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Many mathematical models involve m+ 1 unknown functions governed by
a system of m+ 1 differential equations. In abstract form we may denote the
unknowns by u(0), . . . , u(m) and write the governing equations as



L0(u(0), . . . , u(m)) = 0,
...

Lm(u(0), . . . , u(m)) = 0,

where Li is some differential operator defining differential equation number i.

1 Variational forms
There are basically two ways of formulating a variational form for a system of
differential equations. The first method treats each equation independently as
a scalar equation, while the other method views the total system as a vector
equation with a vector function as unknown.

1.1 Sequence of scalar PDEs formulation
Let us start with the approach that treats one equation at a time. We multiply
equation number i by some test function v(i) ∈ V (i) and integrate over the
domain:

∫
Ω
L(0)(u(0), . . . , u(m))v(0) dx = 0, (1)

... (2)∫
Ω
L(m)(u(0), . . . , u(m))v(m) dx = 0 . (3)

Terms with second-order derivatives may be integrated by parts, with Neumann
conditions inserted in boundary integrals. Let

V (i) = span{ψ(i)
0 , . . . , ψ

(i)
Ni
},

such that

u(i) = B(i)(x) +
Ni∑

j=0
c
(i)
j ψ

(i)
j (x),

where B(i) is a boundary function to handle nonzero Dirichlet conditions. Observe
that different unknowns live in different spaces with different basis functions and
numbers of degrees of freedom.

From the m equations in the variational forms we can derive m coupled
systems of algebraic equations for the Πm

i=0Ni unknown coefficients c(i)
j , j =

0, . . . , Ni, i = 0, . . . ,m.

2



1.2 Vector PDE formulation
The alternative method for deriving a variational form for a system of differential
equations introduces a vector of unknown functions

u = (u(0), . . . , u(m)),

a vector of test functions

v = (u(0), . . . , u(m)),

with

u,v ∈ V = V (0) × · · · × V (m) .

With nonzero Dirichlet conditions, we have a vector B = (B(0), . . . , B(m)) with
boundary functions and then it is u−B that lies in V , not u itself.

The governing system of differential equations is written

L(u) = 0,

where

L(u) = (L(0)(u), . . . ,L(m)(u)) .

The variational form is derived by taking the inner product of the vector of
equations and the test function vector:∫

Ω
L(u) · v = 0 ∀v ∈ V . (4)

Observe that (4) is one scalar equation. To derive systems of algebraic
equations for the unknown coefficients in the expansions of the unknown func-
tions, one chooses m linearly independent v vectors to generate m independent
variational forms from (4). The particular choice v = (v(0), 0, . . . , 0) recovers
(1), v = (0, . . . , 0, v(m) recovers (3), and v = (0, . . . , 0, v(i), 0, . . . , 0) recovers the
variational form number i,

∫
Ω L

(i)v(i) dx = 0, in (1)-(3).

2 A worked example
We now consider a specific system of two partial differential equations in two
space dimensions:

µ∇2w = −β, (5)
κ∇2T = −µ||∇w||2 . (6)

The unknown functions w(x, y) and T (x, y) are defined in a domain Ω, while µ,
β, and κ are given constants. The norm in (6) is the standard Euclidean norm:
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||∇w||2 = ∇w · ∇w = w2
x + w2

y .

The boundary conditions associated with (5)-(6) are w = 0 on ∂Ω and T = T0
on ∂Ω. Each of the equations (5) and (6) needs one condition at each point on
the boundary.

The system (5)-(6) arises from fluid flow in a straight pipe, with the z axis
in the direction of the pipe. The domain Ω is a cross section of the pipe, w is
the velocity in the z direction, µ is the viscosity of the fluid, β is the pressure
gradient along the pipe, T is the temperature, and κ is the heat conduction
coefficient of the fluid. The equation (5) comes from the Navier-Stokes equations,
and (6) follows from the energy equation. The term −µ||∇w||2 models heating
of the fluid due to internal friction.

Observe that the system (5)-(6) has only a one-way coupling: T depends on w,
but w does not depend on T , because we can solve (5) with respect to w and then
(6) with respect to T . Some may argue that this is not a real system of PDEs,
but just two scalar PDEs. Nevertheless, the one-way coupling is convenient when
comparing different variational forms and different implementations.

3 Identical function spaces for the unknowns
Let us first apply the same function space V for w and T (or more precisely,
w ∈ V and T − T0 ∈ V ). With

V = span{ψ0(x, y), . . . , ψN (x, y)},
we write

w =
N∑

j=0
c
(w)
j ψj , T = T0 +

N∑
j=0

c
(T )
j ψj . (7)

Note that w and T in (5)-(6) denote the exact solution of the PDEs, while w and
T (7) are the discrete functions that approximate the exact solution. It should
be clear from the context whether a symbol means the exact or approximate
solution, but when we need both at the same time, we use a subscript e to denote
the exact solution.

3.1 Variational form of each individual PDE
Inserting the expansions (7) in the governing PDEs, results in a residual in each
equation,

Rw = µ∇2w + β, (8)
RT = κ∇2T + µ||∇w||2 . (9)

A Galerkin method demands Rw and RT do be orthogonal to V :
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∫
Ω
Rwv dx = 0 ∀v ∈ V,∫

Ω
RT v dx = 0 ∀v ∈ V .

Because of the Dirichlet conditions, v = 0 on ∂Ω. We integrate the Laplace
terms by parts and note that the boundary terms vanish since v = 0 on ∂Ω:

∫
Ω
µ∇w · ∇v dx =

∫
Ω
βv dx ∀v ∈ V, (10)∫

Ω
κ∇T · ∇v dx =

∫
Ω
µ∇w · ∇w v dx ∀v ∈ V . (11)

3.2 Compound scalar variational form
The alternative way of deriving the variational from is to introduce a test vector
function v ∈ V = V × V and take the inner product of v and the residuals,
integrated over the domain:∫

Ω
(Rw, RT ) · v dx = 0 ∀v ∈ V .

With v = (v0, v1) we get∫
Ω

(Rwv0 +RT v1) dx = 0 ∀v ∈ V .

Integrating the Laplace terms by parts results in

∫
Ω

(µ∇w · ∇v0 + κ∇T · ∇v1) dx =
∫

Ω
(βv0 + µ∇w · ∇w v1) dx, ∀v ∈ V . (12)

Choosing v0 = v and v1 = 0 gives the variational form (10), while v0 = 0 and
v1 = v gives (11).

With the inner product notation, (p, q) =
∫

Ω pq dx, we can alternatively write
(10) and (11) as

(µ∇w,∇v) = (β, v) ∀v ∈ V,
(κ∇T,∇v) = (µ∇w · ∇w, v) ∀v ∈ V,

or since µ and κ are considered constant,

µ(∇w,∇v) = (β, v) ∀v ∈ V, (13)
κ(∇T,∇v) = µ(∇w · ∇w, v) ∀v ∈ V . (14)
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3.3 Decoupled linear systems
The linear systems governing the coefficients c(w)

j and c(T )
j , j = 0, . . . , N , are

derived by inserting the expansions (7) in (10) and (11), and choosing v = ψi

for i = 0, . . . , N . The result becomes

N∑
j=0

A
(w)
i,j c

(w)
j = b

(w)
i , i = 0, . . . , N, (15)

N∑
j=0

A
(T )
i,j c

(T )
j = b

(T )
i , i = 0, . . . , N, (16)

A
(w)
i,j = µ(∇ψj ,∇ψi), (17)

b
(w)
i = (β, ψi), (18)

A
(T )
i,j = κ(∇ψj ,∇ψi), (19)

b
(T )
i = µ((

∑
j

c
(w)
j ∇ψj) · (

∑
k

c
(w)
k ∇ψk), ψi) . (20)

It can also be instructive to write the linear systems using matrices and
vectors. Define K as the matrix corresponding to the Laplace operator ∇2. That
is, Ki,j = (∇ψj ,∇ψi). Let us introduce the vectors

b(w) = (b(w)
0 , . . . , b

(w)
N ),

b(T ) = (b(T )
0 , . . . , b

(T )
N ),

c(w) = (c(w)
0 , . . . , c

(w)
N ),

c(T ) = (c(T )
0 , . . . , c

(T )
N ) .

The system (15)-(16) can now be expressed in matrix-vector form as

µKc(w) = b(w), (21)
κKc(T ) = b(T ) . (22)

We can solve the first system for c(w), and then the right-hand side b(T ) is
known such that we can solve the second system for c(T ).

3.4 Coupled linear systems
Despite the fact that w can be computed first, without knowing T , we shall
now pretend that w and T enter a two-way coupling such that we need to
derive the algebraic equations as one system for all the unknowns c(w)

j and c(T )
j ,

j = 0, . . . , N . This system is nonlinear in c(w)
j because of the ∇w · ∇w product.

6



To remove this nonlinearity, imagine that we introduce an iteration method
where we replace ∇w · ∇w by ∇w− · ∇w, w− being the w computed in the
previous iteration. Then the term ∇w− · ∇w is linear in w since w− is known.
The total linear system becomes

N∑
j=0

A
(w,w)
i,j c

(w)
j +

N∑
j=0

A
(w,T )
i,j c

(T )
j = b

(w)
i , i = 0, . . . , N, (23)

N∑
j=0

A
(T,w)
i,j c

(w)
j +

N∑
j=0

A
(T,T )
i,j c

(T )
j = b

(T )
i , i = 0, . . . , N, (24)

A
(w,w)
i,j = µ(∇ψj , ψi), (25)

A
(w,T )
i,j = 0, (26)

b
(w)
i = (β, ψi), (27)

A
(w,T )
i,j = µ((∇ψw−) · ∇ψj), ψi), (28)

A
(T,T )
i,j = κ(∇ψj , ψi), (29)

b
(T )
i = 0 . (30)

This system can alternatively be written in matrix-vector form as

µKc(w) = b(w), (31)
Lc(w) + κKc(T ) = 0, (32)

with L as the matrix from the ∇w− · ∇ operator: Li,j = A
(w,T )
i,j .

The matrix-vector equations are often conveniently written in block form:(
µK 0
L κK

)(
c(w)

c(T )

)
=
(
b(w)

0

)
,

Note that in the general case where all unknowns enter all equations, we
have to solve the compound system (23)-(24) since then we cannot utilize the
special property that (15) does not involve T and can be solved first.

When the viscosity depends on the temperature, the µ∇2w term must be
replaced by ∇ · (µ(T )∇w), and then T enters the equation for w. Now we have
a two-way coupling since both equations contain w and T and therefore must
be solved simultaneously Th equation ∇ · (µ(T )∇w) = −β is nonlinear, and if
some iteration procedure is invoked, where we use a previously computed T− in
the viscosity (µ(T−)), the coefficient is known, and the equation involves only
one unknown, w. In that case we are back to the one-way coupled set of PDEs.

We may also formulate our PDE system as a vector equation. To this end, we
introduce the vector of unknowns u = (u(0), u(1)), where u(0) = w and u(1) = T .
We then have
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∇2u =
(

−µ−1β
−κ−1µ∇u(0) · ∇u(0)

)
.

4 Different function spaces for the unknowns
It is easy to generalize the previous formulation to the case where w ∈ V (w) and
T ∈ V (T ), where V (w) and V (T ) can be different spaces with different numbers
of degrees of freedom. For example, we may use quadratic basis functions for
w and linear for T . Approximation of the unknowns by different finite element
spaces is known as mixed finite element methods.

We write

V (w) = span{ψ(w)
0 , . . . , ψ

(w)
Nw
},

V (T ) = span{ψ(T )
0 , . . . , ψ

(T )
NT
} .

The next step is to multiply (5) by a test function v(w) ∈ V (w) and (6) by a
v(T ) ∈ V (T ), integrate by parts and arrive at

∫
Ω
µ∇w · ∇v(w) dx =

∫
Ω
βv(w) dx ∀v(w) ∈ V (w), (33)∫

Ω
κ∇T · ∇v(T ) dx =

∫
Ω
µ∇w · ∇w v(T ) dx ∀v(T ) ∈ V (T ) . (34)

The compound scalar variational formulation applies a test vector function
v = (v(w), v(T )) and reads

∫
Ω

(µ∇w · ∇v(w) + κ∇T · ∇v(T )) dx =
∫

Ω
(βv(w) + µ∇w · ∇w v(T )) dx, (35)

valid ∀v ∈ V = V (w) × V (T ).
The associated linear system is similar to (15)-(16) or (23)-(24), except that

we need to distinguish between ψ(w)
i and ψ(T )

i , and the range in the sums over j
must match the number of degrees of freedom in the spaces V (w) and V (T ). The
formulas become
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Nw∑
j=0

A
(w)
i,j c

(w)
j = b

(w)
i , i = 0, . . . , Nw, (36)

NT∑
j=0

A
(T )
i,j c

(T )
j = b

(T )
i , i = 0, . . . , NT , (37)

A
(w)
i,j = µ(∇ψ(w)

j , ψ
(w)
i ), (38)

b
(w)
i = (β, ψ(w)

i ), (39)

A
(T )
i,j = κ(∇ψ(T )

j , ψ
(T )
i ), (40)

b
(T )
i = µ(∇w−, ψ

(T )
i ) . (41)

In the case we formulate one compound linear system involving both c(w)
j ,

j = 0, . . . , Nw, and c(T )
j , j = 0, . . . , NT , (23)-(24) becomes

Nw∑
j=0

A
(w,w)
i,j c

(w)
j +

NT∑
j=0

A
(w,T )
i,j c

(T )
j = b

(w)
i , i = 0, . . . , Nw, (42)

Nw∑
j=0

A
(T,w)
i,j c

(w)
j +

NT∑
j=0

A
(T,T )
i,j c

(T )
j = b

(T )
i , i = 0, . . . , NT , (43)

A
(w,w)
i,j = µ(∇ψ(w)

j , ψ
(w)
i ), (44)

A
(w,T )
i,j = 0, (45)

b
(w)
i = (β, ψ(w)

i ), (46)

A
(w,T )
i,j = µ(∇w− · ∇ψ(w)

j ), ψ(T )
i ), (47)

A
(T,T )
i,j = κ(∇ψ(T )

j , ψ
(T )
i ), (48)

b
(T )
i = 0 . (49)

The corresponding block form(
µK(w) 0
L κK(T )

)(
c(w)

c(T )

)
=
(
b(w)

0

)
,

has square and rectangular block matrices: K(w) is Nw ×Nw, K(T ) is NT ×NT ,
while L is NT ×Nw,

5 Computations in 1D
We can reduce the system (5)-(6) to one space dimension, which corresponds
to flow in a channel between two flat plates. Alternatively, one may consider
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flow in a circular pipe, introduce cylindrical coordinates, and utilize the radial
symmetry to reduce the equations to a one-dimensional problem in the radial
coordinate. The former model becomes

µwxx = −β, (50)
κTxx = −µw2

x, (51)

while the model in the radial coordinate r reads

µ
1
r

d

dr

(
r
dw

dr

)
= −β, (52)

κ
1
r

d

dr

(
r
dT

dr

)
= −µ

(
dw

dr

)2
. (53)

The domain for (50)-(51) is Ω = [0, H], with boundary conditions w(0) =
w(H) = 0 and T (0) = T (H) = T0. For (52)-(53) the domain is [0, R] (R being
the radius of the pipe) and the boundary conditions are du/dr = dT/dr = 0 for
r = 0, u(R) = 0, and T (R) = T0.

Calculations to be continued...
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