[0])
E = float(words[2])
errors[theta].append(E)

6.5 The automating script
We have now all the core elements in place to write the complete script where
we run model.py for a set of ∆t values (given as positional command-line
arguments), make the error plot, write the CSV file, and combine plot files as
described above. The complete code is listed below, followed by some explaining
comments.
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import os, sys, glob
import matplotlib.pyplot as plt

def run_experiments(I=1, a=2, T=5):
# The command line must contain dt values
if len(sys.argv) > 1:

dt_values = [float(arg) for arg in sys.argv[1:]]
else:

print ’Usage: %s dt1 dt2 dt3 ...’ % sys.argv[0]
sys.exit(1) # abort

# Run module file and grab output
cmd = ’python model.py --I %g --a %g --T %g’ % (I, a, T)
dt_values_str = ’ ’.join([str(v) for v in dt_values])
cmd += ’ --dt %s’ % dt_values_str
print cmd
from subprocess import Popen, PIPE, STDOUT
p = Popen(cmd, shell=True, stdout=PIPE, stderr=STDOUT)
output, _ = p.communicate()
failure = p.returncode
if failure:

print ’Command failed:’, cmd; sys.exit(1)

errors = {’dt’: dt_values, 1: [], 0: [], 0.5: []}
for line in output.splitlines():

words = line.split()
if words[0] in (’0.0’, ’0.5’, ’1.0’): # line with E?

# typical line: 0.0 1.25: 7.463E+00
theta = float(words[0])
E = float(words[2])
errors[theta].append(E)

# Find min/max for the axis
E_min = 1E+20; E_max = -E_min
for theta in 0, 0.5, 1:

E_min = min(E_min, min(errors[theta]))
E_max = max(E_max, max(errors[theta]))

plt.loglog(errors[’dt’], errors[0], ’ro-’)
plt.loglog(errors[’dt’], errors[0.5], ’b+-’)
plt.loglog(errors[’dt’], errors[1], ’gx-’)
plt.legend([’FE’, ’CN’, ’BE’], loc=’upper left’)
plt.xlabel(’log(time step)’)
plt.ylabel(’log(error)’)
plt.axis([min(dt_values), max(dt_values), E_min, E_max])
plt.title(’Error vs time step’)
plt.savefig(’error.png’); plt.savefig(’error.pdf’)

# Write out a table in CSV format
f = open(’error.csv’, ’w’)
f.write(r’$\Delta t$,$\theta=0$,$\theta=0.5$,$\theta=1$’ + ’\n’)
for _dt, _fe, _cn, _be in zip(

errors[’dt’], errors[0], errors[0.5], errors[1]):
f.write(’%.2f,%.4f,%.4f,%.4f\n’ % (_dt, _fe, _cn, _be))

f.close()

# Combine images into rows with 2 plots in each row
image_commands = []
for method in ’BE’, ’CN’, ’FE’:

pdf_files = ’ ’.join([’%s_%g.pdf’ % (method, dt)
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for dt in dt_values])
png_files = ’ ’.join([’%s_%g.png’ % (method, dt)

for dt in dt_values])
image_commands.append(

’montage -background white -geometry 100%’ +
’ -tile 2x %s %s.png’ % (png_files, method))

image_commands.append(
’convert -trim %s.png %s.png’ % (method, method))

image_commands.append(
’convert %s.png -transparent white %s.png’ %
(method, method))

image_commands.append(
’pdftk %s output tmp.pdf’ % pdf_files)

num_rows = int(round(len(dt_values)/2.0))
image_commands.append(

’pdfnup --nup 2x%d --outfile tmp.pdf tmp.pdf’ % num_rows)
image_commands.append(

’pdfcrop tmp.pdf %s.pdf’ % method)

for cmd in image_commands:
print cmd
failure = os.system(cmd)
if failure:

print ’Command failed:’, cmd; sys.exit(1)

# Remove the files generated above and by model.py
from glob import glob
filenames = glob(’*_*.png’) + glob(’*_*.pdf’) + glob(’tmp*.pdf’)
for filename in filenames:

os.remove(filename)

if __name__ == ’__main__’:
run_experiments(I=1, a=2, T=5)
plt.show()

We may comment upon many useful constructs in this script:

• [float(arg) for arg in sys.argv[1:]] builds a list of real numbers
from all the command-line arguments.

• [’%s_%s.png’ % (method, dt) for dt in dt_values] builds a list of
filenames from a list of numbers (dt_values).

• All montage, convert, pdftk, pdfnup, and pdfcrop commands for creating
composite figures are stored in a list and later executed in a loop.

• glob(’*_*.png’) returns a list of the names of all files in the current
directory where the filename matches the Unix wildcard notation25 *_*.png
(meaning any text, underscore, any text, and then .png).

• os.remove(filename) removes the file with name filename.

• failure = os.system(cmd) runs an operating system command with
simpler syntax than what is required by subprocess (but the output of
cmd cannot be captured).

25http://en.wikipedia.org/wiki/Glob_(programming)
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6.6 Making a report
The results of running computer experiments are best documented in a little
report containing the problem to be solved, key code segments, and the plots
from a series of experiments. At least the part of the report containing the
plots should be automatically generated by the script that performs the set of
experiments, because in the script we know exactly which input data that were
used to generate a specific plot, thereby ensuring that each figure is connected
to the right data. Take a look at a sample report26 to see what we have in mind.

Word, OpenOffice, GoogleDocs. Microsoft Word, its open source counter-
parts OpenOffice and LibreOffice, along with GoogleDocs and similar online
services are the dominating tools for writing reports today. Nevertheless, sci-
entific reports often need mathematical equations and nicely typeset computer
code in monospace font. The support for mathematics and computer code in
the mentioned tools is in this author’s view not on par with the technologies
based on markup languages and which are addressed below. Also, with markup
languages one has a readable, pure text file as source for the report, and changes
in this text can easily be tracked by version control systems like Git. The result
is a very strong tool for monitoring “who did what when” with the files, resulting
in increased reliability of the writing process. For collaborative writing, the
merge functionality in Git leads to safer simultaneously editing that what is
offered even by collaborative tools like GoogleDocs.

HTML with MathJax. HTML is the markup language used for web pages.
Nicely typeset computer code is straightforward in HTML, and high-quality
mathematical typesetting is available using an extension to HTML called Math-
Jax27, which allows formulas and equations to be typeset with LATEX syntax and
nicely rendered in web browsers, see Figure 5. A relatively small subset of LATEX
environments for mathematics is supported, but the syntax for formulas is quite
rich. Inline formulas look like \( u’=-au \) while equations are surrounded
by $$ signs. Inside such signs, one can use \[ u’=-au \] for unnumbered
equations, or \begin{equation} and \end{equation} for numbered equations,
or \begin{align} and \end{align} for multiple numbered aligned equations.
You need to be familiar with mathematical typesetting in LaTeX28 to write
MathJax code.

The file exper1_mathjax.py29 calls a script exper1.py30 to perform the
numerical experiments and then runs Python statements for creating an HTML
file31 with the source code for the scientific report32.

26http://tinyurl.com/nc4upel/_static/sphinx-cloud/
27http://www.mathjax.org/
28http://en.wikibooks.org/wiki/LaTeX/Mathematics
29http://tinyurl.com/p96acy2/report_generation/exper1_html.py
30http://tinyurl.com/p96acy2/exper1.py
31http://tinyurl.com/nc4upel/_static/report_mathjax.html.html
32http://tinyurl.com/nc4upel/_static/report_mathjax.html
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Figure 5: Report in HTML format with MathJax.

LATEX. The de facto language for mathematical typesetting and scientific report
writing is LaTeX33. A number of very sophisticated packages have been added to
the language over a period of three decades, allowing very fine-tuned layout and
typesetting. For output in the PDF format34, see Figure 6 for an example, LATEX
is the definite choice when it comes to typesetting quality. The LATEX language
used to write the reports has typically a lot of commands involving backslashes
and braces35, and many claim that LATEX syntax is not particularly readable.
For output on the web via HTML code (i.e., not only showing the PDF in the
browser window), LATEX struggles with delivering high quality typesetting. Other
tools, especially Sphinx, give better results and can also produce nice-looking
PDFs. The file exper1_latex.py36 shows how to generate the LATEX source
from a program.

Sphinx. Sphinx37 is a typesetting language with similarities to HTML and
LATEX, but with much less tagging. It has recently become very popular for
software documentation and mathematical reports. Sphinx can utilize LATEX
for mathematical formulas and equations. Unfortunately, the subset of LATEX
mathematics supported is less than in full MathJax (in particular, numbering of
multiple equations in an align type environment is not supported). The Sphinx
syntax38 is an extension of the reStructuredText language. An attractive feature

33http://en.wikipedia.org/wiki/LaTeX
34http://tinyurl.com/nc4upel/_static/report.pdf
35http://tinyurl.com/nc4upel/_static/report.tex.html
36http://tinyurl.com/p96acy2/report_generation/exper1_latex.py
37http://sphinx.pocoo.org/
38http://tinyurl.com/nc4upel/_static/report_sphinx.rst.html
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Figure 6: Report in PDF format generated from LATEX source.

Figure 7: Report in HTML format generated from Sphinx source.

of Sphinx is its rich support for fancy layout of web pages39. In particular,
Sphinx can easily be combined with various layout themes that give a certain
look and feel to the web site and that offers table of contents, navigation, and
search facilities, see Figure 7.

39http://tinyurl.com/nc4upel/_static/sphinx-cloud/index.html
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Markdown. A recent, very popular format for easy writing of web pages is
Markdown40. Text is written very much like one would do in email, using spacing
and special characters to naturally format the code instead of heavily tagging the
text as in LATEX and HTML. With the tool Pandoc41 one can go from Markdown
to a variety of formats. HTML is a common output format, but LATEX, epub,
XML, OpenOffice/LibreOffice, MediaWiki, and Microsoft Word are some other
possibilities. A Markdown version of our scientific report demo is available as an
IPython/Jupyter notebook (described next).

IPython/Jupyter notebooks. The IPython Notebook42 is a web-based tool
where one can write scientific reports with live computer code and graphics. Or
the other way around: software can be equipped with documentation in the
style of scientific reports. A slightly extended version of Markdown is used for
writing text and mathematics, and the source code of a notebook43 is in json
format. The interest in the notebook has grown amazingly fast over just a few
years, and further development now takes place in the Jupyter project44, which
supports a lot of programming languages for interactive notebook computing.
Jupyter notebooks are primarily live electronic documents, but they can be
printed out as PDF reports too. A notebook version of our scientific report can
be downloaded45 and experimented with or just statically viewed46 in a browser.

Wiki formats. A range of wiki formats are popular for creating notes on
the web, especially documents which allow groups of people to edit and add
content. Apart from MediaWiki47 (the wiki format used for Wikipedia), wiki
formats have no support for mathematical typesetting and also limited tools for
displaying computer code in nice ways. Wiki formats are therefore less suitable
for scientific reports compared to the other formats mentioned here.

DocOnce. Since it is difficult to choose the right tool or format for writing a
scientific report, it is advantageous to write the content in a format that easily
translates to LATEX, HTML, Sphinx, Markdown, IPython/Jupyter notebooks, and
various wikis. DocOnce48 is such a tool. It is similar to Pandoc, but offers some
special convenient features for writing about mathematics and programming. The
tagging is modest49, somewhere between LATEX and Markdown. The program
exper1_do.py50 demonstrates how to generate DocOnce code for a scientific

40http://daringfireball.net/projects/markdown/
41http://johnmacfarlane.net/pandoc/
42http://ipython.org/notebook.html
43http://tinyurl.com/nc4upel/_static/report.ipynb.html
44https://jupyter.org/
45http://tinyurl.com/p96acy2/_static/report.ipynb
46http://nbviewer.ipython.org/url/hplgit.github.com/teamods/writing_reports/_static/report.ipynb
47http://www.mediawiki.org/wiki/MediaWiki
48https://github.com/hplgit/doconce
49http://tinyurl.com/nc4upel/_static/report.do.txt.html
50http://tinyurl.com/p96acy2/exper1_do.py
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report. There is also a corresponding rich demo of the resulting reports51 that
can be made from this DocOnce code.

6.7 Publishing a complete project
To assist the important principle of replicable science, a report documenting
scientific investigations should be accompanied by all the software and data used
for the investigations so that others have a possibility to redo the work and
assess the qualify of the results.

One way of documenting a complete project is to make a directory tree with
all relevant files. Preferably, the tree is published at some project hosting site like
Bitbucket or GitHub52 so that others can download it as a tarfile, zipfile, or clone
the files directly using the Git version control system. For the investigations
outlined in Section 6.6, we can create a directory tree with files

setup.py
./src:

model.py
./doc:

./src:
exper1_mathjax.py
make_report.sh
run.sh

./pub:
report.html

The src directory holds source code (modules) to be reused in other projects, the
setup.py script builds and installs such software, the doc directory contains the
documentation, with src for the source of the documentation (usually written
in a markup language) and pub for published (compiled) documentation. The
run.sh file is a simple Bash script listing the python commands we used to run
exper1_mathjax.py to generate the experiments and the report.html file.

7 Exercises
Problem 1: Make a tool for differentiating curves
Suppose we have a curve specified through a set of discrete coordinates (xi, yi),
i = 0, . . . , n, where the xi values are uniformly distributed with spacing ∆x:
xi = ∆x. The derivative of this curve, defined as a new curve with points (xi, di),
can be computed via finite differences:

d0 = y1 − y0

∆x , (6)

di = yi+1 − yi−1

2∆x , i = 1, . . . , n− 1, (7)

dn = yn − yn−1

∆x . (8)

51http://tinyurl.com/nc4upel/index.html
52http://hplgit.github.com/teamods/bitgit/html/
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a) Write a function differentiate(x, y) for differentiating a curve with co-
ordinates in the arrays x and y, using the formulas above. The function should
return the coordinate arrays of the resulting differentiated curve.

b) Since the formulas for differentiation used here are only approximate, with
unknown approximation errors, it is challenging to construct test cases. Here are
three approaches, which should be implemented in three separate test functions.

1. Consider a curve with three points and compute di, i = 0, 1, 2, by hand.
Make a test that compares the hand-calculated results with those from the
function in a).

2. The formulas for di are exact for points on a straight line, as all the di
values are then the same, equal to the slope of the line. A test can check
this property.

3. For point lying on a parabola, the values for di, i = 1, . . . , n− 1, should
equal the exact derivative of the parabola. Make a test based on this
property.

c) Start with a curve corresponding to y = sin(πx) and n + 1 points in [0, 1].
Apply differentiate four times and plot the resulting curve and the exact
y = sin πx for n = 6, 11, 21, 41.
Filename: curvediff.

Problem 2: Make solid software for the Trapezoidal rule
An integral ∫ b

a

f(x)dx

can be numerically approximated by the Trapezoidal rule,∫ b

a

f(x)dx ≈ h

2 (f(a) + f(b)) + h
n−1∑
i=1

f(xi),

where xi is a set of uniformly spaced points in [a, b]:

h = b− a
n

, xi = a+ ih, i = 1, . . . , n− 1 .

Somebody has used this rule to compute the integral
∫ π

0 sin2 x dx:

from math import pi, sin
np = 20
h = pi/np
I = 0
for k in range(1, np):

I += sin(k*h)**2
print I
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a) The “flat” implementation above suffers from serious flaws:

1. A general numerical algorithm (the Trapezoidal rule) is implemented in a
specialized form where the formula for f is inserted directly into the code
for the general integration formula.

2. A general numerical algorithm is not encapsulated as a general function,
with appropriate parameters, which can be reused across a wide range of
applications.

3. The lazy programmer dropped the first terms in the general formula since
sin(0) = sin(π) = 0.

4. The sloppy programmer used np (number of points?) as variable for n in
the formula and a counter k instead of i. Such small deviations from the
mathematical notation are completely unnecessary. The closer the code
and the mathematics can get, the easier it is to spot errors in formulas.

Write a function trapezoidal that fixes these flaws. Place the function in a
module trapezoidal.

b) Write a test function test_trapezoidal. Call the test function explicitly to
check that it works. Remove the call and run pytest on the module:

Terminal> py.test -s -v trapezoidal

Hint. Note that even if you know the value of the integral, you do not know
the error in the approximation produced by the Trapezoidal rule. However, the
Trapezoidal rule will integrate linear functions exactly (i.e., to machine precision).
Base a test function on a linear f(x).

c) Add functionality such that we can compute
∫ b
a
f(x)dx by providing f , a, b,

and n as positional command-line arguments to the module file:

Terminal> python trapezoidal.py ’sin(x)**2’ 0 pi 20

Here, a = 0, b = π, and n = 20.
Note that the trapezoidal.py file must still be a valid module file, so the

interpretation of command-line data and computation of the integral must be
performed from calls in a test block.

Hint. To translate a string formula on the command line, like sin(x)**2, into
a Python function, you can wrap a function declaration around the formula and
run exec on the string to turn it into live Python code:
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import math, sys
formula = sys.argv[1]
f_code = """
def f(x):

return %s
""" % formula
exec(code, math.__dict__)

The result is the same as if we had hardcoded

from math import *

def f(x):
return sin(x)**2

in the program. Note that exec needs the namespace math.__dict__, i.e., all
names in the math module, such that it understands sin and other mathematical
functions. Similarly, to allow a and b to be math expressions like pi/4 and
exp(4), do

a = eval(sys.argv[2], math.__dict__)
b = eval(sys.argv[2], math.__dict__)

d) Write a test function for verifying the implementation of data reading from
the command line.
Filename: trapezoidal.

Problem 3: Implement classes for the Trapezoidal rule
We consider the same problem setting as in Problem 2. Make a module with a
class Problem representing the mathematical problem to be solved and a class
Solver representing the solution method. The rest of the functionality of the
module, including test functions and reading data from the command line, should
be as in Problem 2. Filename: trapezoidal_class.

Problem 4: Write a doctest and a test function
Type in the following program:

import sys
# This sqrt(x) returns real if x>0 and complex if x<0
from numpy.lib.scimath import sqrt

def roots(a, b, c):
"""
Return the roots of the quadratic polynomial
p(x) = a*x**2 + b*x + c.

The roots are real or complex objects.
"""
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q = b**2 - 4*a*c
r1 = (-b + sqrt(q))/(2*a)
r2 = (-b - sqrt(q))/(2*a)
return r1, r2

a, b, c = [float(arg) for arg in sys.argv[1:]]
print roots(a, b, c)

a) Equip the roots function with a doctest. Make sure to test both real and
complex roots. Write out numbers in the doctest with 14 digits or less.

b) Make a test function for the roots function. Perform the same mathematical
tests as in a), but with different programming technology.
Filename: test_roots.

Problem 5: Experiment with tolerances in comparisons
When we replace a comparison a == b, where a and/or b are float objects, by a
comparison with tolerance, abs(a-b) < tol, the appropriate size of tol depends
on the size a and b. Investigate how the size of abs(a-b) varies when b takes
on values 10k, k = −5,−9, . . . , 20 and a=1.0/49*b*49. Filename: tolerance.

Remarks. You will experience that if a and b are large, as they can be in
geophysical applications where lengths measured in meters can be of size 106 m,
tol must be about 10−9, while a and b around unity can have tol of size 10−15.

Exercise 6: Make use of a class implementation
Implement the experiment_compare_dt function from decay.py using class
Problem and class Solver from Section 5. The parameters I, a, T, the scheme
name, and a series of dt values should be read from the command line. Filename:
experiment_compare_dt_class.

Exercise 7: Make solid software for a difference equation
We have the following evolutionary difference equation for the number of indi-
viduals un of a certain specie at time n∆t:

un+1 = un + ∆trun
(

1− un

Mn

)
, u0 = U0 . (9)

Here, n is a counter in time, ∆t is time between time levels n and n+1 (assumed
constant), r is a net reproduction rate for the specie, and Mn is the upper limit
of the population that the environment can sustain at time level n. Filename:
logistic.
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