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Finite elements can handle complex geometry, adaptive
meshes, higher-order approximations and has a �rm theory

Can with ease solve PDEs in domains with complex geometry

Can with ease create varying spatial resolution to get accuracy
where it is needed
Can with ease provide higher-order approximations
Has a rigorous mathematical analysis framework

Solving PDEs by the �nite element method

Stationary PDEs:

1 Transform the PDE problem to a variational form

2 De�ne function approximation over �nite elements

3 Use a computational machinery to derive linear systems

4 Solve linear systems

Time-dependent PDEs:

Finite elements in space

Finite di�erence (or ODE solver) in time

We start with function approximation, then we treat PDEs

Learning strategy

Start with approximation of functions, not PDEs

Introduce �nite element approximations

See later how this machinery is applied to PDEs

Reason:

The �nite element method has many concepts and a jungle of
details. This learning strategy minimizes the mixing of ideas,
concepts, and technical details.

Find a vector in some space that approximates a given
vector in a space of higher dimension
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The approximation is a linear combination of prescribed
basis functions

General idea of �nding an approximation u(x) to some given f (x):

u(x) =
N∑

i=0

ciψi (x)

where

ψi (x) are prescribed functions

ci , i = 0, . . . ,N are unknown coe�cients to be determined



We have three methods to determine the coe�cients

We shall address three approaches:

The least squares method

The projection (or Galerkin) method

The interpolation (or collocation) method

Underlying motivation for our notation

Our mathematical framework for doing this is phrased in a way
such that it becomes easy to understand and use the FEniCS
software package for �nite element computing.

Approximation of planar vectors; problem

Given a vector f = (3, 5), �nd an approximation to f directed
along a given line.
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Approximation of planar vectors; vector space terminology

V = span {ψ0}

ψ0 is a basis vector in the space V

Seek u = c0ψ0 ∈ V

Determine c0 such that u is the "best" approximation to f

Visually, "best" is obvious

De�ne

the error e = f − u

the (Eucledian) scalar product of two vectors: (u, v)

the norm of e: ||e|| =
√

(e, e)

The least squares method; principle

Idea: �nd c0 such that ||e|| is minimized

Mathematical convenience: minimize E = ||e||2

∂E

∂c0
= 0

The least squares method; calculations

E (c0) = (e, e) = (f − u, f − u) = (f − c0ψ0, f − c0ψ0)

= (f , f )− 2c0(f ,ψ0) + c20 (ψ0,ψ0)

∂E

∂c0
= −2(f ,ψ0) + 2c0(ψ0,ψ0) = 0 (1)

c0 =
(f ,ψ0)

(ψ0,ψ0)
=

3a + 5b

a2 + b2

Observation to be used later: the vanishing derivative (1) can be
alternatively written as

(e,ψ0) = 0

The projection (or Galerkin) method

Last slide: minE is equivalent with (e,ψ0) = 0

(e,ψ0) = 0 implies (e, v) = 0 for any v ∈ V

That is: instead of using the least-squares principle, we can
require that e is orthogonal to any v ∈ V

(visually clear, but can easily be computed too)

Precise math: �nd c0 such that (e, v) = 0, ∀v ∈ V

Equivalent (see notes): �nd c0 such that (e,ψ0) = 0

Insert e = f − c0ψ0 and solve for c0

Same equation for c0 and hence same solution as in the least
squares method



Approximation of general vectors

Given a vector f , �nd an approximation u ∈ V :

V = span {ψ0, . . . ,ψN}

We have a set of linearly independent basis vectors ψ0, . . . ,ψN .
Any u ∈ V can then be written as

u =
N∑

j=0

cjψj

The least squares method

Idea: �nd c0, . . . , cN such that E = ||e||2 is minimized, e = f − u.

E (c0, . . . , cN) = (e, e) = (f −
∑

j

cjψj , f −
∑

j

cjψj)

= (f , f )− 2
N∑

j=0

cj(f ,ψj) +
N∑

p=0

N∑

q=0

cpcq(ψp,ψq)

∂E

∂ci
= 0, i = 0, . . . ,N

After some work we end up with a linear system

N∑

j=0

Ai ,jcj = bi , i = 0, . . . ,N (2)

Ai ,j = (ψi ,ψj) (3)

bi = (ψi , f ) (4)

The projection (or Galerkin) method

Can be shown that minimizing ||e|| implies that e is orthogonal to
all v ∈ V :

(e, v) = 0, ∀v ∈ V

which implies that e most be orthogonal to each basis vector:

(e,ψi ) = 0, i = 0, . . . ,N

This orthogonality condition is the principle of the projection (or
Galerkin) method. Leads to the same linear system as in the least
squares method.

Approximation of a function in a function space

Let V be a function space spanned by a set of basis functions
ψ0, . . . , ψN ,

V = span {ψ0, . . . , ψN}

Find u ∈ V as a linear combination of the basis functions:

u =
∑

j∈Is
cjψj , Is = {0, 1, . . . ,N}

The least squares method can be extended from vectors to
functions

As in the vector case, minimize the (square) norm of the error, E ,
with respect to the coe�cients cj , j ∈ Is :

E = (e, e) = (f−u, f−u) =


f (x)−

∑

j∈Is
cjψj(x), f (x)−

∑

j∈Is
cjψj(x)




∂E

∂ci
= 0, i =∈ Is

But what is the scalar product when ψi is a function?

(f , g) =

∫

Ω
f (x)g(x) dx

(natural extension from Eucledian product (u, v) =
∑

j ujvj)

The least squares method; details

E (c0, . . . , cN) = (e, e) = (f − u, f − u)

= (f , f )− 2
∑

j∈Is
cj(f , ψi ) +

∑

p∈Is

∑

q∈Is
cpcq(ψp, ψq)

∂E

∂ci
= 0, i =∈ Is

The computations are identical to the vector case, and
consequently we get a linear system

∑

j∈Is
Ai ,jcj = bi , i ∈ Is , Ai ,j = (ψi , ψj), bi = (f , ψi )



The projection (or Galerkin) method

As before, minimizing (e, e) is equivalent to

(e, ψi ) = 0, i ∈ Is

which is equivalent to

(e, v) = 0, ∀v ∈ V

which is the projection (or Galerkin) method.

The algebra is the same as in the multi-dimensional vector case,
and we get the same linear system as arose from the least squares
method.

Example: �t a parabola by a straight line; problem

Problem

Approximate a parabola f (x) = 10(x − 1)2 − 1 by a straight line.

V = span {1, x}
That is, ψ0(x) = 1, ψ1(x) = x , and N = 1. We seek

u = c0ψ0(x) + c1ψ1(x) = c0 + c1x

Example: �t a parabola by a straight line; solution

A0,0 = (ψ0, ψ0) =

∫ 2

1

1 · 1 dx = 1

A0,1 = (ψ0, ψ1) =

∫ 2

1

1 · x dx = 3/2

A1,0 = A0,1 = 3/2

A1,1 = (ψ1, ψ1) =

∫ 2

1

x · x dx = 7/3

b1 = (f , ψ0) =

∫ 2

1

(10(x − 1)2 − 1) · 1 dx = 7/3

b2 = (f , ψ1) =

∫ 2

1

(10(x − 1)2 − 1) · x dx = 13/3

Solution of 2x2 linear system:

c0 = −38/3, c1 = 10, u(x) = 10x − 38

3

Example: �t a parabola by a straight line; plot
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Ideas for implementing the least squares method via
symbolic computations

Consider symbolic computation of the linear system, where

f (x) is given as a sympy expression f (involving the symbol x),

psi is a list of {ψi}i∈Is ,
Omega is a 2-tuple/list holding the domain Ω

Carry out the integrations, solve the linear system, and return
u(x) =

∑
j cjψj(x)

Basic symbolic (SymPy) code for least squares

import sympy as sym

def least_squares(f, psi, Omega):
N = len(psi) - 1
A = sym.zeros((N+1, N+1))
b = sym.zeros((N+1, 1))
x = sym.Symbol('x')
for i in range(N+1):

for j in range(i, N+1):
A[i,j] = sym.integrate(psi[i]*psi[j],

(x, Omega[0], Omega[1]))
A[j,i] = A[i,j]

b[i,0] = sym.integrate(psi[i]*f, (x, Omega[0], Omega[1]))
c = A.LUsolve(b)
u = 0
for i in range(len(psi)):

u += c[i,0]*psi[i]
return u, c

Observe: symmetric coe�cient matrix so we can halve the
integrations.



Improved code if symbolic integration fails

If sym.integrate fails, it returns an sym.Integral object.
We can test on this object and fall back on numerical
integration.
We can include a boolean argument symbolic to explicitly
choose between symbolic and numerical computing.

def least_squares(f, psi, Omega, symbolic=True):
...
for i in range(N+1):

for j in range(i, N+1):
integrand = psi[i]*psi[j]
if symbolic:

I = sym.integrate(integrand, (x, Omega[0], Omega[1]))
if not symbolic or isinstance(I, sym.Integral):

# Could not integrate symbolically,
# fall back on numerical integration
integrand = sym.lambdify([x], integrand)
I = sym.mpmath.quad(integrand, [Omega[0], Omega[1]])

A[i,j] = A[j,i] = I

integrand = psi[i]*f
if symbolic:

I = sym.integrate(integrand, (x, Omega[0], Omega[1]))
if not symbolic or isinstance(I, sym.Integral):

integrand = sym.lambdify([x], integrand)
I = sym.mpmath.quad(integrand, [Omega[0], Omega[1]])

b[i,0] = I
...

Plotting of the solution

Compare f and u visually:

def comparison_plot(f, u, Omega, filename='tmp.pdf'):
x = sym.Symbol('x')
# Turn f and u to ordinary Python functions
f = sym.lambdify([x], f, modules="numpy")
u = sym.lambdify([x], u, modules="numpy")
resolution = 401 # no of points in plot
xcoor = linspace(Omega[0], Omega[1], resolution)
exact = f(xcoor)
approx = u(xcoor)
plot(xcoor, approx)
hold('on')
plot(xcoor, exact)
legend(['approximation', 'exact'])
savefig(filename)

All code in module approx1D.py

Application of the software: �t a parabola by a straight line
>>> from approx1D import *
>>> x = sym.Symbol('x')
>>> f = 10*(x-1)**2-1
>>> u, c = least_squares(f=f, psi=[1, x], Omega=[1, 2])
>>> comparison_plot(f, u, Omega=[1, 2])
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The approximation is exact if f ∈ V

What if we add ψ2 = x2 to the space V ?

That is, approximating a parabola by any parabola?

(Hopefully we get the exact parabola!)

>>> from approx1D import *
>>> x = sym.Symbol('x')
>>> f = 10*(x-1)**2-1
>>> u, c = least_squares(f=f, psi=[1, x, x**2], Omega=[1, 2])
>>> print u
10*x**2 - 20*x + 9
>>> print sym.expand(f)
10*x**2 - 20*x + 9

The general result: perfect approximation if f ∈ V

What if we use ψi (x) = x i for i = 0, . . . ,N = 40?

The output from least_squares is ci = 0 for i > 2

General result

If f ∈ V , least squares and projection/Galerkin give u = f .

Proof of why f ∈ V gives exact u

If f ∈ V , f =
∑

j∈Is djψj , for some {di}i∈Is . Then

bi = (f , ψi ) =
∑

j∈Is
dj(ψj , ψi ) =

∑

j∈Is
djAi ,j

The linear system
∑

j Ai ,jcj = bi , i ∈ Is , is then

∑

j∈Is
cjAi ,j =

∑

j∈Is
djAi ,j , i ∈ Is

which implies that ci = di for i ∈ Is and u is identical to f .



Finite-precision in numerical computations; question

The previous computations were symbolic. What if we solve the
linear system numerically with standard arrays?

That is, f is parabola, but we approximate with

u(x) = c0 + c1x + c2x
2 + c3x

3 + · · ·+ cNx
N

We expect c2 = c3 = · · · = cN = 0 since f ∈ V implies u = f .

Will we get this result with �nite precision computer arithmetic?

Finite-precision in numerical computations; results

exact sympy numpy32 numpy64

9 9.62 5.57 8.98

-20 -23.39 -7.65 -19.93

10 17.74 -4.50 9.96

0 -9.19 4.13 -0.26

0 5.25 2.99 0.72

0 0.18 -1.21 -0.93

0 -2.48 -0.41 0.73

0 1.81 -0.013 -0.36

0 -0.66 0.08 0.11

0 0.12 0.04 -0.02

0 -0.001 -0.02 0.002

Column 2: matrix and lu_solve from sympy.mpmath.fp

Column 3: numpy matrix with 4-byte �oats

Column 4: numpy matrix with 8-byte �oats

The ill-conditioning is due to almost linearly dependent basis
functions for large N

Signi�cant round-o� errors in the numerical computations (!)

But if we plot the approximations they look good (!)

Source or problem: the x i functions become almost linearly
dependent as i grows:
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Ill-conditioning: general conclusions

Almost linearly dependent basis functions give almost singular
matrices

Such matrices are said to be ill conditioned, and Gaussian
elimination is severely a�ected by round-o� errors

The basis 1, x , x2, x3, x4, . . . is a bad basis

Polynomials are �ne as basis, but the more orthogonal they
are, (ψi , ψj) ≈ 0, the better

Fourier series approximation; problem and code

Let's approximate f by a typical Fourier series expansion

u(x) =
∑

i

ai sin iπx =
N∑

j=0

cj sin((j + 1)πx)

which means that

V = span {sinπx , sin 2πx , . . . , sin(N + 1)πx}

Computations using the least_squares function:

N = 3
from sympy import sin, pi
psi = [sin(pi*(i+1)*x) for i in range(N+1)]
f = 10*(x-1)**2 - 1
Omega = [0, 1]
u, c = least_squares(f, psi, Omega)
comparison_plot(f, u, Omega)

Fourier series approximation; plot

Left: N = 3, right: N = 11:
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Problem:

All ψi (0) = 0 and hence u(0) = 0 6= f (0) = 9. Similar problem at
x = 1. The boundary values of u are always wrong!



Fourier series approximation; improvements

Considerably improvement with N = 11, but still undesired
discrepancy at x = 0 and x = 1

Possible remedy: add a term that leads to correct boundary
values

u(x) = f (0)(1− x) + xf (1) +
∑

j∈Is
cjψj(x)

The extra terms ensure u(0) = f (0) and u(1) = f (1) and is a
strikingly good help to get a good approximation!

Fourier series approximation; �nal results

N = 3 vs N = 11:
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Orthogonal basis functions

This choice of sine functions as basis functions is popular because

the basis functions are orthogonal: (ψi , ψj) = 0

implying that Ai ,j is a diagonal matrix

implying that we can solve for ci = 2
∫ 1
0
f (x) sin((i + 1)πx)dx

and what we get is the standard Fourier sine series of f

In general, for an orthogonal basis, Ai ,j is diagonal and we can
easily solve for ci :

ci =
bi

Ai ,i
=

(f , ψi )

(ψi , ψi )

Function for the least squares method with orthogonal basis
functions

def least_squares_orth(f, psi, Omega):
N = len(psi) - 1
A = [0]*(N+1)
b = [0]*(N+1)
x = sym.Symbol('x')
for i in range(N+1):

A[i] = sym.integrate(psi[i]**2, (x, Omega[0], Omega[1]))
b[i] = sym.integrate(psi[i]*f, (x, Omega[0], Omega[1]))

c = [b[i]/A[i] for i in range(len(b))]
u = 0
for i in range(len(psi)):

u += c[i]*psi[i]
return u, c

Function for the least squares method with orthogonal basis
functions; symbolic and numerical integration

Extensions:

We can choose between symbolic or numerical integration
(symbolic argument).
If symbolic, we fall back on numerical integration after failure
(sym.Integral is returned from sym.integrate).

def least_squares_orth(f, psi, Omega, symbolic=True):
...
for i in range(N+1):

# Diagonal matrix term
A[i] = sym.integrate(psi[i]**2, (x, Omega[0], Omega[1]))

# Right-hand side term
integrand = psi[i]*f
if symbolic:

I = sym.integrate(integrand, (x, Omega[0], Omega[1]))
if not symbolic or isinstance(I, sym.Integral):

print 'numerical integration of', integrand
integrand = sym.lambdify([x], integrand)
I = sym.mpmath.quad(integrand, [Omega[0], Omega[1]])

b[i] = I
...

Assumption above:
∫

Ω ϕ
2
i dx works symbolically (but there is no

guarantee!)

The collocation or interpolation method; ideas and math

Here is another idea for approximating f (x) by u(x) =
∑

j cjψj :

Force u(xi ) = f (xi ) at some selected collocation points
{xi}i∈Is
Then u is said to interpolate f

The method is known as interpolation or collocation

u(xi ) =
∑

j∈Is
cjψj(xi ) = f (xi ) i ∈ Is ,N

This is a linear system with no need for integration:

∑

j∈Is
Ai ,jcj = bi , i ∈ Is (5)

Ai ,j = ψj(xi ) (6)

bi = f (xi ) (7)

No symmetric matrix: ψj(xi ) 6= ψi (xj) in general



The collocation or interpolation method; implementation

points holds the interpolation/collocation points

def interpolation(f, psi, points):
N = len(psi) - 1
A = sym.zeros((N+1, N+1))
b = sym.zeros((N+1, 1))
x = sym.Symbol('x')
# Turn psi and f into Python functions
psi = [sym.lambdify([x], psi[i]) for i in range(N+1)]
f = sym.lambdify([x], f)
for i in range(N+1):

for j in range(N+1):
A[i,j] = psi[j](points[i])

b[i,0] = f(points[i])
c = A.LUsolve(b)
u = 0
for i in range(len(psi)):

u += c[i,0]*psi[i](x)
return u

The collocation or interpolation method; approximating a
parabola by linear functions

Potential di�culty: how to choose xi?

The results are sensitive to the points!

(4/3, 5/3) vs (1, 2):
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The regression method

Idea: Interpolation (collocation) method, but use m� N + 1
points

Problem: More equations than unknowns

But this is well known as regression in statistics
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2 interpolation points
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8 interpolation points
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32 interpolation points

The regression method leads to an overdetermined linear
system

Overdetermined linear system:

u(xi ) =
∑

j∈Is
cjψj(xi ) = f (xi ), i = 0, 1, . . . ,m

∑

j∈Is
Ai ,jcj = bi , i = 0, 1, . . . ,m

Ai ,j = ψj(xi ), bi = f (xi )

A least squares method is used to solve overdetermined
linear systems

Cannot (in general) solve Ac = b when there are more
equations than unknowns

Idea: Minimize r = b − Ac instead

Result: the normal equations ATAc = ATb

(N + 1)× (N + 1) system

Write the normal equations as Bc = d

Bi ,j =
∑

k

AT
i ,kAk,j =

∑

k

Ak,iAk,j =
m∑

k=0

ψi (xk)ψj(xk)

di =
∑

k

AT
i ,kbk =

∑

k

Ak,ibk =
m∑

k=0

ψi (xk)f (xk)

Implementation

def regression(f, psi, points):
N = len(psi) - 1
m = len(points)
# Use numpy arrays and numerical computing
B = np.zeros((N+1, N+1))
d = np.zeros(N+1)
# Wrap psi and f in Python functions rather than expressions
# so that we can evaluate psi at points[i]
x = sym.Symbol('x')
psi_sym = psi # save symbolic expression
psi = [sym.lambdify([x], psi[i]) for i in range(N+1)]
f = sym.lambdify([x], f)
for i in range(N+1):

for j in range(N+1):
B[i,j] = 0
for k in range(m+1):

B[i,j] += psi[i](points[k])*psi[j](points[k])
d[i] = 0
for k in range(m+1):

d[i] += psi[i](points[k])*f(points[k])
c = np.linalg.solve(B, d)
u = sum(c[i]*psi_sym[i] for i in range(N+1))
return u, c



Example on using the regression method; code

Approximate f (x) = 10(x − 1)2 − 1 by a linear function on
Ω = [1, 2]

import sympy as sym
x = sym.Symbol('x')
f = 10*(x-1)**2 - 1
psi = [1, x]
Omega = [1, 2]
m_values = [2-1, 8-1, 64-1]
# Create m+3 points and use the inner m+1 points
for m in m_values:

points = np.linspace(Omega[0], Omega[1], m+3)[1:-1]
u, c = regression(f, psi, points)
comparison_plot(f, u, Omega, points=points,

points_legend='%d interpolation points' % (m+1))

Example on using the regression method; result

u(x) = 10x − 13.2, 2 points

u(x) = 10x − 12.7, 8 points

u(x) = 10x − 12.7, 64 points
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8 interpolation points
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What is the regression method used for?

It is one of the most dominating methods for approximating
data in statistics

Not so common for approximating functions

Not much used for solving di�erential equations

Recently very popular for statistical uncertainty quanti�cation:
approximating the mapping from input parameters to the
solution via polynomials and the regression method (called
polynomial chaos expansions)

Lagrange polynomials; motivation and ideas

Motivation:

The interpolation/collocation method avoids integration
With a diagonal matrix Ai ,j = ψj(xi ) we can solve the linear
system by hand

The Lagrange interpolating polynomials ψj have the property that

ψi (xj) = δij , δij =

{
1, i = j

0, i 6= j

Hence, ci = f (xi ) and

u(x) =
∑

j∈Is
f (xi )ψi (x)

Lagrange polynomials and interpolation/collocation look
convenient
Lagrange polynomials are very much used in the �nite element
method

Lagrange polynomials; formula and code

ψi (x) =
N∏

j=0,j 6=i

x − xj

xi − xj
=

x − x0

xi − x0
· · · x − xi−1

xi − xi−1

x − xi+1

xi − xi+1
· · · x − xN

xi − xN

def Lagrange_polynomial(x, i, points):
p = 1
for k in range(len(points)):

if k != i:
p *= (x - points[k])/(points[i] - points[k])

return p

Lagrange polynomials; successful example
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Least squares approximation by Lagrange polynomials of degree 3

approximation
exact
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Interpolation by Lagrange polynomials of degree 3

approximation
exact



Lagrange polynomials; a less successful example
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Interpolation by Lagrange polynomials of degree 7

approximation
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Interpolation by Lagrange polynomials of degree 14

approximation
exact

Lagrange polynomials; oscillatory behavior
12 points, degree 11, plot of two of the Lagrange polynomials -
note that they are zero at all points except one.
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Problem: strong oscillations near the boundaries for larger N values.

Lagrange polynomials; remedy for strong oscillations

The oscillations can be reduced by a more clever choice of
interpolation points, called the Chebyshev nodes:

xi =
1

2
(a + b) +

1

2
(b − a) cos

(
2i + 1

2(N + 1)
π

)
, i = 0 . . . ,N

on an interval [a, b].

Lagrange polynomials; recalculation with Chebyshev nodes
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Interpolation by Lagrange polynomials of degree 7

approximation
exact
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Lagrange polynomials; less oscillations with Chebyshev nodes

12 points, degree 11, plot of two of the Lagrange polynomials -
note that they are zero at all points except one.
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Finite element basis functions
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The basis functions have so far been global: ψi(x) 6= 0
almost everywhere

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

4

2

0
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4
ψ0

ψ1

u=4ψ0−1
2
ψ1

In the �nite element method we use basis functions with
local support

Local support: ψi (x) 6= 0 for x in a small subdomain of Ω

Typically hat-shaped

u(x) based on these ψi is a piecewise polynomial de�ned over
many (small) subdomains

We introduce ϕi as the name of these �nite element hat
functions (and for now choose ψi = ϕi )

543210

x

Ω(4)Ω(0) Ω(1) Ω(2) Ω(3)

ϕ2 ϕ3

The linear combination of hat functions is a piecewise linear
function
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u

Elements and nodes

Split Ω into Ne non-overlapping subdomains called elements:

Ω = Ω(0) ∪ · · · ∪ Ω(Ne)

On each element, introduce Nn points called nodes: x0, . . . , xNn−1

The �nite element basis functions are named ϕi (x)

ϕi = 1 at node i and 0 at all other nodes

ϕi is a Lagrange polynomial on each element

For nodes at the boundary between two elements, ϕi is made
up of a Lagrange polynomial over each element

Example on elements with two nodes (P1 elements)

543210
x

Ω(4)Ω(0) Ω(1) Ω(2) Ω(3)

Data structure: nodes holds coordinates or nodes, elements holds
the node numbers in each element

nodes = [0, 1.2, 2.4, 3.6, 4.8, 5]
elements = [[0, 1], [1, 2], [2, 3], [3, 4], [4, 5]]

Illustration of two basis functions on the mesh
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Example on elements with three nodes (P2 elements)

43210
x

Ω(0) Ω(1)

nodes = [0, 0.125, 0.25, 0.375, 0.5, 0.625, 0.75, 0.875, 1.0]
elements = [[0, 1, 2], [2, 3, 4], [4, 5, 6], [6, 7, 8]]

Some corresponding basis functions (P2 elements)
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Examples on elements with four nodes (P3 elements)

0 2 4 6
1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5

9876543210 1110 12

x

Ω(0) Ω(1) Ω(2) Ω(3)

d = 3 # d+1 nodes per element
num_elements = 4
num_nodes = num_elements*d + 1
nodes = [i*0.5 for i in range(num_nodes)]
elements = [[i*d+j for j in range(d+1)] for i in range(num_elements)]

Some corresponding basis functions (P3 elements)

0.0 0.2 0.4 0.6 0.8 1.0
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0.8
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The numbering does not need to be regular from left to right

543 2 10

x

Ω(4) Ω(0)Ω(1)Ω(2)Ω(3)

nodes = [1.5, 5.5, 4.2, 0.3, 2.2, 3.1]
elements = [[2, 1], [4, 5], [0, 4], [3, 0], [5, 2]]

Interpretation of the coe�cients ci

Important property: ci is the value of u at node i , xi :

u(xi ) =
∑

j∈Is
cjϕj(xi ) = ciϕi (xi ) = ci

because ϕj(xi ) = 0 if i 6= j and ϕi (xi ) = 1



Properties of the basis functions

ϕi (x) 6= 0 only on those elements that contain global node i

ϕi (x)ϕj(x) 6= 0 if and only if i and j are global node numbers
in the same element

Since Ai ,j =
∫
ϕiϕj dx , most of the elements in the coe�cient

matrix will be zero

i+1ii−1i−2

x

ϕi−1 ϕi

How to construct quadratic ϕi (P2 elements)
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1 Associate Lagrange polynomials with the nodes in an element

2 When the polynomial is 1 on the element boundary, combine it
with the polynomial in the neighboring element that is also 1
at the same point

Example on linear ϕi (P1 elements)
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ϕi (x) =





0, x < xi−1
(x − xi−1)/h xi−1 ≤ x < xi
1− (x − xi )/h, xi ≤ x < xi+1

0, x ≥ xi+1

Example on cubic ϕi (P3 elements)
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Calculating the linear system for ci Computing a speci�c matrix entry (1)

543210

x

Ω(4)Ω(0) Ω(1) Ω(2) Ω(3)

ϕ2 ϕ3

A2,3 =
∫

Ω ϕ2ϕ3dx : ϕ2ϕ3 6= 0 only over element 2. There,

ϕ3(x) = (x − x2)/h, ϕ2(x) = 1− (x − x2)/h

A2,3 =

∫

Ω
ϕ2ϕ3 dx =

∫ x3

x2

(
1− x − x2

h

)
x − x2

h
dx =

h

6



Computing a speci�c matrix entry (2)

543210

x

Ω(4)Ω(0) Ω(1) Ω(2) Ω(3)

ϕ2 ϕ3

A2,2 =

∫ x2

x1

(
x − x1

h

)2

dx +

∫ x3

x2

(
1− x − x2

h

)2

dx =
2h

3

Calculating a general row in the matrix; �gure

i+1ii−1i−2

x

ϕi−1 ϕi

Ai ,i−1 =

∫

Ω
ϕiϕi−1 dx = ?

Calculating a general row in the matrix; details

Ai ,i−1 =

∫

Ω
ϕiϕi−1 dx

=

∫ xi−1

xi−2

ϕiϕi−1 dx

︸ ︷︷ ︸
ϕi=0

+

∫ xi

xi−1

ϕiϕi−1 dx +

∫ xi+1

xi

ϕiϕi−1 dx

︸ ︷︷ ︸
ϕi−1=0

=

∫ xi

xi−1

(
x − xi

h

)

︸ ︷︷ ︸
ϕi (x)

(
1− x − xi−1

h

)

︸ ︷︷ ︸
ϕi−1(x)

dx =
h

6

Ai ,i+1 = Ai ,i−1 due to symmetry

Ai ,i = 2h/3 (same calculation as for A2,2)

A0,0 = AN,N = h/3 (only one element)

Calculation of the right-hand side

i+1ii−1i−2

x

ϕi f(x)

bi =

∫

Ω
ϕi (x)f (x) dx =

∫ xi

xi−1

x − xi−1
h

f (x) dx+

∫ xi+1

xi

(
1− x − xi

h

)
f (x) dx

Need a speci�c f (x) to do more...

Speci�c example with two elements; linear system and
solution

f (x) = x(1− x) on Ω = [0, 1]

Two equal-sized elements [0, 0.5] and [0.5, 1]

A =
h

6




2 1 0
1 4 1
0 1 2


 , b =

h2

12




2− 3h
12− 14h
10− 17h




c0 =
h2

6
, c1 = h − 5

6
h2, c2 = 2h − 23

6
h2

Speci�c example with two elements; plot

u(x) = c0ϕ0(x) + c1ϕ1(x) + c2ϕ2(x)
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Speci�c example with four elements; plot
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Speci�c example: what about P2 elements?

Recall: if f ∈ V , u becomes exact. When f is a parabola,
any choice of P2 elements (1 or many) will give u = f

exactly. The same is true for P3, P4, ... elements since all
of them can represent a 2nd-degree polynomial exactly.

Assembly of elementwise computations Split the integrals into elementwise integrals

Ai ,j =

∫

Ω
ϕiϕjdx =

∑

e

∫

Ω(e)
ϕiϕjdx , A

(e)
i ,j =

∫

Ω(e)
ϕiϕjdx

Important observations:

A
(e)
i ,j 6= 0 if and only if i and j are nodes in element e

(otherwise no overlap between the basis functions)

All the nonzero elements in A
(e)
i ,j are collected in an element

matrix

The element matrix has contributions from the ϕi functions
associated with the nodes in element

It is convenient to introduce a local numbering of the nodes in
an element: 0, 1, . . . , d

i+1ii−1i−2

x

ϕi−1 ϕi

The element matrix and local vs global node numbers

Ã(e) = {Ã(e)
r ,s }, Ã

(e)
r ,s =

∫

Ω(e)
ϕq(e,r)ϕq(e,s)dx , r , s ∈ Id = {0, . . . , d}

Now,

r , s run over local node numbers in an element: 0, 1, . . . , d

i , j run over global node numbers i , j ∈ Is = {0, 1, . . . ,N}
i = q(e, r): mapping of local node number r in element e to
the global node number i (math equivalent to
i=elements[e][r])

Add Ã
(e)
r ,s into the global Ai ,j (assembly)

Aq(e,r),q(e,s) := Aq(e,r),q(e,s) + Ã
(e)
r ,s , r , s ∈ Id

Illustration of the matrix assembly: regularly numbered P1
elements

Animation



Illustration of the matrix assembly: regularly numbered P3
elements

Animation

Illustration of the matrix assembly: irregularly numbered P1
elements

Animation

Assembly of the right-hand side

bi =

∫

Ω
f (x)ϕi (x)dx =

∑

e

∫

Ω(e)
f (x)ϕi (x)dx , b

(e)
i =

∫

Ω(e)
f (x)ϕi (x)dx

i+1ii−1i−2

x

ϕi f(x)

Important observations:

b
(e)
i 6= 0 if and only if global node i is a node in element e
(otherwise ϕi = 0)

The d + 1 nonzero b
(e)
i can be collected in an element vector

b̃
(e)
r = {b̃(e)

r }, r ∈ Id

Assembly:

bq(e,r) := bq(e,r) + b̃
(e)
r , r ∈ Id

Mapping to a reference element

Instead of computing

Ã
(e)
r ,s =

∫

Ω(e)
ϕq(e,r)(x)ϕq(e,s)(x)dx =

∫ xR

xL

ϕq(e,r)(x)ϕq(e,s)(x)dx

we now map [xL, xR ] to a standardized reference element domain
[−1, 1] with local coordinate X

We use a�ne mapping: linear stretch of X ∈ [−1, 1] to
x ∈ [xL, xR ]

x =
1

2
(xL + xR) +

1

2
(xR − xL)X

or rewritten as

x = xm +
1

2
hX , xm = (xL + xR)/2, h = xR − xL

Integral transformation

Reference element integration: just change integration variable
from x to X . Introduce local basis function

ϕ̃r (X ) = ϕq(e,r)(x(X ))

Ã
(e)
r ,s =

∫

Ω(e)
ϕq(e,r)(x)ϕq(e,s)(x)dx =

1∫

−1

ϕ̃r (X )ϕ̃s(X )
dx

dX︸︷︷︸
det J=h/2

dX =

1∫

−1

ϕ̃r (X )ϕ̃s(X ) det J dX

b̃
(e)
r =

∫

Ω(e)
f (x)ϕq(e,r)(x)dx =

1∫

−1

f (x(X ))ϕ̃r (X ) det J dX



Advantages of the reference element

Always the same domain for integration: [−1, 1]

We only need formulas for ϕ̃r (X ) over one element (no
piecewise polynomial de�nition)

ϕ̃r (X ) is the same for all elements: no dependence on element
length and location, which is �factored out� in the mapping
and det J

Standardized basis functions for P1 elements

ϕ̃0(X ) =
1

2
(1− X ) (8)

ϕ̃1(X ) =
1

2
(1 + X ) (9)

Note: simple polynomial expressions (no need to consider
piecewisely de�ned functions)

Standardized basis functions for P2 elements

ϕ̃0(X ) =
1

2
(X − 1)X (10)

ϕ̃1(X ) = 1− X 2 (11)

ϕ̃2(X ) =
1

2
(X + 1)X (12)

Easy to generalize to arbitrary order!

How to �nd the polynomial expressions?

Three alternatives:

1 Map the global basis function ϕi (x) over an element to X

coordinates
2 Compute ϕ̃r (X ) from scratch using

1 a given polynomial order d
2 ϕ̃r (X ) = 1 at local node 1
3 ϕ̃r (X ) = 1 at all other local nodes

3 Use formulas for Lagrange interpolating polynomials on the
element

Integration over a reference element; element matrix

P1 elements and f (x) = x(1− x).

Ã
(e)
0,0 =

∫ 1

−1
ϕ̃0(X )ϕ̃0(X )

h

2
dX

=

∫ 1

−1

1

2
(1− X )

1

2
(1− X )

h

2
dX =

h

8

∫ 1

−1
(1− X )2dX =

h

3

(13)

Ã
(e)
1,0 =

∫ 1

−1
ϕ̃1(X )ϕ̃0(X )

h

2
dX

=

∫ 1

−1

1

2
(1 + X )

1

2
(1− X )

h

2
dX =

h

8

∫ 1

−1
(1− X 2)dX =

h

6

(14)

Ã
(e)
0,1 = Ã

(e)
1,0 (15)

Ã
(e)
1,1 =

∫ 1

−1
ϕ̃1(X )ϕ̃1(X )

h

2
dX

=

∫ 1

−1

1

2
(1 + X )

1

2
(1 + X )

h

2
dX =

h

8

∫ 1

−1
(1 + X )2dX =

h

3

(16)

Integration over a reference element; element vector

b̃
(e)
0 =

∫ 1

−1
f (x(X ))ϕ̃0(X )

h

2
dX

=

∫ 1

−1
(xm +

1

2
hX )(1− (xm +

1

2
hX ))

1

2
(1− X )

h

2
dX

= − 1

24
h3 +

1

6
h2xm −

1

12
h2 − 1

2
hx2m +

1

2
hxm (17)

b̃
(e)
1 =

∫ 1

−1
f (x(X ))ϕ̃1(X )

h

2
dX

=

∫ 1

−1
(xm +

1

2
hX )(1− (xm +

1

2
hX ))

1

2
(1 + X )

h

2
dX

= − 1

24
h3 − 1

6
h2xm +

1

12
h2 − 1

2
hx2m +

1

2
hxm (18)

xm: element midpoint.



Tedious calculations! Let's use symbolic software

>>> import sympy as sym
>>> x, x_m, h, X = sym.symbols('x x_m h X')
>>> sym.integrate(h/8*(1-X)**2, (X, -1, 1))
h/3
>>> sym.integrate(h/8*(1+X)*(1-X), (X, -1, 1))
h/6
>>> x = x_m + h/2*X
>>> b_0 = sym.integrate(h/4*x*(1-x)*(1-X), (X, -1, 1))
>>> print b_0
-h**3/24 + h**2*x_m/6 - h**2/12 - h*x_m**2/2 + h*x_m/2

Can print out in LATEX too (convenient for copying into reports):

>>> print sym.latex(b_0, mode='plain')
- \frac{1}{24} h^{3} + \frac{1}{6} h^{2} x_{m}
- \frac{1}{12} h^{2} - \half h x_{m}^{2}
+ \half h x_{m}

Implementation

Coming functions appear in fe_approx1D.py

Functions can operate in symbolic or numeric mode

The code documents all steps in �nite element calculations!

Compute �nite element basis functions in the reference
element

Let ϕ̃r (X ) be a Lagrange polynomial of degree d:

import sympy as sym
import numpy as np

def phi_r(r, X, d):
if isinstance(X, sym.Symbol):

h = sym.Rational(1, d) # node spacing
nodes = [2*i*h - 1 for i in range(d+1)]

else:
# assume X is numeric: use floats for nodes
nodes = np.linspace(-1, 1, d+1)

return Lagrange_polynomial(X, r, nodes)

def Lagrange_polynomial(x, i, points):
p = 1
for k in range(len(points)):

if k != i:
p *= (x - points[k])/(points[i] - points[k])

return p

def basis(d=1):
"""Return the complete basis."""
X = sym.Symbol('X')
phi = [phi_r(r, X, d) for r in range(d+1)]
return phi

Compute the element matrix

def element_matrix(phi, Omega_e, symbolic=True):
n = len(phi)
A_e = sym.zeros((n, n))
X = sym.Symbol('X')
if symbolic:

h = sym.Symbol('h')
else:

h = Omega_e[1] - Omega_e[0]
detJ = h/2 # dx/dX
for r in range(n):

for s in range(r, n):
A_e[r,s] = sym.integrate(phi[r]*phi[s]*detJ, (X, -1, 1))
A_e[s,r] = A_e[r,s]

return A_e

Example on symbolic vs numeric element matrix

>>> from fe_approx1D import *
>>> phi = basis(d=1)
>>> phi
[1/2 - X/2, 1/2 + X/2]
>>> element_matrix(phi, Omega_e=[0.1, 0.2], symbolic=True)
[h/3, h/6]
[h/6, h/3]
>>> element_matrix(phi, Omega_e=[0.1, 0.2], symbolic=False)
[0.0333333333333333, 0.0166666666666667]
[0.0166666666666667, 0.0333333333333333]

Compute the element vector

def element_vector(f, phi, Omega_e, symbolic=True):
n = len(phi)
b_e = sym.zeros((n, 1))
# Make f a function of X
X = sym.Symbol('X')
if symbolic:

h = sym.Symbol('h')
else:

h = Omega_e[1] - Omega_e[0]
x = (Omega_e[0] + Omega_e[1])/2 + h/2*X # mapping
f = f.subs('x', x) # substitute mapping formula for x
detJ = h/2 # dx/dX
for r in range(n):

b_e[r] = sym.integrate(f*phi[r]*detJ, (X, -1, 1))
return b_e

Note f.subs('x', x): replace x by x(X ) such that f contains X



Fallback on numerical integration if symbolic integration of∫
f ϕ̃rdx fails

Element matrix: only polynomials and sympy always succeeds

Element vector:
∫
f ϕ̃ dx can fail (sympy then returns an

Integral object instead of a number)

def element_vector(f, phi, Omega_e, symbolic=True):
...
I = sym.integrate(f*phi[r]*detJ, (X, -1, 1)) # try...
if isinstance(I, sym.Integral):

h = Omega_e[1] - Omega_e[0] # Ensure h is numerical
detJ = h/2
integrand = sym.lambdify([X], f*phi[r]*detJ)
I = sym.mpmath.quad(integrand, [-1, 1])

b_e[r] = I
...

Linear system assembly and solution

def assemble(nodes, elements, phi, f, symbolic=True):
N_n, N_e = len(nodes), len(elements)
zeros = sym.zeros if symbolic else np.zeros
A = zeros((N_n, N_n))
b = zeros((N_n, 1))
for e in range(N_e):

Omega_e = [nodes[elements[e][0]], nodes[elements[e][-1]]]

A_e = element_matrix(phi, Omega_e, symbolic)
b_e = element_vector(f, phi, Omega_e, symbolic)

for r in range(len(elements[e])):
for s in range(len(elements[e])):

A[elements[e][r],elements[e][s]] += A_e[r,s]
b[elements[e][r]] += b_e[r]

return A, b

Linear system solution

if symbolic:
c = A.LUsolve(b) # sympy arrays, symbolic Gaussian elim.

else:
c = np.linalg.solve(A, b) # numpy arrays, numerical solve

Note: the symbolic computation of A, b and A.LUsolve(b) can be
very tedious.

Example on computing symbolic approximations

>>> h, x = sym.symbols('h x')
>>> nodes = [0, h, 2*h]
>>> elements = [[0, 1], [1, 2]]
>>> phi = basis(d=1)
>>> f = x*(1-x)
>>> A, b = assemble(nodes, elements, phi, f, symbolic=True)
>>> A
[h/3, h/6, 0]
[h/6, 2*h/3, h/6]
[ 0, h/6, h/3]
>>> b
[ h**2/6 - h**3/12]
[ h**2 - 7*h**3/6]
[5*h**2/6 - 17*h**3/12]
>>> c = A.LUsolve(b)
>>> c
[ h**2/6]
[12*(7*h**2/12 - 35*h**3/72)/(7*h)]
[ 7*(4*h**2/7 - 23*h**3/21)/(2*h)]

Example on computing numerical approximations

>>> nodes = [0, 0.5, 1]
>>> elements = [[0, 1], [1, 2]]
>>> phi = basis(d=1)
>>> x = sym.Symbol('x')
>>> f = x*(1-x)
>>> A, b = assemble(nodes, elements, phi, f, symbolic=False)
>>> A
[ 0.166666666666667, 0.0833333333333333, 0]
[0.0833333333333333, 0.333333333333333, 0.0833333333333333]
[ 0, 0.0833333333333333, 0.166666666666667]
>>> b
[ 0.03125]
[0.104166666666667]
[ 0.03125]
>>> c = A.LUsolve(b)
>>> c
[0.0416666666666666]
[ 0.291666666666667]
[0.0416666666666666]

The structure of the coe�cient matrix

>>> d=1; N_e=8; Omega=[0,1] # 8 linear elements on [0,1]
>>> phi = basis(d)
>>> f = x*(1-x)
>>> nodes, elements = mesh_symbolic(N_e, d, Omega)
>>> A, b = assemble(nodes, elements, phi, f, symbolic=True)
>>> A
[h/3, h/6, 0, 0, 0, 0, 0, 0, 0]
[h/6, 2*h/3, h/6, 0, 0, 0, 0, 0, 0]
[ 0, h/6, 2*h/3, h/6, 0, 0, 0, 0, 0]
[ 0, 0, h/6, 2*h/3, h/6, 0, 0, 0, 0]
[ 0, 0, 0, h/6, 2*h/3, h/6, 0, 0, 0]
[ 0, 0, 0, 0, h/6, 2*h/3, h/6, 0, 0]
[ 0, 0, 0, 0, 0, h/6, 2*h/3, h/6, 0]
[ 0, 0, 0, 0, 0, 0, h/6, 2*h/3, h/6]
[ 0, 0, 0, 0, 0, 0, 0, h/6, h/3]

Note: do this by hand to understand what is going on!



General result: the coe�cient matrix is sparse

Sparse = most of the entries are zeros

Below: P1 elements

A =
h

6




2 1 0 · · · · · · · · · · · · · · · 0

1 4 1
. . .

...

0 1 4 1
. . .

...
...

. . .
. . .

. . . 0
...

...
. . .

. . .
. . .

. . .
. . .

...
... 0 1 4 1

. . .
...

...
. . .

. . .
. . .

. . . 0
...

. . . 1 4 1
0 · · · · · · · · · · · · · · · 0 1 2




Exemplifying the sparsity for P2 elements

A =
h

30




4 2 −1 0 0 0 0 0 0
2 16 2 0 0 0 0 0 0
−1 2 8 2 −1 0 0 0 0
0 0 2 16 2 0 0 0 0
0 0 −1 2 8 2 −1 0 0
0 0 0 0 2 16 2 0 0
0 0 0 0 −1 2 8 2 −1
0 0 0 0 0 0 2 16 2
0 0 0 0 0 0 −1 2 4




Matrix sparsity pattern for regular/random numbering of P1
elements

Left: number nodes and elements from left to right

Right: number nodes and elements arbitrarily

Matrix sparsity pattern for regular/random numbering of P3
elements

Left: number nodes and elements from left to right

Right: number nodes and elements arbitrarily

Sparse matrix storage and solution

The minimum storage requirements for the coe�cient matrix Ai ,j :

P1 elements: only 3 nonzero entries per row

P2 elements: only 5 nonzero entries per row

P3 elements: only 7 nonzero entries per row

It is important to utilize sparse storage and sparse solvers

In Python: scipy.sparse package

Approximate f ∼ x9 by various elements; code

Compute a mesh with Ne elements, basis functions of degree d ,
and approximate a given symbolic expression f (x) by a �nite
element expansion u(x) =

∑
j cjϕj(x):

import sympy as sym
from fe_approx1D import approximate
x = sym.Symbol('x')

approximate(f=x*(1-x)**8, symbolic=False, d=1, N_e=4)
approximate(f=x*(1-x)**8, symbolic=False, d=2, N_e=2)
approximate(f=x*(1-x)**8, symbolic=False, d=1, N_e=8)
approximate(f=x*(1-x)**8, symbolic=False, d=2, N_e=4)



Approximate f ∼ x9 by various elements; plot
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Comparison of �nite element and �nite di�erence
approximation

Finite di�erence approximation ui of a function f (x): simply
choose ui = f (xi )

This is the same as u ≈∑i ciϕi + interpolation
(see next slide)

u ≈∑i ciϕi + Galerkin/projection or least squares method:
must derive and solve a linear system

What is really the di�erence in the approximation u?

Interpolation/collocation with �nite elements

Let {xi}i∈Is be the nodes in the mesh. Collocation/interpolation
means

u(xi ) = f (xi ), i ∈ Is ,
which translates to

∑

j∈Is
cjϕj(xi ) = f (xi ),

but ϕj(xi ) = 0 if i 6= j so the sum collapses to one term
ciϕi (xi ) = ci , and we have the result

ci = f (xi )

Same result as the standard �nite di�erence approach, but �nite
elements de�ne u also between the xi points

Galerkin/project and least squares vs
collocation/interpolation or �nite di�erences

Scope: work with P1 elements

Use projection/Galerkin or least squares (equivalent)

Interpret the resulting linear system as �nite di�erence
equations

The P1 �nite element machinery results in a linear system where
equation no i is

h

6
(ui−1 + 4ui + ui+1) = (f , ϕi )

Note:

We have used ui for ci to make notation similar to �nite
di�erences

The �nite di�erence counterpart is just ui = fi

Expressing the left-hand side in �nite di�erence operator
notation

Rewrite the left-hand side of �nite element equation no i :

h(ui +
1

6
(ui−1 − 2ui + ui+1)) = [h(u +

h2

6
DxDxu)]i

This is the standard �nite di�erence approximation of

h(u +
h2

6
u′′)

Treating the right-hand side; Trapezoidal rule

(f , ϕi ) =

∫ xi

xi−1

f (x)
1

h
(x − xi−1)dx +

∫ xi+1

xi

f (x)
1

h
(1− (x − xi ))dx

Cannot do much unless we specialize f or use numerical integration.

Trapezoidal rule using the nodes:

(f , ϕi ) =

∫

Ω
f ϕidx ≈ h

1

2
(f (x0)ϕi (x0)+f (xN)ϕi (xN))+h

N−1∑

j=1

f (xj)ϕi (xj)

ϕi (xj) = δij , so this formula collapses to one term:

(f , ϕi ) ≈ hf (xi ), i = 1, . . . ,N − 1 .

Same result as in collocation (interpolation) and the �nite
di�erence method!



Treating the right-hand side; Simpson's rule

∫

Ω
g(x)dx ≈ h

6


g(x0) + 2

N−1∑

j=1

g(xj) + 4
N−1∑

j=0

g(xj+ 1

2

) + f (x2N)


 ,

Our case: g = f ϕi . The sums collapse because ϕi = 0 at most of
the points.

(f , ϕi ) ≈
h

3
(fi− 1

2

+ fi + fi+ 1

2

)

Conclusions:

While the �nite di�erence method just samples f at xi , the
�nite element method applies an average (smoothing) of f
around xi
On the left-hand side we have a term ∼ hu′′, and u′′ also
contribute to smoothing

There is some inherent smoothing in the �nite element method

Finite element approximation vs �nite di�erences
With Trapezoidal integration of (f , ϕi ), the �nite element method
essentially solve

u +
h2

6
u′′ = f , u′(0) = u′(L) = 0,

by the �nite di�erence method

[u +
h2

6
DxDxu = f ]i

With Simpson integration of (f , ϕi ) we essentially solve

[u +
h2

6
DxDxu = f̄ ]i ,

where

f̄i =
1

3
(fi−1/2 + fi + fi+1/2)

Note: as h→ 0, hu′′ → 0 and f̄i → fi .

Making �nite elements behave as �nite di�erences

Can we adjust the �nite element method so that we do not get
the extra hu′′ smoothing term and averaging of f ?

This allows �nite elements to inherit (desired) properties of
�nite di�erences

Result:

Compute all integrals by the Trapezoidal method and P1
elements

Speci�cally, the coe�cient matrix becomes diagonal
(�lumped�) - no linear system (!)

Loss of accuracy? The Trapezoidal rule has error O(h2), the
same as the approximation error in P1 elements

Limitations of the nodes and element concepts

So far,

Nodes: points for de�ning ϕi and computing u values

Elements: subdomain (containing a few nodes)

This is a common notion of nodes and elements

One problem:

Our algorithms need nodes at the element boundaries

This is often not desirable, so we need to throw the nodes and
elements arrays away and �nd a more generalized element
concept

The generalized element concept has cells, vertices, nodes,
and degrees of freedom

We introduce cell for the subdomain that we up to now called
element

A cell has vertices (interval end points)

Nodes are, almost as before, points where we want to compute
unknown functions

Degrees of freedom is what the cj represent (usually function
values at nodes)

The concept of a �nite element

1 a reference cell in a local reference coordinate system

2 a set of basis functions ϕ̃r de�ned on the cell

3 a set of degrees of freedom (e.g., function values) that
uniquely determine the basis functions such that ϕ̃r = 1 for
degree of freedom number r and ϕ̃r = 0 for all other degrees
of freedom

4 a mapping between local and global degree of freedom
numbers (dof map)

5 a geometric mapping of the reference cell onto to cell in the
physical domain: [−1, 1] ⇒ [xL, xR ]



Basic data structures: vertices, cells, dof_map

Cell vertex coordinates: vertices (equals nodes for P1
elements)

Element vertices: cells[e][r] holds global vertex number of
local vertex no r in element e (same as elements for P1
elements)

dof_map[e,r] maps local dof r in element e to global dof
number (same as elements for Pd elements)

The assembly process now applies dof_map:

A[dof_map[e][r], dof_map[e][s]] += A_e[r,s]
b[dof_map[e][r]] += b_e[r]

Example: data structures for P2 elements

43210
x

Ω(0) Ω(1)

vertices = [0, 0.4, 1]
cells = [[0, 1], [1, 2]]
dof_map = [[0, 1, 2], [2, 3, 4]]

Example: P0 elements

Example: Same mesh, but u is piecewise constant in each cell (P0
element). Same vertices and cells, but

dof_map = [[0], [1]]

May think of one node in the middle of each element.

Note:

We will hereafter work with cells, vertices, and dof_map.

A program with the fundamental algorithmic steps

# Use modified fe_approx1D module
from fe_approx1D_numint import *

x = sym.Symbol('x')
f = x*(1 - x)

N_e = 10
# Create mesh with P3 (cubic) elements
vertices, cells, dof_map = mesh_uniform(N_e, d=3, Omega=[0,1])

# Create basis functions on the mesh
phi = [basis(len(dof_map[e])-1) for e in range(N_e)]

# Create linear system and solve it
A, b = assemble(vertices, cells, dof_map, phi, f)
c = np.linalg.solve(A, b)

# Make very fine mesh and sample u(x) on this mesh for plotting
x_u, u = u_glob(c, vertices, cells, dof_map,

resolution_per_element=51)
plot(x_u, u)

Approximating a parabola by P0 elements
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The approximate function automates the steps in the previous
slide:

from fe_approx1D_numint import *
x=sym.Symbol("x")
for N_e in 4, 8:

approximate(x*(1-x), d=0, N_e=N_e, Omega=[0,1])

Computing the error of the approximation; principles

L2 error: ||e||L2 =

(∫

Ω
e2dx

)1/2

Accurate approximation of the integral:

Sample u(x) at many points in each element (call u_glob,
returns x and u)

Use the Trapezoidal rule based on the samples

It is important to integrate u accurately over the elements

(In a �nite di�erence method we would just sample the mesh
point values)



Computing the error of the approximation; details

Note

We need a version of the Trapezoidal rule valid for non-uniformly
spaced points:

∫

Ω
g(x)dx ≈

n−1∑

j=0

1

2
(g(xj) + g(xj+1))(xj+1 − xj)

# Given c, compute x and u values on a very fine mesh
x, u = u_glob(c, vertices, cells, dof_map,

resolution_per_element=101)
# Compute the error on the very fine mesh
e = f(x) - u
e2 = e**2
# Vectorized Trapezoidal rule
E = np.sqrt(0.5*np.sum((e2[:-1] + e2[1:])*(x[1:] - x[:-1]))

How does the error depend on h and d?

Theory and experiments show that the least squares or
projection/Galerkin method in combination with Pd elements of
equal length h has an error

||e||L2 = Chd+1

where C depends on f , but not on h or d .

Cubic Hermite polynomials; de�nition

Can we construct ϕi (x) with continuous derivatives? Yes!

Consider a reference cell [−1, 1]. We introduce two nodes, X = −1
and X = 1. The degrees of freedom are

0: value of function at X = −1
1: value of �rst derivative at X = −1
2: value of function at X = 1

3: value of �rst derivative at X = 1

Derivatives as unknowns ensure the same ϕ′i (x) value at nodes and
thereby continuous derivatives.

Cubic Hermite polynomials; derivation

4 constraints on ϕ̃r (1 for dof r , 0 for all others):

ϕ̃0(X(0)) = 1, ϕ̃0(X(1)) = 0, ϕ̃′0(X(0)) = 0, ϕ̃′0(X(1)) = 0

ϕ̃′1(X(0)) = 1, ϕ̃′1(X(1)) = 0, ϕ̃1(X(0)) = 0, ϕ̃1(X(1)) = 0

ϕ̃2(X(1)) = 1, ϕ̃2(X(0)) = 0, ϕ̃′2(X(0)) = 0, ϕ̃′2(X(1)) = 0

ϕ̃′3(X(1)) = 1, ϕ̃′3(X(0)) = 0, ϕ̃3(X(0)) = 0, ϕ̃3(X(1)) = 0

This gives 4 linear, coupled equations for each ϕ̃r to determine the
4 coe�cients in the cubic polynomial

Cubic Hermite polynomials; result

ϕ̃0(X ) = 1− 3

4
(X + 1)2 +

1

4
(X + 1)3 (19)

ϕ̃1(X ) = −(X + 1)(1− 1

2
(X + 1))2 (20)

ϕ̃2(X ) =
3

4
(X + 1)2 − 1

2
(X + 1)3 (21)

ϕ̃3(X ) = −1
2

(X + 1)(
1

2
(X + 1)2 − (X + 1)) (22)

(23)

Numerical integration

∫
Ω f ϕidx must in general be computed by numerical
integration

Numerical integration is often used for the matrix too



Common form of a numerical integration rule

∫ 1

−1
g(X )dX ≈

M∑

j=0

wjg(X̄j),

where

X̄j are integration points

wj are integration weights

Di�erent rules correspond to di�erent choices of points and weights

The Midpoint rule

Simplest possibility: the Midpoint rule,

∫ 1

−1
g(X )dX ≈ 2g(0), X̄0 = 0, w0 = 2,

Exact for linear integrands

Newton-Cotes rules apply the nodes

Idea: use a �xed, uniformly distributed set of points in [−1, 1]
The points often coincides with nodes
Very useful for making ϕiϕj = 0 and get diagonal (�mass�)
matrices (�lumping�)

The Trapezoidal rule:

∫ 1

−1
g(X )dX ≈ g(−1) + g(1), X̄0 = −1, X̄1 = 1, w0 = w1 = 1,

Simpson's rule:

∫ 1

−1
g(X )dX ≈ 1

3
(g(−1) + 4g(0) + g(1)) ,

where

X̄0 = −1, X̄1 = 0, X̄2 = 1, w0 = w2 =
1

3
, w1 =

4

3

Gauss-Legendre rules apply optimized points

Optimize the location of points to get higher accuracy

Gauss-Legendre rules (quadrature) adjust points and weights
to integrate polynomials exactly

M = 1 : X̄0 = − 1√
3
, X̄1 =

1√
3
, w0 = w1 = 1 (24)

M = 2 : X̄0 = −
√

3

5
, X̄0 = 0, X̄2 =

√
3

5
, w0 = w2 =

5

9
, w1 =

8

9
(25)

M = 1: integrates 3rd degree polynomials exactly

M = 2: integrates 5th degree polynomials exactly

In general, M-point rule integrates a polynomial of degree
2M + 1 exactly.

See numint.py for a large collection of Gauss-Legendre rules.

Approximation of functions in 2D

Extensibility of 1D ideas.

All the concepts and algorithms developed for approximation of 1D
functions f (x) can readily be extended to 2D functions f (x , y) and
3D functions f (x , y , z). Key formulas stay the same.

Quick overview of the 2D case

Inner product in 2D:

(f , g) =

∫

Ω
f (x , y)g(x , y)dxdy

Least squares and project/Galerkin lead to a linear system

∑

j∈Is
Ai ,jcj = bi , i ∈ Is

Ai ,j = (ψi , ψj)

bi = (f , ψi )

Challenge: How to construct 2D basis functions ψi (x , y)?



2D basis functions as tensor products of 1D functions

Use a 1D basis for x variation and a similar for y variation:

Vx = span{ψ̂0(x), . . . , ψ̂Nx
(x)} (26)

Vy = span{ψ̂0(y), . . . , ψ̂Ny
(y)} (27)

The 2D vector space can be de�ned as a tensor product

V = Vx ⊗ Vy with basis functions

ψp,q(x , y) = ψ̂p(x)ψ̂q(y) p ∈ Ix , q ∈ Iy .

Tensor products

Given two vectors a = (a0, . . . , aM) and b = (b0, . . . , bN) their
outer tensor product, also called the dyadic product, is p = a ⊗ b,
de�ned through

pi ,j = aibj , i = 0, . . . ,M, j = 0, . . . ,N .

Note: p has two indices (as a matrix or two-dimensional array)

Example: 2D basis as tensor product of 1D spaces,

ψp,q(x , y) = ψ̂p(x)ψ̂q(y), p ∈ Ix , q ∈ Iy

Double or single index?

The 2D basis can employ a double index and double sum:

u =
∑

p∈Ix

∑

q∈Iy
cp,qψp,q(x , y)

Or just a single index:

u =
∑

j∈Is
cjψj(x , y)

with an index mapping (p, q)→ i :

ψi (x , y) = ψ̂p(x)ψ̂q(y), i = p(Ny + 1) + q or i = q(Nx + 1) + p

Example on 2D (bilinear) basis functions; formulas

In 1D we use the basis

{1, x}

2D tensor product (all combinations):

ψ0,0 = 1, ψ1,0 = x , ψ0,1 = y , ψ1,1 = xy

or with a single index:

ψ0 = 1, ψ1 = x , ψ2 = y , ψ3 = xy

See notes for details of a hand-calculation.

Example on 2D (bilinear) basis functions; plot

Quadratic f (x , y) = (1 + x2)(1 + 2y2) (left), bilinear u (right):
f(x,y)
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Implementation; principal changes to the 1D code

Very small modi�cation of approx1D.py:

Omega = [[0, L_x], [0, L_y]]

Symbolic integration in 2D

Construction of 2D (tensor product) basis functions



Implementation; 2D integration

import sympy as sym

integrand = psi[i]*psi[j]
I = sym.integrate(integrand,

(x, Omega[0][0], Omega[0][1]),
(y, Omega[1][0], Omega[1][1]))

# Fall back on numerical integration if symbolic integration
# was unsuccessful
if isinstance(I, sym.Integral):

integrand = sym.lambdify([x,y], integrand)
I = sym.mpmath.quad(integrand,

[Omega[0][0], Omega[0][1]],
[Omega[1][0], Omega[1][1]])

Implementation; 2D basis functions

Tensor product of 1D �Taylor-style� polynomials x i :

def taylor(x, y, Nx, Ny):
return [x**i*y**j for i in range(Nx+1) for j in range(Ny+1)]

Tensor product of 1D sine functions sin((i + 1)πx):

def sines(x, y, Nx, Ny):
return [sym.sin(sym.pi*(i+1)*x)*sym.sin(sym.pi*(j+1)*y)

for i in range(Nx+1) for j in range(Ny+1)]

Complete code in approx2D.py

Implementation; application

f (x , y) = (1 + x2)(1 + 2y2)

>>> from approx2D import *
>>> f = (1+x**2)*(1+2*y**2)
>>> psi = taylor(x, y, 1, 1)
>>> Omega = [[0, 2], [0, 2]]
>>> u, c = least_squares(f, psi, Omega)
>>> print u
8*x*y - 2*x/3 + 4*y/3 - 1/9
>>> print sym.expand(f)
2*x**2*y**2 + x**2 + 2*y**2 + 1

Implementation; trying a perfect expansion

Add higher powers to the basis such that f ∈ V :

>>> psi = taylor(x, y, 2, 2)
>>> u, c = least_squares(f, psi, Omega)
>>> print u
2*x**2*y**2 + x**2 + 2*y**2 + 1
>>> print u-f
0

Expected: u = f when f ∈ V

Generalization to 3D

Key idea:

V = Vx ⊗ Vy ⊗ Vz

Repeated outer tensor product of multiple vectors

a(q) = (a
(q)
0 , . . . , a

(q)
Nq

), q = 0, . . . ,m

p = a(0) ⊗ · · · ⊗ a(m)

pi0,i1,...,im = a
(0)
i1

a
(1)
i1
· · · a(m)

im

ψp,q,r (x , y , z) = ψ̂p(x)ψ̂q(y)ψ̂r (z)

u(x , y , z) =
∑

p∈Ix

∑

q∈Iy

∑

r∈Iz
cp,q,rψp,q,r (x , y , z)

Finite elements in 2D and 3D

The two great advantages of the �nite element method:

Can handle complex-shaped domains in 2D and 3D

Can easily provide higher-order polynomials in the
approximation

Finite elements in 1D: mostly for learning, insight, debugging



Examples on cell types

2D:

triangles

quadrilaterals

3D:

tetrahedra

hexahedra

Rectangular domain with 2D P1 elements
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Deformed geometry with 2D P1 elements
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Rectangular domain with 2D Q1 elements
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Basis functions over triangles in the physical domain

The P1 triangular 2D element: u is linear ax + by + c over each
triangular cell

Basic features of 2D elements

Cells = triangles

Vertices = corners of the cells

Nodes = vertices

Degrees of freedom = function values at the nodes



Linear mapping of reference element onto general triangular
cell

x

local global

2

1

x

1

2
X

X

ϕi : pyramid shape, composed of planes

ϕi (x , y) varies linearly over each cell

ϕi = 1 at vertex (node) i , 0 at all other vertices (nodes)

Element matrices and vectors

As in 1D, the contribution from one cell to the matrix involves
just a few entries, collected in the element matrix and vector

ϕiϕj 6= 0 only if i and j are degrees of freedom
(vertices/nodes) in the same element

The 2D P1 element has a 3× 3 element matrix

Basis functions over triangles in the reference cell

ϕ̃0(X ,Y ) = 1− X − Y (28)

ϕ̃1(X ,Y ) = X (29)

ϕ̃2(X ,Y ) = Y (30)

Higher-degree ϕ̃r introduce more nodes (dof = node values)

2D P1, P2, P3, P4, P5, and P6 elements P1 elements in 1D, 2D, and 3D



P2 elements in 1D, 2D, and 3D

Interval, triangle, tetrahedron: simplex element (plural
quick-form: simplices)

Side of the cell is called face

Thetrahedron has also edges

A�ne mapping of the reference cell; formula

Mapping of local X = (X ,Y ) coordinates in the reference cell to
global, physical x = (x , y) coordinates:

x =
∑

r

ϕ̃
(1)
r (X )xq(e,r) (31)

where

r runs over the local vertex numbers in the cell

x i are the (x , y) coordinates of vertex i

ϕ̃
(1)
r are P1 basis functions

This mapping preserves the straight/planar faces and edges.

A�ne mapping of the reference cell; �gure

x

local global

2

1

x

1

2
X

X

Isoparametric mapping of the reference cell
Idea: Use the basis functions of the element (not only the P1
functions) to map the element

x =
∑

r

ϕ̃r (X )xq(e,r)

Advantage: higher-order polynomial basis functions now map the
reference cell to a curved triangle or tetrahedron.

x

local global

2

1

x

1

2
X

X

Computing integrals

Integrals must be transformed from Ω(e) (physical cell) to Ω̃r

(reference cell):

∫

Ω(e)
ϕi (x)ϕj(x) dx =

∫

Ω̃r

ϕ̃i (X )ϕ̃j(X ) det J dX (32)

∫

Ω(e)
ϕi (x)f (x) dx =

∫

Ω̃r

ϕ̃i (X )f (x(X )) det J dX (33)

where dx = dxdy or dx = dxdydz and det J is the determinant of
the Jacobian of the mapping x(X ).

J =

[ ∂x
∂X

∂x
∂Y

∂y
∂X

∂y
∂Y

]
, det J =

∂x

∂X

∂y

∂Y
− ∂x

∂Y

∂y

∂X

A�ne mapping (31): det J = 2∆, ∆ = cell volume

Remark on going from 1D to 2D/3D

Finite elements in 2D and 3D builds on the same ideas and
concepts as in 1D, but there is simply much more to compute
because the speci�c mathematical formulas in 2D and 3D are more
complicated and the book keeping with dof maps also gets more
complicated. The manual work is tedious, lengthy, and error-prone
so automation by the computer is a must.


