The 1D diffusion equation

The famous diffusion equation, also known as the heat equation, reads
\[
\frac{\partial u}{\partial t} = \alpha \frac{\partial^2 u}{\partial x^2}
\]
Here,
- \(u(x,t) \): unknown
- \(\alpha \): diffusion coefficient

Alternative, compact notation:
\[
u_t = \alpha u_{xx}
\]

Step 1: Discretizing the domain

Mesh in time:
\[
0 = t_0 < t_1 < t_2 < \cdots < t_{Nt-1} < t_{Nt} = T
\]
Mesh in space:
\[
0 = x_0 < x_1 < x_2 < \cdots < x_{N_x-1} < x_{N_x} = L
\]
Uniform mesh with constant mesh spacings \(\Delta t \) and \(\Delta x \):
\[
x_i = i\Delta x, \ i = 0, \ldots, N_x, \ t_n = n\Delta t, \ n = 0, \ldots, N_t
\]

Step 2: Filling the equation at the mesh points

Require the PDE (1) to be fulfilled at arbitrary interior mesh points \((x_i, t_n)\) holds so
\[
\frac{\partial}{\partial t} u(x_i, t_n) = \alpha \frac{\partial^2 u}{\partial x^2}(x_i, t_n)
\]
Applicable to all interior mesh points: \(i = 1, \ldots, N_x - 1 \) and \(n = 1, \ldots, N_t - 1 \)
For \(n = 0 \) we have the initial condition \(u = I(x) \) and \(u_t = 0 \)
At the boundaries \(i = 0, N_x \) we have the boundary condition \(u = 0 \)
Step 3: Replacing derivatives by finite differences

Use a forward difference in time and a centered difference in space (Forward Euler scheme):

$$[D_t^n u = \alpha D_x D_x u]$$

Write out,

$$u[n+1] - u[n] = \alpha \frac{u[n+2] - 2u[n] + u[n-1]}{\Delta x^2}$$

Initial condition: $u[n](i) = I(i), i = 0, 1, \ldots, N_x$.

The mesh Fourier number

$$F = \alpha \frac{\Delta t}{\Delta x^2}$$

Observe

There is only one parameter F, in the discrete model. F lumps mesh parameters Δt and Δx, with the only physical parameter, the diffusion coefficient α. The value F and the smoothness of $I(x)$ govern the quality of the numerical solution.

The computational algorithm for the Forward Euler scheme

- Compute $u[n](i) = I(i), i = 0, 1, \ldots, N_x$.
- For $n = 0, 1, \ldots, N_t$:
 - Compute $u[n+1]$ for all internal spatial points $i = 1, \ldots, N_x - 1$.
 - Set the boundary values $u[n+1] = 0$ for $i = 0$ and $i = N_x$.

Notice

We use one mesh point at a time, and we have an explicit formula for computing the associated $u[n+1]$ value. The spatial points can be updated in any sequence, but the time level $u[n]$ must be updated in chronological order $u[n-1]$ before $u[n+1]$.

Step 4: Formulating a recursive algorithm

- Nature of the algorithm: compute u in space as $t = \Delta t, 2\Delta t, 3\Delta t, \ldots$
- Two simultaneous equations are set up for the general discrete equation:
 - $u[n]$ and $u[n+1]$ are already computed for $i = 0, \ldots, N_x$, and $u[n+1]$ is the unknown quantity.

Solve the discrete PDE for the unknown $u[n+1]$:

$$u[n+1] = u[n] + F(u[n+2] - 2u[n] + u[n-1])$$

where

$$F = \alpha \frac{\Delta t}{\Delta x^2}$$

The finite difference stencil

The Python implementation of the computational algorithm

```python
x = linspace(0, L, Nx+1)  # mesh points in space
dx = x[1] - x[0]
# Insert boundary conditions
u[0] = 0; u[Nx] = 0
# Update u_1 before next step
u_1[:] = u
# or more efficient switch of references
#u_1, u = u, u_1
```

Stencil at interior point

For n in range(0, Nt):

```python
    # Set initial condition $u(n)(i) = I(i)$
    for i in range(0, Nx+1):
        u[i] = I[i]
    # Set initial conditions
    u[0] = u[0]  # u[i+1] = 2u[i] - u[i-1]
    # Insert boundary conditions
    u[0] = 0; u[Nx] = 0
    # Update u_1 before next step
    u_1[:] = u
```

For more efficient switch of references:

```python
    u_1, u = u, u_1
```
Moving finite difference stencil

- Page 1:
 - How to make movie file in modern formats:
 - Terminal:
 - name=tmp_frame%04d.png
 - fps=8 # frames per second in movie
 - avconv -r $fps -i $name -vcodec flv movie.flv
 - avconv -r $fps -i $name -vcodec libx64 movie.mp4
 - avconv -r $fps -i $name -vcodec libvpx movie.webm
 - avconv -r $fps -i $name -vcodec libtheora movie.ogg

Demo program
Program: diffu1D_u0.py
Produces animation on the screen
Each frame stored in tmp_frame%04d.png, tmp_frame0000.png, tmp_frame0001.png, ...

Forward Euler applied to an initial plug profile

- Forward Euler scheme
 - Backward difference in time, centered difference in space:
 \[
 (D_t - \alpha D_x^2)u[n] = \left(\frac{u[n] - u[n-1]}{\Delta t} \right) = \alpha \left(\frac{u[n+1] - 2u[n] + u[n-1]}{\Delta x^2} \right)
 \]
 - Notice: We cannot solve for \(u[n] \) because that unknown value is coupled to two other unknown values: \(u[n-1] \) and \(u[n+1] \). That is, all the new unknown values are coupled to each other in a linear system of algebraic equations.

 - Let's write out the equations for \(N_x = 3 \)
 - Equation (13) written for \(i = 1, \ldots, N_x - 1 = 1, 2 \) becomes
 \[
 \begin{align*}
 u_1[n] - u_1[n-1] &= \alpha (u_2[n] - 2u_1[n] + u_0[n]) \\
 u_2[n] - u_2[n-1] &= \alpha (u_3[n] - 2u_2[n] + u_1[n])
 \end{align*}
 \]
 - (The boundary values \(u_0[n] \) and \(u_3[n] \) are known as zeros.)
 - Collecting the unknown new values on the left-hand side and writing as a \(2 \times 2 \) matrix system:
 \[
 \begin{pmatrix}
 1 + 2F & -F \\
 -F & 1 + 2F
 \end{pmatrix}
 \begin{pmatrix}
 u_1[n]
 u_2[n]
 \end{pmatrix}
 = \begin{pmatrix}
 u_1[n-1]
 u_2[n-1]
 \end{pmatrix}
 \]
Two classes of discretization methods: explicit and implicit

Implicit
- Discretization methods that lead linear systems are known as implicit methods.

Explicit
- Discretization methods that avoid linear systems and have an explicit formula for each new value of the unknowns are called explicit methods.

A is very sparse: a tridiagonal matrix

\[
A = \begin{pmatrix}
A_{00} & A_{01} & 0 & \cdots & \cdots & \cdots & 0 \\
A_{10} & A_{11} & A_{12} & 0 & \cdots & \cdots & \cdots \\
0 & A_{21} & A_{22} & A_{23} & \cdots & \cdots & \cdots \\
\vdots & \vdots & \ddots & \ddots & \ddots & \ddots & \ddots \\
0 & \cdots & \cdots & 0 & A_{j-2,j-1} & A_{j-1,j} & 0 \\
\cdots & \cdots & \cdots & \cdots & \cdots & \cdots & 0 \\
0 & \cdots & \cdots & 0 & A_{N-1,N-2} & A_{N-1,N} & 0 \\
\end{pmatrix}
\]

Detailed expressions for the matrix entries

The nonzero elements are given by

\[
A_{i-1,i} = u_i - u_{i-1} \quad (22)
\]

The right-hand side

\[
b = \begin{pmatrix}
b_0 \\
b_1 \\
b_2 \\
b_3 \\
\vdots \\
b_N \\
\end{pmatrix}
\]

\[
b_0 = 0 \\
b_i = u_{i-1}^0, \quad i = 1, \ldots, N \quad (23)
\]

Naive Python implementation with a dense \((N + 1) \times (N + 1)\) matrix

```python
x = linspace(0, L, N+1) # mesh points in space
n = x[-1] - x[0]
t = linspace(0, T, M+1) # mesh points in time
u = zeros(x.shape)
u_1 = zeros(x.shape)

# Data structures for the linear system
A = zeros((N+1, N+1))
b = zeros(n+1)

for i in range(0, N+1):
    A[1,i-1] = -F0
    A[1,i] = 1 + 2*F0
    A[1,i+1] = -F0

b[0] = b[0] = b
A_0 = -F0
A_1 = 1 + 2*F0
A_N = -F0

u_1, u = u, u_1

# Update u_1 before next step
u[0] = scipy.linalg.solve(A, b)

for i in range(1, N):
    # Set initial condition u(x,0) = I(x)
    b = f(x[i])
    A[1,i-1] = -F0
    A[1,i] = 1 + 2*F0
    A[1,i+1] = -F0

    A_0 = -F0
    A_1 = 1 + 2*F0
    A_N = -F0

    u_1, u = u, u_1

    # Update u_1 before next step
    u = scipy.linalg.solve(A, b)
```

The linear system for a general \(N\)

\[
-F_0 u_{i-1} + (1 + 2 F_0) u_i - F_0 u_{i+1} = u_i^0 - u_i^0 \quad (16)
\]

for \(i = 1, \ldots, N \quad (16)\)

What are the unknowns in the linear system?
- \(u_i^0\) for \(i = 1, \ldots, N - 1\) (all internal spatial mesh points)
- \(u_0^0, u_N^0\) (all spatial points)

The linear system is made non-singular:

\[
A U = b, \quad U = \{u_0^0, \ldots, u_N^0\}
\]
A sparse matrix representation will dramatically reduce the computational complexity.

With a dense matrix, the algorithm leads to $O(N^3)$ operations. Utilizing sparsity, the algorithm has complexity $O(N \times N)$. Scipy enables storage and calculations with the three nonzero diagonals only.

Representation of sparse matrix and right-hand side

diagonal = zeros(Nx+1)
lower = zeros(Nx)
upper = zeros(Nx)
b = zeros(Nx+1)

Precompute sparse matrix

diagonal[:] = 1 + 2*F
lower[:] = -F
upper[:] = -F

Insert boundary conditions

diagonal[0] = 1
upper[0] = 0
diagonal[Nx] = 1
lower[-1] = 0

import scipy.sparse
A = scipy.sparse.diags(
diagonals=[main, lower, upper],
offsets=[0, -1, 1], shape=(Nx+1, Nx+1),
format='csr')

Set initial condition

for i in range(0,Nx+1):
 u_1[i] = I(x[i])

for n in range(0, Nt):
 b = u_1
b[0] = b[-1] = 0.0

u[:]= scipy.sparse.linalg.spsolve(A, b)

Switch variables before next step

u_1, u = u, u_1

Backward Euler applied to a plug profile

$N_x = 50, F = 0.5.$

Link to movie file

Backward Euler applied to a Gaussian profile

$N_x = 50, F = 5.$

Link to movie file

Crank-Nicolson scheme

The PDE is sampled at points $(x_i, t_{n+1/2})$ (at the spatial mesh points, but in between two temporal mesh points).

$$\frac{\partial}{\partial t} u(x_i, t_{n+1/2}) = \alpha \frac{\partial^2}{\partial x^2}(u(x_i, t_{n+1/2}))$$

for $i = 1, \ldots, N_x - 1$ and $n = 0, \ldots, N_t - 1$.

Central differences in space and time:

$$[D_t u = \alpha D_x D_x u_{n+1/2}]$$

Right-hand side term:

$$\frac{1}{\Delta x^2} \left(u_{n+1/2}^{n+1} - 2 u_{n+1/2}^n + u_{n+1/2}^{n-1} \right)$$

Problem: $u_{n+1/2}^{n+1}$ is not one of the unknowns we compute.

Solution: replace $u_{n+1/2}^{n+1}$ by an arithmetic average:

$$u_{n+1/2}^{n+1} \approx \frac{1}{2} (u_{n+1/2}^n + u_{n+1/2}^{n+1})$$

In compact notation (arithmetic average in time $u_{n+1/2}$):

$$[D_t u = \alpha D_x D_x u_{n+1/2}]$$
In the time-dependent diffusion equations, we can solve 1D Poisson/Laplace equations by going to infinity in time-dependent diffusion equations if \(\lim_{t \to \infty} \frac{\partial u}{\partial t} = 0 \). These are limiting behavior of time-dependent diffusion equations:

- Laplace equation:
 \[\nabla^2 u = 0 \]

- Poisson equation:
 \[-\nabla^2 u = f \]

Looking at the numerical schemes, \(F \to \infty \) leads to the Laplace or Poisson equations (without \(f \) for \(\nabla^2 u = 0 \)).

Good news: choose \(F \) large in the BE or CN schemes and one time step is enough to produce the stationary solution for \(t \to \infty \).

The numerical schemes, \(F \to \infty \) leads to the Laplace or Poisson equations (without \(f \) for \(\nabla^2 u = 0 \)).

Good news: choose \(F \) large in the BE or CN schemes and one time step is enough to produce the stationary solution for \(t \to \infty \).
Extensions

These extensions are performed exactly as for a wave equation as they only affect the spatial derivatives (which are the same as in the wave equation).

- Variable coefficients
- Neumann and Robin conditions
- 2D and 3D

Future versions of this document will for completeness and independence of the wave equation document feature info on the FEM, contact at \(t = 0 \).

Properties of the solution

The PDE

\[
\frac{\partial u}{\partial t} = \alpha \frac{\partial^2 u}{\partial x^2}
\]

admits solutions

\[
u(x, t) = Q e^{-\alpha k^2 t} \sin(kx)
\]

Observations from this solution:

- The initial shape \(f(x) = \sin(kx) \) undergoes a damping \(e^{-\alpha k^2 t} \)
- The damping is very strong for short waves (large \(k \))
- The damping is weak for long waves (small \(k \))
- Consequence: \(u \) is smoothed with time

High frequency components of the solution are very quickly damped

Analysis of schemes for the diffusion equation

Solutions of diffusion problems are expected to be smooth. Can we understand when they are not?

Example

Test problem:

\[
\begin{align*}
\frac{\partial u}{\partial t} &= \frac{\partial^2 u}{\partial x^2}, & x \in (0,1), \ t \in (0,T] \\
u(0,t) &= u(1,t) = 0, & t \in (0,T] \\
u(x,0) &= \sin(\pi x) + 0.1 \sin(100 \pi x) \\
\end{align*}
\]

Exact solution:

\[
u(x,t) = e^{-\pi^2 t} \sin(\pi x) + 0.1 e^{-\pi^2 10^4 t} \sin(100 \pi x)
\]

Damping of a discontinuity, problem

Problem

Two pieces of a material, at different temperatures, are brought in contact at \(t = 0 \). Assume the end points of the pieces are kept at the initial temperature. How does the heat flow from the hot to the cold piece?

Or: A huge ion concentration on one side of a synapse in the brain (concentration discontinuity) is released and ions move by diffusion.
Damping of a discontinuity; model
Solution
Assume a 1D model is sufficient (e.g., an insulated rod):
\[
u(x,0) = \begin{cases} U_L, & x < L/2 \\ U_R, & x \geq L/2 \end{cases} \]
\[
\partial u \partial t = \alpha \partial^2 u \partial x^2, \quad u(0,t) = U_L, \quad u(L,t) = U_R
\]

Damping of a discontinuity; Backward Euler scheme
Discrete model:
\[
[D - \Delta t \partial u \partial t = \alpha \partial^2 u \partial x^2]_n^i
\]
results in a (tridiagonal) linear system
\[
-Fu_{n-1}^i + (1 + 2F)u_n^i - Fu_{n+1}^i = u_{n-1}^i
\]
where
\[
F = \frac{\alpha \Delta t}{\Delta x^2}
\]
is the mesh Fourier number

Damping of a discontinuity; Forward Euler scheme
Discrete model:
\[
[D + \Delta t \partial u \partial t = \alpha \partial^2 u \partial x^2]_n^i
\]
results in the explicit updating formula
\[
u_{n+1}^i = u_n^i + F \left(u_{n+1}^i - 2u_n^i + u_{n-1}^i \right)
\]

Damping of a discontinuity; Crank-Nicolson scheme
Discrete model:
\[
[D\partial u \partial t = \alpha \partial^2 u \partial x^2]_n^i
\]
results in a tridiagonal linear system

Damping of a discontinuity; Backward Euler simulation
\[F = \frac{1}{2} \]
Movie

Damping of a discontinuity; Forward Euler simulation
\[F = \frac{1}{2} \]
Movie

Damping of a discontinuity; Crank-Nicolson scheme
Movie
Damping of a discontinuity; Crank-Nicolson simulation

\[F = 5 \]

Movie

Fourier representation

Represents \(f(x) \) as a Fourier series

\[f(x) = \sum_{k \in K} b_k e^{ikx} \]

The corresponding sum for \(u \) is

\[u(x, t) \approx \sum_{k \in K} b_k e^{-\alpha k^2 t} e^{ikx} \]

Such solutions are also accepted by the numerical schemes, but with a different amplification factor: \(A \neq \exp(-\alpha k^2 t) \):

\[u_n q = A_n e^{ikq \Delta x} \]

Analysis of the finite difference schemes

Stability:
- \(|A| < 1 \): decaying numerical solutions (as we want)
- \(A < 0 \): oscillating numerical solutions (as we do not want)

Accuracy:
- Compare numerical and exact amplification factor: \(A \) vs \(A_{\text{exact}} = \exp(-\alpha k^2 \Delta t) \)

Results for stability

We always have \(A \leq 1 \). The condition \(A \geq -1 \) implies

\[4F \sin^2 \rho \leq 2 \]

The worst case is \(\sin^2 \rho = 1 \), so a sufficient criterion for stability is

\[F \leq \frac{1}{2} \]

or

\[\Delta t \leq \frac{\Delta x^2}{2\alpha} \]

Analysis of the Forward Euler scheme

\[[D^+ u = \alpha D_x D_x u]_n \]

Inserting

\[u_n q = A_n e^{ikq \Delta x} \]

leads to

\[A = 1 - 4F \sin^2 \left(\frac{k \Delta x}{2} \right) \]

The complete numerical solution is

\[u_n q = (1 - 4F \sin^2 \rho) e^{ikq \Delta x}, \quad \rho = k \Delta x/2 \]

Key spatial discretization quantity: the dimensionless \(\rho = \frac{1}{2} k \Delta x \)

Analysis of the Backward Euler scheme

\[[D^- u = \alpha D_x D_x u]_n \]

Inserting

\[u_n q = A_n e^{ikq \Delta x} \]

leads to

\[A = (1 + 4F \sin^2 \rho)^{-1} \]

The complete numerical solution is

\[u_n q = (1 + 4F \sin^2 \rho)^{-1} e^{ikq \Delta x} \]

Stability: We see that \(|A| < 1\) for all \(\Delta t > 0 \) and that \(A > 0 \) (no oscillations)
Analysis of the Crank-Nicolson scheme

The scheme

\[D_{t} u = \alpha D_{x} D_{x} u \]

leads to

\[A = 1 - 2 F \sin^{2} \beta \]

\[u_{n+1}^{a} = \left(1 - 2 F \sin^{2} \beta \right) u_{n+1}^{a} \exp \left(-i k \Delta x \right) \]

Stability: The criteria \(A > -1 \) and \(A < 1 \) are fulfilled for any \(\Delta t > 0 \)

Summary of amplification factors; small time steps

\[A_{E} = \exp \left(-\alpha k^{2} \Delta t \right) = \exp \left(-4 F \Delta t \right) \]

\[A = 1 - 4 F \sin^{2} \left(\frac{k \Delta x}{2} \right) \quad \text{Forward Euler} \]

\[A = (1 + 4 F \sin^{2} \beta) \quad \text{Backward Euler} \]

\[A = \frac{1 - 2 F \sin^{2} \beta}{1 + 2 F \sin^{2} \beta} \quad \text{Crank-Nicolson} \]

Notes: \(A_{E} = \exp \left(-\alpha k^{2} \Delta t \right) = \exp \left(-F \Delta t \right) = \exp \left(-4 F \Delta t \right) \)

Summary of accuracy of amplification factors; large time steps

Summary of accuracy of amplification factors; time steps around the Forward Euler stability limit

Summary of accuracy of amplification factors; small time steps

Observations

- The key spatial discretisation parameter is the dimensionless \(\beta = \frac{\pi}{k} \Delta x \)
- The key temporal discretisation parameter is the dimensionless \(F = \alpha \Delta t / \Delta x^{2} \)
- Impartial: \(\Delta t \) and \(\Delta x \) in combination with \(\alpha \) and \(k \) determine accuracy
- Crank-Nicolson gives oscillations and too much damping of short waves for increasing \(F \)
- Short waves will manifest themselves as high frequency oscillatory noise in the solution
- Steep solvers will have short waves with significant (visible) amplitudes
- All solvers fail to dampen short waves enough

The problem of correct damping for \(u_{E} = u_{E} \Delta \) is partially manifested in the similar time discretisation schemes for \(u'(t) = -\alpha u(t) \).