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About the exam. Six problems are given for this exam. For each problem,
the candidate must prepare a 15 min oral presentation. Try to communicate a
good overview and understanding of the topic, but compose the talk so that you
can demonstrate knowledge about details too. Some of the problems require
graphical illustrations - you can either sketch graphics on the whiteboard or
bring your laptop or iPad to show or compute the graphics. Otherwise there are
no aids besides a whiteboard. You will have a printout of this document with
the exam problems available in the exam room. (Experience with this type of
exam and various aids tells that learning the content by heart gives by far the
best delivery and communication of understanding.)

We will throw a die and the number of eyes determines the problem to be
presented. Thereafter, you will be given some questions, either about parts of
your presention or facts from the other problems. After each presentation, the
next candidate can throw the die and get about 10 min to collect the thoughts
before presenting the assigned problem.

Usually some candidates decide not to show up on the exam so everybody
must meet 0845 in the morning on the day they want to take the exam to get
their specific time for the exam that day (0900, 0930, 1000, 1030, and so on).
Candidates can choose their times in the sequence they appear in the list of
candidates.
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Problem 1: Numerical artifacts in time integration schemes
a) Consider the ODE problem

T ′ = −kT, T (0) = T0.

Sketch graphically what kind of numerical problems (artifacts, non-physical
features) that can arise from applying the Forward Euler, Backward Euler, and
Crank-Nicolson schemes to solve this ODE problem. Explain how mathematical
analysis can provide understanding of the numerical problems.

b) We consider a diffusion problem

Tt = kTxx,

modeling the temperature in a solid body. Two pieces of the same material,
with different temperatures, are brought together at t = 0. The condition at
t = 0 can be formulated as T (x, 0) = T0 for x ∈ [0, L/2) and T (x, 0) = T1 6= T0
for x ∈ [L/2, L]. The PDE will then predict how the initially discontinuous
temperature develops in time and space.

Illustrate what kind of numerical problems (artifacts, non-physical features)
that may arise from the Forward Euler, Backward Euler, and Crank-Nicolson
schemes applied to this PDE problem (with finite difference discretization in
space). Explain how mathematical analysis can provide understanding of the
numerical problems. Point out what is similar to the ODE problem in a) and
what is new in this PDE problem.

Hint. A demo program for experimentation with an initial discontinuity is
available: demo_osc.py.
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https://github.com/hplgit/INF5620/blob/gh-pages/src/diffu/demo_osc.py


Problem 2: 2D/3D wave equation with finite differences
a) Set up a wave equation problem in 2D with zero normal derivative as boundary
condition. Assume a variable wave velocity.

Mention a physical problem where this mathematical model arises. Explain
the physical interpretation of the unknown function.

b) Present a finite difference discretization. Explain in particular how the
boundary conditions and the initial conditions are incorporated in the scheme.
You can choose appropriate initial conditions.

c) Explain (in princple) how the 2D discretization can be extended to 3D.

d) Set up the stability condition in 3D. Also quote results about the accuracy
of the method in 3D and define the accuracy measure(s) precisely.

Hint. The simplest accuracy measure in 3D is the truncation error. More
information about the accuracy arises from the numerical dispersion relation:
ω̃(k,∆x,∆y,∆z,∆t). It is enough to define what ω̃ is and outline the structure
of the formula for ω̃.

e) Explain how you can verify the implementation of the method.

f) The scheme for the wave equation is perfect for parallel computing. Why?
What are the principal ideas behind a parallel version of the scheme?
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Figure 1: Little noise. See movie.

Problem 3: Analysis of wave problems
a) Consider a vibration problem

u′′(t) + ω2u(t) = 0, u(0) = I, u′(0) = V .

Here, ω, I, and V are given data. We discretize the ODE by centered diferences,

[DtDtu+ ω2u = 0]n .

Explain how the stability and the accuracy of this scheme can be investigated via
exact solutions of the discrete equations, and quote the main results. Illustrate
the numerical problems that can arise from this scheme.

b) We now consider a 1D wave equation

utt = c2uxx,

with some appropriate boundary and initial conditions. Explain how the stability
and accuracy of a centered difference scheme,

[DtDtu = c2DxDxu]ni
can be investigated via exact solutions of the discrete equations. Quote the main
results.

c) Explain how the analysis can help us to understand why a smooth initial
condition gives relatively small numerical artifacts, and why a less smooth initial
condition gives rise to significant numerical artifacts. The movies below show a
wave propagating with unit Courant number in a medium and the wave enters
another medium with 1/4 of the wave velocity (implying a Courant number of
1/4 in that medium). The propagation of waves in the left medium is exact,
while the propagation in the other medium is subject to numerical errors.

d) Explain how a truncation error analysis is carried out for the problem in a).
Find correction terms such that the accuracy of the scheme becomes O(∆t4).
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http://hplgit.github.io/INF5620/doc/pub/mov-wave/pulse1_in_two_media/movie.ogg


Figure 2: Significant noise. See movie.

e) Explain how a truncation error analysis is carried out for the problem in b).
Find correction terms such that the accuracy of the scheme becomes O(∆t4,∆x4).
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http://hplgit.github.io/INF5620/doc/pub/mov-wave/pulse2_in_two_media/movie.ogg


Problem 4: Finite elements for a 1D wave equation
We consider the 1D wave equation problem on Ω = [0, L]:

utt = c2uxx + f, u(x, 0) = I(x), ut(x, 0) = 0, ux(0) = ux(L) = 0 .

a) Explain how the initial condition can be approximated by the finite ele-
ment method using the principles of least squares, projection (Galerkin), and
interpolation (collocation).

b) Discretize in time by a centered difference: utt(xi, tn) ≈ [DtDtu]ni . Derive
a variational formulation of the time-discrete wave equation problem using the
Galerkin method. Derive formulas for the element matrix corresponding to the
term with uxx in the PDE.

c) Show how the element matrix associated with the uxx term is computed
for P1 elements. Explain the assembly principle and what the resulting global
matrix look like when all cells have equal length.

d) Set up the discrete equations for this wave problem on operator form (assume
P1 elements). Briefly explain the idea of an analysis of the scheme based on
exact solution of the discrete equations. State the main results. Compare the
main results with those of the finite difference method (Problem 3).
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Problem 5: Nonlinear diffusion
We look at the PDE problem

ut = ∇ · ((1 + α0u
4)∇u), x ∈ Ω, t > 0

u(x, 0) = I(x), x ∈ Ω
u(x, t) = g(x), x ∈ ∂ΩD, t > 0

−(1 + α0u
4) ∂
∂n

u(x, t) = h(u− Ts), x ∈ ∂ΩR

Here, u(x, t) is the temperature in some solid material, I is the initial temperature,
g is the controlled temperature at a part ∂ΩD of the boundary, while at the rest
of the boundary, ∂ΩR, we apply Newton’s cooling law with h as a heat transfer
coefficient and Ts as the temperature in the surrounding air.

a) Perform a Crank-Nicolson time discretization and define a Picard iteration
method for the resulting spatial problems. (Do not pay attention to the boundary
conditions.)

b) Perform a Backward-Euler time discretization and derive the variational form
for the resulting spatial problems. Use a Picard iteration method to linearize
the variational form.

c) Apply Newton’s method to the nonlinear variational form F = 0 in b). Set
up expressions for the right-hand side (−F ) and the coefficient matrix (Jacobian
of F ) in the linear system that must be solved in each Newton iteration.
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Problem 6: Finite element calculations with P2 elements
We address the problem

−u′′(x) = 2, x ∈ (0, 1), u(0) = β, u(1) = γ,

and seek a numerical solution u in some vector space V (modulo boundary
conditions) with basis {ψi}N

i=0.

a) Explain the principles of the least squares method, the Galerkin method,
and the collocation method. Describe a method to incorporate the boundary
conditions.

b) Let V = span{sin πx}, and compute the solution corresponding to the least
squares method, the Galerkin method, and the collocation method (the latter
with x = 0.5 as collocation point). Set β = γ = 2 for simplicity. What are the
errors in each of the approximate method?

c) Now we want to use P2 elements on a uniform mesh. Explain how to calculate
the element matrix and vector for cells in the interior of the mesh (those not
affected by boundary conditions) and set up the results. Describe how the
element matrix and vector are assembled into the global linear sytem.

d) Use only one element and explain how the boundary conditions affect the
element matrix and vector. Why does this numerical solution coincide with
the exact one? Two equal-sized P1 elements lead to exact values at the nodes.
Sketch these P2 and P1 solutions.
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