Variational forms for systems of PDEs

Hans Petter Langtangen ${ }^{1,2}$
${ }^{1}$ Center for Biomedical Computing, Simula Research Laboratory
${ }^{2}$ Department of Informatics, University of Oslo

Oct 16, 2015

PRELIMINARY VERSION

Contents

1 Variational forms 2
1.1 Sequence of scalar PDEs formulation 2
1.2 Vector PDE formulation 3
2 A worked example 3
3 Identical function spaces for the unknowns 4
3.1 Variational form of each individual PDE 4
3.2 Compound scalar variational form 5
3.3 Decoupled linear systems 6
3.4 Coupled linear systems 6
4 Different function spaces for the unknowns 8
5 Computations in 1D 9
References 10
Index 11

Many mathematical models involve $m+1$ unknown functions governed by a system of $m+1$ differential equations. In abstract form we may denote the unknowns by $u^{(0)}, \ldots, u^{(m)}$ and write the governing equations as

$$
\begin{gathered}
\mathcal{L}_{0}\left(u^{(0)}, \ldots, u^{(m)}\right)=0, \\
\vdots \\
\mathcal{L}_{m}\left(u^{(0)}, \ldots, u^{(m)}\right)=0,
\end{gathered}
$$

where \mathcal{L}_{i} is some differential operator defining differential equation number i.

1 Variational forms

There are basically two ways of formulating a variational form for a system of differential equations. The first method treats each equation independently as a scalar equation, while the other method views the total system as a vector equation with a vector function as unknown.

1.1 Sequence of scalar PDEs formulation

Let us start with the approach that treats one equation at a time. We multiply equation number i by some test function $v^{(i)} \in V^{(i)}$ and integrate over the domain:

$$
\begin{gather*}
\int_{\Omega} \mathcal{L}^{(0)}\left(u^{(0)}, \ldots, u^{(m)}\right) v^{(0)} \mathrm{d} x=0, \tag{1}\\
\vdots \tag{2}\\
\int_{\Omega} \mathcal{L}^{(m)}\left(u^{(0)}, \ldots, u^{(m)}\right) v^{(m)} \mathrm{d} x=0 \tag{3}
\end{gather*}
$$

Terms with second-order derivatives may be integrated by parts, with Neumann conditions inserted in boundary integrals. Let

$$
V^{(i)}=\operatorname{span}\left\{\psi_{0}^{(i)}, \ldots, \psi_{N_{i}}^{(i)}\right\},
$$

such that

$$
u^{(i)}=B^{(i)}(\boldsymbol{x})+\sum_{j=0}^{N_{i}} c_{j}^{(i)} \psi_{j}^{(i)}(\boldsymbol{x}),
$$

where $B^{(i)}$ is a boundary function to handle nonzero Dirichlet conditions. Observe that different unknowns live in different spaces with different basis functions and numbers of degrees of freedom.

From the m equations in the variational forms we can derive m coupled systems of algebraic equations for the $\Pi_{i=0}^{m} N_{i}$ unknown coefficients $c_{j}^{(i)}, j=$ $0, \ldots, N_{i}, i=0, \ldots, m$.

1.2 Vector PDE formulation

The alternative method for deriving a variational form for a system of differential equations introduces a vector of unknown functions

$$
\boldsymbol{u}=\left(u^{(0)}, \ldots, u^{(m)}\right)
$$

a vector of test functions

$$
\boldsymbol{v}=\left(u^{(0)}, \ldots, u^{(m)}\right)
$$

with

$$
\boldsymbol{u}, \boldsymbol{v} \in \boldsymbol{V}=V^{(0)} \times \cdots \times V^{(m)}
$$

With nonzero Dirichlet conditions, we have a vector $\boldsymbol{B}=\left(B^{(0)}, \ldots, B^{(m)}\right)$ with boundary functions and then it is $\boldsymbol{u}-\boldsymbol{B}$ that lies in \boldsymbol{V}, not \boldsymbol{u} itself.

The governing system of differential equations is written

$$
\mathcal{L}(\boldsymbol{u})=0,
$$

where

$$
\mathcal{L}(\boldsymbol{u})=\left(\mathcal{L}^{(0)}(\boldsymbol{u}), \ldots, \mathcal{L}^{(m)}(\boldsymbol{u})\right)
$$

The variational form is derived by taking the inner product of the vector of equations and the test function vector:

$$
\begin{equation*}
\int_{\Omega} \mathcal{L}(\boldsymbol{u}) \cdot \boldsymbol{v}=0 \quad \forall \boldsymbol{v} \in \boldsymbol{V} \tag{4}
\end{equation*}
$$

Observe that (4) is one scalar equation. To derive systems of algebraic equations for the unknown coefficients in the expansions of the unknown functions, one chooses m linearly independent \boldsymbol{v} vectors to generate m independent variational forms from (4). The particular choice $\boldsymbol{v}=\left(v^{(0)}, 0, \ldots, 0\right)$ recovers $(1), \boldsymbol{v}=\left(0, \ldots, 0, v^{(m)}\right.$ recovers (3), and $\boldsymbol{v}=\left(0, \ldots, 0, v^{(i)}, 0, \ldots, 0\right)$ recovers the variational form number $i, \int_{\Omega} \mathcal{L}^{(i)} v^{(i)} \mathrm{d} x=0$, in (1)-(3).

2 A worked example

We now consider a specific system of two partial differential equations in two space dimensions:

$$
\begin{align*}
& \mu \nabla^{2} w=-\beta \tag{5}\\
& \kappa \nabla^{2} T=-\mu\|\nabla w\|^{2} . \tag{6}
\end{align*}
$$

The unknown functions $w(x, y)$ and $T(x, y)$ are defined in a domain Ω, while μ, β, and κ are given constants. The norm in (6) is the standard Euclidean norm:

$$
\|\nabla w\|^{2}=\nabla w \cdot \nabla w=w_{x}^{2}+w_{y}^{2} .
$$

The boundary conditions associated with (5)-(6) are $w=0$ on $\partial \Omega$ and $T=T_{0}$ on $\partial \Omega$. Each of the equations (5) and (6) needs one condition at each point on the boundary.

The system (5)-(6) arises from fluid flow in a straight pipe, with the z axis in the direction of the pipe. The domain Ω is a cross section of the pipe, w is the velocity in the z direction, μ is the viscosity of the fluid, β is the pressure gradient along the pipe, T is the temperature, and κ is the heat conduction coefficient of the fluid. The equation (5) comes from the Navier-Stokes equations, and (6) follows from the energy equation. The term $-\mu\|\nabla w\|^{2}$ models heating of the fluid due to internal friction.

Observe that the system (5)-(6) has only a one-way coupling: T depends on w, but w does not depend on T, because we can solve (5) with respect to w and then (6) with respect to T. Some may argue that this is not a real system of PDEs, but just two scalar PDEs. Nevertheless, the one-way coupling is convenient when comparing different variational forms and different implementations.

3 Identical function spaces for the unknowns

Let us first apply the same function space V for w and T (or more precisely, $w \in V$ and $\left.T-T_{0} \in V\right)$. With

$$
V=\operatorname{span}\left\{\psi_{0}(x, y), \ldots, \psi_{N}(x, y)\right\}
$$

we write

$$
\begin{equation*}
w=\sum_{j=0}^{N} c_{j}^{(w)} \psi_{j}, \quad T=T_{0}+\sum_{j=0}^{N} c_{j}^{(T)} \psi_{j} \tag{7}
\end{equation*}
$$

Note that w and T in (5)-(6) denote the exact solution of the PDEs, while w and T (7) are the discrete functions that approximate the exact solution. It should be clear from the context whether a symbol means the exact or approximate solution, but when we need both at the same time, we use a subscript e to denote the exact solution.

3.1 Variational form of each individual PDE

Inserting the expansions (7) in the governing PDEs, results in a residual in each equation,

$$
\begin{align*}
& R_{w}=\mu \nabla^{2} w+\beta \tag{8}\\
& R_{T}=\kappa \nabla^{2} T+\mu\|\nabla w\|^{2} \tag{9}
\end{align*}
$$

A Galerkin method demands R_{w} and R_{T} do be orthogonal to V :

$$
\begin{array}{ll}
\int_{\Omega} R_{w} v \mathrm{~d} x=0 & \forall v \in V \\
\int_{\Omega} R_{T} v \mathrm{~d} x=0 & \forall v \in V
\end{array}
$$

Because of the Dirichlet conditions, $v=0$ on $\partial \Omega$. We integrate the Laplace terms by parts and note that the boundary terms vanish since $v=0$ on $\partial \Omega$:

$$
\begin{align*}
& \int_{\Omega} \mu \nabla w \cdot \nabla v \mathrm{~d} x=\int_{\Omega} \beta v \mathrm{~d} x \quad \forall v \in V \tag{10}\\
& \int_{\Omega} \kappa \nabla T \cdot \nabla v \mathrm{~d} x=\int_{\Omega} \mu \nabla w \cdot \nabla w v \mathrm{~d} x \quad \forall v \in V \tag{11}
\end{align*}
$$

3.2 Compound scalar variational form

The alternative way of deriving the variational from is to introduce a test vector function $\boldsymbol{v} \in \boldsymbol{V}=V \times V$ and take the inner product of \boldsymbol{v} and the residuals, integrated over the domain:

$$
\int_{\Omega}\left(R_{w}, R_{T}\right) \cdot \boldsymbol{v} \mathrm{d} x=0 \quad \forall \boldsymbol{v} \in \boldsymbol{V}
$$

With $\boldsymbol{v}=\left(v_{0}, v_{1}\right)$ we get

$$
\int_{\Omega}\left(R_{w} v_{0}+R_{T} v_{1}\right) \mathrm{d} x=0 \quad \forall \boldsymbol{v} \in \boldsymbol{V}
$$

Integrating the Laplace terms by parts results in

$$
\begin{equation*}
\int_{\Omega}\left(\mu \nabla w \cdot \nabla v_{0}+\kappa \nabla T \cdot \nabla v_{1}\right) \mathrm{d} x=\int_{\Omega}\left(\beta v_{0}+\mu \nabla w \cdot \nabla w v_{1}\right) \mathrm{d} x, \quad \forall \boldsymbol{v} \in \boldsymbol{V} \tag{12}
\end{equation*}
$$

Choosing $v_{0}=v$ and $v_{1}=0$ gives the variational form (10), while $v_{0}=0$ and $v_{1}=v$ gives (11).

With the inner product notation, $(p, q)=\int_{\Omega} p q \mathrm{~d} x$, we can alternatively write (10) and (11) as

$$
\begin{aligned}
(\mu \nabla w, \nabla v) & =(\beta, v) \quad \forall v \in V \\
(\kappa \nabla T, \nabla v) & =(\mu \nabla w \cdot \nabla w, v) \quad \forall v \in V
\end{aligned}
$$

or since μ and κ are considered constant,

$$
\begin{align*}
& \mu(\nabla w, \nabla v)=(\beta, v) \quad \forall v \in V \tag{13}\\
& \kappa(\nabla T, \nabla v)=\mu(\nabla w \cdot \nabla w, v) \quad \forall v \in V \tag{14}
\end{align*}
$$

3.3 Decoupled linear systems

The linear systems governing the coefficients $c_{j}^{(w)}$ and $c_{j}^{(T)}, j=0, \ldots, N$, are derived by inserting the expansions (7) in (10) and (11), and choosing $v=\psi_{i}$ for $i=0, \ldots, N$. The result becomes

$$
\begin{align*}
\sum_{j=0}^{N} A_{i, j}^{(w)} c_{j}^{(w)} & =b_{i}^{(w)}, \quad i=0, \ldots, N \tag{15}\\
\sum_{j=0}^{N} A_{i, j}^{(T)} c_{j}^{(T)} & =b_{i}^{(T)}, \quad i=0, \ldots, N, \tag{16}\\
A_{i, j}^{(w)} & =\mu\left(\nabla \psi_{j}, \nabla \psi_{i}\right), \tag{17}\\
b_{i}^{(w)} & =\left(\beta, \psi_{i}\right), \tag{18}\\
A_{i, j}^{(T)} & =\kappa\left(\nabla \psi_{j}, \nabla \psi_{i}\right), \tag{19}\\
b_{i}^{(T)} & =\mu\left(\left(\sum_{j} c_{j}^{(w)} \nabla \psi_{j}\right) \cdot\left(\sum_{k} c_{k}^{(w)} \nabla \psi_{k}\right), \psi_{i}\right) . \tag{20}
\end{align*}
$$

It can also be instructive to write the linear systems using matrices and vectors. Define K as the matrix corresponding to the Laplace operator ∇^{2}. That is, $K_{i, j}=\left(\nabla \psi_{j}, \nabla \psi_{i}\right)$. Let us introduce the vectors

$$
\begin{aligned}
b^{(w)} & =\left(b_{0}^{(w)}, \ldots, b_{N}^{(w)}\right), \\
b^{(T)} & =\left(b_{0}^{(T)}, \ldots, b_{N}^{(T)}\right), \\
c^{(w)} & =\left(c_{0}^{(w)}, \ldots, c_{N}^{(w)}\right), \\
c^{(T)} & =\left(c_{0}^{(T)}, \ldots, c_{N}^{(T)}\right) .
\end{aligned}
$$

The system (15)-(16) can now be expressed in matrix-vector form as

$$
\begin{align*}
\mu K c^{(w)} & =b^{(w)} \tag{21}\\
\kappa K c^{(T)} & =b^{(T)} \tag{22}
\end{align*}
$$

We can solve the first system for $c^{(w)}$, and then the right-hand side $b^{(T)}$ is known such that we can solve the second system for $c^{(T)}$.

3.4 Coupled linear systems

Despite the fact that w can be computed first, without knowing T, we shall now pretend that w and T enter a two-way coupling such that we need to derive the algebraic equations as one system for all the unknowns $c_{j}^{(w)}$ and $c_{j}^{(T)}$, $j=0, \ldots, N$. This system is nonlinear in $c_{j}^{(w)}$ because of the $\nabla w \cdot \nabla w$ product.

To remove this nonlinearity, imagine that we introduce an iteration method where we replace $\nabla w \cdot \nabla w$ by $\nabla w_{-} \cdot \nabla w, w_{-}$being the w computed in the previous iteration. Then the term $\nabla w_{-} \cdot \nabla w$ is linear in w since w_{-}is known. The total linear system becomes

$$
\begin{align*}
\sum_{j=0}^{N} A_{i, j}^{(w, w)} c_{j}^{(w)}+\sum_{j=0}^{N} A_{i, j}^{(w, T)} c_{j}^{(T)} & =b_{i}^{(w)}, \quad i=0, \ldots, N, \tag{23}\\
\sum_{j=0}^{N} A_{i, j}^{(T, w)} c_{j}^{(w)}+\sum_{j=0}^{N} A_{i, j}^{(T, T)} c_{j}^{(T)} & =b_{i}^{(T)}, \quad i=0, \ldots, N, \tag{24}\\
A_{i, j}^{(w, w)} & =\mu\left(\nabla \psi_{j}, \psi_{i}\right), \tag{25}\\
A_{i, j}^{(w, T)} & =0, \tag{26}\\
b_{i}^{(w)} & =\left(\beta, \psi_{i}\right), \tag{27}\\
A_{i, j}^{(w, T)} & \left.=\mu\left(\left(\nabla \psi w_{-}\right) \cdot \nabla \psi_{j}\right), \psi_{i}\right), \tag{28}\\
A_{i, j}^{(T, T)} & =\kappa\left(\nabla \psi_{j}, \psi_{i}\right), \tag{29}\\
b_{i}^{(T)} & =0 . \tag{30}
\end{align*}
$$

This system can alternatively be written in matrix-vector form as

$$
\begin{align*}
\mu K c^{(w)} & =b^{(w)} \tag{31}\\
L c^{(w)}+\kappa K c^{(T)} & =0 \tag{32}
\end{align*}
$$

with L as the matrix from the $\nabla w_{-} \cdot \nabla$ operator: $L_{i, j}=A_{i, j}^{(w, T)}$.
The matrix-vector equations are often conveniently written in block form:

$$
\left(\begin{array}{cc}
\mu K & 0 \\
L & \kappa K
\end{array}\right)\binom{c^{(w)}}{c^{(T)}}=\binom{b^{(w)}}{0}
$$

Note that in the general case where all unknowns enter all equations, we have to solve the compound system (23)-(24) since then we cannot utilize the special property that (15) does not involve T and can be solved first.

When the viscosity depends on the temperature, the $\mu \nabla^{2} w$ term must be replaced by $\nabla \cdot(\mu(T) \nabla w)$, and then T enters the equation for w. Now we have a two-way coupling since both equations contain w and T and therefore must be solved simultaneously Th equation $\nabla \cdot(\mu(T) \nabla w)=-\beta$ is nonlinear, and if some iteration procedure is invoked, where we use a previously computed T_{-}in the viscosity $\left(\mu\left(T_{-}\right)\right)$, the coefficient is known, and the equation involves only one unknown, w. In that case we are back to the one-way coupled set of PDEs.

We may also formulate our PDE system as a vector equation. To this end, we introduce the vector of unknowns $\boldsymbol{u}=\left(u^{(0)}, u^{(1)}\right)$, where $u^{(0)}=w$ and $u^{(1)}=T$. We then have

$$
\nabla^{2} \boldsymbol{u}=\binom{-\mu^{-1} \beta}{-\kappa^{-1} \mu \nabla u^{(0)} \cdot \nabla u^{(0)}}
$$

4 Different function spaces for the unknowns

It is easy to generalize the previous formulation to the case where $w \in V^{(w)}$ and $T \in V^{(T)}$, where $V^{(w)}$ and $V^{(T)}$ can be different spaces with different numbers of degrees of freedom. For example, we may use quadratic basis functions for w and linear for T. Approximation of the unknowns by different finite element spaces is known as mixed finite element methods.

We write

$$
\begin{aligned}
V^{(w)} & =\operatorname{span}\left\{\psi_{0}^{(w)}, \ldots, \psi_{N_{w}}^{(w)}\right\} \\
V^{(T)} & =\operatorname{span}\left\{\psi_{0}^{(T)}, \ldots, \psi_{N_{T}}^{(T)}\right\}
\end{aligned}
$$

The next step is to multiply (5) by a test function $v^{(w)} \in V^{(w)}$ and (6) by a $v^{(T)} \in V^{(T)}$, integrate by parts and arrive at

$$
\begin{align*}
& \int_{\Omega} \mu \nabla w \cdot \nabla v^{(w)} \mathrm{d} x=\int_{\Omega} \beta v^{(w)} \mathrm{d} x \quad \forall v^{(w)} \in V^{(w)}, \tag{33}\\
& \int_{\Omega} \kappa \nabla T \cdot \nabla v^{(T)} \mathrm{d} x=\int_{\Omega} \mu \nabla w \cdot \nabla w v^{(T)} \mathrm{d} x \quad \forall v^{(T)} \in V^{(T)} . \tag{34}
\end{align*}
$$

The compound scalar variational formulation applies a test vector function $\boldsymbol{v}=\left(v^{(w)}, v^{(T)}\right)$ and reads

$$
\begin{equation*}
\int_{\Omega}\left(\mu \nabla w \cdot \nabla v^{(w)}+\kappa \nabla T \cdot \nabla v^{(T)}\right) \mathrm{d} x=\int_{\Omega}\left(\beta v^{(w)}+\mu \nabla w \cdot \nabla w v^{(T)}\right) \mathrm{d} x \tag{35}
\end{equation*}
$$

valid $\forall \boldsymbol{v} \in \boldsymbol{V}=V^{(w)} \times V^{(T)}$.
The associated linear system is similar to (15)-(16) or (23)-(24), except that we need to distinguish between $\psi_{i}^{(w)}$ and $\psi_{i}^{(T)}$, and the range in the sums over j must match the number of degrees of freedom in the spaces $V^{(w)}$ and $V^{(T)}$. The formulas become

$$
\begin{align*}
\sum_{j=0}^{N_{w}} A_{i, j}^{(w)} c_{j}^{(w)} & =b_{i}^{(w)}, \quad i=0, \ldots, N_{w}, \tag{36}\\
\sum_{j=0}^{N_{T}} A_{i, j}^{(T)} c_{j}^{(T)} & =b_{i}^{(T)}, \quad i=0, \ldots, N_{T}, \tag{37}\\
A_{i, j}^{(w)} & =\mu\left(\nabla \psi_{j}^{(w)}, \psi_{i}^{(w)}\right), \tag{38}\\
b_{i}^{(w)} & =\left(\beta, \psi_{i}^{(w)}\right), \tag{39}\\
A_{i, j}^{(T)} & =\kappa\left(\nabla \psi_{j}^{(T)}, \psi_{i}^{(T)}\right), \tag{40}\\
b_{i}^{(T)} & =\mu\left(\nabla w_{-}, \psi_{i}^{(T)}\right) . \tag{41}
\end{align*}
$$

In the case we formulate one compound linear system involving both $c_{j}^{(w)}$, $j=0, \ldots, N_{w}$, and $c_{j}^{(T)}, j=0, \ldots, N_{T},(23)-(24)$ becomes

$$
\begin{align*}
\sum_{j=0}^{N_{w}} A_{i, j}^{(w, w)} c_{j}^{(w)}+\sum_{j=0}^{N_{T}} A_{i, j}^{(w, T)} c_{j}^{(T)} & =b_{i}^{(w)}, \quad i=0, \ldots, N_{w}, \tag{42}\\
\sum_{j=0}^{N_{w}} A_{i, j}^{(T, w)} c_{j}^{(w)}+\sum_{j=0}^{N_{T}} A_{i, j}^{(T, T)} c_{j}^{(T)} & =b_{i}^{(T)}, \quad i=0, \ldots, N_{T}, \tag{43}\\
A_{i, j}^{(w, w)} & =\mu\left(\nabla \psi_{j}^{(w)}, \psi_{i}^{(w)}\right), \tag{44}\\
A_{i, j}^{(w, T)} & =0, \tag{45}\\
b_{i}^{(w)} & =\left(\beta, \psi_{i}^{(w)}\right), \tag{46}\\
A_{i, j}^{(w)} & \left.=\mu\left(\nabla w_{-} \cdot \nabla \psi_{j}^{(w)}\right), \psi_{i}^{(T)}\right), \tag{47}\\
A_{i, j}^{(T, T)} & =\kappa\left(\nabla \psi_{j}^{(T)}, \psi_{i}^{(T)}\right), \tag{48}\\
b_{i}^{(T)} & =0 . \tag{49}
\end{align*}
$$

The corresponding block form

$$
\left(\begin{array}{cc}
\mu K^{(w)} & 0 \\
L & \kappa K^{(T)}
\end{array}\right)\binom{c^{(w)}}{c^{(T)}}=\binom{b^{(w)}}{0},
$$

has square and rectangular block matrices: $K^{(w)}$ is $N_{w} \times N_{w}, K^{(T)}$ is $N_{T} \times N_{T}$, while L is $N_{T} \times N_{w}$,

5 Computations in 1D

We can reduce the system (5)-(6) to one space dimension, which corresponds to flow in a channel between two flat plates. Alternatively, one may consider
flow in a circular pipe, introduce cylindrical coordinates, and utilize the radial symmetry to reduce the equations to a one-dimensional problem in the radial coordinate. The former model becomes

$$
\begin{align*}
\mu w_{x x} & =-\beta \tag{50}\\
\kappa T_{x x} & =-\mu w_{x}^{2} \tag{51}
\end{align*}
$$

while the model in the radial coordinate r reads

$$
\begin{align*}
\mu \frac{1}{r} \frac{d}{d r}\left(r \frac{d w}{d r}\right) & =-\beta \tag{52}\\
\kappa \frac{1}{r} \frac{d}{d r}\left(r \frac{d T}{d r}\right) & =-\mu\left(\frac{d w}{d r}\right)^{2} \tag{53}
\end{align*}
$$

The domain for (50)-(51) is $\Omega=[0, H]$, with boundary conditions $w(0)=$ $w(H)=0$ and $T(0)=T(H)=T_{0}$. For (52)-(53) the domain is $[0, R]$ (R being the radius of the pipe) and the boundary conditions are $d u / d r=d T / d r=0$ for $r=0, u(R)=0$, and $T(R)=T_{0}$.

Calculations to be continued...

References

Index

mixed finite elements, 8

