$$ \newcommand{\half}{\frac{1}{2}} \newcommand{\tp}{\thinspace .} \newcommand{\Oof}[1]{\mathcal{O}(#1)} \newcommand{\x}{\boldsymbol{x}} \newcommand{\X}{\boldsymbol{X}} \renewcommand{\u}{\boldsymbol{u}} \renewcommand{\v}{\boldsymbol{v}} \newcommand{\e}{\boldsymbol{e}} \newcommand{\f}{\boldsymbol{f}} \newcommand{\Ix}{\mathcal{I}_x} \newcommand{\Iy}{\mathcal{I}_y} \newcommand{\Iz}{\mathcal{I}_z} \newcommand{\If}{\mathcal{I}_s} % for FEM \newcommand{\Ifd}{{I_d}} % for FEM \newcommand{\sequencei}[1]{\left\{ {#1}_i \right\}_{i\in\If}} \newcommand{\basphi}{\varphi} \newcommand{\baspsi}{\psi} \newcommand{\refphi}{\tilde\basphi} \newcommand{\psib}{\boldsymbol{\psi}} \newcommand{\xno}[1]{x_{#1}} \newcommand{\Xno}[1]{X_{(#1)}} \newcommand{\xdno}[1]{\boldsymbol{x}_{#1}} \newcommand{\dX}{\, \mathrm{d}X} \newcommand{\dx}{\, \mathrm{d}x} $$

Study guide: Approximation of functions

Hans Petter Langtangen [1, 2]

[1] Center for Biomedical Computing, Simula Research Laboratory
[2] Department of Informatics, University of Oslo

2016

Finite elements can handle complex geometry, adaptive meshes, higher-order approximations and has a firm theory

A dolphin and its flow

Solving PDEs by the finite element method

Stationary PDEs:

  1. Transform the PDE problem to a variational form
  2. Define function approximation over finite elements
  3. Use a computational machinery to derive linear systems
  4. Solve linear systems

Time-dependent PDEs:

We start with function approximation, then we treat PDEs

Learning strategy.

Reason:

The finite element method has many concepts and a jungle of details. This learning strategy minimizes the mixing of ideas, concepts, and technical details.

Find a vector in some space that approximates a given vector in a space of higher dimension

The approximation is a linear combination of prescribed basis functions

General idea of finding an approximation \( u(x) \) to some given \( f(x) \):

 
$$ u(x) = \sum_{i=0}^N c_i\baspsi_i(x) $$

 

where

We have three methods to determine the coefficients

We shall address three approaches:

Underlying motivation for our notation.

Our mathematical framework for doing this is phrased in a way such that it becomes easy to understand and use the FEniCS software package for finite element computing.

Approximation of planar vectors; problem

Given a vector \( \f = (3,5) \), find an approximation to \( \f \) directed along a given line.

Approximation of planar vectors; vector space terminology

 
$$ V = \mbox{span}\,\{ \psib_0\} $$

 

Define

The least squares method; principle

 
$$ \begin{equation*} \frac{\partial E}{\partial c_0} = 0 \end{equation*} $$

 

The least squares method; calculations

 
$$ \begin{align*} E(c_0) &= (\e,\e) = (\f - \u, \f - \u) = (\f - c_0\psib_0, \f - c_0\psib_0)\\ &= (\f,\f) - 2c_0(\f,\psib_0) + c_0^2(\psib_0,\psib_0) \end{align*} $$

 

 
$$ \begin{equation} \frac{\partial E}{\partial c_0} = -2(\f,\psib_0) + 2c_0 (\psib_0,\psib_0) = 0 \tag{1} \end{equation} $$

 

 
$$ c_0 = \frac{(\f,\psib_0)}{(\psib_0,\psib_0)} = \frac{3a + 5b}{a^2 + b^2} $$

 

Observation to be used later: the vanishing derivative (1) can be alternatively written as

 
$$ (\e, \psib_0) = 0 $$

 

The projection (or Galerkin) method

Approximation of general vectors

Given a vector \( \f \), find an approximation \( \u\in V \):

 
$$ \begin{equation*} V = \hbox{span}\,\{\psib_0,\ldots,\psib_N\} \end{equation*} $$

 

We have a set of linearly independent basis vectors \( \psib_0,\ldots,\psib_N \). Any \( \u\in V \) can then be written as

 
$$ \u = \sum_{j=0}^Nc_j\psib_j$$

 

The least squares method

Idea: find \( c_0,\ldots,c_N \) such that \( E= ||\e||^2 \) is minimized, \( \e=\f-\u \).

 
$$ \begin{align*} E(c_0,\ldots,c_N) &= (\e,\e) = (\f -\sum_jc_j\psib_j,\f -\sum_jc_j\psib_j) \nonumber\\ &= (\f,\f) - 2\sum_{j=0}^Nc_j(\f,\psib_j) + \sum_{p=0}^N\sum_{q=0}^N c_pc_q(\psib_p,\psib_q) \end{align*} $$

 

 
$$ \begin{equation*} \frac{\partial E}{\partial c_i} = 0,\quad i=0,\ldots,N \end{equation*} $$

 

After some work we end up with a linear system

 
$$ \begin{align} \sum_{j=0}^N A_{i,j}c_j &= b_i,\quad i=0,\ldots,N \tag{2}\\ A_{i,j} &= (\psib_i,\psib_j) \tag{3}\\ b_i &= (\psib_i, \f) \tag{4} \end{align} $$

 

The projection (or Galerkin) method

Can be shown that minimizing \( ||\e|| \) implies that \( \e \) is orthogonal to all \( \v\in V \):

 
$$ (\e,\v)=0,\quad \forall\v\in V $$

 
which implies that \( \e \) most be orthogonal to each basis vector:

 
$$ (\e,\psib_i)=0,\quad i=0,\ldots,N $$

 

This orthogonality condition is the principle of the projection (or Galerkin) method. Leads to the same linear system as in the least squares method.

Approximation of a function in a function space

Let \( V \) be a function space spanned by a set of basis functions \( \baspsi_0,\ldots,\baspsi_N \),

 
$$ \begin{equation*} V = \hbox{span}\,\{\baspsi_0,\ldots,\baspsi_N\} \end{equation*} $$

 

Find \( u\in V \) as a linear combination of the basis functions:

 
$$ u = \sum_{j\in\If} c_j\baspsi_j,\quad\If = \{0,1,\ldots,N\} $$

 

The least squares method can be extended from vectors to functions

As in the vector case, minimize the (square) norm of the error, \( E \), with respect to the coefficients \( c_j \), \( j\in\If \):

 
$$ E = (e,e) = (f-u,f-u) = \left(f(x)-\sum_{j\in\If} c_j\baspsi_j(x), f(x)-\sum_{j\in\If} c_j\baspsi_j(x)\right) $$

 

 
$$ \frac{\partial E}{\partial c_i} = 0,\quad i=\in\If $$

 

But what is the scalar product when \( \baspsi_i \) is a function?

 
$$(f,g) = \int_\Omega f(x)g(x)\, dx$$

 
(natural extension from Eucledian product \( (\u, \v) = \sum_j u_jv_j \))

The least squares method; details

 
$$ \begin{align*} E(c_0,\ldots,c_N) &= (e,e) = (f-u,f-u) \\ &= (f,f) -2\sum_{j\in\If} c_j(f,\baspsi_i) + \sum_{p\in\If}\sum_{q\in\If} c_pc_q(\baspsi_p,\baspsi_q) \end{align*} $$

 

 
$$ \frac{\partial E}{\partial c_i} = 0,\quad i=\in\If $$

 

The computations are identical to the vector case, and consequently we get a linear system

 
$$ \sum_{j\in\If} A_{i,j}c_j = b_i,\ i\in\If,\quad A_{i,j} = (\baspsi_i,\baspsi_j),\ b_i = (f,\baspsi_i) $$

 

The projection (or Galerkin) method

As before, minimizing \( (e,e) \) is equivalent to

 
$$ (e,\baspsi_i)=0,\quad i\in\If \tag{5} $$

 

which is equivalent to

 
$$ (e,v)=0,\quad\forall v\in V \tag{6} $$

 
which is the projection (or Galerkin) method.

The algebra is the same as in the multi-dimensional vector case, and we get the same linear system as arose from the least squares method.

Example: fit a parabola by a straight line; problem

Problem.

Approximate a parabola \( f(x) = 10(x-1)^2 - 1 \) by a straight line.

 
$$ \begin{equation*} V = \hbox{span}\,\{1, x\} \end{equation*} $$

 
That is, \( \baspsi_0(x)=1 \), \( \baspsi_1(x)=x \), and \( N=1 \). We seek

 
$$ \begin{equation*} u=c_0\baspsi_0(x) + c_1\baspsi_1(x) = c_0 + c_1x \end{equation*} $$

 

Example: fit a parabola by a straight line; solution

 
$$ \begin{align*} A_{0,0} &= (\baspsi_0,\baspsi_0) = \int_1^21\cdot 1\, dx = 1\\ A_{0,1} &= (\baspsi_0,\baspsi_1) = \int_1^2 1\cdot x\, dx = 3/2\\ A_{1,0} &= A_{0,1} = 3/2\\ A_{1,1} &= (\baspsi_1,\baspsi_1) = \int_1^2 x\cdot x\,dx = 7/3\\ b_1 &= (f,\baspsi_0) = \int_1^2 (10(x-1)^2 - 1)\cdot 1 \, dx = 7/3\\ b_2 &= (f,\baspsi_1) = \int_1^2 (10(x-1)^2 - 1)\cdot x\, dx = 13/3 \end{align*} $$

 
Solution of 2x2 linear system:

 
$$ c_0 = -38/3,\quad c_1 = 10,\quad u(x) = 10x - \frac{38}{3} $$

 

Example: fit a parabola by a straight line; plot

Ideas for implementing the least squares method via symbolic computations

Consider symbolic computation of the linear system, where

Carry out the integrations, solve the linear system, and return \( u(x)=\sum_jc_j\baspsi_j(x) \)

Basic symbolic (SymPy) code for least squares

import sympy as sym

def least_squares(f, psi, Omega):
    N = len(psi) - 1
    A = sym.zeros((N+1, N+1))
    b = sym.zeros((N+1, 1))
    x = sym.Symbol('x')
    for i in range(N+1):
        for j in range(i, N+1):
            A[i,j] = sym.integrate(psi[i]*psi[j],
                                  (x, Omega[0], Omega[1]))
            A[j,i] = A[i,j]
        b[i,0] = sym.integrate(psi[i]*f, (x, Omega[0], Omega[1]))
    c = A.LUsolve(b)
    u = 0
    for i in range(len(psi)):
        u += c[i,0]*psi[i]
    return u, c

Observe: symmetric coefficient matrix so we can halve the integrations.

Improved code if symbolic integration fails

def least_squares(f, psi, Omega, symbolic=True):
    ...
    for i in range(N+1):
        for j in range(i, N+1):
            integrand = psi[i]*psi[j]
            if symbolic:
                I = sym.integrate(integrand, (x, Omega[0], Omega[1]))
            if not symbolic or isinstance(I, sym.Integral):
                # Could not integrate symbolically,
                # fall back on numerical integration
                integrand = sym.lambdify([x], integrand)
                I = sym.mpmath.quad(integrand, [Omega[0], Omega[1]])
            A[i,j] = A[j,i] = I

        integrand = psi[i]*f
        if symbolic:
            I = sym.integrate(integrand, (x, Omega[0], Omega[1]))
        if not symbolic or isinstance(I, sym.Integral):
            integrand = sym.lambdify([x], integrand)
            I = sym.mpmath.quad(integrand, [Omega[0], Omega[1]])
        b[i,0] = I
    ...

Plotting of the solution

Compare \( f \) and \( u \) visually:

def comparison_plot(f, u, Omega, filename='tmp.pdf'):
    x = sym.Symbol('x')
    # Turn f and u to ordinary Python functions
    f = sym.lambdify([x], f, modules="numpy")
    u = sym.lambdify([x], u, modules="numpy")
    resolution = 401  # no of points in plot
    xcoor  = linspace(Omega[0], Omega[1], resolution)
    exact  = f(xcoor)
    approx = u(xcoor)
    plot(xcoor, approx)
    hold('on')
    plot(xcoor, exact)
    legend(['approximation', 'exact'])
    savefig(filename)

All code in module approx1D.py

Application of the software: fit a parabola by a straight line

>>> from approx1D import *
>>> x = sym.Symbol('x')
>>> f = 10*(x-1)**2-1
>>> u, c = least_squares(f=f, psi=[1, x], Omega=[1, 2])
>>> comparison_plot(f, u, Omega=[1, 2])

The approximation is exact if \( f\in V \)

>>> from approx1D import *
>>> x = sym.Symbol('x')
>>> f = 10*(x-1)**2-1
>>> u, c = least_squares(f=f, psi=[1, x, x**2], Omega=[1, 2])
>>> print u
10*x**2 - 20*x + 9
>>> print sym.expand(f)
10*x**2 - 20*x + 9

The general result: perfect approximation if \( f\in V \)

General result.

If \( f\in V \), least squares and projection/Galerkin give \( u=f \).

Proof of why \( f\in V \) gives exact \( u \)

If \( f\in V \), \( f=\sum_{j\in\If}d_j\baspsi_j \), for some \( \sequencei{d} \). Then

 
$$ \begin{equation*} b_i = (f,\baspsi_i) = \sum_{j\in\If}d_j(\baspsi_j, \baspsi_i) = \sum_{j\in\If} d_jA_{i,j} \end{equation*} $$

 
The linear system \( \sum_j A_{i,j}c_j = b_i \), \( i\in\If \), is then

 
$$ \begin{equation*} \sum_{j\in\If}c_jA_{i,j} = \sum_{j\in\If}d_jA_{i,j},\quad i\in\If \end{equation*} $$

 
which implies that \( c_i=d_i \) for \( i\in\If \) and \( u \) is identical to \( f \).

Finite-precision in numerical computations; question

The previous computations were symbolic. What if we solve the linear system numerically with standard arrays?

That is, \( f \) is parabola, but we approximate with

 
$$ u(x) = c_0 + c_1x + c_2x^2 + c_3x^3 +\cdots + c_Nx^N $$

 

We expect \( c_2=c_3=\cdots=c_N=0 \) since \( f\in V \) implies \( u=f \).

Will we get this result with finite precision computer arithmetic?

Finite-precision in numerical computations; results

exact sympy numpy32 numpy64
9 9.62 5.57 8.98
-20 -23.39 -7.65 -19.93
10 17.74 -4.50 9.96
0 -9.19 4.13 -0.26
0 5.25 2.99 0.72
0 0.18 -1.21 -0.93
0 -2.48 -0.41 0.73
0 1.81 -0.013 -0.36
0 -0.66 0.08 0.11
0 0.12 0.04 -0.02
0 -0.001 -0.02 0.002

The ill-conditioning is due to almost linearly dependent basis functions for large \( N \)

Source or problem: the \( x^i \) functions become almost linearly dependent as \( i \) grows:

Ill-conditioning: general conclusions

Fourier series approximation; problem and code

Let's approximate \( f \) by a typical Fourier series expansion

 
$$ u(x) = \sum_i a_i\sin i\pi x = \sum_{j=0}^Nc_j\sin((j+1)\pi x) $$

 

which means that

 
$$ \begin{equation*} V = \hbox{span}\,\{ \sin \pi x, \sin 2\pi x,\ldots,\sin (N+1)\pi x\} \end{equation*} $$

 

Computations using the least_squares function:

N = 3
from sympy import sin, pi
psi = [sin(pi*(i+1)*x) for i in range(N+1)]
f = 10*(x-1)**2 - 1
Omega = [0, 1]
u, c = least_squares(f, psi, Omega)
comparison_plot(f, u, Omega)

Fourier series approximation; plot

Left: \( N=3 \), right: \( N=11 \):

Problem:

All \( \baspsi_i(0)=0 \) and hence \( u(0)=0 \neq f(0)=9 \). Similar problem at \( x=1 \). The boundary values of \( u \) are always wrong!

Fourier series approximation; improvements

 
$$ u(x) = {\color{red}f(0)(1-x) + xf(1)} + \sum_{j\in\If} c_j\baspsi_j(x) $$

 
The extra terms ensure \( u(0)=f(0) \) and \( u(1)=f(1) \) and is a strikingly good help to get a good approximation!

Fourier series approximation; final results

\( N=3 \) vs \( N=11 \):

Orthogonal basis functions

This choice of sine functions as basis functions is popular because

In general, for an orthogonal basis, \( A_{i,j} \) is diagonal and we can easily solve for \( c_i \):

 
$$ c_i = \frac{b_i}{A_{i,i}} = \frac{(f,\baspsi_i)}{(\baspsi_i,\baspsi_i)} $$

 

Function for the least squares method with orthogonal basis functions

def least_squares_orth(f, psi, Omega):
    N = len(psi) - 1
    A = [0]*(N+1)
    b = [0]*(N+1)
    x = sym.Symbol('x')
    for i in range(N+1):
        A[i] = sym.integrate(psi[i]**2, (x, Omega[0], Omega[1]))
        b[i] = sym.integrate(psi[i]*f,  (x, Omega[0], Omega[1]))
    c = [b[i]/A[i] for i in range(len(b))]
    u = 0
    for i in range(len(psi)):
        u += c[i]*psi[i]
    return u, c

Function for the least squares method with orthogonal basis functions; symbolic and numerical integration

Extensions:

def least_squares_orth(f, psi, Omega, symbolic=True):
    ...
    for i in range(N+1):
        # Diagonal matrix term
        A[i] = sym.integrate(psi[i]**2, (x, Omega[0], Omega[1]))

        # Right-hand side term
        integrand = psi[i]*f
        if symbolic:
            I = sym.integrate(integrand,  (x, Omega[0], Omega[1]))
        if not symbolic or isinstance(I, sym.Integral):
            print 'numerical integration of', integrand
            integrand = sym.lambdify([x], integrand)
            I = sym.mpmath.quad(integrand, [Omega[0], Omega[1]])
        b[i] = I
    ...

Assumption above: \( \int_\Omega\basphi_i^2dx \) works symbolically (but there is no guarantee!)

The collocation or interpolation method; ideas and math

Here is another idea for approximating \( f(x) \) by \( u(x)=\sum_jc_j\baspsi_j \):

 
$$ u(\xno{i}) = \sum_{j\in\If} c_j \baspsi_j(\xno{i}) = f(\xno{i}) \quad i\in\If,N $$

 

This is a linear system with no need for integration:

 
$$ \begin{align} \sum_{j\in\If} A_{i,j}c_j &= b_i,\quad i\in\If \tag{7}\\ A_{i,j} &= \baspsi_j(\xno{i}) \tag{8}\\ b_i &= f(\xno{i}) \tag{9} \end{align} $$

 

No symmetric matrix: \( \baspsi_j(\xno{i})\neq \baspsi_i(\xno{j}) \) in general

The collocation or interpolation method; implementation

points holds the interpolation/collocation points

def interpolation(f, psi, points):
    N = len(psi) - 1
    A = sym.zeros((N+1, N+1))
    b = sym.zeros((N+1, 1))
    x = sym.Symbol('x')
    # Turn psi and f into Python functions
    psi = [sym.lambdify([x], psi[i]) for i in range(N+1)]
    f = sym.lambdify([x], f)
    for i in range(N+1):
        for j in range(N+1):
            A[i,j] = psi[j](points[i])
        b[i,0] = f(points[i])
    c = A.LUsolve(b)
    u = 0
    for i in range(len(psi)):
        u += c[i,0]*psi[i](x)
    return u

The collocation or interpolation method; approximating a parabola by linear functions

\( (4/3,5/3) \) vs \( (1,2) \):

The regression method

The regression method leads to an overdetermined linear system

Overdetermined linear system:

 
$$ u(\xno{i}) = \sum_{j\in\If} c_j \baspsi_j(\xno{i}) = f(\xno{i}), \quad i=0,1,\ldots,m $$

 

 
$$ \sum_{j\in\If} A_{i,j}c_j = b_i,\quad i=0,1,\ldots,m $$

 

 
$$ A_{i,j} = \baspsi_j(\xno{i}),\quad b_i = f(\xno{i})$$

 

A least squares method is used to solve overdetermined linear systems

 
$$ \begin{align*} B_{i,j} &= \sum_k A^T_{i,k}A_{k,j} = \sum_k A_{k,i}A_{k,j} =\sum_{k=0}^m\baspsi_i(\xno{k})\baspsi_j(\xno{k}) \\ d_i &=\sum_k A^T_{i,k}b_k = \sum_k A_{k,i}b_k =\sum_{k=0}^m \baspsi_i(\xno{k})f(\xno{k}) \end{align*} $$

 

Implementation

def regression(f, psi, points):
    N = len(psi) - 1
    m = len(points)
    # Use numpy arrays and numerical computing
    B = np.zeros((N+1, N+1))
    d = np.zeros(N+1)
    # Wrap psi and f in Python functions rather than expressions
    # so that we can evaluate psi at points[i]
    x = sym.Symbol('x')
    psi_sym = psi  # save symbolic expression
    psi = [sym.lambdify([x], psi[i]) for i in range(N+1)]
    f = sym.lambdify([x], f)
    for i in range(N+1):
        for j in range(N+1):
            B[i,j] = 0
            for k in range(m+1):
                B[i,j] += psi[i](points[k])*psi[j](points[k])
        d[i] = 0
        for k in range(m+1):
            d[i] += psi[i](points[k])*f(points[k])
    c = np.linalg.solve(B, d)
    u = sum(c[i]*psi_sym[i] for i in range(N+1))
    return u, c

Example on using the regression method; code

import sympy as sym
x = sym.Symbol('x')
f = 10*(x-1)**2 - 1
psi = [1, x]
Omega = [1, 2]
m_values = [2-1, 8-1, 64-1]
# Create m+3 points and use the inner m+1 points
for m in m_values:
    points = np.linspace(Omega[0], Omega[1], m+3)[1:-1]
    u, c = regression(f, psi, points)
    comparison_plot(f, u, Omega, points=points,
        points_legend='%d interpolation points' % (m+1))

Example on using the regression method; result

 
$$ \begin{align*} u(x) &= 10x - 13.2,\quad 2\hbox{ points}\\ u(x) &= 10x - 12.7,\quad 8\hbox{ points}\\ u(x) &= 10x - 12.7,\quad 64\hbox{ points} \end{align*} $$

 

What is the regression method used for?

Lagrange polynomials; motivation and ideas

Motivation:

The Lagrange interpolating polynomials \( \baspsi_j \) have the property that

 
$$ \baspsi_i(\xno{j}) =\delta_{ij},\quad \delta_{ij} = \left\lbrace\begin{array}{ll} 1, & i=j\\ 0, & i\neq j \end{array}\right. $$

 

Hence, \( c_i = f(x_i) \) and

 
$$ u(x) = \sum_{j\in\If} f(\xno{i})\baspsi_i(x) $$

 

Lagrange polynomials; formula and code

 
$$ \baspsi_i(x) = \prod_{j=0,j\neq i}^N \frac{x-\xno{j}}{\xno{i}-\xno{j}} = \frac{x-x_0}{\xno{i}-x_0}\cdots\frac{x-\xno{i-1}}{\xno{i}-\xno{i-1}}\frac{x-\xno{i+1}}{\xno{i}-\xno{i+1}} \cdots\frac{x-x_N}{\xno{i}-x_N} $$

 

def Lagrange_polynomial(x, i, points):
    p = 1
    for k in range(len(points)):
        if k != i:
            p *= (x - points[k])/(points[i] - points[k])
    return p

Lagrange polynomials; successful example

Lagrange polynomials; a less successful example

Lagrange polynomials; oscillatory behavior

12 points, degree 11, plot of two of the Lagrange polynomials - note that they are zero at all points except one.

Problem: strong oscillations near the boundaries for larger \( N \) values.

Lagrange polynomials; remedy for strong oscillations

The oscillations can be reduced by a more clever choice of interpolation points, called the Chebyshev nodes:

 
$$ \xno{i} = \half (a+b) + \half(b-a)\cos\left( \frac{2i+1}{2(N+1)}\pi\right),\quad i=0\ldots,N $$

 
on an interval \( [a,b] \).

Lagrange polynomials; recalculation with Chebyshev nodes

Lagrange polynomials; less oscillations with Chebyshev nodes

12 points, degree 11, plot of two of the Lagrange polynomials - note that they are zero at all points except one.

Finite element basis functions

The basis functions have so far been global: \( \baspsi_i(x) \neq 0 \) almost everywhere

In the finite element method we use basis functions with local support

The linear combination of hat functions is a piecewise linear function

Elements and nodes

Split \( \Omega \) into \( N_e \) non-overlapping subdomains called elements:

 
$$ \Omega = \Omega^{(0)}\cup \cdots \cup \Omega^{(N_e)} $$

 

On each element, introduce \( N_n \) points called nodes: \( \xno{0},\ldots,\xno{N_n-1} \)

Example on elements with two nodes (P1 elements)

Data structure: nodes holds coordinates or nodes, elements holds the node numbers in each element

nodes = [0, 1.2, 2.4, 3.6, 4.8, 5]
elements = [[0, 1], [1, 2], [2, 3], [3, 4], [4, 5]]

Illustration of two basis functions on the mesh

Example on elements with three nodes (P2 elements)

nodes = [0, 0.125, 0.25, 0.375, 0.5, 0.625, 0.75, 0.875, 1.0]
elements = [[0, 1, 2], [2, 3, 4], [4, 5, 6], [6, 7, 8]]

Some corresponding basis functions (P2 elements)

Examples on elements with four nodes (P3 elements)

d = 3  # d+1 nodes per element
num_elements = 4
num_nodes = num_elements*d + 1
nodes = [i*0.5 for i in range(num_nodes)]
elements = [[i*d+j for j in range(d+1)] for i in range(num_elements)]

Some corresponding basis functions (P3 elements)

The numbering does not need to be regular from left to right

nodes = [1.5, 5.5, 4.2, 0.3, 2.2, 3.1]
elements = [[2, 1], [4, 5], [0, 4], [3, 0], [5, 2]]

Interpretation of the coefficients \( c_i \)

Important property: \( c_i \) is the value of \( u \) at node \( i \), \( \xno{i} \):

 
$$ u(\xno{i}) = \sum_{j\in\If} c_j\basphi_j(\xno{i}) = c_i\basphi_i(\xno{i}) = c_i $$

 

because \( \basphi_j(\xno{i}) =0 \) if \( i\neq j \) and \( \basphi_i(\xno{i}) =1 \)

Properties of the basis functions

Since \( A_{i,j}=\int\basphi_i\basphi_j\dx \), most of the elements in the coefficient matrix will be zero

How to construct quadratic \( \basphi_i \) (P2 elements)

  1. Associate Lagrange polynomials with the nodes in an element
  2. When the polynomial is 1 on the element boundary, combine it with the polynomial in the neighboring element that is also 1 at the same point

Example on linear \( \basphi_i \) (P1 elements)

 
$$ \basphi_i(x) = \left\lbrace\begin{array}{ll} 0, & x < \xno{i-1}\\ (x - \xno{i-1})/h & \xno{i-1} \leq x < \xno{i}\\ 1 - (x - x_{i})/h, & \xno{i} \leq x < \xno{i+1}\\ 0, & x\geq \xno{i+1} \end{array} \right. $$

 

Example on cubic \( \basphi_i \) (P3 elements)

Calculating the linear system for \( c_i \)

Computing a specific matrix entry (1)

\( A_{2,3}=\int_\Omega\basphi_2\basphi_3 dx \): \( \basphi_2\basphi_3\neq 0 \) only over element 2. There,

 
$$ \basphi_3(x) = (x-x_2)/h,\quad \basphi_2(x) = 1- (x-x_2)/h$$

 

 
$$ A_{2,3} = \int_\Omega \basphi_2\basphi_{3}\dx = \int_{\xno{2}}^{\xno{3}} \left(1 - \frac{x - \xno{2}}{h}\right) \frac{x - x_{2}}{h} \dx = \frac{h}{6} $$

 

Computing a specific matrix entry (2)

 
$$ A_{2,2} = \int_{\xno{1}}^{\xno{2}} \left(\frac{x - \xno{1}}{h}\right)^2\dx + \int_{\xno{2}}^{\xno{3}} \left(1 - \frac{x - \xno{2}}{h}\right)^2\dx = \frac{2h}{3} $$

 

Calculating a general row in the matrix; figure

 
$$ A_{i,i-1} = \int_\Omega \basphi_i\basphi_{i-1}\dx = \hbox{?}$$

 

Calculating a general row in the matrix; details

 
$$ \begin{align*} A_{i,i-1} &= \int_\Omega \basphi_i\basphi_{i-1}\dx\\ &= \underbrace{\int_{\xno{i-2}}^{\xno{i-1}} \basphi_i\basphi_{i-1}\dx}_{\basphi_i=0} + \int_{\xno{i-1}}^{\xno{i}} \basphi_i\basphi_{i-1}\dx + \underbrace{\int_{\xno{i}}^{\xno{i+1}} \basphi_i\basphi_{i-1}\dx}_{\basphi_{i-1}=0}\\ &= \int_{\xno{i-1}}^{\xno{i}} \underbrace{\left(\frac{x - x_{i}}{h}\right)}_{\basphi_i(x)} \underbrace{\left(1 - \frac{x - \xno{i-1}}{h}\right)}_{\basphi_{i-1}(x)} \dx = \frac{h}{6} \end{align*} $$

 

Calculation of the right-hand side

 
$$ b_i = \int_\Omega\basphi_i(x)f(x)\dx = \int_{\xno{i-1}}^{\xno{i}} \frac{x - \xno{i-1}}{h} f(x)\dx + \int_{x_{i}}^{\xno{i+1}} \left(1 - \frac{x - x_{i}}{h}\right) f(x) \dx $$

 

Need a specific \( f(x) \) to do more...

Specific example with two elements; linear system and solution

 
$$ \begin{equation*} A = \frac{h}{6}\left(\begin{array}{ccc} 2 & 1 & 0\\ 1 & 4 & 1\\ 0 & 1 & 2 \end{array}\right),\quad b = \frac{h^2}{12}\left(\begin{array}{c} 2 - 3h\\ 12 - 14h\\ 10 -17h \end{array}\right) \end{equation*} $$

 

 
$$ \begin{equation*} c_0 = \frac{h^2}{6},\quad c_1 = h - \frac{5}{6}h^2,\quad c_2 = 2h - \frac{23}{6}h^2 \end{equation*} $$

 

Specific example with two elements; plot

 
$$ \begin{equation*} u(x)=c_0\basphi_0(x) + c_1\basphi_1(x) + c_2\basphi_2(x)\end{equation*} $$

 

Specific example with four elements; plot

Specific example: what about P2 elements?

Recall: if \( f\in V \), \( u \) becomes exact. When \( f \) is a parabola, any choice of P2 elements (1 or many) will give \( u=f \) exactly. The same is true for P3, P4, ... elements since all of them can represent a 2nd-degree polynomial exactly.

Assembly of elementwise computations

Split the integrals into elementwise integrals

 
$$ A_{i,j} = \int_\Omega\basphi_i\basphi_jdx = \sum_{e} \int_{\Omega^{(e)}} \basphi_i\basphi_jdx,\quad A^{(e)}_{i,j}=\int_{\Omega^{(e)}} \basphi_i\basphi_jdx $$

 

Important observations:

The element matrix and local vs global node numbers

 
$$ \tilde A^{(e)} = \{ \tilde A^{(e)}_{r,s}\},\quad \tilde A^{(e)}_{r,s} = \int_{\Omega^{(e)}}\basphi_{q(e,r)}\basphi_{q(e,s)}dx, \quad r,s\in\Ifd=\{0,\ldots,d\} $$

 

Now,

 
$$ A_{q(e,r),q(e,s)} := A_{q(e,r),q(e,s)} + \tilde A^{(e)}_{r,s},\quad r,s\in\Ifd $$

 

Illustration of the matrix assembly: regularly numbered P1 elements

Animation

Illustration of the matrix assembly: regularly numbered P3 elements

Animation

Illustration of the matrix assembly: irregularly numbered P1 elements

Animation

Assembly of the right-hand side

 
$$ b_i = \int_\Omega f(x)\basphi_i(x)dx = \sum_{e} \int_{\Omega^{(e)}} f(x)\basphi_i(x)dx,\quad b^{(e)}_{i}=\int_{\Omega^{(e)}} f(x)\basphi_i(x)dx $$

 

Important observations:

Assembly:

 
$$ b_{q(e,r)} := b_{q(e,r)} + \tilde b^{(e)}_{r},\quad r\in\Ifd $$

 

Mapping to a reference element

Instead of computing

 
$$ \begin{equation*} \tilde A^{(e)}_{r,s} = \int_{\Omega^{(e)}}\basphi_{q(e,r)}(x)\basphi_{q(e,s)}(x)dx = \int_{x_L}^{x_R}\basphi_{q(e,r)}(x)\basphi_{q(e,s)}(x)dx \end{equation*} $$

 
we now map \( [x_L, x_R] \) to a standardized reference element domain \( [-1,1] \) with local coordinate \( X \)

We use affine mapping: linear stretch of \( X\in [-1,1] \) to \( x\in [x_L,x_R] \)

 
$$ x = \half (x_L + x_R) + \half (x_R - x_L)X $$

 
or rewritten as

 
$$ x = x_m + {\half}hX, \qquad x_m=(x_L+x_R)/2,\quad h=x_R-x_L $$

 

Integral transformation

Reference element integration: just change integration variable from \( x \) to \( X \). Introduce local basis function

 
$$ \refphi_r(X) = \basphi_{q(e,r)}(x(X)) $$

 

 
$$ \tilde A^{(e)}_{r,s} = \int_{\Omega^{(e)}}\basphi_{q(e,r)}(x)\basphi_{q(e,s)}(x)dx = \int\limits_{-1}^1 \refphi_r(X)\refphi_s(X)\underbrace{\frac{dx}{dX}}_{\det J = h/2}dX = \int\limits_{-1}^1 \refphi_r(X)\refphi_s(X)\det J\,dX $$

 

 
$$ \tilde b^{(e)}_{r} = \int_{\Omega^{(e)}}f(x)\basphi_{q(e,r)}(x)dx = \int\limits_{-1}^1 f(x(X))\refphi_r(X)\det J\,dX $$

 

Advantages of the reference element

Standardized basis functions for P1 elements

 
$$ \begin{align} \refphi_0(X) &= \half (1 - X) \tag{10}\\ \refphi_1(X) &= \half (1 + X) \tag{11} \end{align} $$

 

Note: simple polynomial expressions (no need to consider piecewisely defined functions)

Standardized basis functions for P2 elements

 
$$ \begin{align} \refphi_0(X) &= \half (X-1)X \tag{12}\\ \refphi_1(X) &= 1 - X^2 \tag{13}\\ \refphi_2(X) &= \half (X+1)X \tag{14} \end{align} $$

 

Easy to generalize to arbitrary order!

How to find the polynomial expressions?

Three alternatives:

  1. Map the global basis function \( \basphi_i(x) \) over an element to \( X \) coordinates
  2. Compute \( \refphi_r(X) \) from scratch using

    1. a given polynomial order \( d \)
    2. \( \refphi_r(X)=1 \) at local node 1
    3. \( \refphi_r(X)=1 \) at all other local nodes

  3. Use formulas for Lagrange interpolating polynomials on the element

Integration over a reference element; element matrix

P1 elements and \( f(x)=x(1-x) \).

 
$$ \begin{align} \tilde A^{(e)}_{0,0} &= \int_{-1}^1 \refphi_0(X)\refphi_0(X)\frac{h}{2} dX\nonumber\\ &=\int_{-1}^1 \half(1-X)\half(1-X) \frac{h}{2} dX = \frac{h}{8}\int_{-1}^1 (1-X)^2 dX = \frac{h}{3} \tag{15}\\ \tilde A^{(e)}_{1,0} &= \int_{-1}^1 \refphi_1(X)\refphi_0(X)\frac{h}{2} dX\nonumber\\ &=\int_{-1}^1 \half(1+X)\half(1-X) \frac{h}{2} dX = \frac{h}{8}\int_{-1}^1 (1-X^2) dX = \frac{h}{6} \tag{16}\\ \tilde A^{(e)}_{0,1} &= \tilde A^{(e)}_{1,0} \tag{17}\\ \tilde A^{(e)}_{1,1} &= \int_{-1}^1 \refphi_1(X)\refphi_1(X)\frac{h}{2} dX\nonumber\\ &=\int_{-1}^1 \half(1+X)\half(1+X) \frac{h}{2} dX = \frac{h}{8}\int_{-1}^1 (1+X)^2 dX = \frac{h}{3} \tag{18} \end{align} $$

 

Integration over a reference element; element vector

 
$$ \begin{align} \tilde b^{(e)}_{0} &= \int_{-1}^1 f(x(X))\refphi_0(X)\frac{h}{2} dX\nonumber\\ &= \int_{-1}^1 (x_m + \half hX)(1-(x_m + \half hX)) \half(1-X)\frac{h}{2} dX \nonumber\\ &= - \frac{1}{24} h^{3} + \frac{1}{6} h^{2} x_{m} - \frac{1}{12} h^{2} - \half h x_{m}^{2} + \half h x_{m} \tag{19}\\ \tilde b^{(e)}_{1} &= \int_{-1}^1 f(x(X))\refphi_1(X)\frac{h}{2} dX\nonumber\\ &= \int_{-1}^1 (x_m + \half hX)(1-(x_m + \half hX)) \half(1+X)\frac{h}{2} dX \nonumber\\ &= - \frac{1}{24} h^{3} - \frac{1}{6} h^{2} x_{m} + \frac{1}{12} h^{2} - \half h x_{m}^{2} + \half h x_{m} \tag{20} \end{align} $$

 

\( x_m \): element midpoint.

Tedious calculations! Let's use symbolic software

>>> import sympy as sym
>>> x, x_m, h, X = sym.symbols('x x_m h X')
>>> sym.integrate(h/8*(1-X)**2, (X, -1, 1))
h/3
>>> sym.integrate(h/8*(1+X)*(1-X), (X, -1, 1))
h/6
>>> x = x_m + h/2*X
>>> b_0 = sym.integrate(h/4*x*(1-x)*(1-X), (X, -1, 1))
>>> print b_0
-h**3/24 + h**2*x_m/6 - h**2/12 - h*x_m**2/2 + h*x_m/2

Can print out in LaTeX too (convenient for copying into reports):

>>> print sym.latex(b_0, mode='plain')
- \frac{1}{24} h^{3} + \frac{1}{6} h^{2} x_{m}
- \frac{1}{12} h^{2} - \half h x_{m}^{2}
+ \half h x_{m}

Implementation

Compute finite element basis functions in the reference element

Let \( \refphi_r(X) \) be a Lagrange polynomial of degree d:

import sympy as sym
import numpy as np

def phi_r(r, X, d):
    if isinstance(X, sym.Symbol):
        h = sym.Rational(1, d)  # node spacing
        nodes = [2*i*h - 1 for i in range(d+1)]
    else:
        # assume X is numeric: use floats for nodes
        nodes = np.linspace(-1, 1, d+1)
    return Lagrange_polynomial(X, r, nodes)

def Lagrange_polynomial(x, i, points):
    p = 1
    for k in range(len(points)):
        if k != i:
            p *= (x - points[k])/(points[i] - points[k])
    return p

def basis(d=1):
    """Return the complete basis."""
    X = sym.Symbol('X')
    phi = [phi_r(r, X, d) for r in range(d+1)]
    return phi

Compute the element matrix

def element_matrix(phi, Omega_e, symbolic=True):
    n = len(phi)
    A_e = sym.zeros((n, n))
    X = sym.Symbol('X')
    if symbolic:
        h = sym.Symbol('h')
    else:
        h = Omega_e[1] - Omega_e[0]
    detJ = h/2  # dx/dX
    for r in range(n):
        for s in range(r, n):
            A_e[r,s] = sym.integrate(phi[r]*phi[s]*detJ, (X, -1, 1))
            A_e[s,r] = A_e[r,s]
    return A_e

Example on symbolic vs numeric element matrix

>>> from fe_approx1D import *
>>> phi = basis(d=1)
>>> phi
[1/2 - X/2, 1/2 + X/2]
>>> element_matrix(phi, Omega_e=[0.1, 0.2], symbolic=True)
[h/3, h/6]
[h/6, h/3]
>>> element_matrix(phi, Omega_e=[0.1, 0.2], symbolic=False)
[0.0333333333333333, 0.0166666666666667]
[0.0166666666666667, 0.0333333333333333]

Compute the element vector

def element_vector(f, phi, Omega_e, symbolic=True):
    n = len(phi)
    b_e = sym.zeros((n, 1))
    # Make f a function of X
    X = sym.Symbol('X')
    if symbolic:
        h = sym.Symbol('h')
    else:
        h = Omega_e[1] - Omega_e[0]
    x = (Omega_e[0] + Omega_e[1])/2 + h/2*X  # mapping
    f = f.subs('x', x)  # substitute mapping formula for x
    detJ = h/2  # dx/dX
    for r in range(n):
        b_e[r] = sym.integrate(f*phi[r]*detJ, (X, -1, 1))
    return b_e

Note f.subs('x', x): replace x by \( x(X) \) such that f contains X

Fallback on numerical integration if symbolic integration of \( \int f\refphi_r dx \) fails

def element_vector(f, phi, Omega_e, symbolic=True):
        ...
        I = sym.integrate(f*phi[r]*detJ, (X, -1, 1))  # try...
        if isinstance(I, sym.Integral):
            h = Omega_e[1] - Omega_e[0]  # Ensure h is numerical
            detJ = h/2
            integrand = sym.lambdify([X], f*phi[r]*detJ)
            I = sym.mpmath.quad(integrand, [-1, 1])
        b_e[r] = I
        ...

Linear system assembly and solution

def assemble(nodes, elements, phi, f, symbolic=True):
    N_n, N_e = len(nodes), len(elements)
    zeros = sym.zeros if symbolic else np.zeros
    A = zeros((N_n, N_n))
    b = zeros((N_n, 1))
    for e in range(N_e):
        Omega_e = [nodes[elements[e][0]], nodes[elements[e][-1]]]

        A_e = element_matrix(phi, Omega_e, symbolic)
        b_e = element_vector(f, phi, Omega_e, symbolic)

        for r in range(len(elements[e])):
            for s in range(len(elements[e])):
                A[elements[e][r],elements[e][s]] += A_e[r,s]
            b[elements[e][r]] += b_e[r]
    return A, b

Linear system solution

if symbolic:
    c = A.LUsolve(b)           # sympy arrays, symbolic Gaussian elim.
else:
    c = np.linalg.solve(A, b)  # numpy arrays, numerical solve

Note: the symbolic computation of A, b and A.LUsolve(b) can be very tedious.

Example on computing symbolic approximations

>>> h, x = sym.symbols('h x')
>>> nodes = [0, h, 2*h]
>>> elements = [[0, 1], [1, 2]]
>>> phi = basis(d=1)
>>> f = x*(1-x)
>>> A, b = assemble(nodes, elements, phi, f, symbolic=True)
>>> A
[h/3,   h/6,   0]
[h/6, 2*h/3, h/6]
[  0,   h/6, h/3]
>>> b
[     h**2/6 - h**3/12]
[      h**2 - 7*h**3/6]
[5*h**2/6 - 17*h**3/12]
>>> c = A.LUsolve(b)
>>> c
[                           h**2/6]
[12*(7*h**2/12 - 35*h**3/72)/(7*h)]
[  7*(4*h**2/7 - 23*h**3/21)/(2*h)]

Example on computing numerical approximations

>>> nodes = [0, 0.5, 1]
>>> elements = [[0, 1], [1, 2]]
>>> phi = basis(d=1)
>>> x = sym.Symbol('x')
>>> f = x*(1-x)
>>> A, b = assemble(nodes, elements, phi, f, symbolic=False)
>>> A
[ 0.166666666666667, 0.0833333333333333,                  0]
[0.0833333333333333,  0.333333333333333, 0.0833333333333333]
[                 0, 0.0833333333333333,  0.166666666666667]
>>> b
[          0.03125]
[0.104166666666667]
[          0.03125]
>>> c = A.LUsolve(b)
>>> c
[0.0416666666666666]
[ 0.291666666666667]
[0.0416666666666666]

The structure of the coefficient matrix

>>> d=1; N_e=8; Omega=[0,1]  # 8 linear elements on [0,1]
>>> phi = basis(d)
>>> f = x*(1-x)
>>> nodes, elements = mesh_symbolic(N_e, d, Omega)
>>> A, b = assemble(nodes, elements, phi, f, symbolic=True)
>>> A
[h/3,   h/6,     0,     0,     0,     0,     0,     0,   0]
[h/6, 2*h/3,   h/6,     0,     0,     0,     0,     0,   0]
[  0,   h/6, 2*h/3,   h/6,     0,     0,     0,     0,   0]
[  0,     0,   h/6, 2*h/3,   h/6,     0,     0,     0,   0]
[  0,     0,     0,   h/6, 2*h/3,   h/6,     0,     0,   0]
[  0,     0,     0,     0,   h/6, 2*h/3,   h/6,     0,   0]
[  0,     0,     0,     0,     0,   h/6, 2*h/3,   h/6,   0]
[  0,     0,     0,     0,     0,     0,   h/6, 2*h/3, h/6]
[  0,     0,     0,     0,     0,     0,     0,   h/6, h/3]

Note: do this by hand to understand what is going on!

General result: the coefficient matrix is sparse

 
$$ A = \frac{h}{6} \left( \begin{array}{cccccccccc} 2 & 1 & 0 &\cdots & \cdots & \cdots & \cdots & \cdots & 0 \\ 1 & 4 & 1 & \ddots & & & & & \vdots \\ 0 & 1 & 4 & 1 & \ddots & & & & \vdots \\ \vdots & \ddots & & \ddots & \ddots & 0 & & & \vdots \\ \vdots & & \ddots & \ddots & \ddots & \ddots & \ddots & & \vdots \\ \vdots & & & 0 & 1 & 4 & 1 & \ddots & \vdots \\ \vdots & & & & \ddots & \ddots & \ddots &\ddots & 0 \\ \vdots & & & & &\ddots & 1 & 4 & 1 \\ 0 &\cdots & \cdots &\cdots & \cdots & \cdots & 0 & 1 & 2 \end{array} \right) $$

 

Exemplifying the sparsity for P2 elements

 
$$ A = \frac{h}{30} \left( \begin{array}{ccccccccc} 4 & 2 & - 1 & 0 & 0 & 0 & 0 & 0 & 0\\ 2 & 16 & 2 & 0 & 0 & 0 & 0 & 0 & 0\\- 1 & 2 & 8 & 2 & - 1 & 0 & 0 & 0 & 0\\ 0 & 0 & 2 & 16 & 2 & 0 & 0 & 0 & 0\\ 0 & 0 & - 1 & 2 & 8 & 2 & - 1 & 0 & 0\\ 0 & 0 & 0 & 0 & 2 & 16 & 2 & 0 & 0\\ 0 & 0 & 0 & 0 & - 1 & 2 & 8 & 2 & - 1 \\0 & 0 & 0 & 0 & 0 & 0 & 2 & 16 & 2\\0 & 0 & 0 & 0 & 0 & 0 & - 1 & 2 & 4 \end{array} \right) $$

 

Matrix sparsity pattern for regular/random numbering of P1 elements

Matrix sparsity pattern for regular/random numbering of P3 elements

Sparse matrix storage and solution

The minimum storage requirements for the coefficient matrix \( A_{i,j} \):

Approximate \( f\sim x^9 \) by various elements; code

Compute a mesh with \( N_e \) elements, basis functions of degree \( d \), and approximate a given symbolic expression \( f(x) \) by a finite element expansion \( u(x) = \sum_jc_j\basphi_j(x) \):

import sympy as sym
from fe_approx1D import approximate
x = sym.Symbol('x')

approximate(f=x*(1-x)**8, symbolic=False, d=1, N_e=4)
approximate(f=x*(1-x)**8, symbolic=False, d=2, N_e=2)
approximate(f=x*(1-x)**8, symbolic=False, d=1, N_e=8)
approximate(f=x*(1-x)**8, symbolic=False, d=2, N_e=4)

Approximate \( f\sim x^9 \) by various elements; plot

Comparison of finite element and finite difference approximation

Interpolation/collocation with finite elements

Let \( \{\xno{i}\}_{i\in\If} \) be the nodes in the mesh. Collocation/interpolation means

 
$$ u(\xno{i})=f(\xno{i}),\quad i\in\If, $$

 
which translates to

 
$$ \sum_{j\in\If} c_j \basphi_j(\xno{i}) = f(\xno{i}),$$

 
but \( \basphi_j(\xno{i})=0 \) if \( i\neq j \) so the sum collapses to one term \( c_i\basphi_i(\xno{i}) = c_i \), and we have the result

 
$$ c_i = f(\xno{i}) $$

 

Same result as the standard finite difference approach, but finite elements define \( u \) also between the \( \xno{i} \) points

Galerkin/project and least squares vs collocation/interpolation or finite differences

The P1 finite element machinery results in a linear system where equation no \( i \) is

 
$$ \frac{h}{6}(u_{i-1} + 4u_i + u_{i+1}) = (f,\basphi_i) $$

 

Note:

Expressing the left-hand side in finite difference operator notation

Rewrite the left-hand side of finite element equation no \( i \):

 
$$ h(u_i + \frac{1}{6}(u_{i-1} - 2u_i + u_{i+1})) = [h(u + \frac{h^2}{6}D_x D_x u)]_i $$

 
This is the standard finite difference approximation of

 
$$ h(u + \frac{h^2}{6}u'')$$

 

Treating the right-hand side; Trapezoidal rule

 
$$ (f,\basphi_i) = \int_{\xno{i-1}}^{\xno{i}} f(x)\frac{1}{h} (x - \xno{i-1}) dx + \int_{\xno{i}}^{\xno{i+1}} f(x)\frac{1}{h}(1 - (x - x_{i})) dx $$

 
Cannot do much unless we specialize \( f \) or use numerical integration.

Trapezoidal rule using the nodes:

 
$$ (f,\basphi_i) = \int_\Omega f\basphi_i dx\approx h\half( f(\xno{0})\basphi_i(\xno{0}) + f(\xno{N})\basphi_i(\xno{N})) + h\sum_{j=1}^{N-1} f(\xno{j})\basphi_i(\xno{j}) $$

 
\( \basphi_i(\xno{j})=\delta_{ij} \), so this formula collapses to one term:

 
$$ (f,\basphi_i) \approx hf(\xno{i}),\quad i=1,\ldots,N-1\thinspace. $$

 

Same result as in collocation (interpolation) and the finite difference method!

Treating the right-hand side; Simpson's rule

 
$$ \int_\Omega g(x)dx \approx \frac{h}{6}\left( g(\xno{0}) + 2\sum_{j=1}^{N-1} g(\xno{j}) + 4\sum_{j=0}^{N-1} g(\xno{j+\half}) + f(\xno{2N})\right), $$

 
Our case: \( g=f\basphi_i \). The sums collapse because \( \basphi_i=0 \) at most of the points.

 
$$ (f,\basphi_i) \approx \frac{h}{3}(f_{i-\half} + f_i + f_{i+\half}) $$

 

Conclusions:

Finite element approximation vs finite differences

With Trapezoidal integration of \( (f,\basphi_i) \), the finite element method essentially solve

 
$$ u + \frac{h^2}{6} u'' = f,\quad u'(0)=u'(L)=0, $$

 
by the finite difference method

 
$$ [u + \frac{h^2}{6} D_x D_x u = f]_i $$

 

With Simpson integration of \( (f,\basphi_i) \) we essentially solve

 
$$ [u + \frac{h^2}{6} D_x D_x u = \bar f]_i, $$

 
where

 
$$ \bar f_i = \frac{1}{3}(f_{i-1/2} + f_i + f_{i+1/2}) $$

 

Note: as \( h\rightarrow 0 \), \( hu''\rightarrow 0 \) and \( \bar f_i\rightarrow f_i \).

Making finite elements behave as finite differences

Result:

Limitations of the nodes and element concepts

So far,

One problem:

The generalized element concept has cells, vertices, nodes, and degrees of freedom

The concept of a finite element

  1. a reference cell in a local reference coordinate system
  2. a set of basis functions \( \refphi_r \) defined on the cell
  3. a set of degrees of freedom (e.g., function values) that uniquely determine the basis functions such that \( \refphi_r=1 \) for degree of freedom number \( r \) and \( \refphi_r=0 \) for all other degrees of freedom
  4. a mapping between local and global degree of freedom numbers (dof map)
  5. a geometric mapping of the reference cell onto to cell in the physical domain: \( [-1,1]\ \Rightarrow\ [x_L,x_R] \)

Basic data structures: vertices, cells, dof_map

The assembly process now applies dof_map:

A[dof_map[e][r], dof_map[e][s]] += A_e[r,s]
b[dof_map[e][r]] += b_e[r]

Example: data structures for P2 elements

vertices = [0, 0.4, 1]
cells = [[0, 1], [1, 2]]
dof_map = [[0, 1, 2], [2, 3, 4]]

Example: P0 elements

Example: Same mesh, but \( u \) is piecewise constant in each cell (P0 element). Same vertices and cells, but

dof_map = [[0], [1]]

May think of one node in the middle of each element.

Note:

We will hereafter work with cells, vertices, and dof_map.

A program with the fundamental algorithmic steps

# Use modified fe_approx1D module
from fe_approx1D_numint import *

x = sym.Symbol('x')
f = x*(1 - x)

N_e = 10
# Create mesh with P3 (cubic) elements
vertices, cells, dof_map = mesh_uniform(N_e, d=3, Omega=[0,1])

# Create basis functions on the mesh
phi = [basis(len(dof_map[e])-1) for e in range(N_e)]

# Create linear system and solve it
A, b = assemble(vertices, cells, dof_map, phi, f)
c = np.linalg.solve(A, b)

# Make very fine mesh and sample u(x) on this mesh for plotting
x_u, u = u_glob(c, vertices, cells, dof_map,
                resolution_per_element=51)
plot(x_u, u)

Approximating a parabola by P0 elements

The approximate function automates the steps in the previous slide:

from fe_approx1D_numint import *
x=sym.Symbol("x")
for N_e in 4, 8:
    approximate(x*(1-x), d=0, N_e=N_e, Omega=[0,1])

Computing the error of the approximation; principles

 
$$ L^2 \hbox{ error: }\quad ||e||_{L^2} = \left(\int_{\Omega} e^2 dx\right)^{1/2}$$

 

Accurate approximation of the integral:

Computing the error of the approximation; details

Note.

We need a version of the Trapezoidal rule valid for non-uniformly spaced points:

 
$$ \int_\Omega g(x) dx \approx \sum_{j=0}^{n-1} \half(g(x_j) + g(x_{j+1}))(x_{j+1}-x_j)$$

 

# Given c, compute x and u values on a very fine mesh
x, u = u_glob(c, vertices, cells, dof_map,
              resolution_per_element=101)
# Compute the error on the very fine mesh
e = f(x) - u
e2 = e**2
# Vectorized Trapezoidal rule
E = np.sqrt(0.5*np.sum((e2[:-1] + e2[1:])*(x[1:] - x[:-1]))

How does the error depend on \( h \) and \( d \)?

Theory and experiments show that the least squares or projection/Galerkin method in combination with Pd elements of equal length \( h \) has an error

 
$$ ||e||_{L^2} = Ch^{d+1} $$

 
where \( C \) depends on \( f \), but not on \( h \) or \( d \).

Cubic Hermite polynomials; definition

Consider a reference cell \( [-1,1] \). We introduce two nodes, \( X=-1 \) and \( X=1 \). The degrees of freedom are

Derivatives as unknowns ensure the same \( \basphi_i'(x) \) value at nodes and thereby continuous derivatives.

Cubic Hermite polynomials; derivation

4 constraints on \( \refphi_r \) (1 for dof \( r \), 0 for all others):

This gives 4 linear, coupled equations for each \( \refphi_r \) to determine the 4 coefficients in the cubic polynomial

Cubic Hermite polynomials; result

 
$$ \begin{align} \refphi_0(X) &= 1 - \frac{3}{4}(X+1)^2 + \frac{1}{4}(X+1)^3 \tag{21}\\ \refphi_1(X) &= -(X+1)(1 - \half(X+1))^2 \tag{22}\\ \refphi_2(X) &= \frac{3}{4}(X+1)^2 - \half(X+1)^3 \tag{23}\\ \refphi_3(X) &= -\half(X+1)(\half(X+1)^2 - (X+1)) \tag{24}\\ \tag{25} \end{align} $$

 

Numerical integration

Common form of a numerical integration rule

 
$$ \int_{-1}^{1} g(X)dX \approx \sum_{j=0}^M w_jg(\bar X_j), $$

 
where

Different rules correspond to different choices of points and weights

The Midpoint rule

Simplest possibility: the Midpoint rule,

 
$$ \int_{-1}^{1} g(X)dX \approx 2g(0),\quad \bar X_0=0,\ w_0=2, $$

 

Exact for linear integrands

Newton-Cotes rules apply the nodes

The Trapezoidal rule:

 
$$ \int_{-1}^{1} g(X)dX \approx g(-1) + g(1),\quad \bar X_0=-1,\ \bar X_1=1,\ w_0=w_1=1, $$

 

Simpson's rule:

 
$$ \int_{-1}^{1} g(X)dX \approx \frac{1}{3}\left(g(-1) + 4g(0) + g(1)\right), $$

 
where

 
$$ \bar X_0=-1,\ \bar X_1=0,\ \bar X_2=1,\ w_0=w_2=\frac{1}{3},\ w_1=\frac{4}{3} $$

 

Gauss-Legendre rules apply optimized points

 
$$ \begin{align} M=1&:\quad \bar X_0=-\frac{1}{\sqrt{3}},\ \bar X_1=\frac{1}{\sqrt{3}},\ w_0=w_1=1 \tag{26}\\ M=2&:\quad \bar X_0=-\sqrt{\frac{3}{{5}}},\ \bar X_0=0,\ \bar X_2= \sqrt{\frac{3}{{5}}},\ w_0=w_2=\frac{5}{9},\ w_1=\frac{8}{9} \tag{27} \end{align} $$

 

See numint.py for a large collection of Gauss-Legendre rules.

Approximation of functions in 2D

Extensibility of 1D ideas.

All the concepts and algorithms developed for approximation of 1D functions \( f(x) \) can readily be extended to 2D functions \( f(x,y) \) and 3D functions \( f(x,y,z) \). Key formulas stay the same.

Quick overview of the 2D case

Inner product in 2D:

 
$$ (f,g) = \int_\Omega f(x,y)g(x,y) dx dy $$

 

Least squares and project/Galerkin lead to a linear system

 
$$ \begin{align*} \sum_{j\in\If} A_{i,j}c_j &= b_i,\quad i\in\If\\ A_{i,j} &= (\baspsi_i,\baspsi_j)\\ b_i &= (f,\baspsi_i) \end{align*} $$

 

Challenge: How to construct 2D basis functions \( \baspsi_i(x,y) \)?

2D basis functions as tensor products of 1D functions

Use a 1D basis for \( x \) variation and a similar for \( y \) variation:

 
$$ \begin{align} V_x &= \mbox{span}\{ \hat\baspsi_0(x),\ldots,\hat\baspsi_{N_x}(x)\} \tag{28}\\ V_y &= \mbox{span}\{ \hat\baspsi_0(y),\ldots,\hat\baspsi_{N_y}(y)\} \tag{29} \end{align} $$

 

The 2D vector space can be defined as a tensor product \( V = V_x\otimes V_y \) with basis functions

 
$$ \baspsi_{p,q}(x,y) = \hat\baspsi_p(x)\hat\baspsi_q(y) \quad p\in\Ix,q\in\Iy\tp $$

 

Tensor products

Given two vectors \( a=(a_0,\ldots,a_M) \) and \( b=(b_0,\ldots,b_N) \) their outer tensor product, also called the dyadic product, is \( p=a\otimes b \), defined through

 
$$ p_{i,j}=a_ib_j,\quad i=0,\ldots,M,\ j=0,\ldots,N\tp$$

 
Note: \( p \) has two indices (as a matrix or two-dimensional array)

Example: 2D basis as tensor product of 1D spaces,

 
$$ \baspsi_{p,q}(x,y) = \hat\baspsi_p(x)\hat\baspsi_q(y), \quad p\in\Ix,q\in\Iy$$

 

Double or single index?

The 2D basis can employ a double index and double sum:

 
$$ u = \sum_{p\in\Ix}\sum_{q\in\Iy} c_{p,q}\baspsi_{p,q}(x,y) $$

 

Or just a single index:

 
$$ u = \sum_{j\in\If} c_j\baspsi_j(x,y)$$

 

with an index mapping \( (p,q)\rightarrow i \):

 
$$ \baspsi_i(x,y) = \hat\baspsi_p(x)\hat\baspsi_q(y), \quad i=p (N_y+1) + q\hbox{ or } i=q (N_x+1) + p $$

 

Example on 2D (bilinear) basis functions; formulas

In 1D we use the basis

 
$$ \{ 1, x \} $$

 

2D tensor product (all combinations):

 
$$ \baspsi_{0,0}=1,\quad \baspsi_{1,0}=x, \quad \baspsi_{0,1}=y, \quad \baspsi_{1,1}=xy $$

 
or with a single index:

 
$$ \baspsi_0=1,\quad \baspsi_1=x, \quad \baspsi_2=y,\quad\baspsi_3 =xy $$

 

See notes for details of a hand-calculation.

Example on 2D (bilinear) basis functions; plot

Quadratic \( f(x,y) = (1+x^2)(1+2y^2) \) (left), bilinear \( u \) (right):

Implementation; principal changes to the 1D code

Very small modification of approx1D.py:

Implementation; 2D integration

import sympy as sym

integrand = psi[i]*psi[j]
I = sym.integrate(integrand,
                 (x, Omega[0][0], Omega[0][1]),
                 (y, Omega[1][0], Omega[1][1]))

# Fall back on numerical integration if symbolic integration
# was unsuccessful
if isinstance(I, sym.Integral):
    integrand = sym.lambdify([x,y], integrand)
    I = sym.mpmath.quad(integrand,
                       [Omega[0][0], Omega[0][1]],
                       [Omega[1][0], Omega[1][1]])

Implementation; 2D basis functions

Tensor product of 1D "Taylor-style" polynomials \( x^i \):

def taylor(x, y, Nx, Ny):
    return [x**i*y**j for i in range(Nx+1) for j in range(Ny+1)]

Tensor product of 1D sine functions \( \sin((i+1)\pi x) \):

def sines(x, y, Nx, Ny):
    return [sym.sin(sym.pi*(i+1)*x)*sym.sin(sym.pi*(j+1)*y)
            for i in range(Nx+1) for j in range(Ny+1)]

Complete code in approx2D.py

Implementation; application

\( f(x,y) = (1+x^2)(1+2y^2) \)

>>> from approx2D import *
>>> f = (1+x**2)*(1+2*y**2)
>>> psi = taylor(x, y, 1, 1)
>>> Omega = [[0, 2], [0, 2]]
>>> u, c = least_squares(f, psi, Omega)
>>> print u
8*x*y - 2*x/3 + 4*y/3 - 1/9
>>> print sym.expand(f)
2*x**2*y**2 + x**2 + 2*y**2 + 1

Implementation; trying a perfect expansion

Add higher powers to the basis such that \( f\in V \):

>>> psi = taylor(x, y, 2, 2)
>>> u, c = least_squares(f, psi, Omega)
>>> print u
2*x**2*y**2 + x**2 + 2*y**2 + 1
>>> print u-f
0

Expected: \( u=f \) when \( f\in V \)

Generalization to 3D

Key idea:

 
$$ V = V_x\otimes V_y\otimes V_z$$

 

Repeated outer tensor product of multiple vectors.

 
$$ \begin{align*} a^{(q)} &= (a^{(q)}_0,\ldots,a^{(q)}_{N_q}),\quad q=0,\ldots,m\\ p &= a^{(0)}\otimes\cdots\otimes a^{(m)}\\ p_{i_0,i_1,\ldots,i_m} &= a^{(0)}_{i_1}a^{(1)}_{i_1}\cdots a^{(m)}_{i_m} \end{align*} $$

 

 
$$ \begin{align*} \baspsi_{p,q,r}(x,y,z) &= \hat\baspsi_p(x)\hat\baspsi_q(y)\hat\baspsi_r(z)\\ u(x,y,z) &= \sum_{p\in\Ix}\sum_{q\in\Iy}\sum_{r\in\Iz} c_{p,q,r} \baspsi_{p,q,r}(x,y,z) \end{align*} $$

 

Finite elements in 2D and 3D

The two great advantages of the finite element method:

Finite elements in 1D: mostly for learning, insight, debugging

Examples on cell types

2D:

3D:

Rectangular domain with 2D P1 elements

Deformed geometry with 2D P1 elements

Rectangular domain with 2D Q1 elements

Basis functions over triangles in the physical domain

The P1 triangular 2D element: \( u \) is linear \( ax + by + c \) over each triangular cell

Basic features of 2D elements

Linear mapping of reference element onto general triangular cell

\( \basphi_i \): pyramid shape, composed of planes

Element matrices and vectors

Basis functions over triangles in the reference cell

 
$$ \begin{align} \refphi_0(X,Y) &= 1 - X - Y \tag{30}\\ \refphi_1(X,Y) &= X \tag{31}\\ \refphi_2(X,Y) &= Y \tag{32} \end{align} $$

 

Higher-degree \( \refphi_r \) introduce more nodes (dof = node values)

2D P1, P2, P3, P4, P5, and P6 elements

P1 elements in 1D, 2D, and 3D

P2 elements in 1D, 2D, and 3D

Affine mapping of the reference cell; formula

Mapping of local \( \X = (X,Y) \) coordinates in the reference cell to global, physical \( \x = (x,y) \) coordinates:

 
$$ \begin{equation} \x = \sum_{r} \refphi_r^{(1)}(\X)\xdno{q(e,r)} \tag{33} \end{equation} $$

 

where

This mapping preserves the straight/planar faces and edges.

Affine mapping of the reference cell; figure

Isoparametric mapping of the reference cell

Idea: Use the basis functions of the element (not only the P1 functions) to map the element

 
$$ \x = \sum_{r} \refphi_r(\X)\xdno{q(e,r)} $$

 

Advantage: higher-order polynomial basis functions now map the reference cell to a curved triangle or tetrahedron.

Computing integrals

Integrals must be transformed from \( \Omega^{(e)} \) (physical cell) to \( \tilde\Omega^r \) (reference cell):

 
$$ \begin{align} \int_{\Omega^{(e)}}\basphi_i (\x) \basphi_j (\x) \dx &= \int_{\tilde\Omega^r} \refphi_i (\X) \refphi_j (\X) \det J\, \dX \tag{34}\\ \int_{\Omega^{(e)}}\basphi_i (\x) f(\x) \dx &= \int_{\tilde\Omega^r} \refphi_i (\X) f(\x(\X)) \det J\, \dX \tag{35} \end{align} $$

 
where \( \dx = dx dy \) or \( \dx = dxdydz \) and \( \det J \) is the determinant of the Jacobian of the mapping \( \x(\X) \).

 
$$ J = \left[\begin{array}{cc} \frac{\partial x}{\partial X} & \frac{\partial x}{\partial Y}\\ \frac{\partial y}{\partial X} & \frac{\partial y}{\partial Y} \end{array}\right], \quad \det J = \frac{\partial x}{\partial X}\frac{\partial y}{\partial Y} - \frac{\partial x}{\partial Y}\frac{\partial y}{\partial X} $$

 

Affine mapping (33): \( \det J=2\Delta \), \( \Delta = \hbox{cell volume} \)

Remark on going from 1D to 2D/3D

Finite elements in 2D and 3D builds on the same ideas and concepts as in 1D, but there is simply much more to compute because the specific mathematical formulas in 2D and 3D are more complicated and the book keeping with dof maps also gets more complicated. The manual work is tedious, lengthy, and error-prone so automation by the computer is a must.