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1 Systems of di�erential equations



Systems of di�erential equations

Consider m + 1 unknown functions: u(0), . . . , u(m) governed by

m + 1 di�erential equations:

L0(u(0), . . . , u(m)) = 0

...

Lm(u(0), . . . , u(m)) = 0,

Goals

How do we derive variational formulations of systems of

di�erential equations?

How do we apply the �nite element method?



Variational forms: treat each PDE as a scalar PDE

First approach: treat each equation as a scalar equation

For equation no. i , use test function v (i) ∈ V (i)

∫
Ω
L(0)(u(0), . . . , u(m))v (0)

dx = 0

...∫
Ω
L(m)(u(0), . . . , u(m))v (m)

dx = 0

Terms with second-order derivatives may be integrated by parts,

with Neumann conditions inserted in boundary integrals.

V (i) = span{ϕ(i)
0 , . . . , ϕ

(i)
Ni
},

u(i) = B(i)(x) +

Ni∑
j=0

c
(i)
j ϕ

(i)
j (x),

Can derive m coupled linear systems for the unknowns c
(i)
j ,

j = 0, . . . ,Ni , i = 0, . . . ,m.



Variational forms: treat the PDE system as a vector PDE

Second approach: work with vectors (and vector notation)

u = (u(0), . . . , u(m))
v = (u(0), . . . , u(m))
u, v ∈ V = V (0) × · · · × V (m)

Note: if B = (B(0), . . . ,B(m)) is needed for nonzero Dirichlet

conditions, u − B ∈ V (not u in V )

L(u) = 0

L(u) = (L(0)(u), . . . ,L(m)(u))

The variational form is derived by taking the inner product of L(u)
and v :

∫
Ω
L(u) · v = 0 ∀v ∈ V

Observe: this is a scalar equation (!).

Can derive m independent equation by choosing m
independent v

E.g.: v = (v (0), 0, . . . , 0) recovers (??)

E.g.: v = (0, . . . , 0, v (m) recovers (??)



A worked example

µ∇2w = −β
κ∇2T = −µ||∇w ||2 (= µ∇w · ∇w)

Unknowns: w(x , y), T (x , y)

Known constants: µ, β, κ

Application: �uid �ow in a straight pipe, w is velocity, T is

temperature

Ω: cross section of the pipe

Boundary conditions: w = 0 and T = T0 on ∂Ω

Note: T depends on w , but w does not depend on T
(one-way coupling)



Identical function spaces for the unknowns

Let w , (T − T0) ∈ V with test functions v ∈ V .

V = span{ϕ0(x , y), . . . , ϕN(x , y)},

w =
N∑
j=0

c
(w)
j ϕj , T = T0 +

N∑
j=0

c
(T )
j ϕj



Variational form of each individual PDE

Inserting (??) in the PDEs, results in the residuals

Rw = µ∇2w + β

RT = κ∇2T + µ||∇w ||2

Galerkin's method: make residual orthogonal to V ,

∫
Ω
Rwv dx = 0 ∀v ∈ V∫

Ω
RT v dx = 0 ∀v ∈ V

Integrate by parts and use v = 0 on ∂Ω (Dirichlet conditions!):

∫
Ω
µ∇w · ∇v dx =

∫
Ω
βv dx ∀v ∈ V∫

Ω
κ∇T · ∇v dx =

∫
Ω
µ∇w · ∇w v dx ∀v ∈ V



Compound scalar variational form

Test vector function v ∈ V = V × V

Take the inner product of v and the system of PDEs (and

integrate) ∫
Ω

(Rw ,RT ) · v dx = 0 ∀v ∈ V

With v = (v0, v1):

∫
Ω

(Rwv0 + RT v1) dx = 0 ∀v ∈ V

∫
Ω

(µ∇w ·∇v0+κ∇T ·∇v1) dx =

∫
Ω

(βv0+µ∇w ·∇w v1) dx , ∀v ∈ V

Choosing v0 = v and v1 = 0 gives the variational form (??), while

v0 = 0 and v1 = v gives (??).



Alternative inner product notation

µ(∇w ,∇v) = (β, v) ∀v ∈ V

κ(∇T ,∇v) = µ(∇w · ∇w , v) ∀v ∈ V



Decoupled linear systems

N∑
j=0

A
(w)
i ,j c

(w)
j = b

(w)
i , i = 0, . . . ,N

N∑
j=0

A
(T )
i ,j c

(T )
j = b

(T )
i , i = 0, . . . ,N

A
(w)
i ,j = µ(∇ϕj ,∇ϕi )

b
(w)
i = (β, ϕi )

A
(T )
i ,j = κ(∇ϕj ,∇ϕi )

b
(T )
i = (µ∇w− · (

∑
k

c
(w)
k ∇ϕk), ϕi )

Matrix-vector form (alternative notation):

µKc(w) = b(w)

κKc(T ) = b(T )

where

Ki ,j = (∇ϕj ,∇ϕi )

b(w) = (b
(w)
0 , . . . , b

(w)
N )

b(T ) = (b
(T )
0 , . . . , b

(T )
N )

c(w) = (c
(w)
0 , . . . , c

(w)
N )

c(T ) = (c
(T )
0 , . . . , c

(T )
N )

First solve the system for c(w), then solve the system for c(T )



Coupled linear systems

Pretend two-way coupling, i.e., need to solve for w and T
simultaneously

Want to derive one system for c
(w)
j and c

(T )
j , j = 0, . . . ,N

The system is nonlinear because of ∇w · ∇w
Linearization: pretend an iteration where ŵ is computed in the

previous iteration and set ∇w · ∇w ≈ ∇ŵ · ∇w (so the term

becomes linear in w)

N∑
j=0

A
(w ,w)
i ,j c

(w)
j +

N∑
j=0

A
(w ,T )
i ,j c

(T )
j = b

(w)
i , i = 0, . . . ,N,

N∑
j=0

A
(T ,w)
i ,j c

(w)
j +

N∑
j=0

A
(T ,T )
i ,j c

(T )
j = b

(T )
i , i = 0, . . . ,N,

A
(w ,w)
i ,j = µ(∇ϕj , ϕi )

A
(w ,T )
i ,j = 0

b
(w)
i = (β, ϕi )

A
(w ,T )
i ,j = µ(∇w− · ∇ϕj), ϕi )

A
(T ,T )
i ,j = κ(∇ϕj , ϕi )

b
(T )
i = 0



Alternative notation for coupled linear system

µKc(w) = b(w)

Lc(w) + κKc(T ) = 0

L is the matrix from the ∇w− · ∇ operator: Li ,j = A
(w ,T )
i ,j .

Corresponding block form:

(
µK 0

L κK

)(
c(w)

c(T )

)
=

(
b(w)

0

)



Di�erent function spaces for the unknowns

Generalization: w ∈ V (w) and T ∈ V (T ), V (w) 6= V (T )

This is called a mixed �nite element method

V (w) = span{ϕ(w)
0 , . . . , ϕ

(w)
Nw
}

V (T ) = span{ϕ(T )
0 , . . . , ϕ

(T )
NT
}

∫
Ω
µ∇w · ∇v (w)

dx =

∫
Ω
βv (w)

dx ∀v (w) ∈ V (w)∫
Ω
κ∇T · ∇v (T )

dx =

∫
Ω
µ∇w · ∇w v (T )

dx ∀v (T ) ∈ V (T )

Take the inner product with v = (v (w), v (T )) and integrate:

∫
Ω

(µ∇w ·∇v (w)+κ∇T ·∇v (T )) dx =

∫
Ω

(βv (w)+µ∇w ·∇w v (T )) dx ,

valid ∀v ∈ V = V (w) × V (T ).
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