
Study guide: Finite di�erence schemes for di�usion
processes

Hans Petter Langtangen1,2

Center for Biomedical Computing, Simula Research Laboratory1

Department of Informatics, University of Oslo2

Oct 17, 2015

The 1D di�usion equation

The famous di�usion equation, also known as the heat equation,

reads

∂u

∂t
= α

∂2u

∂x2

Here,

u(x , t): unknown

α: di�usion coe�cient

Alternative, compact notation:

ut = αuxx

The initial-boundary value problem for 1D di�usion

∂u

∂t
= α

∂2u

∂x2
, x ∈ (0, L), t ∈ (0,T] (1)

u(x , 0) = I (x), x ∈ [0, L] (2)

u(0, t) = 0, t > 0, (3)

u(L, t) = 0, t > 0 . (4)

Note:

First-order derivative in time: one initial condition

Second-order derivative in space: a boundary condition at each

point of the boundary (2 points in 1D)

Numerous applications throughout physics and biology

Step 1: Discretizing the domain

Mesh in time:

0 = t0 < t1 < t2 < · · · < tNt−1 < tNt = T (5)

Mesh in space:

0 = x0 < x1 < x2 < · · · < xNx−1 < xNx = L (6)

Uniform mesh with constant mesh spacings ∆t and ∆x :

xi = i∆x , i = 0, . . . ,Nx , ti = n∆t, n = 0, . . . ,Nt (7)

The discrete solution

The numerical solution is a mesh function: uni ≈ ue(xi , tn)
Finite di�erence stencil (or scheme): equation for uni involving

neighboring space-time points

 0

 1

 2

 3

 4

 5

 0 1 2 3 4 5

in
de

x
n

index i

Stencil at interior point

Step 2: Ful�lling the equation at the mesh points

Require the PDE (1) to be ful�lled at an arbitrary interior mesh

point (xi , tn) leads to

∂

∂t
u(xi , tn) = α

∂2

∂x2
u(xi , tn) (8)

Applies to all interior mesh points: i = 1, . . . ,Nx − 1 and

n = 1, . . . ,Nt − 1

For n = 0 we have the initial conditions u = I (x) and ut = 0

At the boundaries i = 0,Nx we have the boundary condition u = 0.

Step 3: Replacing derivatives by �nite di�erences

Use a forward di�erence in time and a centered di�erence in space

(Forward Euler scheme):

[D+
t u = αDxDxu]ni (9)

Written out,

un+1
i − uni

∆t
= α

uni+1 − 2uni + uni−1
∆x2

(10)

Initial condition: u0i = I (xi), i = 0, 1, . . . ,Nx .

Step 4: Formulating a recursive algorithm

Nature of the algorithm: compute u in space at

t = ∆t, 2∆t, 3∆t, ...

Two time levels are involved in the general discrete equation:

n + 1 and n

uni is already computed for i = 0, . . . ,Nx , and un+1
i is the

unknown quantity

Solve the discretized PDE for the unknown un+1
i :

un+1
i = uni + F

(
uni+1 − 2uni + uni−1

)
(11)

where

F = α
∆t

∆x2

The mesh Fourier number

F = α
∆t

∆x2

Observe

There is only one parameter, F , in the discrete model: F lumps

mesh parameters ∆t and ∆x with the only physical parameter, the

di�usion coe�cient α. The value F and the smoothness of I (x)
govern the quality of the numerical solution.

The �nite di�erence stencil

 0

 1

 2

 3

 4

 5

 0 1 2 3 4 5

in
de

x
n

index i

Stencil at interior point

The computational algorithm for the Forward Euler scheme

1 compute u0i = I (xi), i = 0, . . . ,Nx

2 for n = 0, 1, . . . ,Nt :

1 compute un+1

i from (11) for all the internal spatial points
i = 1, . . . ,Nx − 1

2 set the boundary values un+1

i = 0 for i = 0 and i = Nx

Notice

We visit one mesh point (xi , tn+1) at a time, and we have an

explicit formula for computing the associated un+1
i value. The

spatial points can be updated in any sequence, but the time levels

tn must be updated in cronological order: tn before tn+1.

The Python implementation of the computational algorithm

x = linspace(0, L, Nx+1) # mesh points in space
dx = x[1] - x[0]
t = linspace(0, T, Nt+1) # mesh points in time
dt = t[1] - t[0]
F = a*dt/dx**2
u = zeros(Nx+1)
u_1 = zeros(Nx+1)

Set initial condition u(x,0) = I(x)
for i in range(0, Nx+1):

u_1[i] = I(x[i])

for n in range(0, Nt):
Compute u at inner mesh points
for i in range(1, Nx):

u[i] = u_1[i] + F*(u_1[i-1] - 2*u_1[i] + u_1[i+1])

Insert boundary conditions
u[0] = 0; u[Nx] = 0

Update u_1 before next step
u_1[:]= u
or more efficient switch of references
#u_1, u = u, u_1

Moving �nite di�erence stencil

web page or a movie �le.

Demo program

Program: diffu1D_u0.py

Produces animation on the screen

Each frame stored in tmp_frame%04d.png �les

tmp_frame0000.png, tmp_frame0001.png, ...

How to make movie �le in modern formats:

Terminal> name=tmp_frame%04d.png
Terminal> fps=8 # frames per second in movie
Terminal> avconv -r $fps -i $name -vcodec flv movie.flv
Terminal> avconv -r $fps -i $name -vcodec libx64 movie.mp4
Terminal> avconv -r $fps -i $name -vcodec libvpx movie.webm
Terminal> avconv -r $fps -i $name -vcodec libtheora movie.ogg

Forward Euler applied to an initial plug pro�le

Nx = 50. The method results in a growing, unstable solution if

F > 0.5.
Choosing F = 0.5 gives a strange

saw tooth-like curve.

Link to movie �le

Lowering F to 0.25 gives a

smooth (expected) solution.

Link to movie �le

Forward Euler applied to a Gaussian pro�le

Nx = 50. F = 0.5.

Link to movie �le Link to movie �le

Backward Euler scheme

Backward di�erence in time, centered di�erence in space:

[D−t u = DxDxu]ni (12)

Written out:

uni − un−1i

∆t
= α

uni+1 − 2uni + uni−1
∆x2

(13)

Assumption: un−1i is computed, but all quantities at the new time

level tn are unknown.

Notice

We cannot solve wrt uni because that unknown value is coupled to

two other unknown values: uni−1 and uni+1. That is, all the new

unknown values are coupled to each other in a linear system of

algebraic equations.

Let's write out the equations for Nx = 3

Equation (13) written for i = 1, . . . ,Nx − 1 = 1, 2 becomes

un1 − un−11

∆t
= α

un2 − 2un1 + un0
∆x2

(14)

un2 − un−12

∆t
= α

un3 − 2un2 + un1
∆x2

(15)

(The boundary values un0 and un3 are known as zero.)

Collecting the unknown new values on the left-hand side and

writing as 2× 2 matrix system:

(
1 + 2F −F
−F 1 + 2F

)(
un1
un2

)
=

(
un−11

un−12

)

Two classes of discretization methods: explicit and implicit

Implicit

Discretization methods that lead linear systems are known as

implicit methods.

Explicit

Discretization methods that avoid linear systems and have an

explicit formula for each new value of the unknown are called

explicit methods.

The linear system for a general Nx

−Founi−1 + (1 + 2Fo) uni − Fou
n
i+1 = un−1i−1 (16)

for i = 1, . . . ,Nx − 1.

What are the unknowns in the linear system?

1 either uni for i = 1, . . . ,Nx −1 (all internal spatial mesh points)

2 or uni , i = 0, . . . ,Nx (all spatial points)

The linear system in matrix notation:

AU = b, U = (un0 , . . . , u
n
Nx

)

A is very sparse: a tridiagonal matrix

A =




A0,0 A0,1 0 · · · · · · · · · · · · · · · 0

A1,0 A1,1 0
. . .

...

0 A2,1 A2,2 A2,3
. . .

...
...

. . .
. . .

. . . 0
...

...
. . .

. . .
. . .

. . .
. . .

...
... 0 Ai ,i−1 Ai ,i Ai ,i+1

. . .
...

...
. . .

. . .
. . .

. . . 0
...

. . .
. . .

. . . ANx−1,Nx

0 · · · · · · · · · · · · · · · 0 ANx ,Nx−1 ANx ,Nx




(17)

Detailed expressions for the matrix entries

The nonzero elements are given by

Ai ,i−1 = −Fo (18)

Ai ,i = 1 + 2Fo (19)

Ai ,i+1 = −Fo (20)

for i = 1, . . . ,Nx − 1.

The equations for the boundary points correspond to

A0,0 = 1, A0,1 = 0, ANx ,Nx−1 = 0, ANx ,Nx = 1

The right-hand side

b =




b0
b1
...

bi
...

bNx




(21)

with

b0 = 0 (22)

bi = un−1i , i = 1, . . . ,Nx − 1 (23)

bNx = 0 (24)

Naive Python implementation with a dense
(Nx + 1)× (Nx + 1) matrix

x = linspace(0, L, Nx+1) # mesh points in space
dx = x[1] - x[0]
t = linspace(0, T, N+1) # mesh points in time
u = zeros(Nx+1)
u_1 = zeros(Nx+1)

Data structures for the linear system
A = zeros((Nx+1, Nx+1))
b = zeros(Nx+1)

for i in range(1, Nx):
A[i,i-1] = -F
A[i,i+1] = -F
A[i,i] = 1 + 2*F

A[0,0] = A[Nx,Nx] = 1

Set initial condition u(x,0) = I(x)
for i in range(0, Nx+1):

u_1[i] = I(x[i])

import scipy.linalg

for n in range(0, Nt):
Compute b and solve linear system
for i in range(1, Nx):

b[i] = -u_1[i]
b[0] = b[Nx] = 0
u[:] = scipy.linalg.solve(A, b)

Update u_1 before next step
u_1, u = u, u_1

A sparse matrix representation will dramatically reduce the
computational complexity

With a dense matrix, the algorithm leads to O(N3
x) operations

Utilizing the sparsity, the algorithm has complexity O(Nx)!

scipy.sparse enables storage and calculations with the three

nonzero diagonals only

Representation of sparse matrix and right-hand side
diagonal = zeros(Nx+1)
lower = zeros(Nx)
upper = zeros(Nx)
b = zeros(Nx+1)

Computing the sparse matrix

Precompute sparse matrix
diagonal[:] = 1 + 2*F
lower[:] = -F #1
upper[:] = -F #1
Insert boundary conditions
diagonal[0] = 1
upper[0] = 0
diagonal[Nx] = 1
lower[-1] = 0

import scipy.sparse
A = scipy.sparse.diags(

diagonals=[main, lower, upper],
offsets=[0, -1, 1], shape=(Nx+1, Nx+1),
format='csr')

Set initial condition
for i in range(0,Nx+1):

u_1[i] = I(x[i])

for n in range(0, Nt):
b = u_1
b[0] = b[-1] = 0.0 # boundary conditions
u[:] = scipy.sparse.linalg.spsolve(A, b)
Switch variables before next step
u_1, u = u, u_1

Backward Euler applied to a plug pro�le

Nx = 50. F = 0.5.

Link to movie �le

Backward Euler applied to a Gaussian pro�le

Nx = 50.

Link to movie �le
F = 5.

Link to movie �le

Crank-Nicolson scheme

The PDE is sampled at points (xi , tn+ 1

2

) (at the spatial mesh

points, but in between two temporal mesh points).

∂

∂t
u(xi , tn+ 1

2

) = α
∂2

∂x2
u(xi , tn+ 1

2

)

for i = 1, . . . ,Nx − 1 and n = 0, . . . ,Nt − 1.

Centered di�erences in space and time:

[Dtu = αDxDxu]
n+ 1

2

i

Averaging in time is necessary in the Crank-Nicolson scheme

Right-hand side term:

1

∆x2

(
u
n+ 1

2

i−1 − 2u
n+ 1

2

i + u
n+ 1

2

i+1

)

Problem: u
n+ 1

2

i is not one of the unknowns we compute.

Solution: replace u
n+ 1

2

i by an arithmetic average:

u
n+ 1

2

i ≈ 1

2

(
uni + un+1

i

)

In compact notation (arithmetic average in time ut):

[Dtu = αDxDxu
t]
n+ 1

2

i

Crank-Nicolsoon scheme written out

un+1
i −1

2
F (un+1

i−1 −2un+1
i +un+1

i+1) = uni +
1

2
F (uni−1−2uni +uni+1) (25)

Observe:

The unknowns are un+1
i−1 , u

n+1
i , un+1

i+1

These unknowns are coupled to each other (in a linear system)

Must solve AU = b at each time level

Now,

Ai ,i−1 = −1
2
Fo (26)

Ai ,i =
1

2
+ Fo (27)

Ai ,i+1 = −1
2
Fo (28)

for internal points. For boundary points,

A0,0 = 1 (29)

A0,1 = 0 (30)

ANx ,Nx−1 = 0 (31)

ANx ,Nx = 1 (32)

Right-hand side:

b0 = 0 (33)

bi = un−1i , i = 1, . . . ,Nx − 1 (34)

bNx = 0 (35)

Crank-Nicolson applied to a plug pro�le

Crank-Nicolson never blows up, so any F can be used (modulo loss

of accuracy).
Nx = 50. F = 5 gives

instabilities.

Link to movie �le

Nx = 50. F = 0.5 gives a smooth

solution.

Link to movie �le

Crank-Nicolson applied to a Gaussian pro�le

Nx = 50.

Link to movie �le
F = 5.

Link to movie �le

The θ rule

The θ rule condenses a family of �nite di�erence approximations in

time to one formula

θ = 0 gives the Forward Euler scheme in time

θ = 1 gives the Backward Euler scheme in time

θ = 1
2 gives the Crank-Nicolson scheme in time

Applied to ut = αuxx :

un+1
i − uni

∆t
= α

(
θ
un+1
i+1 − 2un+1

i + un+1
i−1

∆x2
+ (1− θ)

uni+1 − 2uni + uni−1
∆x2

)

Matrix entries:

Ai ,i−1 = −Foθ, Ai ,i = 1 + 2Foθ ,Ai ,i+1 = −Foθ

Right-hand side:

bi = uni + Fo(1− θ)
uni+1 − 2uni + uni−1

∆x2

The Laplace and Poisson equation

Laplace equation:

∇2u = 0, 1D: u′′(x) = 0

Poisson equation:

−∇2u = f , 1D: − u′′(x) = f (x)

These are limiting behavior of time-dependent di�usion equations if

lim
t→∞

∂u

∂t
= 0

Then ut = αuxx + 0 in the limit t →∞ reduces to

uxx + f = 0

We can solve 1D Poisson/Laplace equation by going to
in�nity in time-dependent di�usion equations

Looking at the numerical schemes, F →∞ leads to the Laplace or

Poisson equations (without f or with f , resp.).

Good news: choose F large in the BE or CN schemes and one time

step is enough to produce the stationary solution for t →∞.

Extensions

These extensions are performed exactly as for a wave equation as

they only a�ect the spatial derivatives (which are the same as in

the wave equation).

Variable coe�cients

Neumann and Robin conditions

2D and 3D

Future versions of this document will for completeness and

independence of the wave equation document feature info on the

three points. The Robin condition is new, but straightforward to

handle:

−α∂u
∂n

= hT (u − Us), [−αDxu = hT (u − Us)]ni

Analysis of schemes for the di�usion equation

Solutions of di�usion problems are expected to be smooth.

Can we understand when they are not?

Properties of the solution

The PDE

ut = αuxx

admits solutions

u(x , t) = Qe−αk
2t sin (kx)

Observations from this solution:

The initial shape I (x) = Q sin kx undergoes a damping

exp (−αk2t)

The damping is very strong for short waves (large k)

The damping is weak for long waves (small k)

Consequence: u is smoothened with time

Example

Test problem:

ut = uxx , x ∈ (0, 1), t ∈ (0,T]

u(0, t) = u(1, t) = 0, t ∈ (0,T]

u(x , 0) = sin(πx) + 0.1 sin(100πx)

Exact solution:

u(x , t) = e−π
2t sin(πx) + 0.1e−π

2104t sin(100πx)

High frequency components of the solution are very quickly
damped

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

u

t=0.00E+00

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

u

t=4.67E-05

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

u

t=2.33E-01

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

u

t=4.67E-01

Damping of a discontinuity; problem

Problem

Two pieces of a material, at di�erent temperatures, are brought in

contact at t = 0. Assume the end points of the pieces are kept at

the initial temperature. How does the heat �ow from the hot to the

cold piece?

Or: A huge ion concentration on one side of a synapse in the brain

(concentration discontinuity) is released and ions move by di�usion.

Damping of a discontinuity; model

Solution

Assume a 1D model is su�cient (e.g., insulated rod):

u(x , 0) =

{
UL, x < L/2
UR , x ≥ L/2

∂u

∂t
= α

∂2u

∂x2
, u(0, t) = UL, u(L, t) = UR

Damping of a discontinuity; Backward Euler scheme

Discrete model:

[D−t u = αDxDx]ni

results in a (tridiagonal) linear system

−Funi−1 + (1 + 2F) uni − Funi+1 = un−1i−1

where

F = α
∆t

∆x2

is the mesh Fourier number

Damping of a discontinuity; Backward Euler simulation
F = 1

2

Movie

Damping of a discontinuity; Forward Euler scheme

Discrete model:

[D+
t u = αDxDx]ni

results in the explicit updating formula

un+1
i = uni + F

(
uni+1 − 2uni + uni−1

)

Damping of a discontinuity; Forward Euler simulation F = 1
2

Movie

Damping of a discontinuity; Crank-Nicolson scheme

Discrete model:

[Dtu = αDxDxu
t]ni

results in a tridiagonal linear system

Damping of a discontinuity; Crank-Nicolson simulation
F = 5

Movie

Fourier representation

Represent I (x) as a Fourier series

I (x) ≈
∑

k∈K
bke

ikx

The corresponding sum for u is

u(x , t) ≈
∑

k∈K
bke
−αk2te ikx

Such solutions are also accepted by the numerical schemes, but

with an ampli�cation factor A di�erent from exp (−αk2t):

unq = Ane ikq∆x = Ane ikx

Analysis of the �nite di�erence schemes

Stability:

|A| < 1: decaying numerical solutions (as we want)

A < 0: oscillating numerical solutions (as we do not want)

Accuracy:

Compare numerical and exact ampli�cation factor: A vs

Ae = exp (−αk2∆t)

Analysis of the Forward Euler scheme

[D+
t u = αDxDxu]nq

Inserting

unq = Ane ikq∆x

leads to

A = 1− 4F sin2
(
k∆x

2

)
, F =

α∆t

∆x2
(mesh Fourier number)

The complete numerical solution is

unq = (1− 4F sin2 p)ne ikq∆x , p = k∆x/2

Key spatial discretization quantity: the dimensionless p = 1
2k∆x

Results for stability
We always have A ≤ 1. The condition A ≥ −1 implies

4F sin2 p ≤ 2

The worst case is when sin2 p = 1, so a su�cient criterion for

stability is

F ≤ 1

2
or:

∆t ≤ ∆x2

2α

Implications of the stability result

Less favorable criterion than for utt = c2uxx : halving ∆x implies

time step 1
4∆t (not just 1

2∆t as in a wave equation). Need very

small time steps for �ne spatial meshes!

Analysis of the Backward Euler scheme

[D−t u = αDxDxu]nq

unq = Ane ikq∆x

A = (1 + 4F sin2 p)−1

unq = (1 + 4F sin2 p)−ne ikq∆x

Stability: We see that |A| < 1 for all ∆t > 0 and that A > 0 (no

oscillations)

Analysis of the Crank-Nicolson scheme

The scheme

[Dtu = αDxDxu
x]

n+ 1

2

q

leads to

A =
1− 2F sin2 p

1 + 2F sin2 p

unq =

(
1− 2F sin2 p

1 + 2F sin2 p

)n

e ikp∆x

Stability: The criteria A > −1 and A < 1 are ful�lled for any

∆t > 0

Summary of ampli�cation factors

Ae = exp (−αk2∆t) = exp (−4Fp2)

A = 1− 4F sin2
(
k∆x

2

)
Forward Euler

A = (1 + 4F sin2 p)−1 Backward Euler

A =
1− 2F sin2 p

1 + 2F sin2 p
Crank-Nicolson

Note: Ae = exp (−αk2∆t) = exp (−Fk2∆x2) = exp (−F4p2).

Summary of accuracy of ampli�cation factors; large time
steps

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
p=k∆x

1.0

0.5

0.0

0.5

1.0 F=20

BE
exact
CN
FE

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
p=k∆x

1.0

0.5

0.0

0.5

1.0 F=2

BE
exact
CN
FE

Summary of accuracy of ampli�cation factors; time steps
around the Forward Euler stability limit

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
p=k∆x

1.0

0.5

0.0

0.5

1.0 F=0.5

BE
exact
CN
FE

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
p=k∆x

1.0

0.5

0.0

0.5

1.0 F=0.25

BE
exact
CN
FE

Summary of accuracy of ampli�cation factors; small time
steps

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
p=k∆x

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0 F=0.1

BE
exact
CN
FE

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
p=k∆x

0.75

0.80

0.85

0.90

0.95

1.00 F=0.01

BE
exact
CN
FE

Observations

The key spatial discretization parameter is the dimensionless

p = 1
2k∆x

The key temporal discretization parameter is the dimensionless

F = α∆t/∆x2

Important: ∆t and ∆x in combination with α and k
determine accuracy

Crank-Nicolson gives oscillations and not much damping of

short waves for increasing F

These waves will manifest themselves as high frequency

oscillatory noise in the solution

Steep solutions will have short waves with signi�cant (visible)

amplitudes

All schemes fail to dampen short waves enough

The problems of correct damping for ut = uxx is partially

manifested in the similar time discretization schemes for

u′(t) = −αu(t).

