
Approximation of functions

Hans Petter Langtangen1,2

1Center for Biomedical Computing, Simula Research Laboratory
2Department of Informatics, University of Oslo

2016

PRELIMINARY VERSION

Contents
1 Approximation of vectors 5

1.1 Approximation of planar vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 Approximation of general vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Approximation of functions 11
2.1 The least squares method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 The projection (or Galerkin) method . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3 Example: linear approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4 Implementation of the least squares method . . . . . . . . . . . . . . . . . . . . . 13
2.5 Perfect approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.6 Ill-conditioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.7 Fourier series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.8 Orthogonal basis functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.9 Numerical computations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.10 The interpolation (or collocation) method . . . . . . . . . . . . . . . . . . . . . . 22
2.11 The regression method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.12 Lagrange polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3 Finite element basis functions 34
3.1 Elements and nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.2 The basis functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.3 Example on piecewise quadratic finite element functions . . . . . . . . . . . . . . 39
3.4 Example on piecewise linear finite element functions . . . . . . . . . . . . . . . . 40
3.5 Example on piecewise cubic finite element basis functions . . . . . . . . . . . . . 41
3.6 Calculating the linear system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.7 Assembly of elementwise computations . . . . . . . . . . . . . . . . . . . . . . . . 44
3.8 Mapping to a reference element . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.9 Example: Integration over a reference element . . . . . . . . . . . . . . . . . . . . 49

4 Implementation 51
4.1 Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.2 Linear system assembly and solution . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.3 Example on computing symbolic approximations . . . . . . . . . . . . . . . . . . 53
4.4 Using interpolation instead of least squares . . . . . . . . . . . . . . . . . . . . . 54
4.5 Example on computing numerical approximations . . . . . . . . . . . . . . . . . . 54
4.6 The structure of the coefficient matrix . . . . . . . . . . . . . . . . . . . . . . . . 55
4.7 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.8 Sparse matrix storage and solution . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5 Comparison of finite element and finite difference approximations 60
5.1 Finite difference approximation of given functions . . . . . . . . . . . . . . . . . . 60
5.2 Finite difference interpretation of a finite element approximation . . . . . . . . . 60
5.3 Making finite elements behave as finite differences . . . . . . . . . . . . . . . . . 62

6 A generalized element concept 63
6.1 Cells, vertices, and degrees of freedom . . . . . . . . . . . . . . . . . . . . . . . . 63
6.2 Extended finite element concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
6.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
6.4 Computing the error of the approximation . . . . . . . . . . . . . . . . . . . . . . 66
6.5 Example: Cubic Hermite polynomials . . . . . . . . . . . . . . . . . . . . . . . . 67

7 Numerical integration 68
7.1 Newton-Cotes rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
7.2 Gauss-Legendre rules with optimized points . . . . . . . . . . . . . . . . . . . . . 69

8 Approximation of functions in 2D 69
8.1 2D basis functions as tensor products of 1D functions . . . . . . . . . . . . . . . 70
8.2 Example: Polynomial basis in 2D . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
8.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
8.4 Extension to 3D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

9 Finite elements in 2D and 3D 75
9.1 Basis functions over triangles in the physical domain . . . . . . . . . . . . . . . . 75
9.2 Basis functions over triangles in the reference cell . . . . . . . . . . . . . . . . . . 76
9.3 Affine mapping of the reference cell . . . . . . . . . . . . . . . . . . . . . . . . . . 78
9.4 Isoparametric mapping of the reference cell . . . . . . . . . . . . . . . . . . . . . 79
9.5 Computing integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

10 Exercises 83

References 90

Index 91

2



List of Exercises and Problems
Problem 1 Linear algebra refresher p. 83
Problem 2 Approximate a three-dimensional vector in ... p. 83
Problem 3 Approximate a parabola by a sine p. 83
Problem 4 Approximate the exponential function by power ... p. 83
Problem 5 Approximate the sine function by power functions ... p. 84
Problem 6 Approximate a steep function by sines p. 84
Problem 7 Approximate a steep function by sines with ... p. 85
Exercise 8 Fourier series as a least squares approximation ... p. 85
Problem 9 Approximate a steep function by Lagrange polynomials ... p. 86
Problem 10 Approximate a steep function by Lagrange polynomials ... p. 86
Problem 11 Define nodes and elements p. 86
Problem 12 Define vertices, cells, and dof maps p. 86
Problem 13 Construct matrix sparsity patterns p. 86
Problem 14 Perform symbolic finite element computations p. 87
Problem 15 Approximate a steep function by P1 and P2 ... p. 87
Problem 16 Approximate a steep function by P3 and P4 ... p. 87
Exercise 17 Investigate the approximation error in finite ... p. 87
Problem 18 Approximate a step function by finite elements ... p. 88
Exercise 19 2D approximation with orthogonal functions p. 88
Exercise 20 Use the Trapezoidal rule and P1 elements p. 89
Exercise 21 Compare P1 elements and interpolation p. 89
Exercise 22 Implement 3D computations with global basis ... p. 90
Exercise 23 Use Simpson’s rule and P2 elements p. 90

3

The finite element method is a powerful tool for solving partial differential equations. The
method can easily deal with complex geometries and higher-order approximations of the solution.
Below is a two-dimensional domain with a non-trivial geometry.

The idea of the finite element method is to divide the domain into triangles (elements) and
seek a polynomial approximations to the unknown functions on each triangle. The method
glues these piecewise approximations together to find a global solution. Linear and quadratic
polynomials over the triangles are particularly popular, because of their mathematical simplicity,
but higher-degree polynomials are advantageous to create very computationally efficient methods.
The reason for using triangles is that they can easily approximate geometrically complicated
domains, but quadrilateral elements and boxes in 3D are also widely used.

Many successful numerical solution methods for differential equations, including the finite
element method, aim at approximating the unknown function by a sum

u(x) ≈
N∑

i=0
ciψi(x), (1)

where ψi(x) are prescribed functions and c0, . . . , cN are unknown coefficients to be determined.
Solution methods for differential equations utilizing (1) must have a principle for constructing
N + 1 equations to determine c0, . . . , cN . Then there is a machinery regarding the actual
constructions of the equations for c0, . . . , cN , in a particular problem. Finally, there is a solve
phase for computing the solution c0, . . . , cN of the N + 1 equations.

Especially in the finite element method, the machinery for constructing the discrete equations
to be implemented on a computer is quite comprehensive, with many mathematical and imple-
mentational details entering the scene at the same time. From an ease-of-learning perspective it
can therefore be wise to follow an idea of Larson and Bengzon [1] and introduce the computational
machinery for a trivial equation: u = f . Solving this equation with f given and u on the form (1),
means that we seek an approximation u to f . This approximation problem has the advantage of
introducing most of the finite element toolbox, but without involving demanding topics related to

4



differential equations (e.g., integration by parts, boundary conditions, and coordinate mappings).
This is the reason why we shall first become familiar with finite element approximation before
addressing finite element methods for differential equations.

First, we refresh some linear algebra concepts about approximating vectors in vector spaces.
Second, we extend these concepts to approximating functions in function spaces, using the same
principles and the same notation. We present examples on approximating functions by global
basis functions with support throughout the entire domain. That is, the functions are in general
nonzero on the entire domain. Third, we introduce the finite element type of basis functions
with local support, meaning that each function is nonzero except in a small part of the domain.
We explain all details of the computational algorithms involving such functions. Four types
of approximation principles are covered: 1) the least squares method, 2) the L2 projection or
Galerkin method, 3) interpolation or collocation, and 4) the regression method.

1 Approximation of vectors
We shall start with introducing two fundamental methods for determining the coefficients ci in
(1). These methods will be introduce for approximation of vectors. Using vectors in vector spaces
to bring across the ideas is believed to appear more intuitive to the reader than starting directly
with functions in function spaces. The extension from vectors to functions will be trivial as soon
as the fundamental ideas are understood.

The first method of approximation is called the least squares method and consists in finding
ci such that the difference f − u, measured in a certain norm, is minimized. That is, we aim at
finding the best approximation u to f , with the given norm as measure of “distance”. The second
method is not as intuitive: we find u such that the error f − u is orthogonal to the space where u
lies. This is known as projection, or in the context of differential equations, the idea is also well
known as Galerkin’s method. When approximating vectors and functions, the two methods are
equivalent, but this is no longer the case when applying the principles to differential equations.

1.1 Approximation of planar vectors
Let f = (3, 5) be a vector in the xy plane and suppose we want to approximate this vector by a
vector aligned in the direction of another vector that is restricted to be aligned with some vector
(a, b). Figure 1 depicts the situation. This is the simplest approximation problem for vectors.
Nevertheless, for many readers it will be wise to refresh some basic linear algebra by consulting a
textbook. Exercise 1 suggests specific tasks to regain familiarity with fundamental operations on
inner product vector spaces. Familiarity with such operations are assumed in the forthcoming
text.

We introduce the vector space V spanned by the vector ψ0 = (a, b):

V = span {ψ0} . (2)

We say that ψ0 is a basis vector in the space V . Our aim is to find the vector u = c0ψ0 ∈ V which
best approximates the given vector f = (3, 5). A reasonable criterion for a best approximation
could be to minimize the length of the difference between the approximate u and the given f .
The difference, or error e = f − u, has its length given by the norm

||e|| = (e, e) 1
2 ,

where (e, e) is the inner product of e and itself. The inner product, also called scalar product or
dot product, of two vectors u = (u0, u1) and v = (v0, v1) is defined as

5

 0

 1

 2

 3

 4

 5

 6

 0  1  2  3  4  5  6

(a,b)

(3,5)

c0(a,b)

Figure 1: Approximation of a two-dimensional vector in a one-dimensional vector space.

(u,v) = u0v0 + u1v1 . (3)

Remark. We should point out that we use the notation (·, ·) for two different things: (a, b) for
scalar quantities a and b means the vector starting in the origin and ending in the point (a, b),
while (u,v) with vectors u and v means the inner product of these vectors. Since vectors are
here written in boldface font there should be no confusion. We may add that the norm associated
with this inner product is the usual Euclidean length of a vector.

The least squares method. We now want to find c0 such that it minimizes ||e||. The algebra
is simplified if we minimize the square of the norm, ||e||2 = (e, e), instead of the norm itself.
Define the function

E(c0) = (e, e) = (f − c0ψ0,f − c0ψ0) . (4)

6



We can rewrite the expressions of the right-hand side in a more convenient form for further work:

E(c0) = (f ,f)− 2c0(f ,ψ0) + c20(ψ0,ψ0) . (5)

This rewrite results from using the following fundamental rules for inner product spaces:

(αu,v) = α(u,v), α ∈ R, (6)

(u+ v,w) = (u,w) + (v,w), (7)

(u,v) = (v,u) . (8)

Minimizing E(c0) implies finding c0 such that

∂E

∂c0
= 0 .

It turns out that E has one unique minimum and no maximum point. Now, when differentiating
(5) with respect to c0, note that none of the inner product expressions depend on c0, so we simply
get

∂E

∂c0
= −2(f ,ψ0) + 2c0(ψ0,ψ0) . (9)

Setting the above expression equal to zero and solving for c0 gives

c0 = (f ,ψ0)
(ψ0,ψ0) , (10)

which in the present case, with ψ0 = (a, b), results in

c0 = 3a+ 5b
a2 + b2

. (11)

For later, it is worth mentioning that setting the key equation (9) to zero and ordering the
terms lead to

(f − c0ψ0,ψ0) = 0,

or

(e,ψ0) = 0 . (12)

This implication of minimizing E is an important result that we shall make much use of.

The projection method. We shall now show that minimizing ||e||2 implies that e is orthogonal
to any vector v in the space V . This result is visually quite clear from Figure 1 (think of other
vectors along the line (a, b): all of them will lead to a larger distance between the approximation
and f). The see mathematically that e is orthogonal to any vector v in the space V , we express

7

any v ∈ V as v = sψ0 for any scalar parameter s (recall that two vectors are orthogonal when
their inner product vanishes). Then we calculate the inner product

(e, sψ0) = (f − c0ψ0, sψ0)
= (f , sψ0)− (c0ψ0, sψ0)
= s(f ,ψ0)− sc0(ψ0,ψ0)

= s(f ,ψ0)− s (f ,ψ0)
(ψ0,ψ0) (ψ0,ψ0)

= s ((f ,ψ0)− (f ,ψ0))
= 0 .

Therefore, instead of minimizing the square of the norm, we could demand that e is orthogonal to
any vector in V , which in our present simple case amounts to a single vector only. This method
is known as projection. (The approach can also be referred to as a Galerkin method as explained
at the end of Section 1.2.)

Mathematically, the projection method is stated by the equation

(e,v) = 0, ∀v ∈ V . (13)

An arbitrary v ∈ V can be expressed as sψ0, s ∈ R, and therefore (13) implies

(e, sψ0) = s(e,ψ0) = 0,

which means that the error must be orthogonal to the basis vector in the space V :

(e,ψ0) = 0 or (f − c0ψ0,ψ0) = 0,

which is what we found in (12) from the least squares computations.

1.2 Approximation of general vectors
Let us generalize the vector approximation from the previous section to vectors in spaces with
arbitrary dimension. Given some vector f , we want to find the best approximation to this vector
in the space

V = span {ψ0, . . . ,ψN} .
We assume that the space has dimension N + 1 and that basis vectors ψ0, . . . ,ψN are linearly
independent so that none of them are redundant. Any vector u ∈ V can then be written as a
linear combination of the basis vectors, i.e.,

u =
N∑

j=0
cjψj ,

where cj ∈ R are scalar coefficients to be determined.

8



The least squares method. Now we want to find c0, . . . , cN , such that u is the best approxi-
mation to f in the sense that the distance (error) e = f − u is minimized. Again, we define the
squared distance as a function of the free parameters c0, . . . , cN ,

E(c0, . . . , cN ) = (e, e) = (f −
∑

j

cjψj ,f −
∑

j

cjψj)

= (f ,f)− 2
N∑

j=0
cj(f ,ψj) +

N∑

p=0

N∑

q=0
cpcq(ψp,ψq) . (14)

Minimizing this E with respect to the independent variables c0, . . . , cN is obtained by requiring

∂E

∂ci
= 0, i = 0, . . . , N .

The first term in (14) is independent of ci, so its derivative vanishes. The second term in (14) is
differentiated as follows:

∂

∂ci


2

N∑

j=0
cj(f ,ψj)


 = 2(f ,ψi), (15)

since the expression to be differentiated is a sum and only one term, ci(f ,ψi), contains ci (this
term is linear in ci). To understand this differentiation in detail, write out the sum specifically
for, e.g, N = 3 and i = 1.

The last term in (14) is more tedious to differentiate. It can be wise to write out the double
sum for N = 1 and perform differentiation with respect to c0 and c1 to see the structure of the
expression. Thereafter, one can generalize to an arbitrary N and observe that

∂

∂ci
cpcq =





0, if p 6= i and q 6= i,
cq, if p = i and q 6= i,
cp, if p 6= i and q = i,
2ci, if p = q = i .

(16)

Then

∂

∂ci

N∑

p=0

N∑

q=0
cpcq(ψp,ψq) =

N∑

p=0,p6=i
cp(ψp,ψi) +

N∑

q=0,q 6=i
cq(ψi,ψq) + 2ci(ψi,ψi) .

Since each of the two sums is missing the term ci(ψi,ψi), we may split the very last term in two,
to get exactly that “missing” term for each sum. This idea allows us to write

∂

∂ci

N∑

p=0

N∑

q=0
cpcq(ψp,ψq) = 2

N∑

j=0
ci(ψj ,ψi) . (17)

It then follows that setting

∂E

∂ci
= 0, i = 0, . . . , N,

implies

9

−2(f ,ψi) + 2
N∑

j=0
ci(ψj ,ψi) = 0, i = 0, . . . , N .

Moving the first term to the right-hand side shows that the equation is actually a linear system
for the unknown parameters c0, . . . , cN :

N∑

j=0
Ai,jcj = bi, i = 0, . . . , N, (18)

where

Ai,j = (ψi,ψj), (19)
bi = (ψi,f) . (20)

We have changed the order of the two vectors in the inner product according to (1.1):

Ai,j = (ψj ,ψi) = (ψi,ψj),
simply because the sequence i − j looks more aesthetic.

The Galerkin or projection method. In analogy with the “one-dimensional” example in
Section 1.1, it holds also here in the general case that minimizing the distance (error) e is
equivalent to demanding that e is orthogonal to all v ∈ V :

(e,v) = 0, ∀v ∈ V . (21)

Since any v ∈ V can be written as v =
∑N
i=0 siψi, the statement (21) is equivalent to saying that

(e,
N∑

i=0
siψi) = 0,

for any choice of coefficients s0, . . . , sN . The latter equation can be rewritten as

N∑

i=0
si(e,ψi) = 0 .

If this is to hold for arbitrary values of s0, . . . , sN we must require that each term in the sum
vanishes, which means that

(e,ψi) = 0, i = 0, . . . , N . (22)
These N + 1 equations result in the same linear system as (18):

(f −
N∑

j=0
cjψj ,ψi) = (f ,ψi)−

N∑

j=0
(ψi,ψj)cj = 0,

and hence

N∑

j=0
(ψi,ψj)cj = (f ,ψi), i = 0, . . . , N .

10



So, instead of differentiating the E(c0, . . . , cN ) function, we could simply use (21) as the principle
for determining c0, . . . , cN , resulting in the N + 1 equations (22).

The names least squares method or least squares approximation are natural since the calcu-
lations consists of minimizing ||e||2, and ||e||2 is a sum of squares of differences between the
components in f and u. We find u such that this sum of squares is minimized.

The principle (21), or the equivalent form (22), is known as projection. Almost the same
mathematical idea was used by the Russian mathematician Boris Galerkin1 to solve differential
equations, resulting in what is widely known as Galerkin’s method.

2 Approximation of functions
Let V be a function space spanned by a set of basis functions ψ0, . . . , ψN ,

V = span {ψ0, . . . , ψN},
such that any function u ∈ V can be written as a linear combination of the basis functions:

u =
∑

j∈Is

cjψj . (23)

The index set Is is defined as Is = {0, . . . , N} and is from now on used both for compact notation
and for flexibility in the numbering of elements in sequences.

For now, in this introduction, we shall look at functions of a single variable x: u = u(x),
ψj = ψj(x), j ∈ Is. Later, we will almost trivially extend the mathematical details to functions of
two- or three-dimensional physical spaces. The approximation (23) is typically used to discretize
a problem in space. Other methods, most notably finite differences, are common for time
discretization, although the form (23) can be used in time as well.

2.1 The least squares method
Given a function f(x), how can we determine its best approximation u(x) ∈ V ? A natural starting
point is to apply the same reasoning as we did for vectors in Section 1.2. That is, we minimize the
distance between u and f . However, this requires a norm for measuring distances, and a norm is
most conveniently defined through an inner product. Viewing a function as a vector of infinitely
many point values, one for each value of x, the inner product of two arbitrary functions f(x) and
g(x) could intuitively be defined as the usual summation of pairwise “components” (values), with
summation replaced by integration:

(f, g) =
∫
f(x)g(x) dx .

To fix the integration domain, we let f(x) and ψi(x) be defined for a domain Ω ⊂ R. The inner
product of two functions f(x) and g(x) is then

(f, g) =
∫

Ω
f(x)g(x) dx . (24)

The distance between f and any function u ∈ V is simply f − u, and the squared norm of
this distance is

1http://en.wikipedia.org/wiki/Boris_Galerkin

11

E = (f(x)−
∑

j∈Is

cjψj(x), f(x)−
∑

j∈Is

cjψj(x)) . (25)

Note the analogy with (14): the given function f plays the role of the given vector f , and the
basis function ψi plays the role of the basis vector ψi. We can rewrite (25), through similar steps
as used for the result (14), leading to

E(ci, . . . , cN ) = (f, f)− 2
∑

j∈Is

cj(f, ψi) +
∑

p∈Is

∑

q∈Is

cpcq(ψp, ψq) . (26)

Minimizing this function of N + 1 scalar variables {ci}i∈Is
, requires differentiation with respect

to ci, for all i ∈ Is. The resulting equations are very similar to those we had in the vector case,
and we hence end up with a linear system of the form (18), with basically the same expressions:

Ai,j = (ψi, ψj), (27)
bi = (f, ψi) . (28)

2.2 The projection (or Galerkin) method
As in Section 1.2, the minimization of (e, e) is equivalent to

(e, v) = 0, ∀v ∈ V . (29)

This is known as a projection of a function f onto the subspace V . We may also call it a Galerkin
method for approximating functions. Using the same reasoning as in (21)-(22), it follows that
(29) is equivalent to

(e, ψi) = 0, i ∈ Is . (30)

Inserting e = f − u in this equation and ordering terms, as in the multi-dimensional vector case,
we end up with a linear system with a coefficient matrix (27) and right-hand side vector (28).

Whether we work with vectors in the plane, general vectors, or functions in function spaces,
the least squares principle and the projection or Galerkin method are equivalent.

2.3 Example: linear approximation
Let us apply the theory in the previous section to a simple problem: given a parabola f(x) =
10(x − 1)2 − 1 for x ∈ Ω = [1, 2], find the best approximation u(x) in the space of all linear
functions:

V = span {1, x} .
With our notation, ψ0(x) = 1, ψ1(x) = x, and N = 1. We seek

u = c0ψ0(x) + c1ψ1(x) = c0 + c1x,

where c0 and c1 are found by solving a 2×2 the linear system. The coefficient matrix has elements

12



A0,0 = (ψ0, ψ0) =
∫ 2

1
1 · 1 dx = 1, (31)

A0,1 = (ψ0, ψ1) =
∫ 2

1
1 · x dx = 3/2, (32)

A1,0 = A0,1 = 3/2, (33)

A1,1 = (ψ1, ψ1) =
∫ 2

1
x · x dx = 7/3 . (34)

The corresponding right-hand side is

b1 = (f, ψ0) =
∫ 2

1
(10(x− 1)2 − 1) · 1 dx = 7/3, (35)

b2 = (f, ψ1) =
∫ 2

1
(10(x− 1)2 − 1) · x dx = 13/3 . (36)

Solving the linear system results in

c0 = −38/3, c1 = 10, (37)

and consequently

u(x) = 10x− 38
3 . (38)

Figure 2 displays the parabola and its best approximation in the space of all linear functions.

2.4 Implementation of the least squares method
Symbolic integration. The linear system can be computed either symbolically or numerically
(a numerical integration rule is needed in the latter case). Let us first compute the system and its
solution symbolically, i.e., using classical “pen and paper” mathematics with symbols. The Python
package sympy can greatly help with this type of mathematics, and will therefore be frequently
used in this text. Some basic familiarity with sympy is assumed, typically symbols, integrate,
diff, expand, and simplify. Much can be learned by studying the many applications of sympy
that will be presented.

Below is a function for symbolic computation of the linear system, where f(x) is given as a
sympy expression f involving the symbol x, psi is a list of expressions for {ψi}i∈Is

, and Omega is
a 2-tuple/list holding the limits of the domain Ω:

import sympy as sym

def least_squares(f, psi, Omega):
N = len(psi) - 1
A = sym.zeros((N+1, N+1))
b = sym.zeros((N+1, 1))
x = sym.Symbol(’x’)
for i in range(N+1):

for j in range(i, N+1):
A[i,j] = sym.integrate(psi[i]*psi[j],

(x, Omega[0], Omega[1]))
A[j,i] = A[i,j]

13

1.0 1.2 1.4 1.6 1.8 2.0 2.2
x

4

2

0

2

4

6

8

10

approximation
exact

Figure 2: Best approximation of a parabola by a straight line.

b[i,0] = sym.integrate(psi[i]*f, (x, Omega[0], Omega[1]))
c = A.LUsolve(b)
# Note: c is a sympy Matrix object, solution is in c[:,0]
u = 0
for i in range(len(psi)):

u += c[i,0]*psi[i]
return u, c

Observe that we exploit the symmetry of the coefficient matrix: only the upper triangular part is
computed. Symbolic integration, also in sympy, is often time consuming, and (roughly) halving
the work has noticeable effect on the waiting time for the computations to finish.

Fall back on numerical integration. Obviously, sympy may fail to successfully integrate∫
Ω ψiψj dx, and especially

∫
Ω fψi dx, symbolically. Therefore, we should extend the least_squares

function such that it falls back on numerical integration if the symbolic integration is unsuccessful.
In the latter case, the returned value from sympy’s integrate function is an object of type
Integral. We can test on this type and utilize the mpmath module in sympy to perform numerical
integration of high precision. Even when sympy manages to integrate symbolically, it can take an
undesirable long time. We therefore include an argument symbolic that governs whether or not
to try symbolic integration. Here is a complete and improved version of the previous function
least_squares:

14



def least_squares(f, psi, Omega, symbolic=True):
N = len(psi) - 1
A = sym.zeros((N+1, N+1))
b = sym.zeros((N+1, 1))
x = sym.Symbol(’x’)
for i in range(N+1):

for j in range(i, N+1):
integrand = psi[i]*psi[j]
if symbolic:

I = sym.integrate(integrand, (x, Omega[0], Omega[1]))
if not symbolic or isinstance(I, sym.Integral):

# Could not integrate symbolically,
# fall back on numerical integration
integrand = sym.lambdify([x], integrand)
I = sym.mpmath.quad(integrand, [Omega[0], Omega[1]])

A[i,j] = A[j,i] = I

integrand = psi[i]*f
if symbolic:

I = sym.integrate(integrand, (x, Omega[0], Omega[1]))
if not symbolic or isinstance(I, sym.Integral):

integrand = sym.lambdify([x], integrand)
I = sym.mpmath.quad(integrand, [Omega[0], Omega[1]])

b[i,0] = I
c = A.LUsolve(b) # symbolic solve
# c is a sympy Matrix object, numbers are in c[i,0]
c = [sym.simplify(c[i,0]) for i in range(c.shape[0])]
u = sum(c[i]*psi[i] for i in range(len(psi)))
return u, c

The function is found in the file approx1D.py.

Plotting the approximation. Comparing the given f(x) and the approximate u(x) visually is
done by the following function, which utilizes sympy’s lambdify tool to convert a sympy expression
to a Python function for numerical computations:

def comparison_plot(f, u, Omega, filename=’tmp.pdf’):
x = sym.Symbol(’x’)
f = sym.lambdify([x], f, modules="numpy")
u = sym.lambdify([x], u, modules="numpy")
resolution = 401 # no of points in plot
xcoor = linspace(Omega[0], Omega[1], resolution)
exact = f(xcoor)
approx = u(xcoor)
plot(xcoor, approx)
hold(’on’)
plot(xcoor, exact)
legend([’approximation’, ’exact’])
savefig(filename)

The modules=’numpy’ argument to lambdify is important if there are mathematical functions,
such as sin or exp in the symbolic expressions in f or u, and these mathematical functions are
to be used with vector arguments, like xcoor above.

Both the least_squares and comparison_plot functions are found in the file approx1D.py2.
The comparison_plot function in this file is more advanced and flexible than the simplistic
version shown above. The file ex_approx1D.py applies the approx1D module to accomplish the
forthcoming examples.

2http://tinyurl.com/nm5587k/approx/approx1D.py

15

2.5 Perfect approximation
Let us use the code above to recompute the problem from Section 2.3 where we want to
approximate a parabola. What happens if we add an element x2 to the basis and test what the
best approximation is if V is the space of all parabolic functions? The answer is quickly found by
running

>>> from approx1D import *
>>> x = sym.Symbol(’x’)
>>> f = 10*(x-1)**2-1
>>> u, c = least_squares(f=f, psi=[1, x, x**2], Omega=[1, 2])
>>> print u
10*x**2 - 20*x + 9
>>> print sym.expand(f)
10*x**2 - 20*x + 9

Now, what if we use ψi(x) = xi for i = 0, 1, . . . , N = 40? The output from least_squares
gives ci = 0 for i > 2, which means that the method finds the perfect approximation.

In fact, we have a general result that if f ∈ V , the least squares and projection/Galerkin
methods compute the exact solution u = f . The proof is straightforward: if f ∈ V , f can be
expanded in terms of the basis functions, f =

∑
j∈Is

djψj , for some coefficients {dj}j∈Is
, and

the right-hand side then has entries

bi = (f, ψi) =
∑

j∈Is

dj(ψj , ψi) =
∑

j∈Is

djAi,j .

The linear system
∑
j Ai,jcj = bi, i ∈ Is, is then

∑

j∈Is

cjAi,j =
∑

j∈Is

djAi,j , i ∈ Is,

which implies that ci = di for i ∈ Is.

2.6 Ill-conditioning
The computational example in Section 2.5 applies the least_squares function which invokes
symbolic methods to calculate and solve the linear system. The correct solution c0 = 9, c1 =
−20, c2 = 10, ci = 0 for i ≥ 3 is perfectly recovered.

Suppose we convert the matrix and right-hand side to floating-point arrays and then solve the
system using finite-precision arithmetics, which is what one will (almost) always do in real life.
This time we get astonishing results! Up to about N = 7 we get a solution that is reasonably
close to the exact one. Increasing N shows that seriously wrong coefficients are computed. Below
is a table showing the solution of the linear system arising from approximating a parabola by
functions on the form u(x) = c0 + c1x+ c2x

2 + · · ·+ c10x
10. Analytically, we know that cj = 0

for j > 2, but numerically we may get cj 6= 0 for j > 2.

16



exact sympy numpy32 numpy64
9 9.62 5.57 8.98

-20 -23.39 -7.65 -19.93
10 17.74 -4.50 9.96
0 -9.19 4.13 -0.26
0 5.25 2.99 0.72
0 0.18 -1.21 -0.93
0 -2.48 -0.41 0.73
0 1.81 -0.013 -0.36
0 -0.66 0.08 0.11
0 0.12 0.04 -0.02
0 -0.001 -0.02 0.002

The exact value of cj , j = 0, 1, . . . , 10, appears in the first column while the other columns
correspond to results obtained by three different methods:

• Column 2: The matrix and vector are converted to the data structure sympy.mpmath.fp.matrix
and the sympy.mpmath.fp.lu_solve function is used to solve the system.

• Column 3: The matrix and vector are converted to numpy arrays with data type numpy.float32
(single precision floating-point number) and solved by the numpy.linalg.solve function.

• Column 4: As column 3, but the data type is numpy.float64 (double precision floating-point
number).

We see from the numbers in the table that double precision performs much better than single pre-
cision. Nevertheless, when plotting all these solutions the curves cannot be visually distinguished
(!). This means that the approximations look perfect, despite the partially very wrong values of
the coefficients.

Increasing N to 12 makes the numerical solver in numpy abort with the message: "matrix is
numerically singular". A matrix has to be non-singular to be invertible, which is a requirement
when solving a linear system. Already when the matrix is close to singular, it is ill-conditioned,
which here implies that the numerical solution algorithms are sensitive to round-off errors and
may produce (very) inaccurate results.

The reason why the coefficient matrix is nearly singular and ill-conditioned is that our basis
functions ψi(x) = xi are nearly linearly dependent for large i. That is, xi and xi+1 are very close
for i not very small. This phenomenon is illustrated in Figure 3. There are 15 lines in this figure,
but only half of them are visually distinguishable. Almost linearly dependent basis functions give
rise to an ill-conditioned and almost singular matrix. This fact can be illustrated by computing
the determinant, which is indeed very close to zero (recall that a zero determinant implies a
singular and non-invertible matrix): 10−65 for N = 10 and 10−92 for N = 12. Already for N = 28
the numerical determinant computation returns a plain zero.

On the other hand, the double precision numpy solver does run for N = 100, resulting in
answers that are not significantly worse than those in the table above, and large powers are
associated with small coefficients (e.g., cj < 10−2 for 10 ≤ j ≤ 20 and c < 10−5 for j > 20). Even
for N = 100 the approximation still lies on top of the exact curve in a plot (!).

The conclusion is that visual inspection of the quality of the approximation may not uncover
fundamental numerical problems with the computations. However, numerical analysts have
studied approximations and ill-conditioning for decades, and it is well known that the basis
{1, x, x2, x3, . . . , } is a bad basis. The best basis from a matrix conditioning point of view is
to have orthogonal functions such that (ψi, ψj) = 0 for i 6= j. There are many known sets of

17

1.0 1.2 1.4 1.6 1.8 2.0 2.20

2000

4000

6000

8000

10000

12000

14000

16000

18000

Figure 3: The 15 first basis functions xi, i = 0, . . . , 14.

orthogonal polynomials and other functions. The functions used in the finite element methods
are almost orthogonal, and this property helps to avoid problems with solving matrix systems.
Almost orthogonal is helpful, but not enough when it comes to partial differential equations,
and ill-conditioning of the coefficient matrix is a theme when solving large-scale matrix systems
arising from finite element discretizations.

2.7 Fourier series
A set of sine functions is widely used for approximating functions (the sines are also orthogonal
as explained more in Section 2.6). Let us take

V = span {sin πx, sin 2πx, . . . , sin(N + 1)πx} .
That is,

ψi(x) = sin((i+ 1)πx), i ∈ Is .
An approximation to the parabola f(x) = 10(x− 1)2 − 1 for x ∈ Ω = [1, 2] from Section 2.3 can
then be computed by the least_squares function from Section 2.4:

N = 3
import sympy as sym
x = sym.Symbol(’x’)
psi = [sym.sin(sym.pi*(i+1)*x) for i in range(N+1)]

18



f = 10*(x-1)**2 - 1
Omega = [0, 1]
u, c = least_squares(f, psi, Omega)
comparison_plot(f, u, Omega)

Figure 4 (left) shows the oscillatory approximation of
∑N
j=0 cj sin((j + 1)πx) when N = 3.

Changing N to 11 improves the approximation considerably, see Figure 4 (right).

0.0 0.2 0.4 0.6 0.8 1.0
x

2

0

2

4

6

8

10

approximation
exact

0.0 0.2 0.4 0.6 0.8 1.0
x

2

0

2

4

6

8

10

approximation
exact

Figure 4: Best approximation of a parabola by a sum of 3 (left) and 11 (right) sine functions.

There is an error f(0)−u(0) = 9 at x = 0 in Figure 4 regardless of how large N is, because all
ψi(0) = 0 and hence u(0) = 0. We may help the approximation to be correct at x = 0 by seeking

u(x) = f(0) +
∑

j∈Is

cjψj(x) . (39)

However, this adjustment introduces a new problem at x = 1 since we now get an error f(1)−u(1) =
f(1)− 0 = −1 at this point. A more clever adjustment is to replace the f(0) term by a term that
is f(0) at x = 0 and f(1) at x = 1. A simple linear combination f(0)(1− x) + xf(1) does the job:

u(x) = f(0)(1− x) + xf(1) +
∑

j∈Is

cjψj(x) . (40)

This adjustment of u alters the linear system slightly. In the general case, we set

u(x) = B(x) +
∑

j∈Is

cjψj(x),

and the linear system becomes
∑

j∈Is

(ψi, ψj)cj = (f −B,ψi), i ∈ Is .

The calculations can still utilize the least_squares or least_squares_orth functions, but solve
for u− b:

f0 = 0; f1 = -1
B = f0*(1-x) + x*f1
u_sum, c = least_squares_orth(f-b, psi, Omega)
u = B + u_sum

Figure 5 shows the result of the technique for ensuring right boundary values. Even 3 sines
can now adjust the f(0)(1− x) + xf(1) term such that u approximates the parabola really well,
at least visually.

19

0.0 0.2 0.4 0.6 0.8 1.0
x

2

0

2

4

6

8

10

approximation
exact

0.0 0.2 0.4 0.6 0.8 1.0
x

2

0

2

4

6

8

10

approximation
exact

Figure 5: Best approximation of a parabola by a sum of 3 (left) and 11 (right) sine functions
with a boundary term.

2.8 Orthogonal basis functions
The choice of sine functions ψi(x) = sin((i + 1)πx) has a great computational advantage: on
Ω = [0, 1] these basis functions are orthogonal, implying that Ai,j = 0 if i 6= j. This result is
realized by trying

integrate(sin(j*pi*x)*sin(k*pi*x), x, 0, 1)

in WolframAlpha3 (avoid i in the integrand as this symbol means the imaginary unit
√
−1).

Asking WolframAlpha also about
∫ 1

0 sin2(jπx) dx, we find that it equals 1/2. With a diagonal
matrix we can easily solve for the coefficients by hand:

ci = 2
∫ 1

0
f(x) sin((i+ 1)πx) dx, i ∈ Is, (41)

which is nothing but the classical formula for the coefficients of the Fourier sine series of f(x)
on [0, 1]. In fact, when V contains the basic functions used in a Fourier series expansion, the
approximation method derived in Section 2 results in the classical Fourier series for f(x) (see
Exercise 8 for details).

With orthogonal basis functions we can make the least_squares function (much) more
efficient since we know that the matrix is diagonal and only the diagonal elements need to be
computed:

def least_squares_orth(f, psi, Omega):
N = len(psi) - 1
A = [0]*(N+1)
b = [0]*(N+1)
x = sym.Symbol(’x’)
for i in range(N+1):

A[i] = sym.integrate(psi[i]**2, (x, Omega[0], Omega[1]))
b[i] = sym.integrate(psi[i]*f, (x, Omega[0], Omega[1]))

c = [b[i]/A[i] for i in range(len(b))]
u = 0
for i in range(len(psi)):

u += c[i]*psi[i]
return u, c

3http://wolframalpha.com

20



As mentioned in Section 2.4, symbolic integration may fail or take very long time. It is
therefore natural to extend the implementation above with a version where we can choose between
symbolic and numerical integration and fall back on the latter if the former fails:

def least_squares_orth(f, psi, Omega, symbolic=True):
N = len(psi) - 1
A = [0]*(N+1) # plain list to hold symbolic expressions
b = [0]*(N+1)
x = sym.Symbol(’x’)
for i in range(N+1):

# Diagonal matrix term
A[i] = sym.integrate(psi[i]**2, (x, Omega[0], Omega[1]))

# Right-hand side term
integrand = psi[i]*f
if symbolic:

I = sym.integrate(integrand, (x, Omega[0], Omega[1]))
if not symbolic or isinstance(I, sym.Integral):

print ’numerical integration of’, integrand
integrand = sym.lambdify([x], integrand)
I = sym.mpmath.quad(integrand, [Omega[0], Omega[1]])

b[i] = I
c = [b[i]/A[i] for i in range(len(b))]
u = 0
u = sum(c[i,0]*psi[i] for i in range(len(psi)))
return u, c

This function is found in the file approx1D.py. Observe that we here assume that
∫

Ω ϕ
2
i dx

can always be symbolically computed, which is not an unreasonable assumption when the basis
functions are orthogonal, but there is no guarantee, so an improved version of the function above
would implement numerical integration also for the A[i,i] term.

2.9 Numerical computations
Sometimes the basis functions ψi and/or the function f have a nature that makes symbolic
integration CPU-time consuming or impossible. Even though we implemented a fall back on
numerical integration of

∫
fϕi dx, considerable time might still be required by sympy just by

attempting to integrate symbolically. Therefore, it will be handy to have function for fast numerical
integration and numerical solution of the linear system. Below is such a method. It requires
Python functions f(x) and psi(x,i) for f(x) and ψi(x) as input. The output is a mesh function
with values u on the mesh with points in the array x. Three numerical integration methods are
offered: scipy.integrate.quad (precision set to 10−8), sympy.mpmath.quad (about machine
precision), and a Trapezoidal rule based on the points in x (unknown accuracy, but increasing
with the number of mesh points in x).

def least_squares_numerical(f, psi, N, x,
integration_method=’scipy’,
orthogonal_basis=False):

import scipy.integrate
A = np.zeros((N+1, N+1))
b = np.zeros(N+1)
Omega = [x[0], x[-1]]
dx = x[1] - x[0]

for i in range(N+1):
j_limit = i+1 if orthogonal_basis else N+1
for j in range(i, j_limit):

print ’(%d,%d)’ % (i, j)
if integration_method == ’scipy’:

A_ij = scipy.integrate.quad(

21

lambda x: psi(x,i)*psi(x,j),
Omega[0], Omega[1], epsabs=1E-9, epsrel=1E-9)[0]

elif integration_method == ’sympy’:
A_ij = sym.mpmath.quad(

lambda x: psi(x,i)*psi(x,j),
[Omega[0], Omega[1]])

else:
values = psi(x,i)*psi(x,j)
A_ij = trapezoidal(values, dx)

A[i,j] = A[j,i] = A_ij

if integration_method == ’scipy’:
b_i = scipy.integrate.quad(

lambda x: f(x)*psi(x,i), Omega[0], Omega[1],
epsabs=1E-9, epsrel=1E-9)[0]

elif integration_method == ’sympy’:
b_i = sym.mpmath.quad(

lambda x: f(x)*psi(x,i), [Omega[0], Omega[1]])
else:

values = f(x)*psi(x,i)
b_i = trapezoidal(values, dx)

b[i] = b_i

c = b/np.diag(A) if orthogonal_basis else np.linalg.solve(A, b)
u = sum(c[i]*psi(x, i) for i in range(N+1))
return u, c

def trapezoidal(values, dx):
"""Integrate values by the Trapezoidal rule (mesh size dx)."""
return dx*(np.sum(values) - 0.5*values[0] - 0.5*values[-1])

Here is an example on calling the function:

from numpy import linspace, tanh, pi

def psi(x, i):
return sin((i+1)*x)

x = linspace(0, 2*pi, 501)
N = 20
u, c = least_squares_numerical(lambda x: tanh(x-pi), psi, N, x,

orthogonal_basis=True)

Remark. The scipy.integrate.quad integrator is usually much faster than sympy.mpmath.quad.

2.10 The interpolation (or collocation) method
The principle of minimizing the distance between u and f is an intuitive way of computing a best
approximation u ∈ V to f . However, there are other approaches as well. One is to demand that
u(xi) = f(xi) at some selected points xi, i ∈ Is:

u(xi) =
∑

j∈Is

cjψj(xi) = f(xi), i ∈ Is . (42)

We recognize that the equation
∑
j cjψj(xi) = f(xi) is actually a linear system with N + 1

unknown coefficients {cj}j∈Is
:

∑

j∈Is

Ai,jcj = bi, i ∈ Is, (43)

with coefficient matrix and right-hand side vector given by

22



Ai,j = ψj(xi), (44)
bi = f(xi) . (45)

This time the coefficient matrix is not symmetric because ψj(xi) 6= ψi(xj) in general. The method
is often referred to as an interpolation method since some point values of f are given (f(xi)) and
we fit a continuous function u that goes through the f(xi) points. In this case the xi points are
called interpolation points. When the same approach is used to approximate differential equations,
one usually applies the name collocation method and xi are known as collocation points.

Given f as a sympy symbolic expression f, {ψi}i∈Is
as a list psi, and a set of points {xi}i∈Is

as a list or array points, the following Python function sets up and solves the matrix system for
the coefficients {ci}i∈Is

:

def interpolation(f, psi, points):
N = len(psi) - 1
A = sym.zeros((N+1, N+1))
b = sym.zeros((N+1, 1))
psi_sym = psi # save symbolic expression
# Turn psi and f into Python functions
x = sym.Symbol(’x’)
psi = [sym.lambdify([x], psi[i]) for i in range(N+1)]
f = sym.lambdify([x], f)
for i in range(N+1):

for j in range(N+1):
A[i,j] = psi[j](points[i])

b[i,0] = f(points[i])
c = A.LUsolve(b)
# c is a sympy Matrix object, turn to list
c = [sym.simplify(c[i,0]) for i in range(c.shape[0])]
u = sym.simplify(sum(c[i,0]*psi_sym[i] for i in range(N+1)))
return u, c

The interpolation function is a part of the approx1D module.
We found it convenient in the above function to turn the expressions f and psi into ordinary

Python functions of x, which can be called with float values in the list points when building
the matrix and the right-hand side. The alternative is to use the subs method to substitute the
x variable in an expression by an element from the points list. The following session illustrates
both approaches in a simple setting:

>>> import sympy as sym
>>> x = sym.Symbol(’x’)
>>> e = x**2 # symbolic expression involving x
>>> p = 0.5 # a value of x
>>> v = e.subs(x, p) # evaluate e for x=p
>>> v
0.250000000000000
>>> type(v)
sympy.core.numbers.Float
>>> e = lambdify([x], e) # make Python function of e
>>> type(e)
>>> function
>>> v = e(p) # evaluate e(x) for x=p
>>> v
0.25
>>> type(v)
float

A nice feature of the interpolation or collocation method is that it avoids computing integrals.
However, one has to decide on the location of the xi points. A simple, yet common choice, is to
distribute them uniformly throughout Ω.

23

Example. Let us illustrate the interpolation method by approximating our parabola f(x) =
10(x− 1)2 − 1 by a linear function on Ω = [1, 2], using two collocation points x0 = 1 + 1/3 and
x1 = 1 + 2/3:

import sympy as sym
x = sym.Symbol(’x’)
f = 10*(x-1)**2 - 1
psi = [1, x]
Omega = [1, 2]
points = [1 + sym.Rational(1,3), 1 + sym.Rational(2,3)]
u, c = interpolation(f, psi, points)
comparison_plot(f, u, Omega)

The resulting linear system becomes
(

1 4/3
1 5/3

)(
c0
c1

)
=
(

1/9
31/9

)

with solution c0 = −119/9 and c1 = 10. Figure 6 (left) shows the resulting approximation
u = −119/9 + 10x. We can easily test other interpolation points, say x0 = 1 and x1 = 2. This
changes the line quite significantly, see Figure 6 (right).

1.0 1.2 1.4 1.6 1.8 2.0 2.2
x

4

2

0

2

4

6

8

10

approximation
exact

1.0 1.2 1.4 1.6 1.8 2.0 2.2
x

2

0

2

4

6

8

10

approximation
exact

Figure 6: Approximation of a parabola by linear functions computed by two interpolation points:
4/3 and 5/3 (left) versus 1 and 2 (right).

2.11 The regression method
The interpolation method in the previous section used exactly N + 1 interpolation points. An
alternative is to use m + 1 > N + 1 interpolation points x0, x1, . . . , xm. This is particularly
relevant if f is just known through measured point values and we have many such values. The
resulting method is called regression and is well known from statistics when fitting a simple
(usually polynomial) function to a set of data points.

Overdetermined equation system. Intuitively, we would demand u to equal f at all the
data points xi, i0, 1, . . . ,m,

u(xi) =
∑

j∈Is

cjψj(xi) = f(xi), i = 0, 1, . . . ,m . (46)

24



The fundamental problem here is that we have more equations than unknowns since there are N+1
unknowns and m+ 1 > N + 1 equations. Such a system of equations is called an overdetermined
system. We can write it matrix form as

∑

j∈Is

Ai,jcj = bi, i = 0, 1, . . . ,m, (47)

with coefficient matrix and right-hand side vector given by

Ai,j = ψj(xi), (48)
bi = f(xi) . (49)

Note that the matrix is a rectangular (m+1)×(N+1) matrix since i = 0, . . . ,m and j = 0, . . . , N .

The normal equations derived from a least squares principle. The least squares method
is a common technique for solving overdetermined equations systems. Let us write the overdeter-
mined system

∑
j∈Is

Ai,jcj = bi more compactly in matrix form as Ac = b. Since we have more
equations than unknowns, it is (in general) impossible to find a vector c that fulfills Ac = b. The
best we can do is to make the residual r = b− Ac as small as possible. That is, we can find c
such it minimizes the norm Euclidean norm of r: ||r||. The algebra simplifies significantly by
minimizing ||r||2 instead. This principle corresponds to a least squares method.

The i-th component of r reads ri = bi −
∑
j Ai,jcj , so ||r||2 =

∑
i r

2
i . Minimizing ||r||2 with

respect to the unknowns c0, . . . , cN implies that

∂

∂k
||r||2 = 0, k = 0, . . . , N, (50)

which leads to

∂

∂k

∑

i

r2
i =

∑

i

2ri
∂ri
∂k

=
∑

i

2ri
∂

∂k
(bi −

∑

j

Ai,jcj) = 2
∑

i

ri(−Ai,k) = 0 .

By inserting ri = bi −
∑
j Ai,jcj the last expression we get

∑

i


bi −

∑

j

Ai,jcj


 (−Ai,k) = −

∑

i

biAi,k +
∑

j

(
∑

i

Ai,jAi,k)cj = 0 .

Introducing the transpose of A, AT , we know that ATi,j = Aj,i, to the expression
∑
iAi,jAi,k

can be written as
∑
iA

T k, iAi,j and recognized as the formula for the matrix-matrix product
ATA. Also,

∑
i biAi,k can be written

∑
iA

T
k,ibi and recognized as the matrix-vector product AT b.

These observations imply that (50) is equivalent to the linear system
∑

j

(
∑

i

AT k, iAi,j

︸ ︷︷ ︸
= (ATA)k,jcj =

∑

i

ATk,ibi︸ ︷︷ ︸
= (AT b)k, k = 0, . . . , N, (51)

or in matrix form,

ATA = AT b . (52)

25

The equation system (51) or (52) are known as the normal equations. With A as an (m+1)×(N+1)
matrix, ATA becomes an (N + 1)× (N + 1) matrix, and AT b becomes a vector of length N + 1.
Often, m� N , so ATA has much smaller size than A.

Many prefer to write the linear system (51) on the standard form
∑
j Bi,jcj = di, i = 0, . . . , N .

We can easily do so by exchanging the i and k index (i↔ k),
∑
iA

T k, iAi,j =
∑
k A

T i, kAk,j , and
setting Bi,j =

∑
k A

T i, kAk,j . Similarly, we exchange i and k in the right-hand side expression
and get

∑
k A

T
i,kbk = di. Expressing Bi,j and di in terms of the ψi and xi, using (48) and (49),

we end up with the formulas

Bi,j =
∑

k

AT i, kAk,j =
∑

k

Ak, iAk,j =
m∑

k=0
ψi(xkψj(xk, (53)

di =
∑

k

ATi,kbk =
∑

k

Ak,ibk =
m∑

k=0
ψi(xk)f(xk) (54)

Implementation. The following function defines the matrix entries Bi,j according to (53) and
the right-hand side entries di according (54). Thereafter, it solves the linear system

∑
j Bi,jcj = di.

The input data f and psi hold f(x) and xi, i = 0, . . . , N , as symbolic expression, but since m is
thought to be much larger than N , and there are loops from 0 to m, we use numerical computing
to speed up the computations.

def regression(f, psi, points):
N = len(psi) - 1
m = len(points)
# Use numpy arrays and numerical computing
B = np.zeros((N+1, N+1))
d = np.zeros(N+1)
# Wrap psi and f in Python functions rather than expressions
# so that we can evaluate psi at points[i]
x = sym.Symbol(’x’)
psi_sym = psi # save symbolic expression
psi = [sym.lambdify([x], psi[i]) for i in range(N+1)]
f = sym.lambdify([x], f)
for i in range(N+1):

for j in range(N+1):
B[i,j] = 0
for k in range(m+1):

B[i,j] += psi[i](points[k])*psi[j](points[k])
d[i] = 0
for k in range(m+1):

d[i] += psi[i](points[k])*f(points[k])
c = np.linalg.solve(B, d)
u = sum(c[i]*psi_sym[i] for i in range(N+1))
return u, c

Example. We repeat the computational example from Section 2.10, but this time with many
more points. The parabola f(x) = 10(x− 1)2 − 1 is to be approximated by a linear function on
Ω = [1, 2]. We divide Ω into m+ 2 intervals and use the inner m+ 1 points:

import sympy as sym
x = sym.Symbol(’x’)
f = 10*(x-1)**2 - 1
psi = [1, x]
Omega = [1, 2]
m_values = [2-1, 8-1, 64-1]

26



# Create m+3 points and use the inner m+1 points
for m in m_values:

points = np.linspace(Omega[0], Omega[1], m+3)[1:-1]
u, c = regression(f, psi, points)
comparison_plot(

f, u, Omega,
filename=’parabola_by_regression_%d’ % (m+1),
points=points,
points_legend=’%d interpolation points’ % (m+1),
legend_loc=’upper left’)

Figure 7 shows results for m + 1 = 2 (left), m + 1 = 8 (middle), and m + 1 = 64 (right) data
points. The approximating function is not so sensitive to the number of points as long as they
cover a significant part of the domain (2 points are too much in the middle, but 8 points cover
almost the entire domain, and 64 points do not improve the results much):

u(x) = 10x− 13.2, 2 points
u(x) = 10x− 12.7, 8 points
u(x) = 10x− 12.7, 64 points

1.0 1.2 1.4 1.6 1.8 2.0 2.2
x

4

2

0

2

4

6

8

10

approximation
exact
2 interpolation points

1.0 1.2 1.4 1.6 1.8 2.0 2.2
x

4

2

0

2

4

6

8

10

approximation
exact
8 interpolation points

1.0 1.2 1.4 1.6 1.8 2.0 2.2
x

4

2

0

2

4

6

8

10

approximation
exact
32 interpolation points

Figure 7: Approximation of a parabola by a regression method with varying number of points.

To explicitly make the link to classical regression in statistics, we consider f = 10(x−1)2−1+ε,
where ε is a random, normally distributed variable. The goal in classical regression is to find the
straight line that best fits the data points (in a least squares sense). The only difference from the
previous setup, is that the f(xi) values are based on a function formula, here 10(x− 1)2 − 1, plus
normally distributed noise. Figure 8 shows three sets of data points, along with the original f(x)
function without noise, and the straight line that is a least squares approximation to the data
points.

1.0 1.2 1.4 1.6 1.8 2.0 2.2
x

4

2

0

2

4

6

8

10

approximation
exact
4 data points

1.0 1.2 1.4 1.6 1.8 2.0 2.2
x

6

4

2

0

2

4

6

8

10

approximation
exact
8 data points

1.0 1.2 1.4 1.6 1.8 2.0 2.2
x

4

2

0

2

4

6

8

10

approximation
exact
32 data points

Figure 8: Approximation of a parabola with noise by a straight line.

We can fit a parabola instead of a straight line, as done in Figure 9. When m becomes large,
the fitted parabola and the original parabola without noise become very close.

27

1.0 1.2 1.4 1.6 1.8 2.0 2.2
x

4

2

0

2

4

6

8

10

approximation
exact
4 data points

1.0 1.2 1.4 1.6 1.8 2.0 2.2
x

6

4

2

0

2

4

6

8

10

approximation
exact
8 data points

1.0 1.2 1.4 1.6 1.8 2.0 2.2
x

4

2

0

2

4

6

8

10

approximation
exact
32 data points

Figure 9: Approximation of a parabola with noise by a parabola.

Remark. The regression method is not much used for approximating differential equations or
given function, but is central in uncertainty quantification methods such as polynomial chaos
expansions.

2.12 Lagrange polynomials
In Section 2.7 we explained the advantage with having a diagonal matrix: formulas for the
coefficients {ci}i∈Is

can then be derived by hand. For an interpolation (or collocation) method
a diagonal matrix implies that ψj(xi) = 0 if i 6= j. One set of basis functions ψi(x) with this
property is the Lagrange interpolating polynomials, or just Lagrange polynomials. (Although the
functions are named after Lagrange, they were first discovered by Waring in 1779, rediscovered
by Euler in 1783, and published by Lagrange in 1795.) Lagrange polynomials key building blocks
in the finite element method, so familiarity with these polynomials will be required anyway.

A Lagrange polynomial can be written as

ψi(x) =
N∏

j=0,j 6=i

x− xj
xi − xj

= x− x0
xi − x0

· · · x− xi−1
xi − xi−1

x− xi+1
xi − xi+1

· · · x− xN
xi − xN

, (55)

for i ∈ Is. We see from (55) that all the ψi functions are polynomials of degree N which have the
property

ψi(xs) = δis, δis =
{

1, i = s,
0, i 6= s,

(56)

when xs is an interpolation (collocation) point. Here we have used the Kronecker delta symbol
δis. This property implies that Ai,j = 0 for i 6= j and Ai,j = 1 when i = j. The solution of the
linear system is then simply

ci = f(xi), i ∈ Is, (57)

and

u(x) =
∑

j∈Is

f(xi)ψi(x) . (58)

The following function computes the Lagrange interpolating polynomial ψi(x), given the
interpolation points x0, . . . , xN in the list or array points:

28



def Lagrange_polynomial(x, i, points):
p = 1
for k in range(len(points)):

if k != i:
p *= (x - points[k])/(points[i] - points[k])

return p

The next function computes a complete basis using equidistant points throughout Ω:

def Lagrange_polynomials_01(x, N):
if isinstance(x, sym.Symbol):

h = sym.Rational(1, N-1)
else:

h = 1.0/(N-1)
points = [i*h for i in range(N)]
psi = [Lagrange_polynomial(x, i, points) for i in range(N)]
return psi, points

When x is an sym.Symbol object, we let the spacing between the interpolation points, h, be
a sympy rational number, so that we get nice end results in the formulas for ψi. The other
case, when x is a plain Python float, signifies numerical computing, and then we let h be a
floating-point number. Observe that the Lagrange_polynomial function works equally well in
the symbolic and numerical case - just think of x being an sym.Symbol object or a Python float.
A little interactive session illustrates the difference between symbolic and numerical computing of
the basis functions and points:

>>> import sympy as sym
>>> x = sym.Symbol(’x’)
>>> psi, points = Lagrange_polynomials_01(x, N=3)
>>> points
[0, 1/2, 1]
>>> psi
[(1 - x)*(1 - 2*x), 2*x*(2 - 2*x), -x*(1 - 2*x)]

>>> x = 0.5 # numerical computing
>>> psi, points = Lagrange_polynomials_01(x, N=3)
>>> points
[0.0, 0.5, 1.0]
>>> psi
[-0.0, 1.0, 0.0]

The Lagrange polynomials are very much used in finite element methods because of their property
(56).

Approximation of a polynomial. The Galerkin or least squares method lead to an exact
approximation if f lies in the space spanned by the basis functions. It could be of interest to
see how the interpolation method with Lagrange polynomials as basis is able to approximate a
polynomial, e.g., a parabola. Running

for N in 2, 4, 5, 6, 8, 10, 12:
f = x**2
psi, points = Lagrange_polynomials_01(x, N)
u = interpolation(f, psi, points)

shows the result that up to N=4 we achieve an exact approximation, and then round-off errors
start to grow, such that N=15 leads to a 15-degree polynomial for u where the coefficients in front
of xr for r > 2 are of size 10−5 and smaller.

29

Successful example. Trying out the Lagrange polynomial basis for approximating f(x) =
sin 2πx on Ω = [0, 1] with the least squares and the interpolation techniques can be done by

x = sym.Symbol(’x’)
f = sym.sin(2*sym.pi*x)
psi, points = Lagrange_polynomials_01(x, N)
Omega=[0, 1]
u, c = least_squares(f, psi, Omega)
comparison_plot(f, u, Omega)
u, c = interpolation(f, psi, points)
comparison_plot(f, u, Omega)

Figure 10 shows the results. There is little difference between the least squares and the interpolation
technique. Increasing N gives visually better approximations.

0.0 0.2 0.4 0.6 0.8 1.0
x

1.0

0.5

0.0

0.5

1.0

Least squares approximation by Lagrange polynomials of degree 3

approximation
exact

0.0 0.2 0.4 0.6 0.8 1.0
x

1.0

0.5

0.0

0.5

1.0

Interpolation by Lagrange polynomials of degree 3

approximation
exact

Figure 10: Approximation via least squares (left) and interpolation (right) of a sine function by
Lagrange interpolating polynomials of degree 3.

Less successful example. The next example concerns interpolating f(x) = |1 − 2x| on
Ω = [0, 1] using Lagrange polynomials. Figure 11 shows a peculiar effect: the approximation starts
to oscillate more and more as N grows. This numerical artifact is not surprising when looking at
the individual Lagrange polynomials. Figure 12 shows two such polynomials, ψ2(x) and ψ7(x),
both of degree 11 and computed from uniformly spaced points xxi

= i/11, i = 0, . . . , 11, marked
with circles. We clearly see the property of Lagrange polynomials: ψ2(xi) = 0 and ψ7(xi) = 0 for
all i, except ψ2(x2) = 1 and ψ7(x7) = 1. The most striking feature, however, is the significant
oscillation near the boundary. The reason is easy to understand: since we force the functions to
zero at so many points, a polynomial of high degree is forced to oscillate between the points. The
phenomenon is named Runge’s phenomenon and you can read a more detailed explanation on
Wikipedia4.

Remedy for strong oscillations. The oscillations can be reduced by a more clever choice of
interpolation points, called the Chebyshev nodes:

xi = 1
2(a+ b) + 1

2(b− a) cos
(

2i+ 1
2(N + 1)pi

)
, i = 0 . . . , N, (59)

4http://en.wikipedia.org/wiki/Runge%27s_phenomenon

30



on the interval Ω = [a, b]. Here is a flexible version of the Lagrange_polynomials_01 function
above, valid for any interval Ω = [a, b] and with the possibility to generate both uniformly
distributed points and Chebyshev nodes:

def Lagrange_polynomials(x, N, Omega, point_distribution=’uniform’):
if point_distribution == ’uniform’:

if isinstance(x, sym.Symbol):
h = sym.Rational(Omega[1] - Omega[0], N)

else:
h = (Omega[1] - Omega[0])/float(N)

points = [Omega[0] + i*h for i in range(N+1)]
elif point_distribution == ’Chebyshev’:

points = Chebyshev_nodes(Omega[0], Omega[1], N)
psi = [Lagrange_polynomial(x, i, points) for i in range(N+1)]
return psi, points

def Chebyshev_nodes(a, b, N):
from math import cos, pi
return [0.5*(a+b) + 0.5*(b-a)*cos(float(2*i+1)/(2*N+1))*pi) \

for i in range(N+1)]

All the functions computing Lagrange polynomials listed above are found in the module file
Lagrange.py.

Figure 13 shows the improvement of using Chebyshev nodes, compared with the equidistant
points in Figure 11. The reason for this improvement is that the corresponding Lagrange
polynomials have much smaller oscillations, which can be seen by comparing Figure 14 (Chebyshev
points) with Figure 12 (equidistant points). Note the different scale on the vertical axes in the
two figures.

Another cure for undesired oscillations of higher-degree interpolating polynomials is to use
lower-degree Lagrange polynomials on many small patches of the domain. This is actually the idea
pursued in the finite element method. For instance, linear Lagrange polynomials on [0, 1/2] and
[1/2, 1] would yield a perfect approximation to f(x) = |1− 2x| on Ω = [0, 1] since f is piecewise
linear.

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0
Interpolation by Lagrange polynomials of degree 7

approximation
exact

0.0 0.2 0.4 0.6 0.8 1.0
x

4

3

2

1

0

1

2
Interpolation by Lagrange polynomials of degree 14

approximation
exact

Figure 11: Interpolation of an absolute value function by Lagrange polynomials and uniformly
distributed interpolation points: degree 7 (left) and 14 (right).

How does the least squares or projection methods work with Lagrange polynomials? We can
just call the least_squares function, but sympy has problems integrating the f(x) = |1− 2x|
function times a polynomial, so we need to fall back on numerical integration.

31

0.0 0.2 0.4 0.6 0.8 1.0
10

8

6

4

2

0

2

4

6

ψ2

ψ7

Figure 12: Illustration of the oscillatory behavior of two Lagrange polynomials based on 12
uniformly spaced points (marked by circles).

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

1.2
Interpolation by Lagrange polynomials of degree 7

approximation
exact

0.0 0.2 0.4 0.6 0.8 1.0
x

0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2
Interpolation by Lagrange polynomials of degree 14

approximation
exact

Figure 13: Interpolation of an absolute value function by Lagrange polynomials and Chebyshev
nodes as interpolation points: degree 7 (left) and 14 (right).

def least_squares(f, psi, Omega):
N = len(psi) - 1
A = sym.zeros((N+1, N+1))
b = sym.zeros((N+1, 1))
x = sym.Symbol(’x’)
for i in range(N+1):

for j in range(i, N+1):

32



0.0 0.2 0.4 0.6 0.8 1.0
0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

ψ2

ψ7

Figure 14: Illustration of the less oscillatory behavior of two Lagrange polynomials based on 12
Chebyshev points (marked by circles).

integrand = psi[i]*psi[j]
I = sym.integrate(integrand, (x, Omega[0], Omega[1]))
if isinstance(I, sym.Integral):

# Could not integrate symbolically, fall back
# on numerical integration with mpmath.quad
integrand = sym.lambdify([x], integrand)
I = sym.mpmath.quad(integrand, [Omega[0], Omega[1]])

A[i,j] = A[j,i] = I
integrand = psi[i]*f
I = sym.integrate(integrand, (x, Omega[0], Omega[1]))
if isinstance(I, sym.Integral):

integrand = sym.lambdify([x], integrand)
I = sym.mpmath.quad(integrand, [Omega[0], Omega[1]])

b[i,0] = I
c = A.LUsolve(b)
c = [sym.simplify(c[i,0]) for i in range(c.shape[0])]
u = sum(c[i]*psi[i] for i in range(len(psi)))
return u, c

The idea of avoiding oscillatory solutions by using lower-order Lagrange polynomials on smaller
patches throughout the domain, is important in the finite element method, and the next section
introduces finite element basis functions based on Lagrange polynomials.

33

3 Finite element basis functions
The specific basis functions exemplified in Section 2 are in general nonzero on the entire domain
Ω, as can be seen in Figure 15, where we plot two sinusoidal basis functions ψ0(x) = sin 1

2πx and
ψ1(x) = sin 2πx together with the sum u(x) = 4ψ0(x)− 1

2ψ1(x). We shall now turn our attention
to basis functions that have compact support, meaning that they are nonzero on a small portion
of Ω only. Moreover, we shall restrict the functions to be piecewise polynomials. This means that
the domain is split into subdomains and each basis function is a polynomial on one or more of
these subdomains, see Figure 16 for a sketch involving locally defined hat functions that make
u =

∑
j cjψj piecewise linear. At the boundaries between subdomains, one normally just forces

continuity of u, so that when connecting two polynomials from two subdomains, the derivative
becomes discontinuous. This type of basis functions is fundamental in the finite element method.
(One may wonder why continuity of derivatives is not desired, and it is, but it turns out to be
mathematically challenging in 2D and 3D, and it is not strictly needed.)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

4

2

0

2

4
ψ0

ψ1

u=4ψ0−1
2
ψ1

Figure 15: A function resulting from a weighted sum of two sine basis functions.

We first introduce the concepts of elements and nodes in a simplistic fashion, as often met in
the literature. Later, we shall generalize the concept of an element, which is a necessary step
before treating a wider class of approximations within the family of finite element methods. The
generalization is also compatible with the concepts used in the FEniCS5 finite element software.

5http://fenicsproject.org

34



0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.00

1

2

3

4

5

6

7

8

9

ϕ0 ϕ1 ϕ2

u

Figure 16: A function resulting from a weighted sum of three local piecewise linear (hat) functions.

3.1 Elements and nodes
Let u and f be defined on an interval Ω. We divide Ω into Ne non-overlapping subintervals Ω(e),
e = 0, . . . , Ne − 1:

Ω = Ω(0) ∪ · · · ∪ Ω(Ne) . (60)

We shall for now refer to Ω(e) as an element, identified by the unique number e. On each element
we introduce a set of points called nodes. For now we assume that the nodes are uniformly spaced
throughout the element and that the boundary points of the elements are also nodes. The nodes
are given numbers both within an element and in the global domain. These are referred to as
local and global node numbers, respectively. Local nodes are numbered with an index r = 0, . . . , d,
while the Nn global nodes are numbered as i = 0, . . . , Nn − 1. Figure 17 shows nodes as small
circular disks and element boundaries as small vertical lines. Global node numbers appear under
the nodes, but local node numbers are not shown. Since there are two nodes in each elements,
the local nodes are numbered 0 (left) and 1 (right) in each element.

Nodes and elements uniquely define a finite element mesh, which is our discrete representation
of the domain in the computations. A common special case is that of a uniformly partitioned mesh
where each element has the same length and the distance between nodes is constant. Figure 17
shows an example on a uniformly partitioned mesh. The strength of the finite element method
(in contrast to the finite difference method) is that it is equally easy to work with a non-uniformly
partitioned mesh as a uniformly partitioned one.

35

543210
x

Ω(4)Ω(0) Ω(1) Ω(2) Ω(3)

Figure 17: Finite element mesh with 5 elements and 6 nodes.

Example. On Ω = [0, 1] we may introduce two elements, Ω(0) = [0, 0.4] and Ω(1) = [0.4, 1].
Furthermore, let us introduce three nodes per element, equally spaced within each element.
Figure 18 shows the mesh with Ne = 2 elements and Nn = 2Ne + 1 = 5 nodes. A node’s
coordinate is denoted by xi, where i is either a global node number or a local one. In the latter
case we also need to know the element number to uniquely define the node.

The three nodes in element number 0 are x0 = 0, x1 = 0.2, and x2 = 0.4. The local and global
node numbers are here equal. In element number 1, we have the local nodes x0 = 0.4, x1 = 0.7,
and x2 = 1 and the corresponding global nodes x2 = 0.4, x3 = 0.7, and x4 = 1. Note that the
global node x2 = 0.4 is shared by the two elements.

43210
x

Ω(0) Ω(1)

Figure 18: Finite element mesh with 2 elements and 5 nodes.

For the purpose of implementation, we introduce two lists or arrays: nodes for storing the
coordinates of the nodes, with the global node numbers as indices, and elements for holding
the global node numbers in each element. By defining elements as a list of lists, where each
sublist contains the global node numbers of one particular element, the indices of each sublist
will correspond to local node numbers for that element. The nodes and elements lists for the
sample mesh above take the form

nodes = [0, 0.2, 0.4, 0.7, 1]
elements = [[0, 1, 2], [2, 3, 4]]

Looking up the coordinate of, e.g., local node number 2 in element 1, is done by nodes[elements[1][2]]
(recall that nodes and elements start their numbering at 0). The corresponding global node
number is 4, so we could alternatively look up the coordinate as nodes[4].

The numbering of elements and nodes does not need to be regular. Figure 19 shows and
example corresponding to

36



nodes = [1.5, 5.5, 4.2, 0.3, 2.2, 3.1]
elements = [[2, 1], [4, 5], [0, 4], [3, 0], [5, 2]]

543 2 10

x

Ω(4) Ω(0)Ω(1)Ω(2)Ω(3)

Figure 19: Example on irregular numbering of elements and nodes.

3.2 The basis functions
Construction principles. Finite element basis functions are in this text recognized by the
notation ϕi(x), where the index (now in the beginning) corresponds to a global node number.
Since ϕi is the symbol for basis functions in general in this text, the particular choice of finite
element basis functions means that we take ψi = ϕi.

Let i be the global node number corresponding to local node r in element number e with d+ 1
local nodes. We distinguish between internal nodes in an element and shared nodes. The latter
are nodes that are shared with the neighboring elements. The finite element basis functions ϕi
are now defined as follows.

• For an internal node, with global number i and local number r, take ϕi(x) to be the
Lagrange polynomial that is 1 at the local node r and zero at all other nodes in the element.
The degree of the polynomial is d, according to (55). On all other elements, ϕi = 0.

• For a shared node, let ϕi be made up of the Lagrange polynomial on this element that is 1
at node i, combined with the Lagrange polynomial over the neighboring element that is
also 1 at node i. On all other elements, ϕi = 0.

A visual impression of three such basis functions is given in Figure 20. The domain Ω = [0, 1] is
divided into four equal-sized elements, each having three local nodes. The element boundaries are
marked by vertical dashed lines and the nodes by small circles. The function ϕ2(x) is composed
of a quadratic Lagrange polynomial over element 0 and 1, ϕ3(x) corresponds to an internal node
in element 1 and is therefore nonzero on this element only, while ϕ4(x) is like ϕ2(x) composed to
two Lagrange polynomials over two elements. Also observe that the basis function ϕi is zero at
all nodes, except at global node number i. We also remark that the shape of a basis function
over an element is completely determined by the coordinates of the local nodes in the element.

Properties of ϕi. The construction of basis functions according to the principles above lead
to two important properties of ϕi(x). First,

ϕi(xj) = δij , δij =
{

1, i = j,
0, i 6= j,

(61)

37

0.0 0.2 0.4 0.6 0.8 1.0
0.2

0.0

0.2

0.4

0.6

0.8

1.0 ϕ2

ϕ3

ϕ4

Figure 20: Illustration of the piecewise quadratic basis functions associated with nodes in an
element.

when xj is a node in the mesh with global node number j. The result ϕi(xj) = δij arises because
the Lagrange polynomials are constructed to have exactly this property. The property also implies
a convenient interpretation of ci as the value of u at node i. To show this, we expand u in the
usual way as

∑
j cjψj and choose ψi = ϕi:

u(xi) =
∑

j∈Is

cjψj(xi) =
∑

j∈Is

cjϕj(xi) = ciϕi(xi) = ci .

Because of this interpretation, the coefficient ci is by many named ui or Ui.
Second, ϕi(x) is mostly zero throughout the domain:

• ϕi(x) 6= 0 only on those elements that contain global node i,

• ϕi(x)ϕj(x) 6= 0 if and only if i and j are global node numbers in the same element.

Since Ai,j is the integral of ϕiϕj it means that most of the elements in the coefficient matrix will
be zero. We will come back to these properties and use them actively in computations to save
memory and CPU time.

In our example so far, each element has d+ 1 nodes, resulting in local Lagrange polynomials
of degree d (according to Section 2.12), but it is not a requirement to have the same d value in
each element.

38



3.3 Example on piecewise quadratic finite element functions
Let us set up the nodes and elements lists corresponding to the mesh implied by Figure 20.
Figure 21 sketches the mesh and the numbering. We have

nodes = [0, 0.125, 0.25, 0.375, 0.5, 0.625, 0.75, 0.875, 1.0]
elements = [[0, 1, 2], [2, 3, 4], [4, 5, 6], [6, 7, 8]]

876543210

x

Ω(0) Ω(1) Ω(2) Ω(3)

Figure 21: Sketch of mesh with 4 elements and 3 nodes per element.

Let us explain in mathematically how the basis functions are constructed according to the
principles. Consider element number 1 in Figure 21, Ω(1) = [0.25, 0.5], with local nodes 0, 1, and
2 corresponding to global nodes 2, 3, and 4. The coordinates of these nodes are 0.25, 0.375, and
0.5, respectively. We define three Lagrange polynomials on this element:

1. The polynomial that is 1 at local node 1 (global node 3) makes up the basis function ϕ3(x)
over this element, with ϕ3(x) = 0 outside the element.

2. The polynomial that is 1 at local node 0 (global node 2) is the “right part” of the global
basis function ϕ2(x). The “left part” of ϕ2(x) consists of a Lagrange polynomial associated
with local node 2 in the neighboring element Ω(0) = [0, 0.25].

3. Finally, the polynomial that is 1 at local node 2 (global node 4) is the “left part” of the
global basis function ϕ4(x). The “right part” comes from the Lagrange polynomial that is 1
at local node 0 in the neighboring element Ω(2) = [0.5, 0.75].

The specific mathematical form of the polynomials over element 1 is given by the formula (55):

ϕ3(x) = (x− 0.25)(x− 0.5)
(0.375− 0.25)(0.375− 0.5) , x ∈ Ω(1)

ϕ2(x) = (x− 0.375)(x− 0.5)
(0.25− 0.375)(0.25− 0.5) , x ∈ Ω(1)

ϕ4(x) = (x− 0.25)(x− 0.375)
(0.5− 0.25)(0.5− 0.375) , x ∈ Ω(1)

As mentioned earlier, any global basis function ϕi(x) is zero on elements that do not contain
the node with global node number i.

39

The other global functions associated with internal nodes, ϕ1, ϕ5, and ϕ7, are all of the same
shape as the drawn ϕ3 in Figure 20, while the global basis functions associated with shared nodes
have the same shape as shown ϕ2 and ϕ4. If the elements were of different length, the basis
functions would be stretched according to the element size and hence be different.

3.4 Example on piecewise linear finite element functions
Figure 22 shows piecewise linear basis functions (d = 1). These are mathematically simpler than
the quadratic functions in the previous section, and one would therefore think that it is easier
to understand the linear functions first. However, linear basis functions do not involve internal
nodes and are therefore a special case of the general situation. That is why we think it is better
to understand the construction of quadratic functions first, which easily generalize to any d > 2,
and then look at the special case d = 1.

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0
ϕ1

ϕ2

Figure 22: Illustration of the piecewise linear basis functions associated with nodes in an element.

We have the same four elements on Ω = [0, 1]. Now there are no internal nodes in the elements
so that all basis functions are associated with shared nodes and hence made up of two Lagrange
polynomials, one from each of the two neighboring elements. For example, ϕ1(x) results from the
Lagrange polynomial in element 0 that is 1 at local node 1 and 0 at local node 0, combined with
the Lagrange polynomial in element 1 that is 1 at local node 0 and 0 at local node 1. The other
basis functions are constructed similarly.

Explicit mathematical formulas are needed for ϕi(x) in computations. In the piecewise linear
case, the formula (55) leads to

40



ϕi(x) =





0, x < xi−1,
(x− xi−1)/(xi − xi−1), xi−1 ≤ x < xi,
1− (x− xi)/(xi+1 − xi), xi ≤ x < xi+1,
0, x ≥ xi+1 .

(62)

Here, xj , j = i− 1, i, i+ 1, denotes the coordinate of node j. For elements of equal length h the
formulas can be simplified to

ϕi(x) =





0, x < xi−1,
(x− xi−1)/h, xi−1 ≤ x < xi,
1− (x− xi)/h, xi ≤ x < xi+1,
0, x ≥ xi+1

(63)

3.5 Example on piecewise cubic finite element basis functions
Piecewise cubic basis functions can be defined by introducing four nodes per element. Figure 23
shows examples on ϕi(x), i = 3, 4, 5, 6, associated with element number 1. Note that ϕ4 and ϕ5
are nonzero on element number 1, while ϕ3 and ϕ6 are made up of Lagrange polynomials on two
neighboring elements.

0.0 0.2 0.4 0.6 0.8 1.0
0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

Figure 23: Illustration of the piecewise cubic basis functions associated with nodes in an element.

We see that all the piecewise linear basis functions have the same “hat” shape. They are
naturally referred to as hat functions, also called chapeau functions. The piecewise quadratic

41

functions in Figure 20 are seen to be of two types. “Rounded hats” associated with internal
nodes in the elements and some more “sombrero” shaped hats associated with element boundary
nodes. Higher-order basis functions also have hat-like shapes, but the functions have pronounced
oscillations in addition, as illustrated in Figure 23.

A common terminology is to speak about linear elements as elements with two local nodes
associated with piecewise linear basis functions. Similarly, quadratic elements and cubic elements
refer to piecewise quadratic or cubic functions over elements with three or four local nodes,
respectively. Alternative names, frequently used in the following, are P1 elements for linear
elements, P2 for quadratic elements, and so forth: Pd signifies degree d of the polynomial basis
functions.

3.6 Calculating the linear system
The elements in the coefficient matrix and right-hand side are given by the formulas (27) and
(28), but now the choice of ψi is ϕi. Consider P1 elements where ϕi(x) is piecewise linear. Nodes
and elements numbered consecutively from left to right in a uniformly partitioned mesh imply
the nodes

xi = ih, i = 0, . . . , Nn − 1,

and the elements

Ω(i) = [xi, xi+1] = [ih, (i+ 1)h], i = 0, . . . , Ne − 1 . (64)

We have in this case Ne elements and Nn = Ne + 1 nodes. The parameter N denotes the number
of unknowns in the expansion for u, and with the P1 elements, N = Nn − 1. The domain is
Ω = [x0, xN ]. The formula for ϕi(x) is given by (63) and a graphical illustration is provided in
Figures 22 and 25.

543210

x

Ω(4)Ω(0) Ω(1) Ω(2) Ω(3)

ϕ2 ϕ3

Figure 24: Illustration of the piecewise linear basis functions corresponding to global node 2 and
3.

Calculating specific matrix entries. Let us calculate the specific matrix entry A2,3 =∫
Ω ϕ2ϕ3 dx. Figure 24 shows what ϕ2 and ϕ3 look like. We realize from this figure that the
product ϕ2ϕ3 6= 0 only over element 2, which contains node 2 and 3. The particular formulas for
ϕ2(x) and ϕ3(x) on [x2, x3] are found from (63). The function ϕ3 has positive slope over [x2, x3]
and corresponds to the interval [xi−1, xi] in (63). With i = 3 we get

ϕ3(x) = (x− x2)/h,

42



while ϕ2(x) has negative slope over [x2, x3] and corresponds to setting i = 2 in (63),

ϕ2(x) = 1− (x− x2)/h .

We can now easily integrate,

A2,3 =
∫

Ω
ϕ2ϕ3 dx =

∫ x3

x2

(
1− x− x2

h

)
x− x2
h

dx = h

6 .

The diagonal entry in the coefficient matrix becomes

A2,2 =
∫ x2

x1

(
x− x1
h

)2
dx+

∫ x3

x2

(
1− x− x2

h

)2
dx = 2h

3 .

The entry A2,1 has an integral that is geometrically similar to the situation in Figure 24, so we
get A2,1 = h/6.

Calculating a general row in the matrix. We can now generalize the calculation of matrix
entries to a general row number i. The entry Ai,i−1 =

∫
Ω ϕiϕi−1 dx involves hat functions as

depicted in Figure 25. Since the integral is geometrically identical to the situation with specific
nodes 2 and 3, we realize that Ai,i−1 = Ai,i+1 = h/6 and Ai,i = 2h/3. However, we can compute
the integral directly too:

Ai,i−1 =
∫

Ω
ϕiϕi−1 dx

=
∫ xi−1

xi−2

ϕiϕi−1 dx
︸ ︷︷ ︸

ϕi=0

+
∫ xi

xi−1

ϕiϕi−1 dx+
∫ xi+1

xi

ϕiϕi−1 dx
︸ ︷︷ ︸

ϕi−1=0

=
∫ xi

xi−1

(
x− xi
h

)

︸ ︷︷ ︸
ϕi(x)

(
1− x− xi−1

h

)

︸ ︷︷ ︸
ϕi−1(x)

dx = h

6 .

The particular formulas for ϕi−1(x) and ϕi(x) on [xi−1, xi] are found from (63): ϕi is the linear
function with positive slope, corresponding to the interval [xi−1, xi] in (63), while φi−1 has a
negative slope so the definition in interval [xi, xi+1] in (63) must be used.

i+1ii−1i−2

x

ϕi−1 ϕi

Figure 25: Illustration of two neighboring linear (hat) functions with general node numbers.

The first and last row of the coefficient matrix lead to slightly different integrals:

43

A0,0 =
∫

Ω
ϕ2

0 dx =
∫ x1

x0

(
1− x− x0

h

)2
dx = h

3 .

Similarly, AN,N involves an integral over only one element and hence equals h/3.

i+1ii−1i−2

x

ϕi f(x)

Figure 26: Right-hand side integral with the product of a basis function and the given function
to approximate.

The general formula for bi, see Figure 26, is now easy to set up

bi =
∫

Ω
ϕi(x)f(x) dx =

∫ xi

xi−1

x− xi−1
h

f(x) dx+
∫ xi+1

xi

(
1− x− xi

h

)
f(x) dx . (65)

We need a specific f(x) function to compute these integrals. With f(x) = x(1 − x) and two
equal-sized elements in Ω = [0, 1], one gets

A = h

6




2 1 0
1 4 1
0 1 2


 , b = h2

12




2− h
12− 14h
10− 17h


 .

The solution becomes

c0 = h2

6 , c1 = h− 5
6h

2, c2 = 2h− 23
6 h

2 .

The resulting function

u(x) = c0ϕ0(x) + c1ϕ1(x) + c2ϕ2(x)

is displayed in Figure 27 (left). Doubling the number of elements to four leads to the improved
approximation in the right part of Figure 27.

3.7 Assembly of elementwise computations
Our integral computations so far have been straightforward. However, with higher-degree
polynomials and in higher dimensions (2D and 3D), integrating in the physical domain gets
increasingly complicated. Instead, integrating over one element at a time, and transforming each
element to a common standardized geometry in a new reference coordinate system, is technically
easier. Almost all computer codes employ a finite element algorithm that calculates the linear
system by integrating over one element at a time. We shall therefore explain this algorithm next.
The amount of details might be overwhelming during a first reading, but once all those details are
done right, one has a general finite element algorithm that can be applied to all sorts of elements,
in any space dimension, no matter how geometrically complicated the domain is.

44



0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.05

0.10

0.15

0.20

0.25

0.30

u
f

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.05

0.10

0.15

0.20

0.25

0.30

u
f

Figure 27: Least squares approximation of a parabola using 2 (left) and 4 (right) P1 elements.

The element matrix. We start by splitting the integral over Ω into a sum of contributions
from each element:

Ai,j =
∫

Ω
ϕiϕj dx =

∑

e

A
(e)
i,j , A

(e)
i,j =

∫

Ω(e)
ϕiϕj dx . (66)

Now, A(e)
i,j 6= 0, if and only if, i and j are nodes in element e (look at Figure 25 to realize this

property, but the result also holds for all types of elements). Introduce i = q(e, r) as the mapping
of local node number r in element e to the global node number i. This is just a short mathematical
notation for the expression i=elements[e][r] in a program. Let r and s be the local node
numbers corresponding to the global node numbers i = q(e, r) and j = q(e, s). With d nodes per
element, all the nonzero matrix entries in A(e)

i,j arise from the integrals involving basis functions
with indices corresponding to the global node numbers in element number e:

∫

Ω(e)
ϕq(e,r)ϕq(e,s) dx, r, s = 0, . . . , d .

These contributions can be collected in a (d+ 1)× (d+ 1) matrix known as the element matrix.
Let Id = {0, . . . , d} be the valid indices of r and s. We introduce the notation

Ã(e) = {Ã(e)
r,s}, r, s ∈ Id,

for the element matrix. For P1 elements (d = 1) we have

Ã(e) =
[
Ã

(e)
0,0 Ã

(e)
0,1

Ã
(e)
1,0 Ã

(e)
1,1

]
.

while P2 elements have a 3× 3 element matrix:

Ã(e) =



Ã

(e)
0,0 Ã

(e)
0,1 Ã

(e)
0,2

Ã
(e)
1,0 Ã

(e)
1,1 Ã

(e)
1,2

Ã
(e)
2,0 Ã

(e)
2,1 Ã

(e)
2,2


 .

45

Assembly of element matrices. Given the numbers Ã(e)
r,s , we should, according to (66), add

the contributions to the global coefficient matrix by

Aq(e,r),q(e,s) := Aq(e,r),q(e,s) + Ã(e)
r,s , r, s ∈ Id . (67)

This process of adding in elementwise contributions to the global matrix is called finite element
assembly or simply assembly.

Figure 28 illustrates how element matrices for elements with two nodes are added into the
global matrix. More specifically, the figure shows how the element matrix associated with elements
1 and 2 assembled, assuming that global nodes are numbered from left to right in the domain.
With regularly numbered P3 elements, where the element matrices have size 4× 4, the assembly
of elements 1 and 2 are sketched in Figure 29.

Figure 28: Illustration of matrix assembly: regularly numbered P1 elements.

Assembly of irregularly numbered elements and nodes. After assembly of element
matrices corresponding to regularly numbered elements and nodes are understood, it is wise to
study the assembly process for irregularly numbered elements and nodes. Figure 19 shows a mesh
where the elements array, or q(e, r) mapping in mathematical notation, is given as

elements = [[2, 1], [4, 5], [0, 4], [3, 0], [5, 2]]

The associated assembly of element matrices 1 and 2 is sketched in Figure 30.
We have created animations6 to illustrate the assembly of P1 and P3 elements with regular

numbering as well as P1 elements with irregular numbering. The reader is encouraged to develop
a “geometric” understanding of how element matrix entries are added to the global matrix. This
understanding is crucial for hand computations with the finite element method.

6http://tinyurl.com/opdfafk/pub/mov-approx/fe_assembly.html

46



Figure 29: Illustration of matrix assembly: regularly numbered P3 elements.

Figure 30: Illustration of matrix assembly: irregularly numbered P1 elements.

The element vector. The right-hand side of the linear system is also computed elementwise:

bi =
∫

Ω
f(x)ϕi(x) dx =

∑

e

b
(e)
i , b

(e)
i =

∫

Ω(e)
f(x)ϕi(x) dx . (68)

47

We observe that b(e)i 6= 0 if and only if global node i is a node in element e (look at Figure 26 to
realize this property). With d nodes per element we can collect the d+ 1 nonzero contributions
b
(e)
i , for i = q(e, r), r ∈ Id, in an element vector

b̃(e)r = {b̃(e)r }, r ∈ Id .
These contributions are added to the global right-hand side by an assembly process similar to
that for the element matrices:

bq(e,r) := bq(e,r) + b̃(e)r , r ∈ Id . (69)

3.8 Mapping to a reference element
Instead of computing the integrals

Ã(e)
r,s =

∫

Ω(e)
ϕq(e,r)(x)ϕq(e,s)(x) dx

over some element Ω(e) = [xL, xR] in the physical coordinate system, it turns out that it is
considerably easier and more convenient to map the element domain [xL, xR] to a standardized
reference element domain [−1, 1] and compute all integrals over the same domain [−1, 1]. We
have now introduced xL and xR as the left and right boundary points of an arbitrary element.
With a natural, regular numbering of nodes and elements from left to right through the domain,
we have xL = xe and xR = xe+1 for P1 elements.

The coordinate transformation. Let X ∈ [−1, 1] be the coordinate in the reference element.
A linear mapping, also known as an affine mapping, from X to x can be written

x = 1
2(xL + xR) + 1

2(xR − xL)X . (70)

This relation can alternatively be expressed as

x = xm + 1
2hX, (71)

where we have introduced the element midpoint xm = (xL + xR)/2 and the element length
h = xR − xL.

Formulas for the element matrix and vector entries. Integrating on the reference element
is a matter of just changing the integration variable from x to X. Let

ϕ̃r(X) = ϕq(e,r)(x(X)) (72)
be the basis function associated with local node number r in the reference element. Switching
from x to X as integration variable, using the rules from calculus, results in

Ã(e)
r,s =

∫

Ω(e)
ϕq(e,r)(x)ϕq(e,s)(x) dx =

∫ 1

−1
ϕ̃r(X)ϕ̃s(X) dx

dX dX . (73)

In 2D and 3D, dx is transformed to detJ dX, where J is the Jacobian of the mapping from
x to X. In 1D, detJ dX = dx/dX = h/2.To obtain a uniform notation for 1D, 2D, and 3D
problems we therefore replace dx/ dX by det J already now. The integration over the reference
element is then written as

48



Ã(e)
r,s =

∫ 1

−1
ϕ̃r(X)ϕ̃s(X) detJ dX . (74)

The corresponding formula for the element vector entries becomes

b̃(e)r =
∫

Ω(e)
f(x)ϕq(e,r)(x) dx =

∫ 1

−1
f(x(X))ϕ̃r(X) detJ dX . (75)

Why reference elements?

The great advantage of using reference elements is that the formulas for the basis functions,
ϕ̃r(X), are the same for all elements and independent of the element geometry (length and
location in the mesh). The geometric information is “factored out” in the simple mapping
formula and the associated det J quantity. Also, the integration domain is the same for all
elements. All these features contribute to simplify computer codes and make them more
general.

Formulas for local basis functions. The ϕ̃r(x) functions are simply the Lagrange polynomials
defined through the local nodes in the reference element. For d = 1 and two nodes per element,
we have the linear Lagrange polynomials

ϕ̃0(X) = 1
2(1−X) (76)

ϕ̃1(X) = 1
2(1 +X) (77)

Quadratic polynomials, d = 2, have the formulas

ϕ̃0(X) = 1
2(X − 1)X (78)

ϕ̃1(X) = 1−X2 (79)

ϕ̃2(X) = 1
2(X + 1)X (80)

In general,

ϕ̃r(X) =
d∏

s=0,s 6=r

X −X(s)

X(r) −X(s)
, (81)

where X(0), . . . , X(d) are the coordinates of the local nodes in the reference element. These are
normally uniformly spaced: X(r) = −1 + 2r/d, r ∈ Id.

3.9 Example: Integration over a reference element
To illustrate the concepts from the previous section in a specific example, we now consider
calculation of the element matrix and vector for a specific choice of d and f(x). A simple choice is

49

d = 1 (P1 elements) and f(x) = x(1− x) on Ω = [0, 1]. We have the general expressions (74) and
(75) for Ã(e)

r,s and b̃(e)r . Writing these out for the choices (76) and (77), and using that det J = h/2,
we can do the following calculations of the element matrix entries:

Ã
(e)
0,0 =

∫ 1

−1
ϕ̃0(X)ϕ̃0(X)h2 dX

=
∫ 1

−1

1
2(1−X)1

2(1−X)h2 dX = h

8

∫ 1

−1
(1−X)2 dX = h

3 , (82)

Ã
(e)
1,0 =

∫ 1

−1
ϕ̃1(X)ϕ̃0(X)h2 dX

=
∫ 1

−1

1
2(1 +X)1

2(1−X)h2 dX = h

8

∫ 1

−1
(1−X2) dX = h

6 , (83)

Ã
(e)
0,1 = Ã

(e)
1,0, (84)

Ã
(e)
1,1 =

∫ 1

−1
ϕ̃1(X)ϕ̃1(X)h2 dX

=
∫ 1

−1

1
2(1 +X)1

2(1 +X)h2 dX = h

8

∫ 1

−1
(1 +X)2 dX = h

3 . (85)

The corresponding entries in the element vector becomes

b̃
(e)
0 =

∫ 1

−1
f(x(X))ϕ̃0(X)h2 dX

=
∫ 1

−1
(xm + 1

2hX)(1− (xm + 1
2hX))1

2(1−X)h2 dX

= − 1
24h

3 + 1
6h

2xm −
1
12h

2 − 1
2hx

2
m + 1

2hxm (86)

b̃
(e)
1 =

∫ 1

−1
f(x(X))ϕ̃1(X)h2 dX

=
∫ 1

−1
(xm + 1

2hX)(1− (xm + 1
2hX))1

2(1 +X)h2 dX

= − 1
24h

3 − 1
6h

2xm + 1
12h

2 − 1
2hx

2
m + 1

2hxm . (87)

In the last two expressions we have used the element midpoint xm.
Integration of lower-degree polynomials above is tedious, and higher-degree polynomials involve

much more algebra, but sympy may help. For example, we can easily calculate (82), (83), and
(86) by

>>> import sympy as sym
>>> x, x_m, h, X = sym.symbols(’x x_m h X’)
>>> sym.integrate(h/8*(1-X)**2, (X, -1, 1))
h/3
>>> sym.integrate(h/8*(1+X)*(1-X), (X, -1, 1))
h/6
>>> x = x_m + h/2*X
>>> b_0 = sym.integrate(h/4*x*(1-x)*(1-X), (X, -1, 1))
>>> print b_0
-h**3/24 + h**2*x_m/6 - h**2/12 - h*x_m**2/2 + h*x_m/2

50



4 Implementation
Based on the experience from the previous example, it makes sense to write some code to
automate the analytical integration process for any choice of finite element basis functions. In
addition, we can automate the assembly process and the solution of the linear system. Another
advantage is that the code for these purposes document all details of all steps in the finite element
computational machinery. The complete code can be found in the module file fe_approx1D.py7.

4.1 Integration
First we need a Python function for defining ϕ̃r(X) in terms of a Lagrange polynomial of degree
d:

import sympy as sym
import numpy as np

def basis(d, point_distribution=’uniform’, symbolic=False):
"""
Return all local basis function phi as functions of the
local point X in a 1D element with d+1 nodes.
If symbolic=True, return symbolic expressions, else
return Python functions of X.
point_distribution can be ’uniform’ or ’Chebyshev’.
"""
X = sym.symbols(’X’)
if d == 0:

phi_sym = [1]
else:

if point_distribution == ’uniform’:
if symbolic:

# Compute symbolic nodes
h = sym.Rational(1, d) # node spacing
nodes = [2*i*h - 1 for i in range(d+1)]

else:
nodes = np.linspace(-1, 1, d+1)

elif point_distribution == ’Chebyshev’:
# Just numeric nodes
nodes = Chebyshev_nodes(-1, 1, d)

phi_sym = [Lagrange_polynomial(X, r, nodes)
for r in range(d+1)]

# Transform to Python functions
phi_num = [sym.lambdify([X], phi_sym[r], modules=’numpy’)

for r in range(d+1)]
return phi_sym if symbolic else phi_num

def Lagrange_polynomial(x, i, points):
p = 1
for k in range(len(points)):

if k != i:
p *= (x - points[k])/(points[i] - points[k])

return p

Observe how we construct the phi_sym list to be symbolic expressions for ϕ̃r(X) with X as
a Symbol object from sympy. Also note that the Lagrange_polynomial function (here simply
copied from Section 2.7) works with both symbolic and numeric variables.

Now we can write the function that computes the element matrix with a list of symbolic
expressions for ϕr (phi = basis(d, symbolic=True)):

7http://tinyurl.com/nm5587k/approx/fe_approx1D.py

51

def element_matrix(phi, Omega_e, symbolic=True):
n = len(phi)
A_e = sym.zeros((n, n))
X = sym.Symbol(’X’)
if symbolic:

h = sym.Symbol(’h’)
else:

h = Omega_e[1] - Omega_e[0]
detJ = h/2 # dx/dX
for r in range(n):

for s in range(r, n):
A_e[r,s] = sym.integrate(phi[r]*phi[s]*detJ, (X, -1, 1))
A_e[s,r] = A_e[r,s]

return A_e

In the symbolic case (symbolic is True), we introduce the element length as a symbol h in the
computations. Otherwise, the real numerical value of the element interval Omega_e is used and
the final matrix elements are numbers, not symbols. This functionality can be demonstrated:

>>> from fe_approx1D import *
>>> phi = basis(d=1, symbolic=True)
>>> phi
[-X/2 + 1/2, X/2 + 1/2]
>>> element_matrix(phi, Omega_e=[0.1, 0.2], symbolic=True)
[h/3, h/6]
[h/6, h/3]
>>> element_matrix(phi, Omega_e=[0.1, 0.2], symbolic=False)
[0.0333333333333333, 0.0166666666666667]
[0.0166666666666667, 0.0333333333333333]

The computation of the element vector is done by a similar procedure:

def element_vector(f, phi, Omega_e, symbolic=True):
n = len(phi)
b_e = sym.zeros((n, 1))
# Make f a function of X
X = sym.Symbol(’X’)
if symbolic:

h = sym.Symbol(’h’)
else:

h = Omega_e[1] - Omega_e[0]
x = (Omega_e[0] + Omega_e[1])/2 + h/2*X # mapping
f = f.subs(’x’, x) # substitute mapping formula for x
detJ = h/2 # dx/dX
for r in range(n):

b_e[r] = sym.integrate(f*phi[r]*detJ, (X, -1, 1))
return b_e

Here we need to replace the symbol x in the expression for f by the mapping formula such that f
can be integrated in terms of X, cf. the formula b̃(e)r =

∫ 1
−1 f(x(X))ϕ̃r(X)h2 dX.

The integration in the element matrix function involves only products of polynomials, which
sympy can easily deal with, but for the right-hand side sympy may face difficulties with certain
types of expressions f. The result of the integral is then an Integral object and not a number
or expression as when symbolic integration is successful. It may therefore be wise to introduce a
fall back on numerical integration. The symbolic integration can also spend considerable time
before reaching an unsuccessful conclusion, so we may also introduce a parameter symbolic to
turn symbolic integration on and off:

52



def element_vector(f, phi, Omega_e, symbolic=True):
...
if symbolic:

I = sym.integrate(f*phi[r]*detJ, (X, -1, 1))
if not symbolic or isinstance(I, sym.Integral):

h = Omega_e[1] - Omega_e[0] # Ensure h is numerical
detJ = h/2
integrand = sym.lambdify([X], f*phi[r]*detJ)
I = sym.mpmath.quad(integrand, [-1, 1])

b_e[r] = I
...

Numerical integration requires that the symbolic integrand is converted to a plain Python function
(integrand) and that the element length h is a real number.

4.2 Linear system assembly and solution
The complete algorithm for computing and assembling the elementwise contributions takes the
following form

def assemble(nodes, elements, phi, f, symbolic=True):
N_n, N_e = len(nodes), len(elements)
if symbolic:

A = sym.zeros((N_n, N_n))
b = sym.zeros((N_n, 1)) # note: (N_n, 1) matrix

else:
A = np.zeros((N_n, N_n))
b = np.zeros(N_n)

for e in range(N_e):
Omega_e = [nodes[elements[e][0]], nodes[elements[e][-1]]]

A_e = element_matrix(phi, Omega_e, symbolic)
b_e = element_vector(f, phi, Omega_e, symbolic)

for r in range(len(elements[e])):
for s in range(len(elements[e])):

A[elements[e][r],elements[e][s]] += A_e[r,s]
b[elements[e][r]] += b_e[r]

return A, b

The nodes and elements variables represent the finite element mesh as explained earlier.
Given the coefficient matrix A and the right-hand side b, we can compute the coefficients

{cj}j∈Is
in the expansion u(x) =

∑
j cjϕj as the solution vector c of the linear system:

if symbolic:
c = A.LUsolve(b)

else:
c = np.linalg.solve(A, b)

When A and b are sympy arrays, the solution procedure implied by A.LUsolve is symbolic.
Otherwise, A and b are numpy arrays and a standard numerical solver is called. The symbolic
version is suited for small problems only (small N values) since the calculation time becomes
prohibitively large otherwise. Normally, the symbolic integration will be more time consuming in
small problems than the symbolic solution of the linear system.

4.3 Example on computing symbolic approximations
We can exemplify the use of assemble on the computational case from Section 3.6 with two P1
elements (linear basis functions) on the domain Ω = [0, 1]. Let us first work with a symbolic
element length:

53

>>> h, x = sym.symbols(’h x’)
>>> nodes = [0, h, 2*h]
>>> elements = [[0, 1], [1, 2]]
>>> phi = basis(d=1, symbolic=True)
>>> f = x*(1-x)
>>> A, b = assemble(nodes, elements, phi, f, symbolic=True)
>>> A
[h/3, h/6, 0]
[h/6, 2*h/3, h/6]
[ 0, h/6, h/3]
>>> b
[ h**2/6 - h**3/12]
[ h**2 - 7*h**3/6]
[5*h**2/6 - 17*h**3/12]
>>> c = A.LUsolve(b)
>>> c
[ h**2/6]
[12*(7*h**2/12 - 35*h**3/72)/(7*h)]
[ 7*(4*h**2/7 - 23*h**3/21)/(2*h)]

4.4 Using interpolation instead of least squares
As an alternative to the least squares formulation, we may compute the c vector based on the
interpolation method from Section 2.10, using finite element basis functions. Choosing the nodes
as interpolation points, the method can be written as

u(xi) =
∑

j∈Is

cjϕj(xi) = f(xi), i ∈ Is .

The coefficient matrix Ai,j = ϕj(xi) becomes the identity matrix because basis function number
j vanishes at all nodes, except node i: ϕj(xi) = δij . Therefore, ci = f(xi).

The associated sympy calculations are

>>> fn = sym.lambdify([x], f)
>>> c = [fn(xc) for xc in nodes]
>>> c
[0, h*(1 - h), 2*h*(1 - 2*h)]

These expressions are much simpler than those based on least squares or projection in combination
with finite element basis functions. However, which of the two methods that is most appropriate
for a given task is problem-dependent, so we need both methods in our toolbox.

4.5 Example on computing numerical approximations
The numerical computations corresponding to the symbolic ones in Section 4.3 (still done by
sympy and the assemble function) go as follows:

>>> nodes = [0, 0.5, 1]
>>> elements = [[0, 1], [1, 2]]
>>> phi = basis(d=1, symbolic=True)
>>> x = sym.Symbol(’x’)
>>> f = x*(1-x)
>>> A, b = assemble(nodes, elements, phi, f, symbolic=False)
>>> A
[ 0.166666666666667, 0.0833333333333333, 0]
[0.0833333333333333, 0.333333333333333, 0.0833333333333333]
[ 0, 0.0833333333333333, 0.166666666666667]
>>> b

54



[ 0.03125]
[0.104166666666667]
[ 0.03125]
>>> c = A.LUsolve(b)
>>> c
[0.0416666666666666]
[ 0.291666666666667]
[0.0416666666666666]

The fe_approx1D module contains functions for generating the nodes and elements lists
for equal-sized elements with any number of nodes per element. The coordinates in nodes can
be expressed either through the element length symbol h (symbolic=True) or by real numbers
(symbolic=False):

nodes, elements = mesh_uniform(N_e=10, d=3, Omega=[0,1],
symbolic=True)

There is also a function

def approximate(f, symbolic=False, d=1, N_e=4, filename=’tmp.pdf’):

which computes a mesh with N_e elements, basis functions of degree d, and approximates a
given symbolic expression f by a finite element expansion u(x) =

∑
j cjϕj(x). When symbolic is

False, u(x) =
∑
j cjϕj(x) can be computed at a (large) number of points and plotted together

with f(x). The construction of u points from the solution vector c is done elementwise by
evaluating

∑
r crϕ̃r(X) at a (large) number of points in each element in the local coordinate

system, and the discrete (x, u) values on each element are stored in separate arrays that are
finally concatenated to form a global array for x and for u. The details are found in the u_glob
function in fe_approx1D.py.

4.6 The structure of the coefficient matrix
Let us first see how the global matrix looks like if we assemble symbolic element matrices,
expressed in terms of h, from several elements:

>>> d=1; N_e=8; Omega=[0,1] # 8 linear elements on [0,1]
>>> phi = basis(d)
>>> f = x*(1-x)
>>> nodes, elements = mesh_symbolic(N_e, d, Omega)
>>> A, b = assemble(nodes, elements, phi, f, symbolic=True)
>>> A
[h/3, h/6, 0, 0, 0, 0, 0, 0, 0]
[h/6, 2*h/3, h/6, 0, 0, 0, 0, 0, 0]
[ 0, h/6, 2*h/3, h/6, 0, 0, 0, 0, 0]
[ 0, 0, h/6, 2*h/3, h/6, 0, 0, 0, 0]
[ 0, 0, 0, h/6, 2*h/3, h/6, 0, 0, 0]
[ 0, 0, 0, 0, h/6, 2*h/3, h/6, 0, 0]
[ 0, 0, 0, 0, 0, h/6, 2*h/3, h/6, 0]
[ 0, 0, 0, 0, 0, 0, h/6, 2*h/3, h/6]
[ 0, 0, 0, 0, 0, 0, 0, h/6, h/3]

The reader is encouraged to assemble the element matrices by hand and verify this result, as this
exercise will give a hands-on understanding of what the assembly is about. In general we have a
coefficient matrix that is tridiagonal:

55

A = h

6




2 1 0 · · · · · · · · · · · · · · · 0

1 4 1 . . . ...

0 1 4 1 . . . ...
... . . . . . . . . . 0

...
... . . . . . . . . . . . . . . . ...
... 0 1 4 1 . . . ...
... . . . . . . . . . . . . 0
... . . . 1 4 1
0 · · · · · · · · · · · · · · · 0 1 2




(88)

The structure of the right-hand side is more difficult to reveal since it involves an assembly of
elementwise integrals of f(x(X))ϕ̃r(X)h/2, which obviously depend on the particular choice of
f(x). Numerical integration can give some insight into the nature of the right-hand side. For this
purpose it is easier to look at the integration in x coordinates, which gives the general formula
(65). For equal-sized elements of length h, we can apply the Trapezoidal rule at the global node
points to arrive at

bi = h


1

2ϕi(x0)f(x0) + 1
2ϕi(xN )f(xN ) +

N−1∑

j=1
ϕi(xj)f(xj)


 ,

which leads to

bi =
{ 1

2hf(xi), i = 0 or i = N,
hf(xi), 1 ≤ i ≤ N − 1 (89)

The reason for this simple formula is just that ϕi is either 0 or 1 at the nodes and 0 at all but
one of them.

Going to P2 elements (d=2) leads to the element matrix

A(e) = h

30




4 2 −1
2 16 2
−1 2 4


 (90)

and the following global matrix, assembled here from four elements:

A = h

30




4 2 −1 0 0 0 0 0 0
2 16 2 0 0 0 0 0 0
−1 2 8 2 −1 0 0 0 0
0 0 2 16 2 0 0 0 0
0 0 −1 2 8 2 −1 0 0
0 0 0 0 2 16 2 0 0
0 0 0 0 −1 2 8 2 −1
0 0 0 0 0 0 2 16 2
0 0 0 0 0 0 −1 2 4




(91)

In general, for i odd we have the nonzeroes

56



Ai,i−2 = −1, Ai−1,i = 2, Ai,i = 8, Ai+1,i = 2, Ai+2,i = −1,

multiplied by h/30, and for i even we have the nonzeros

Ai−1,i = 2, Ai,i = 16, Ai+1,i = 2,

multiplied by h/30. The rows with odd numbers correspond to nodes at the element boundaries
and get contributions from two neighboring elements in the assembly process, while the even
numbered rows correspond to internal nodes in the elements where only one element contributes
to the values in the global matrix.

4.7 Applications
With the aid of the approximate function in the fe_approx1D module we can easily investigate
the quality of various finite element approximations to some given functions. Figure 31 shows
how linear and quadratic elements approximate the polynomial f(x) = x(1− x)8 on Ω = [0, 1],
using equal-sized elements. The results arise from the program

import sympy as sym
from fe_approx1D import approximate
x = sym.Symbol(’x’)

approximate(f=x*(1-x)**8, symbolic=False, d=1, N_e=4)
approximate(f=x*(1-x)**8, symbolic=False, d=2, N_e=2)
approximate(f=x*(1-x)**8, symbolic=False, d=1, N_e=8)
approximate(f=x*(1-x)**8, symbolic=False, d=2, N_e=4)

The quadratic functions are seen to be better than the linear ones for the same value of N , as we
increase N . This observation has some generality: higher degree is not necessarily better on a
coarse mesh, but it is as we refine the mesh.

4.8 Sparse matrix storage and solution
Some of the examples in the preceding section took several minutes to compute, even on small
meshes consisting of up to eight elements. The main explanation for slow computations is unsuc-
cessful symbolic integration: sympy may use a lot of energy on integrals like

∫
f(x(X))ϕ̃r(X)h/2 dx

before giving up, and the program then resorts to numerical integration. Codes that can deal
with a large number of basis functions and accept flexible choices of f(x) should compute all
integrals numerically and replace the matrix objects from sympy by the far more efficient array
objects from numpy.

There is also another (potential) reason for slow code: the solution algorithm for the linear
system performs much more work than necessary. Most of the matrix entries Ai,j are zero,
because (ϕi, ϕj) = 0 unless i and j are nodes in the same element. In 1D problems, we do not
need to store or compute with these zeros when solving the linear system, but that requires
solution methods adapted to the kind of matrices produced by the finite element approximations.

A matrix whose majority of entries are zeros, is known as a sparse8 matrix. Utilizing sparsity
in software dramatically decreases the storage demands and the CPU-time needed to compute
the solution of the linear system. This optimization is not very critical in 1D problems where
modern computers can afford computing with all the zeros in the complete square matrix, but in
2D and especially in 3D, sparse matrices are fundamental for feasible finite element computations.

8https://en.wikipedia.org/wiki/Sparse_matrix

57

0.0 0.2 0.4 0.6 0.8 1.0
0.01

0.00

0.01

0.02

0.03

0.04

0.05

u
f

0.0 0.2 0.4 0.6 0.8 1.0
0.01

0.00

0.01

0.02

0.03

0.04

0.05

u
f

0.0 0.2 0.4 0.6 0.8 1.0
0.01

0.00

0.01

0.02

0.03

0.04

0.05

u
f

0.0 0.2 0.4 0.6 0.8 1.0
0.01

0.00

0.01

0.02

0.03

0.04

0.05

u
f

Figure 31: Comparison of the finite element approximations: 4 P1 elements with 5 nodes (upper
left), 2 P2 elements with 5 nodes (upper right), 8 P1 elements with 9 nodes (lower left), and 4 P2
elements with 9 nodes (lower right).

One of the advantageous features of the finite element method is that it produces very sparse
matrices. The reason is that the basis functions have local support such that the product of two
basis functions, as typically met in integrals, is mostly zero.

Using a numbering of nodes and elements from left to right over a 1D domain, the assembled
coefficient matrix has only a few diagonals different from zero. More precisely, 2d+ 1 diagonals
around the main diagonal are different from zero. With a different numbering of global nodes,
say a random ordering, the diagonal structure is lost, but the number of nonzero elements is
unaltered. Figures 32 and 33 exemplify sparsity patterns.

The scipy.sparse library supports creation of sparse matrices and linear system solution.

• scipy.sparse.diags for matrix defined via diagonals

• scipy.sparse.dok_matrix for matrix incrementally defined via index pairs (i, j)

The dok_matrix object is most convenient for finite element computations. This sparse matrix
format is called DOK, which stands for Dictionary Of Keys: the implementation is basically a
dictionary (hash) with the entry indices (i,j) as keys.

Rather than declaring A = np.zeros((N_n, N_n)), a DOK sparse matrix is created by

58



Figure 32: Matrix sparsity pattern for left-to-right numbering (left) and random numbering
(right) of nodes in P1 elements.

Figure 33: Matrix sparsity pattern for left-to-right numbering (left) and random numbering
(right) of nodes in P3 elements.

import scipy.sparse
A = scipy.sparse.dok_matrix((N_n, N_n))

When there is any need to add or set some matrix entry i,j, just do

A[i,j] = entry
# or
A[i,j] += entry

The indexing creates the matrix entry on the fly, and only the nonzero entries in the matrix will
be stored.

To solve a system with right-hand side b (one-dimensional numpy array) with a sparse coefficient
matrix A, we must use some kind of a sparse linear system solver. The safest choice is a method
based on sparse Gaussian elimination:

import scipy.sparse.linalg
c = scipy.sparse.linalg.spsolve(A.tocsr(), b, use_umfpack=True)

The call A.tocsr() is not strictly needed (a warning is issued otherwise), but ensures that the
solution algorithm can efficiently work with a copy of the sparse matrix in Compressed Sparse
Row (CSR) format.

59

An advantage of the scipy.sparse.diags matrix over the DOK format is that the former
allows vectorized assignment to the matrix. Vectorization is possible for approximation problems
when all elements are of the same type. However, when solving differential equations, vectorization
is much more difficult. It also appears that the DOK sparse matrix format available in the
scipy.sparse package is fast enough even for big 1D problems on today’s laptops, so the need
for improving efficiency occurs in 2D and 3D problems, but then the complexity of the mesh
favors the DOK format.

5 Comparison of finite element and finite difference ap-
proximations

The previous sections on approximating f by a finite element function u utilize the projec-
tion/Galerkin or least squares approaches to minimize the approximation error. We may, alterna-
tively, use the collocation/interpolation method as described in Section 4.4. Here we shall compare
these three approaches with what one does in the finite difference method when representing a
given function on a mesh.

5.1 Finite difference approximation of given functions
Approximating a given function f(x) on a mesh in a finite difference context will typically just
sample f at the mesh points. If ui is the value of the approximate u at the mesh point xi, we
have ui = f(xi). The collocation/interpolation method using finite element basis functions gives
exactly the same representation, as shown Section 4.4,

u(xi) = ci = f(xi) .

How does a finite element Galerkin or least squares approximation differ from this straightfor-
ward interpolation of f? This is the question to be addressed next. We now limit the scope to P1
elements since this is the element type that gives formulas closest to those arising in the finite
difference method.

5.2 Finite difference interpretation of a finite element approximation
The linear system arising from a Galerkin or least squares approximation reads in general

∑

j∈Is

cj(ψi, ψj) = (f, ψi), i ∈ Is .

In the finite element approximation we choose ψi = ϕi. With ϕi corresponding to P1 elements
and a uniform mesh of element length h we have in Section 3.6 calculated the matrix with entries
(ϕi, ϕj). Equation number i reads

h

6 (ui−1 + 4ui + ui+1) = (f, ϕi) . (92)

The first and last equation, corresponding to i = 0 and i = N are slightly different, see Section 4.6.
The finite difference counterpart to (92) is just ui = fi as explained in Section 5.1. To easier

compare this result to the finite element approach to approximating functions, we can rewrite the
left-hand side of (92) as

60



h(ui + 1
6(ui−1 − 2ui + ui+1)) . (93)

Thinking in terms of finite differences, we can write this expression using finite difference operator
notation:

[h(u+ h2

6 DxDxu)]i,

which is nothing but the standard discretization of

h(u+ h2

6 u
′′) .

Before interpreting the approximation procedure as solving a differential equation, we need to
work out what the right-hand side is in the context of P1 elements. Since ϕi is the linear function
that is 1 at xi and zero at all other nodes, only the interval [xi−1, xi+1] contribute to the integral
on the right-hand side. This integral is naturally split into two parts according to (63):

(f, ϕi) =
∫ xi

xi−1

f(x) 1
h

(x− xi−1) dx+
∫ xi+1

xi

f(x)(1− 1
h

(x− xi)) dx .

However, if f is not known we cannot do much else with this expression. It is clear that many
values of f around xi contribute to the right-hand side, not just the single point value f(xi) as in
the finite difference method.

To proceed with the right-hand side, we can turn to numerical integration schemes. The
Trapezoidal method for (f, ϕi), based on sampling the integrand fϕi at the node points xi = ih
gives

(f, ϕi) =
∫

Ω
fϕi dx ≈ h1

2(f(x0)ϕi(x0) + f(xN )ϕi(xN )) + h

N−1∑

j=1
f(xj)ϕi(xj) .

Since ϕi is zero at all these points, except at xi, the Trapezoidal rule collapses to one term:

(f, ϕi) ≈ hf(xi), (94)

for i = 1, . . . , N − 1, which is the same result as with collocation/interpolation, and of course
the same result as in the finite difference method. For the end points i = 0 and i = N we get
contribution from only one element so

(f, ϕi) ≈
1
2hf(xi), i = 0, i = N . (95)

Simpson’s rule with sample points also in the middle of the elements, at xi+ 1
2

= (xi + xi+1)/2,
can be written as

∫

Ω
g(x) dx ≈ h̃

3


g(x0) + 2

N−1∑

j=1
g(xj) + 4

N−1∑

j=0
g(xj+ 1

2
) + f(x2N )


 ,

where h̃ = h/2 is the spacing between the sample points. Our integrand is g = fϕi. For all
the node points, ϕi(xj) = δij , and therefore

∑N−1
j=1 f(xj)ϕi(xj) = f(xi). At the midpoints,

ϕi(xi± 1
2
) = 1/2 and ϕi(xj+ 1

2
) = 0 for j > 1 and j < i− 1. Consequently,

61

N−1∑

j=0
f(xj+ 1

2
)ϕi(xj+ 1

2
) = 1

2(fxj− 1
2

+ xj+ 1
2
) .

When 1 ≤ i ≤ N − 1 we then get

(f, ϕi) ≈
h

3 (fi− 1
2

+ fi + fi+ 1
2
) . (96)

This result shows that, with Simpson’s rule, the finite element method operates with the average
of f over three points, while the finite difference method just applies f at one point. We may
interpret this as a "smearing" or smoothing of f by the finite element method.

We can now summarize our findings. With the approximation of (f, ϕi) by the Trapezoidal
rule, P1 elements give rise to equations that can be expressed as a finite difference discretization
of

u+ h2

6 u
′′ = f, u′(0) = u′(L) = 0, (97)

expressed with operator notation as

[u+ h2

6 DxDxu = f ]i . (98)

As h→ 0, the extra term proportional to u′′ goes to zero, and the two methods are then equal.
With the Simpson’s rule, we may say that we solve

[u+ h2

6 DxDxu = f̄ ]i, (99)

where f̄i means the average 1
3 (fi−1/2 + fi + fi+1/2).

The extra term h2

6 u
′′ represents a smoothing effect: with just this term, we would find

u by integrating f twice and thereby smooth f considerably. In addition, the finite element
representation of f involves an average, or a smoothing, of f on the right-hand side of the equation
system. If f is a noisy function, direct interpolation ui = fi may result in a noisy u too, but with
a Galerkin or least squares formulation and P1 elements, we should expect that u is smoother
than f unless h is very small.

The interpretation that finite elements tend to smooth the solution is valid in applications far
beyond approximation of 1D functions.

5.3 Making finite elements behave as finite differences
With a simple trick, using numerical integration, we can easily produce the result ui = fi with
the Galerkin or least square formulation with P1 elements. This is useful in many occasions when
we deal with more difficult differential equations and want the finite element method to have
properties like the finite difference method (solving standard linear wave equations is one primary
example).

Computations in physical space. We have already seen that applying the Trapezoidal rule
to the right-hand side (f, ϕi) simply gives f sampled at xi. Using the Trapezoidal rule on the
matrix entries Ai,j = (ϕi, ϕj) involves a sum

∑

k

ϕi(xk)ϕj(xk),

62



but ϕi(xk) = δik and ϕj(xk) = δjk. The product ϕiϕj is then different from zero only when
sampled at xi and i = j. The Trapezoidal approximation to the integral is then

(ϕi, ϕj) ≈ h, i = j,

and zero if i 6= j. This means that we have obtained a diagonal matrix! The first and last
diagonal elements, (ϕ0, ϕ0) and (ϕN , ϕN ) get contribution only from the first and last element,
respectively, resulting in the approximate integral value h/2. The corresponding right-hand side
also has a factor 1/2 for i = 0 and i = N . Therefore, the least squares or Galerkin approach with
P1 elements and Trapezoidal integration results in

ci = fi, i ∈ Is .
Simpsons’s rule can be used to achieve a similar result for P2 elements, i.e, a diagonal coefficient

matrix, but with the previously derived average of f on the right-hand side.

Elementwise computations. Identical results to those above will arise if we perform element-
wise computations. The idea is to use the Trapezoidal rule on the reference element for computing
the element matrix and vector. When assembled, the same equations ci = f(xi) arise. Exercise 20
encourages you to carry out the details.

Terminology. The matrix with entries (ϕi, ϕj) typically arises from terms proportional to u in
a differential equation where u is the unknown function. This matrix is often called the mass
matrix, because in the early days of the finite element method, the matrix arose from the mass
times acceleration term in Newton’s second law of motion. Making the mass matrix diagonal
by, e.g., numerical integration, as demonstrated above, is a widely used technique and is called
mass lumping. In time-dependent problems it can sometimes enhance the numerical accuracy and
computational efficiency of the finite element method. However, there are also examples where
mass lumping destroys accuracy.

6 A generalized element concept
So far, finite element computing has employed the nodes and element lists together with the
definition of the basis functions in the reference element. Suppose we want to introduce a piecewise
constant approximation with one basis function ϕ̃0(x) = 1 in the reference element, corresponding
to a ϕi(x) function that is 1 on element number i and zero on all other elements. Although we
could associate the function value with a node in the middle of the elements, there are no nodes
at the ends, and the previous code snippets will not work because we cannot find the element
boundaries from the nodes list.

In order to get a richer space of finite element approximations, we need to revise the simple
node and element concept presented so far and introduce a more powerful terminology. Much
literature employs the definition of node and element introduced in the previous sections so it is
important have this knowledge, besides being a good pedagogical background from understanding
the extended element concept in the following.

6.1 Cells, vertices, and degrees of freedom
We now introduce cells as the subdomains Ω(e) previously referred to as elements. The cell
boundaries are denoted as vertices. The reason for this name is that cells are recognized by their

63

vertices in 2D and 3D. We also define a set of degrees of freedom (dof), which are the quantities
we aim to compute. The most common type of degree of freedom is the value of the unknown
function u at some point. (For example, we can introduce nodes as before and say the degrees of
freedom are the values of u at the nodes.) The basis functions are constructed so that they equal
unity for one particular degree of freedom and zero for the rest. This property ensures that when
we evaluate u =

∑
j cjϕj for degree of freedom number i, we get u = ci. Integrals are performed

over cells, usually by mapping the cell of interest to a reference cell.
With the concepts of cells, vertices, and degrees of freedom we increase the decoupling of

the geometry (cell, vertices) from the space of basis functions. We will associate different sets of
basis functions with a cell. In 1D, all cells are intervals, while in 2D we can have cells that are
triangles with straight sides, or any polygon, or in fact any two-dimensional geometry. Triangles
and quadrilaterals are most common, though. The popular cell types in 3D are tetrahedra and
hexahedra.

6.2 Extended finite element concept
The concept of a finite element is now

• a reference cell in a local reference coordinate system;

• a set of basis functions ϕ̃i defined on the cell;

• a set of degrees of freedom that uniquely determines the basis functions such that ϕ̃i = 1
for degree of freedom number i and ϕ̃i = 0 for all other degrees of freedom;

• a mapping between local and global degree of freedom numbers, here called the dof map;

• a geometric mapping of the reference cell onto the cell in the physical domain.

There must be a geometric description of a cell. This is trivial in 1D since the cell is an interval
and is described by the interval limits, here called vertices. If the cell is Ω(e) = [xL, xR], vertex 0
is xL and vertex 1 is xR. The reference cell in 1D is [−1, 1] in the reference coordinate system X.

The expansion of u over one cell is often used:

u(x) = ũ(X) =
∑

r

crϕ̃r(X), x ∈ Ω(e), X ∈ [−1, 1], (100)

where the sum is taken over the numbers of the degrees of freedom and cr is the value of u for
degree of freedom number r.

Our previous P1, P2, etc., elements are defined by introducing d+ 1 equally spaced nodes
in the reference cell and saying that the degrees of freedom are the d + 1 function values at
these nodes. The basis functions must be 1 at one node and 0 at the others, and the Lagrange
polynomials have exactly this property. The nodes can be numbered from left to right with
associated degrees of freedom that are numbered in the same way. The degree of freedom mapping
becomes what was previously represented by the elements lists. The cell mapping is the same
affine mapping (70) as before.

6.3 Implementation
Implementationwise,

• we replace nodes by vertices;

64



• we introduce cells such that cell[e][r] gives the mapping from local vertex r in cell e
to the global vertex number in vertices;

• we replace elements by dof_map (the contents are the same for Pd elements).

Consider the example from Section 3.1 where Ω = [0, 1] is divided into two cells, Ω(0) = [0, 0.4]
and Ω(1) = [0.4, 1], as depicted in Figure 18. The vertices are [0, 0.4, 1]. Local vertex 0 and 1 are
0 and 0.4 in cell 0 and 0.4 and 1 in cell 1. A P2 element means that the degrees of freedom are
the value of u at three equally spaced points (nodes) in each cell. The data structures become

vertices = [0, 0.4, 1]
cells = [[0, 1], [1, 2]]
dof_map = [[0, 1, 2], [2, 3, 4]]

If we would approximate f by piecewise constants, known as P0 elements, we simply introduce
one point or node in an element, preferably X = 0, and define one degree of freedom, which is
the function value at this node. Moreover, we set ϕ̃0(X) = 1. The cells and vertices arrays
remain the same, but dof_map is altered:

dof_map = [[0], [1]]

We use the cells and vertices lists to retrieve information on the geometry of a cell, while
dof_map is the q(e, r) mapping introduced earlier in the assembly of element matrices and vectors.
For example, the Omega_e variable (representing the cell interval) in previous code snippets must
now be computed as

Omega_e = [vertices[cells[e][0], vertices[cells[e][1]]

The assembly is done by

A[dof_map[e][r], dof_map[e][s]] += A_e[r,s]
b[dof_map[e][r]] += b_e[r]

We will hereafter drop the nodes and elements arrays and work exclusively with cells,
vertices, and dof_map. The module fe_approx1D_numint.py now replaces the module fe_approx1D
and offers similar functions that work with the new concepts:

from fe_approx1D_numint import *
x = sym.Symbol(’x’)
f = x*(1 - x)
N_e = 10
vertices, cells, dof_map = mesh_uniform(N_e, d=3, Omega=[0,1])
phi = [basis(len(dof_map[e])-1) for e in range(N_e)]
A, b = assemble(vertices, cells, dof_map, phi, f)
c = np.linalg.solve(A, b)
# Make very fine mesh and sample u(x) on this mesh for plotting
x_u, u = u_glob(c, vertices, cells, dof_map,

resolution_per_element=51)
plot(x_u, u)

These steps are offered in the approximate function, which we here apply to see how well four
P0 elements (piecewise constants) can approximate a parabola:

65

from fe_approx1D_numint import *
x=sym.Symbol("x")
for N_e in 4, 8:

approximate(x*(1-x), d=0, N_e=N_e, Omega=[0,1])

Figure 34 shows the result.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0  0.2  0.4  0.6  0.8  1

P0, Ne=4, exact integration

u
f

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0  0.2  0.4  0.6  0.8  1

P0, Ne=8, exact integration

u
f

Figure 34: Approximation of a parabola by 4 (left) and 8 (right) P0 elements.

6.4 Computing the error of the approximation
So far we have focused on computing the coefficients cj in the approximation u(x) =

∑
j cjϕj

as well as on plotting u and f for visual comparison. A more quantitative comparison needs to
investigate the error e(x) = f(x)− u(x). We mostly want a single number to reflect the error and
use a norm for this purpose, usually the L2 norm

||e||L2 =
(∫

Ω
e2 dx

)1/2
.

Since the finite element approximation is defined for all x ∈ Ω, and we are interested in how
u(x) deviates from f(x) through all the elements, we can either integrate analytically or use an
accurate numerical approximation. The latter is more convenient as it is a generally feasible and
simple approach. The idea is to sample e(x) at a large number of points in each element. The
function u_glob in the fe_approx1D_numint module does this for u(x) and returns an array x
with coordinates and an array u with the u values:

x, u = u_glob(c, vertices, cells, dof_map,
resolution_per_element=101)

e = f(x) - u

Let us use the Trapezoidal method to approximate the integral. Because different elements may
have different lengths, the x array has a non-uniformly distributed set of coordinates. Also, the
u_glob function works in an element by element fashion such that coordinates at the boundaries
between elements appear twice. We therefore need to use a "raw" version of the Trapezoidal rule
where we just add up all the trapezoids:

∫

Ω
g(x) dx ≈

n−1∑

j=0

1
2(g(xj) + g(xj+1))(xj+1 − xj),

66



if x0, . . . , xn are all the coordinates in x. In vectorized Python code,

g_x = g(x)
integral = 0.5*np.sum((g_x[:-1] + g_x[1:])*(x[1:] - x[:-1]))

Computing the L2 norm of the error, here named E, is now achieved by

e2 = e**2
E = np.sqrt(0.5*np.sum((e2[:-1] + e2[1:])*(x[1:] - x[:-1]))

How does the error depend on h and d?

Theory and experiments show that the least squares or projection/Galerkin method in
combination with Pd elements of equal length h has an error

||e||L2 = C|f (d+1)|hd+1, (101)

where C is a constant depending on d and Ω = [0, L], but not on h, and the norm |f (d+1)|
is defined through

|f (d+1)|2 =
∫ L

0

(
dd+1f

dxd+1

)2

dx

6.5 Example: Cubic Hermite polynomials
The finite elements considered so far represent u as piecewise polynomials with discontinuous
derivatives at the cell boundaries. Sometimes it is desirable to have continuous derivatives. A
primary example is the solution of differential equations with fourth-order derivatives where
standard finite element formulations lead to a need for basis functions with continuous first-order
derivatives. The most common type of such basis functions in 1D is the so-called cubic Hermite
polynomials. The construction of such polynomials, as explained next, will further exemplify the
concepts of a cell, vertex, degree of freedom, and dof map.

Given a reference cell [−1, 1], we seek cubic polynomials with the values of the function and
its first-order derivative at X = −1 and X = 1 as the four degrees of freedom. Let us number the
degrees of freedom as

• 0: value of function at X = −1

• 1: value of first derivative at X = −1

• 2: value of function at X = 1

• 3: value of first derivative at X = 1

By having the derivatives as unknowns, we ensure that the derivative of a basis function in two
neighboring elements is the same at the node points.

The four basis functions can be written in a general form

ϕ̃i(X) =
3∑

j=0
Ci,jX

j ,

67

with four coefficients Ci,j , j = 0, 1, 2, 3, to be determined for each i. The constraints that basis
function number i must be 1 for degree of freedom number i and zero for the other three degrees
of freedom, gives four equations to determine Ci,j for each i. In mathematical detail,

ϕ̃0(−1) = 1, ϕ̃0(1) = ϕ̃′0(−1) = ϕ̃′i(1) = 0,
ϕ̃′1(−1) = 1, ϕ̃1(−1) = ϕ̃1(1) = ϕ̃′1(1) = 0,
ϕ̃2(1) = 1, ϕ̃2(−1) = ϕ̃′2(−1) = ϕ̃′2(1) = 0,
ϕ̃′3(1) = 1, ϕ̃3(−1) = ϕ̃′3(−1) = ϕ̃3(1) = 0 .

These four 4× 4 linear equations can be solved, yielding the following formulas for the cubic basis
functions:

ϕ̃0(X) = 1− 3
4(X + 1)2 + 1

4(X + 1)3 (102)

ϕ̃1(X) = −(X + 1)(1− 1
2(X + 1))2 (103)

ϕ̃2(X) = 3
4(X + 1)2 − 1

2(X + 1)3 (104)

ϕ̃3(X) = −1
2(X + 1)(1

2(X + 1)2 − (X + 1)) (105)

(106)

The construction of the dof map needs a scheme for numbering the global degrees of freedom.
A natural left-to-right numbering has the function value at vertex xi as degree of freedom number
2i and the value of the derivative at xi as degree of freedom number 2i+ 1, i = 0, . . . , Ne + 1.

7 Numerical integration
Finite element codes usually apply numerical approximations to integrals. Since the integrands
in the coefficient matrix often are (lower-order) polynomials, integration rules that can integrate
polynomials exactly are popular.

The numerical integration rules can be expressed in a common form,
∫ 1

−1
g(X) dX ≈

M∑

j=0
wjg(X̄j), (107)

where X̄j are integration points and wj are integration weights, j = 0, . . . ,M . Different rules
correspond to different choices of points and weights.

The very simplest method is the Midpoint rule,
∫ 1

−1
g(X) dX ≈ 2g(0), X̄0 = 0, w0 = 2, (108)

which integrates linear functions exactly.

7.1 Newton-Cotes rules
The Newton-Cotes9 rules are based on a fixed uniform distribution of the integration points. The
first two formulas in this family are the well-known Trapezoidal rule,

9http://en.wikipedia.org/wiki/Newton%E2%80%93Cotes_formulas

68



∫ 1

−1
g(X) dX ≈ g(−1) + g(1), X̄0 = −1, X̄1 = 1, w0 = w1 = 1, (109)

and Simpson’s rule,
∫ 1

−1
g(X) dX ≈ 1

3 (g(−1) + 4g(0) + g(1)) , (110)

where

X̄0 = −1, X̄1 = 0, X̄2 = 1, w0 = w2 = 1
3 , w1 = 4

3 . (111)

Newton-Cotes rules up to five points is supported in the module file numint.py10.
For higher accuracy one can divide the reference cell into a set of subintervals and use the

rules above on each subinterval. This approach results in composite rules, well-known from basic
introductions to numerical integration of

∫ b
a
f(x) dx.

7.2 Gauss-Legendre rules with optimized points
More accurate rules, for a given M , arise if the location of the integration points are optimized for
polynomial integrands. The Gauss-Legendre rules11 (also known as Gauss-Legendre quadrature
or Gaussian quadrature) constitute one such class of integration methods. Two widely applied
Gauss-Legendre rules in this family have the choice

M = 1 : X̄0 = − 1√
3
, X̄1 = 1√

3
, w0 = w1 = 1 (112)

M = 2 : X̄0 = −
√

3
5 , X̄0 = 0, X̄2 =

√
3
5 , w0 = w2 = 5

9 , w1 = 8
9 . (113)

These rules integrate 3rd and 5th degree polynomials exactly. In general, an M -point Gauss-
Legendre rule integrates a polynomial of degree 2M + 1 exactly. The code numint.py contains a
large collection of Gauss-Legendre rules.

8 Approximation of functions in 2D
All the concepts and algorithms developed for approximation of 1D functions f(x) can readily be
extended to 2D functions f(x, y) and 3D functions f(x, y, z). Basically, the extensions consist of
defining basis functions ψi(x, y) or ψi(x, y, z) over some domain Ω, and for the least squares and
Galerkin methods, the integration is done over Ω.

As in 1D, the least squares and projection/Galerkin methods lead to linear systems

∑

j∈Is

Ai,jcj = bi, i ∈ Is,

Ai,j = (ψi, ψj),
bi = (f, ψi),

10http://tinyurl.com/nm5587k/approx/numint.py
11http://en.wikipedia.org/wiki/Gaussian_quadrature

69

where the inner product of two functions f(x, y) and g(x, y) is defined completely analogously to
the 1D case (24):

(f, g) =
∫

Ω
f(x, y)g(x, y)dxdy (114)

8.1 2D basis functions as tensor products of 1D functions
One straightforward way to construct a basis in 2D is to combine 1D basis functions. Say we
have the 1D vector space

Vx = span{ψ̂0(x), . . . , ψ̂Nx(x)} . (115)
A similar space for a function’s variation in y can be defined,

Vy = span{ψ̂0(y), . . . , ψ̂Ny (y)} . (116)
We can then form 2D basis functions as tensor products of 1D basis functions.

Tensor products.

Given two vectors a = (a0, . . . , aM ) and b = (b0, . . . , bN ), their outer tensor product, also
called the dyadic product, is p = a⊗ b, defined through

pi,j = aibj , i = 0, . . . ,M, j = 0, . . . , N .

In the tensor terminology, a and b are first-order tensors (vectors with one index, also
termed rank-1 tensors), and then their outer tensor product is a second-order tensor (matrix
with two indices, also termed rank-2 tensor). The corresponding inner tensor product is the
well-known scalar or dot product of two vectors: p = a · b =

∑N
j=0 ajbj . Now, p is a rank-0

tensor.
Tensors are typically represented by arrays in computer code. In the above example, a

and b are represented by one-dimensional arrays of length M and N , respectively, while
p = a⊗ b must be represented by a two-dimensional array of size M ×N .

Tensor productsa can be used in a variety of context.
ahttp://en.wikipedia.org/wiki/Tensor_product

Given the vector spaces Vx and Vy as defined in (115) and (116), the tensor product space
V = Vx ⊗ Vy has a basis formed as the tensor product of the basis for Vx and Vy. That is, if
{ϕi(x)}i∈Ix

and {ϕi(y)}i∈Iy
are basis for Vx and Vy, respectively, the elements in the basis for V

arise from the tensor product: {ϕi(x)ϕj(y)}i∈Ix,j∈Iy
. The index sets are Ix = {0, . . . , Nx} and

Iy = {0, . . . , Ny}.
The notation for a basis function in 2D can employ a double index as in

ψp,q(x, y) = ψ̂p(x)ψ̂q(y), p ∈ Ix, q ∈ Iy .
The expansion for u is then written as a double sum

u =
∑

p∈Ix

∑

q∈Iy

cp,qψp,q(x, y) .

Alternatively, we may employ a single index,

70



ψi(x, y) = ψ̂p(x)ψ̂q(y),

and use the standard form for u,

u =
∑

j∈Is

cjψj(x, y) .

The single index is related to the double index through i = p(Ny + 1) + q or i = q(Nx + 1) + p.

8.2 Example: Polynomial basis in 2D
Suppose we choose ψ̂p(x) = xp, and try an approximation with Nx = Ny = 1:

ψ0,0 = 1, ψ1,0 = x, ψ0,1 = y, ψ1,1 = xy .

Using a mapping to one index like i = q(Nx + 1) + p, we get

ψ0 = 1, ψ1 = x, ψ2 = y, ψ3 = xy .

With the specific choice f(x, y) = (1 + x2)(1 + 2y2) on Ω = [0, Lx]× [0, Ly], we can perform
actual calculations:

A0,0 = (ψ0, ψ0) =
∫ Ly

0

∫ Lx

0
ψ0(x, y)2dxdy =

∫ Ly

0

∫ Lx

0
dxdy = LxLy,

A1,0 = (ψ1, ψ0) =
∫ Ly

0

∫ Lx

0
xdxdy = 1

2L
2
xLy,

A0,1 = (ψ0, ψ1) =
∫ Ly

0

∫ Lx

0
ydxdy = 1

2L
2
yLx,

A0,1 = (ψ0, ψ1) =
∫ Ly

0

∫ Lx

0
xydxdy =

∫ Ly

0
ydy

∫ Lx

0
xdx = 1

4L
2
yL

2
x .

The right-hand side vector has the entries

71

b0 = (ψ0, f) =
∫ Ly

0

∫ Lx

0
1 · (1 + x2)(1 + 2y2)dxdy

=
∫ Ly

0
(1 + 2y2)dy

∫ Lx

0
(1 + x2)dx = (Ly + 2

3L
3
y)(Lx + 1

3L
3
x)

b1 = (ψ1, f) =
∫ Ly

0

∫ Lx

0
x(1 + x2)(1 + 2y2)dxdy

=
∫ Ly

0
(1 + 2y2)dy

∫ Lx

0
x(1 + x2)dx = (Ly + 2

3L
3
y)(1

2L
2
x + 1

4L
4
x)

b2 = (ψ2, f) =
∫ Ly

0

∫ Lx

0
y(1 + x2)(1 + 2y2)dxdy

=
∫ Ly

0
y(1 + 2y2)dy

∫ Lx

0
(1 + x2)dx = (1

2Ly + 1
2L

4
y)(Lx + 1

3L
3
x)

b3 = (ψ2, f) =
∫ Ly

0

∫ Lx

0
xy(1 + x2)(1 + 2y2)dxdy

=
∫ Ly

0
y(1 + 2y2)dy

∫ Lx

0
x(1 + x2)dx = (1

2L
2
y + 1

2L
4
y)(1

2L
2
x + 1

4L
4
x) .

There is a general pattern in these calculations that we can explore. An arbitrary matrix
entry has the formula

Ai,j = (ψi, ψj) =
∫ Ly

0

∫ Lx

0
ψiψjdxdy

=
∫ Ly

0

∫ Lx

0
ψp,qψr,sdxdy =

∫ Ly

0

∫ Lx

0
ψ̂p(x)ψ̂q(y)ψ̂r(x)ψ̂s(y)dxdy

=
∫ Ly

0
ψ̂q(y)ψ̂s(y)dy

∫ Lx

0
ψ̂p(x)ψ̂r(x)dx

= Â(x)
p,rÂ

(y)
q,s ,

where

Â(x)
p,r =

∫ Lx

0
ψ̂p(x)ψ̂r(x)dx, Â(y)

q,s =
∫ Ly

0
ψ̂q(y)ψ̂s(y)dy,

are matrix entries for one-dimensional approximations. Moreover, i = qNy + q and j = sNy + r.
With ψ̂p(x) = xp we have

Â(x)
p,r = 1

p+ r + 1L
p+r+1
x , Â(y)

q,s = 1
q + s+ 1L

q+s+1
y ,

and

Ai,j = Â(x)
p,rÂ

(y)
q,s = 1

p+ r + 1L
p+r+1
x

1
q + s+ 1L

q+s+1
y ,

for p, r ∈ Ix and q, s ∈ Iy.
Corresponding reasoning for the right-hand side leads to

72



bi = (ψi, f) =
∫ Ly

0

∫ Lx

0
ψif dxdx

=
∫ Ly

0

∫ Lx

0
ψ̂p(x)ψ̂q(y)f dxdx

=
∫ Ly

0
ψ̂q(y)(1 + 2y2)dy

∫ Ly

0
ψ̂p(x)xp(1 + x2)dx

=
∫ Ly

0
yq(1 + 2y2)dy

∫ Ly

0
xp(1 + x2)dx

= ( 1
q + 1L

q+1
y + 2

q + 3L
q+3
y )( 1

p+ 1L
p+1
x + 2

q + 3L
p+3
x )

Choosing Lx = Ly = 2, we have

A =




4 4 4 4
4 16

3 4 16
3

4 4 16
3

16
3

4 16
3

16
3

64
9


 , b =




308
9140
3

44
60


 , c =




− 1
94
3
− 2

3
8


 .

Figure 35 illustrates the result.
f(x,y)

 0
 0.5

 1
 1.5

 2

 0
 0.5

 1
 1.5

 2

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

f(x,y)

 0
 0.5

 1
 1.5

 2

 0
 0.5

 1
 1.5

 2

-5
 0
 5

 10
 15
 20
 25
 30
 35

-5

 0

 5

 10

 15

 20

 25

 30

 35

Figure 35: Approximation of a 2D quadratic function (left) by a 2D bilinear function (right)
using the Galerkin or least squares method.

8.3 Implementation
The least_squares function from Section 2.8 and/or the file approx1D.py12 can with very
small modifications solve 2D approximation problems. First, let Omega now be a list of the
intervals in x and y direction. For example, Ω = [0, Lx] × [0, Ly] can be represented by
Omega = [[0, L_x], [0, L_y]].

Second, the symbolic integration must be extended to 2D:

import sympy as sym

integrand = psi[i]*psi[j]
I = sym.integrate(integrand,

(x, Omega[0][0], Omega[0][1]),
(y, Omega[1][0], Omega[1][1]))

12http://tinyurl.com/nm5587k/approx/fe_approx1D.py

73

provided integrand is an expression involving the sympy symbols x and y. The 2D version of
numerical integration becomes

if isinstance(I, sym.Integral):
integrand = sym.lambdify([x,y], integrand)
I = sym.mpmath.quad(integrand,

[Omega[0][0], Omega[0][1]],
[Omega[1][0], Omega[1][1]])

The right-hand side integrals are modified in a similar way. (We should add that sympy.mpmath.quad
is sufficiently fast even in 2D, but scipy.integrate.nquad is much faster.)

Third, we must construct a list of 2D basis functions. Here are two examples based on tensor
products of 1D "Taylor-style" polynomials xi and 1D sine functions sin((i+ 1)πx):

def taylor(x, y, Nx, Ny):
return [x**i*y**j for i in range(Nx+1) for j in range(Ny+1)]

def sines(x, y, Nx, Ny):
return [sym.sin(sym.pi*(i+1)*x)*sym.sin(sym.pi*(j+1)*y)

for i in range(Nx+1) for j in range(Ny+1)]

The complete code appears in approx2D.py13.
The previous hand calculation where a quadratic f was approximated by a bilinear function

can be computed symbolically by

>>> from approx2D import *
>>> f = (1+x**2)*(1+2*y**2)
>>> psi = taylor(x, y, 1, 1)
>>> Omega = [[0, 2], [0, 2]]
>>> u, c = least_squares(f, psi, Omega)
>>> print u
8*x*y - 2*x/3 + 4*y/3 - 1/9
>>> print sym.expand(f)
2*x**2*y**2 + x**2 + 2*y**2 + 1

We may continue with adding higher powers to the basis:

>>> psi = taylor(x, y, 2, 2)
>>> u, c = least_squares(f, psi, Omega)
>>> print u
2*x**2*y**2 + x**2 + 2*y**2 + 1
>>> print u-f
0

For Nx ≥ 2 and Ny ≥ 2 we recover the exact function f , as expected, since in that case f ∈ V
(see Section 2.5).

8.4 Extension to 3D
Extension to 3D is in principle straightforward once the 2D extension is understood. The only
major difference is that we need the repeated outer tensor product,

V = Vx ⊗ Vy ⊗ Vz .

In general, given vectors (first-order tensors) a(q) = (a(q)
0 , . . . , a

(q)
Nq

, q = 0, . . . ,m, the tensor
product p = a(0) ⊗ · · · ⊗ am has elements

13http://tinyurl.com/nm5587k/approx/fe_approx2D.py

74



pi0,i1,...,im = a
(0)
i1
a

(1)
i1
· · · a(m)

im
.

The basis functions in 3D are then

ψp,q,r(x, y, z) = ψ̂p(x)ψ̂q(y)ψ̂r(z),

with p ∈ Ix, q ∈ Iy, r ∈ Iz. The expansion of u becomes

u(x, y, z) =
∑

p∈Ix

∑

q∈Iy

∑

r∈Iz

cp,q,rψp,q,r(x, y, z) .

A single index can be introduced also here, e.g., i = NxNyr + qNx+ p, u =
∑
i ciψi(x, y, z).

Use of tensor product spaces.

Constructing a multi-dimensional space and basis from tensor products of 1D spaces is
a standard technique when working with global basis functions. In the world of finite
elements, constructing basis functions by tensor products is much used on quadrilateral and
hexahedra cell shapes, but not on triangles and tetrahedra. Also, the global finite element
basis functions are almost exclusively denoted by a single index and not by the natural
tuple of indices that arises from tensor products.

9 Finite elements in 2D and 3D
Finite element approximation is particularly powerful in 2D and 3D because the method can
handle a geometrically complex domain Ω with ease. The principal idea is, as in 1D, to divide the
domain into cells and use polynomials for approximating a function over a cell. Two popular cell
shapes are triangles and quadrilaterals. Figures 36, 37, and 38 provide examples. P1 elements
means linear functions (a0 + a1x+ a2y) over triangles, while Q1 elements have bilinear functions
(a0 + a1x+ a2y + a3xy) over rectangular cells. Higher-order elements can easily be defined.

0.0 0.5 1.0 1.5 2.0 2.5 3.00.0

0.2

0.4

0.6

0.8

1.0

0.0 0.5 1.0 1.5 2.0 2.5 3.00.0

0.2

0.4

0.6

0.8

1.0

Figure 36: Examples on 2D P1 elements.

9.1 Basis functions over triangles in the physical domain
Cells with triangular shape will be in main focus here. With the P1 triangular element, u is a
linear function over each cell, as depicted in Figure 39, with discontinuous derivatives at the cell
boundaries.

We give the vertices of the cells global and local numbers as in 1D. The degrees of freedom in
the P1 element are the function values at a set of nodes, which are the three vertices. The basis
function ϕi(x, y) is then 1 at the vertex with global vertex number i and zero at all other vertices.

75

0.5 1.0 1.5 2.00.0

0.5

1.0

1.5

2.0

Figure 37: Examples on 2D P1 elements in a deformed geometry.

On an element, the three degrees of freedom uniquely determine the linear basis functions in
that element, as usual. The global ϕi(x, y) function is then a combination of the linear functions
(planar surfaces) over all the neighboring cells that have vertex number i in common. Figure 40
tries to illustrate the shape of such a “pyramid”-like function.

Element matrices and vectors. As in 1D, we split the integral over Ω into a sum of integrals
over cells. Also as in 1D, ϕi overlaps ϕj (i.e., ϕiϕj 6= 0) if and only if i and j are vertices in the
same cell. Therefore, the integral of ϕiϕj over an element is nonzero only when i and j run over
the vertex numbers in the element. These nonzero contributions to the coefficient matrix are, as
in 1D, collected in an element matrix. The size of the element matrix becomes 3× 3 since there
are three degrees of freedom that i and j run over. Again, as in 1D, we number the local vertices
in a cell, starting at 0, and add the entries in the element matrix into the global system matrix,
exactly as in 1D. All details and code appear below.

9.2 Basis functions over triangles in the reference cell
As in 1D, we can define the basis functions and the degrees of freedom in a reference cell and
then use a mapping from the reference coordinate system to the physical coordinate system. We
also have a mapping of local degrees of freedom numbers to global degrees of freedom numbers.

The reference cell in an (X,Y ) coordinate system has vertices (0, 0), (1, 0), and (0, 1), corre-
sponding to local vertex numbers 0, 1, and 2, respectively. The P1 element has linear functions
ϕ̃r(X,Y ) as basis functions, r = 0, 1, 2. Since a linear function ϕ̃r(X,Y ) in 2D is on the form

76



0.0 0.5 1.0 1.5 2.0 2.5 3.00.0

0.2

0.4

0.6

0.8

1.0

Figure 38: Examples on 2D Q1 elements.

Cr,0 +Cr,1X +Cr,2Y , and hence has three parameters Cr,0, Cr,1, and Cr,2, we need three degrees
of freedom. These are in general taken as the function values at a set of nodes. For the P1
element the set of nodes is the three vertices. Figure 41 displays the geometry of the element and
the location of the nodes.

Requiring ϕ̃r = 1 at node number r and ϕ̃r = 0 at the two other nodes, gives three linear
equations to determine Cr,0, Cr,1, and Cr,2. The result is

ϕ̃0(X,Y ) = 1−X − Y, (117)
ϕ̃1(X,Y ) = X, (118)
ϕ̃2(X,Y ) = Y (119)

Higher-order approximations are obtained by increasing the polynomial order, adding addi-
tional nodes, and letting the degrees of freedom be function values at the nodes. Figure 42 shows
the location of the six nodes in the P2 element.

A polynomial of degree p in X and Y has np = (p+ 1)(p+ 2)/2 terms and hence needs np
nodes. The values at the nodes constitute np degrees of freedom. The location of the nodes for
ϕ̃r up to degree 6 is displayed in Figure 43.

The generalization to 3D is straightforward: the reference element is a tetrahedron14 with
vertices (0, 0, 0), (1, 0, 0), (0, 1, 0), and (0, 0, 1) in a X,Y, Z reference coordinate system. The P1
element has its degrees of freedom as four nodes, which are the four vertices, see Figure 44. The

14http://en.wikipedia.org/wiki/Tetrahedron

77

Figure 39: Example on piecewise linear 2D functions defined on triangles.

P2 element adds additional nodes along the edges of the cell, yielding a total of 10 nodes and
degrees of freedom, see Figure 45.

The interval in 1D, the triangle in 2D, the tetrahedron in 3D, and its generalizations to higher
space dimensions are known as simplex cells (the geometry) or simplex elements (the geometry,
basis functions, degrees of freedom, etc.). The plural forms simplices15 and simplexes are also a
much used shorter terms when referring to this type of cells or elements. The side of a simplex is
called a face, while the tetrahedron also has edges.

Acknowledgment. Figures 41-45 are created by Anders Logg and taken from the FEniCS
book16: Automated Solution of Differential Equations by the Finite Element Method, edited by A.
Logg, K.-A. Mardal, and G. N. Wells, published by Springer17, 2012.

9.3 Affine mapping of the reference cell
Let ϕ̃(1)

r denote the basis functions associated with the P1 element in 1D, 2D, or 3D, and let
xq(e,r) be the physical coordinates of local vertex number r in cell e. Furthermore, let X be a
point in the reference coordinate system corresponding to the point x in the physical coordinate
system. The affine mapping of any X onto x is then defined by

x =
∑

r

ϕ̃(1)
r (X)xq(e,r), (120)

15http://en.wikipedia.org/wiki/Simplex
16https://launchpad.net/fenics-book
17http://goo.gl/lbyVMH

78



Figure 40: Example on a piecewise linear 2D basis function over a patch of triangles.

Figure 41: 2D P1 element.

where r runs over the local vertex numbers in the cell. The affine mapping essentially stretches,
translates, and rotates the triangle. Straight or planar faces of the reference cell are therefore
mapped onto straight or planar faces in the physical coordinate system. The mapping can be
used for both P1 and higher-order elements, but note that the mapping itself always applies the
P1 basis functions.

9.4 Isoparametric mapping of the reference cell
Instead of using the P1 basis functions in the mapping (120), we may use the basis functions of
the actual Pd element:

79

Figure 42: 2D P2 element.

Figure 43: 2D P1, P2, P3, P4, P5, and P6 elements.

x =
∑

r

ϕ̃r(X)xq(e,r), (121)

where r runs over all nodes, i.e., all points associated with the degrees of freedom. This is called
an isoparametric mapping. For P1 elements it is identical to the affine mapping (120), but for
higher-order elements the mapping of the straight or planar faces of the reference cell will result
in a curved face in the physical coordinate system. For example, when we use the basis functions
of the triangular P2 element in 2D in (121), the straight faces of the reference triangle are mapped
onto curved faces of parabolic shape in the physical coordinate system, see Figure 47.

80



Figure 44: P1 elements in 1D, 2D, and 3D.

Figure 45: P2 elements in 1D, 2D, and 3D.

x

local global

2

1

x

1

2
X

X

Figure 46: Affine mapping of a P1 element.

81

x

local global

2

1

x

1

2
X

X

Figure 47: Isoparametric mapping of a P2 element.

From (120) or (121) it is easy to realize that the vertices are correctly mapped. Consider a
vertex with local number s. Then ϕ̃s = 1 at this vertex and zero at the others. This means that
only one term in the sum is nonzero and x = xq(e,s), which is the coordinate of this vertex in the
global coordinate system.

9.5 Computing integrals
Let Ω̃r denote the reference cell and Ω(e) the cell in the physical coordinate system. The
transformation of the integral from the physical to the reference coordinate system reads

∫

Ω(e)
ϕi(x)ϕj(x) dx =

∫

Ω̃r

ϕ̃i(X)ϕ̃j(X) detJ dX, (122)
∫

Ω(e)
ϕi(x)f(x) dx =

∫

Ω̃r

ϕ̃i(X)f(x(X)) detJ dX, (123)

where dx means the infinitesimal area element dxdy in 2D and dxdydz in 3D, with a similar
definition of dX. The quantity det J is the determinant of the Jacobian of the mapping x(X).
In 2D,

J =
[

∂x
∂X

∂x
∂Y

∂y
∂X

∂y
∂Y

]
, det J = ∂x

∂X

∂y

∂Y
− ∂x

∂Y

∂y

∂X
. (124)

With the affine mapping (120), det J = 2∆, where ∆ is the area or volume of the cell in the
physical coordinate system.

Remark. Observe that finite elements in 2D and 3D builds on the same ideas and concepts as
in 1D, but there is simply much more to compute because the specific mathematical formulas in
2D and 3D are more complicated and the book keeping with dof maps also gets more complicated.
The manual work is tedious, lengthy, and error-prone so automation by the computer is a must.

82



10 Exercises
Problem 1: Linear algebra refresher
Look up the topic of vector space in your favorite linear algebra book or search for the term at
Wikipedia.

a) Prove that vectors in the plane (a, b) form a vector space by showing that all the axioms of a
vector space are satisfied.

b) Prove that all linear functions of the form ax+ b constitute a vector space, a, b ∈ R.

c) Show that all quadratic functions of the form 1 + ax2 + bx do not constitute a vector space.

d) Check out the topic of inner product spaces. Suggest a possible inner product for the space of
all linear functions of the form ax+ b, a, b ∈ R, defined on some interval Ω = [A,B]. Show that
this particular inner product satisfies the general requirements of an inner product in a vector
space.
Filename: linalg1.

Problem 2: Approximate a three-dimensional vector in a plane
Given f = (1, 1, 1) in R3, find the best approximation vector u in the plane spanned by the unit
vectors (1, 0) and (0, 1). Repeat the calculations using the vectors (2, 1) and (1, 2).
Filename: vec111_approx.

Problem 3: Approximate a parabola by a sine
Given the function f(x) = 1 + 2x(1− x) on Ω = [0, 1], we want to find an approximation in the
function space

V = span{1, sin(πx)} .
a) Sketch or plot f(x). Think intuitively how an expansion in terms of the basis functions of V ,
ψ0(x) = 1, ψ1(x) = sin(πx), can be construction to yield a best approximation to f . Or phrased
differently, see if you can guess the coefficients c0 and c1 in the expansion

u(x) = c0ψ0 + c1ψ1 = c0 + c1 sin(πx) .

Compute the L2 error ||f − u||L2 = (
∫ 1

0 (f − u)2 dx)1/2.

Hint. If you make a mesh function e of the error on some mesh with uniformly spaced
coordinates in the array xc, the integral can be approximated as np.sqrt(dx*np.sum(e**2)),
where dx=xc[0]-xc[1] is the mesh spacing and np is an alias for the numpy module in Python.

b) Perform the hand calculations for a least squares approximation.
Filename: parabola_sin.

Problem 4: Approximate the exponential function by power functions
Let V be a function space with basis functions xi, i = 0, 1, . . . , N . Find the best approximation
to f(x) = exp(−x) on Ω = [0, 8] among all functions in V for N = 2, 4, 6. Illustrate the three
approximations in three separate plots.

83

Hint. Apply the lest_squares and comparison_plot functions in the approx1D.py module
as these make the exercise easier to solve.
Filename: exp_powers.

Problem 5: Approximate the sine function by power functions
In this exercise we want to approximate the sine function by polynomials of order N + 1. Consider
two bases:

V1 = {x, x3, x5, . . . , xN−2, xN},
V2 = {1, x, x2, x3, . . . , xN} .

The basis V1 is motivated by the fact that the Taylor polynomial approximation to the sine
function has only odd powers, while V2 is motivated by the assumption that also the even powers
could improve the approximation in a least-squares setting.

Compute the best approximation to f(x) = sin(x) among all functions in V1 and V2 on two
domains of increasing sizes: Ω1,k = [0, kπ], k = 2, 3 . . . , 6 and Ω2,k = [−kπ/2, kπ/2], k = 2, 3, 4, 5.
Make plots for all combinations of V1, V2, Ω1, Ω2, k = 2, 3, . . . , 6.

Add a plot of the N -th degree Taylor polynomial approximation of sin(x) around x = 0.

Hint. You can make a loop over V1 and V2, a loop over Ω1 and Ω2, and a loop over k. Inside
the loops, call the functions least_squares and comparison_plot from the approx1D module.
N = 7 is a suggested value.
Filename: sin_powers.

Problem 6: Approximate a steep function by sines
Find the best approximation of f(x) = tanh(s(x − π)) on [0, 2π] in the space V with basis
ψi(x) = sin((2i + 1)x), i ∈ Is = {0, . . . , N}. Make a movie showing how u =

∑
j∈Is

cjψj(x)
approximates f(x) as N grows. Choose s such that f is steep (s = 20 is appropriate).

Hint 1. One may naively call the least_squares_orth and comparison_plot from the
approx1D module in a loop and extend the basis with one new element in each pass. This
approach implies a lot of recomputations. A more efficient strategy is to let least_squares_orth
compute with only one basis function at a time and accumulate the corresponding u in the total
solution.

Hint 2. ffmpeg or avconv may skip frames when plot files are combined to a movie. Since
there are few files and we want to see each of them, use convert to make an animated GIF file
(-delay 200 is suitable).
Filename: tanh_sines.

Remarks. Approximation of a discontinuous (or steep) f(x) by sines, results in slow convergence
and oscillatory behavior of the approximation close to the abrupt changes in f . This is known as
the Gibb’s phenomenon18.

18http://en.wikipedia.org/wiki/Gibbs_phenomenon

84



Problem 7: Approximate a steep function by sines with boundary ad-
justment
We study the same approximation problem as in Problem 6. Since ψi(0) = ψi(2π) = 0 for all
i, u = 0 at the boundary points x = 0 and x = 2π, while f(0) = −1 and f(2π) = 1. This
discrepancy at the boundary can be removed by adding a boundary function B(x):

u(x) = B(x) +
∑

j∈Is

cjψj(x),

where B(x) has the right boundary values: B(xL) = f(xL) and B(xR) = f(xR), with xL = 0 and
xR = 2π as the boundary points. A linear choice of B(x) is

B(x) = (xR − x)f(xL) + (x− xL)f(xR)
xR − xL

.

a) Use the basis ψi(x) = sin((i + 1)x), i ∈ Is = {0, . . . , N} and plot u and f for N = 16. (It
suffices to make plots for even i.)

b) Use the basis from Exercise 6, ψi(x) = sin((2i + 1)x), i ∈ Is = {0, . . . , N}. (It suffices to
make plots for even i.) Observe that the approximation converges to a piecewise linear function!

c) Use the basis ψi(x) = sin(2(i+ 1)x), i ∈ Is = {0, . . . , N}, and observe that the approximation
converges to a piecewise constant function.
Filename: tanh_sines_boundary_term.

Remarks. The strange results in b) and c) are due to the choice of basis. In b), ϕi(x) is an odd
function around x = π/2 and x = 3π/2. No combination of basis functions is able to approximate
the flat regions of f . All basis functions in c) are even around x = π/2 and x = 3π/2, but odd at
x = 0, π, 2π. With all the sines represented, as in a), the approximation is not constrained with a
particular symmetry behavior.

Exercise 8: Fourier series as a least squares approximation
a) Given a function f(x) on an interval [0, L], look up the formula for the coefficients aj and bj
in the Fourier series of f :

f(x) = 1
2a0 +

∞∑

j=1
aj cos

(
j

2πx
L

)
+
∞∑

j=1
bj sin

(
j

2πx
L

)
.

b) Let an infinite-dimensional vector space V have the basis functions cos j 2πx
L for j = 0, 1, . . . ,∞

and sin j 2πx
L for j = 1, . . . ,∞. Show that the least squares approximation method from Section 2

leads to a linear system whose solution coincides with the standard formulas for the coefficients
in a Fourier series of f(x) (see also Section 2.7).

Hint. You may choose

ψ2i = cos
(
i
2π
L
x

)
, ψ2i+1 = sin

(
i
2π
L
x

)
, (125)

for i = 0, 1, . . . , N →∞.

85

c) Choose f(x) = H(x− 1
2 ) on Ω = [0, 1], where H is the Heaviside function: H(x) = 0 for x < 0,

H(x) = 1 for x > 0 and H(0) = 1
2 . Find the coefficients aj and bj in the Fourier series for f(x).

Plot the sum for j = 2N + 1, where N = 5 and N = 100.
Filename: Fourier_ls.

Problem 9: Approximate a steep function by Lagrange polynomials
Use interpolation with uniformly distributed points and Chebychev nodes to approximate

f(x) = − tanh(s(x− 1
2)), x ∈ [0, 1],

by Lagrange polynomials for s = 5 and s = 20, and N = 3, 7, 11, 15. Combine 2× 2 plots of the
approximation for the four N values, and create such figures for the four combinations of s values
and point types.
Filename: tanh_Lagrange.

Problem 10: Approximate a steep function by Lagrange polynomials
and regression
Redo Problem 9, but apply a regression method with N -degree Lagrange polynomials and
2N + 1 data points. Recall that Problem 9 applies N + 1 points and the resulting approximation
interpolates f at these points, while a regression method with more points does not interpolate f
at the data points. Do more points and a regression method help reduce the oscillatory behavior
of Lagrange polynomial approximations?
Filename: tanh_Lagrange_regression.

Problem 11: Define nodes and elements
Consider a domain Ω = [0, 2] divided into the three elements [0, 1], [1, 1.2], and [1.2, 2].

For P1 and P2 elements, set up the list of coordinates and nodes (nodes) and the numbers of
the nodes that belong to each element (elements) in two cases: 1) nodes and elements numbered
from left to right, and 2) nodes and elements numbered from right to left.
Filename: fe_numberings1.

Problem 12: Define vertices, cells, and dof maps
Repeat Problem 11, but define the data structures vertices, cells, and dof_map instead of
nodes and elements.
Filename: fe_numberings2.

Problem 13: Construct matrix sparsity patterns
Problem 11 describes a element mesh with a total of five elements, but with two different element
and node orderings. For each of the two orderings, make a 5× 5 matrix and fill in the entries
that will be nonzero.

Hint. A matrix entry (i, j) is nonzero if i and j are nodes in the same element.
Filename: fe_sparsity_pattern.

86



Problem 14: Perform symbolic finite element computations
Perform symbolic calculations to find formulas for the coefficient matrix and right-hand side when
approximating f(x) = sin(x) on Ω = [0, π] by two P1 elements of size π/2. Solve the system and
compare u(π/2) with the exact value 1.
Filename: fe_sin_P1.

Problem 15: Approximate a steep function by P1 and P2 elements
Given

f(x) = tanh(s(x− 1
2))

use the Galerkin or least squares method with finite elements to find an approximate function
u(x). Choose s = 20 and try Ne = 4, 8, 16 P1 elements and Ne = 2, 4, 8 P2 elements. Integrate
fϕi numerically.

Hint. You can automate the computations by calling the approximate method in the fe_approx1D_numint
module.
Filename: fe_tanh_P1P2.

Problem 16: Approximate a steep function by P3 and P4 elements
a) Solve Problem 15 using Ne = 1, 2, 4 P3 and P4 elements.

b) How will an interpolation method work in this case with the same number of nodes?
Filename: fe_tanh_P3P4.

Exercise 17: Investigate the approximation error in finite elements
The theory (101) from Section 6.4 predicts that the error in the Pd approximation of a function
should behave as hd+1, where h is the length of the element. Use experiments to verify this
asymptotic behavior (i.e., for small enough h). Choose three examples: f(x) = Ae−ωx on [0, 3/ω],
f(x) = A sin(ωx) on Ω = [0, 2π/ω] for constant A and ω, and f(x) =

√
x on [0, 1].

Hint 1. Run a series of experiments: (hi, Ei), i = 0, . . . ,m, where Ei is the L2 norm of the
error corresponding to element length hi. Assume an error model E = Chr and compute r from
two successive experiments:

ri = ln(Ei+1/Ei)/ ln(hi+1/hi), i = 0, . . . ,m− 1 .

Hopefully, the sequence r0, . . . , rm−1 converges to the true r, and rm−1 can be taken as an
approximation to r. Run such experiments for different d for the different f(x) functions.

Hint 2. The approximate function in fe_approx1D_numint.py is handy for calculating the
numerical solution. This function returns the finite element solution as the coefficients {ci}i∈Is

.
To compute u, use u_glob from the same module. Use the Trapezoidal rule to integrate the L2

error:

87

xc, u = u_glob(c, vertices, cells, dof_map)
e = f_func(xc) - u
L2_error = 0
e2 = e**2
for i in range(len(xc)-1):

L2_error += 0.5*(e2[i+1] + e2[i])*(xc[i+1] - xc[i])
L2_error = np.sqrt(L2_error)

The reason for this Trapezoidal integration is that u_glob returns coordinates xc and correspond-
ing u values where some of the coordinates (the cell vertices) coincides, because the solution
is computed in one element at a time, using all local nodes. Also note that there are many
coordinates in xc per cell such that we can accurately compute the error inside each cell.
Filename: Pd_approx_error.

Problem 18: Approximate a step function by finite elements
Approximate the step function

f(x) =
{

0 0 ≤ x < 1/2,
1 1/2 ≤ x ≥ 1/2

by 2, 4, 8, and 16 P1, P2, P3, and P4. Compare approximations visually.

Hint. This f can also be expressed in terms of the Heaviside function H(x): f(x) = H(x−1/2).
Therefore, f can be defined by

f = sym.Heaviside(x - sym.Rational(1,2))

making the approximate function in the fe_approx1D.py module an obvious candidate to solve
the problem. However, sympy does not handle symbolic integration with this particular integrand,
and the approximate function faces a problem when converting f to a Python function (for
plotting) since Heaviside is not an available function in numpy.

An alternative is to perform hand calculations. This is an instructive task, but in prac-
tice only feasible for few elements and P1 and P2 elements. It is better to copy the functions
element_matrix, element_vector, assemble, and approximate from the fe_approx1D_numint.py
file and edit these functions such that they can compute approximations with f given as a Python
function and not a symbolic expression. Also assume that phi computed by the basis function is
a Python callable function. Remove all instances of the symbolic variable and associated code.
Filename: fe_Heaviside_P1P2.

Exercise 19: 2D approximation with orthogonal functions
a) Assume we have basis functions ϕi(x, y) in 2D that are orthogonal such that (ϕi, ϕj) = 0
when i 6= j. The function least_squares in the file approx2D.py19 will then spend much time
on computing off-diagonal terms in the coefficient matrix that we know are zero. To speed up the
computations, make a version least_squares_orth that utilizes the orthogonality among the
basis functions.

19http://tinyurl.com/nm5587k/approx/fe_approx2D.py

88



b) Apply the function to approximate

f(x, y) = x(1− x)y(1− y)e−x−y

on Ω = [0, 1]× [0, 1] via basis functions

ϕi(x, y) = sin((p+ 1)πx) sin((q + 1)πy), i = q(Nx + 1) + p,

where p = 0, . . . , Nx and q = 0, . . . , Ny.

Hint. Get ideas from the function least_squares_orth in Section 2.8 and file approx1D.py20.

c) Make a unit test for the least_squares_orth function.
Filename: approx2D_ls_orth.

Exercise 20: Use the Trapezoidal rule and P1 elements
Consider approximation of some f(x) on an interval Ω using the least squares or Galerkin methods
with P1 elements. Derive the element matrix and vector using the Trapezoidal rule (109) for
calculating integrals on the reference element. Assemble the contributions, assuming a uniform
cell partitioning, and show that the resulting linear system has the form ci = f(xi) for i ∈ Is.
Filename: fe_P1_trapez.

Exercise 21: Compare P1 elements and interpolation
We shall approximate the function

f(x) = 1 + ε sin(2πnx), x ∈ Ω = [0, 1],

where n ∈ Z and ε ≥ 0.

a) Plot f(x) for n = 1, 2, 3 and find the wave length of the function.

b) We want to use NP elements per wave length. Show that the number of elements is then
nNP .

c) The critical quantity for accuracy is the number of elements per wave length, not the element
size in itself. It therefore suffices to study an f with just one wave length in Ω = [0, 1]. Set
ε = 0.5.

Run the least squares or projection/Galerkin method for NP = 2, 4, 8, 16, 32. Compute the
error E = ||u− f ||L2 .

Hint. Use the fe_approx1D_numint module to compute u and use the technique from Section 6.4
to compute the norm of the error.

d) Repeat the set of experiments in the above point, but use interpolation/collocation based
on the node points to compute u(x) (recall that ci is now simply f(xi)). Compute the error
E = ||u− f ||L2 . Which method seems to be most accurate?
Filename: fe_P1_vs_interp.

20http://tinyurl.com/nm5587k/approx/fe_approx1D.py

89

Exercise 22: Implement 3D computations with global basis functions
Extend the approx2D.py21 code to 3D applying ideas from Section 8.4. Construct some 3D
problem to make a test function for the implementation.

Hint. Drop symbolic integration since it is in general too slow for 3D problems. Also use
scipy.integrate.nquad instead of sympy.mpmath.quad for numerical integration, since it is
much faster.
Filename: approx3D.

Exercise 23: Use Simpson’s rule and P2 elements
Redo Exercise 20, but use P2 elements and Simpson’s rule based on sampling the integrands at
the nodes in the reference cell.
Filename: fe_P2_simpson.

References
[1] M. G. Larson and F. Bengzon. The Finite Element Method: Theory, Implementation, and

Applications. Texts in Computational Science and Engineering. Springer, 2013.

21http://tinyurl.com/nm5587k/approx/approx2D.py

90



Index
ATA = AT b (normal equations), 25

affine mapping, 48, 78
approximation

by sines, 18
collocation, 22
interpolation, 22
of functions, 11
of general vectors, 8
of vectors in the plane, 5

assembly, 46

basis vector, 5

cell, 63
cells list, 64
chapeau function, 41
Chebyshev nodes, 30
collocation method (approximation), 22

degree of freedom, 63
dof map, 64
dof_map list, 64

edges, 78
element matrix, 44

faces, 78
finite element basis function, 41
finite element expansion

reference element, 64
finite element mesh, 35
finite element, definition, 64

Galerkin method
functions, 12
vectors, 7, 10

Gauss-Legendre quadrature, 69

hat function, 41
Hermite polynomials, 67

internal node, 37
interpolation method (approximation), 22
isoparametric mapping, 79

Kronecker delta, 28, 37

Lagrange (interpolating) polynomial, 28
least squreas method

vectors, 6
linear elements, 42
lumped mass matrix, 63

mapping of reference cells
affine mapping, 48
isoparametric mapping, 79

mass lumping, 63
mass matrix, 63
mesh

finite elements, 35
Midpoint rule, 68

Newton-Cotes rules, 68
norm, 5
normal equations, 25
numerical integration

Midpoint rule, 68
Newton-Cotes formulas, 68
Simpson’s rule, 68
Trapezoidal rule, 68

P1 element, 42
P2 element, 42
projection

functions, 12
vectors, 7, 10

quadratic elements, 42

reference cell, 63
Runge’s phenomenon, 30

shared node, 37
simplex elements, 78
simplices, 78
Simpson’s rule, 68
sparse matrices, 57

tensor product, 70
Trapezoidal rule, 68

vertex, 63
vertices list, 64

91


