
Combining FEniCS with Your Favorite

Software in C, C++, Fortran, or

MATLAB

Kent-Andre Mardal1,2 (kent-and@simula.no)

Hans Petter Langtangen1,2 (hpl@simula.no)

1Center for Biomedical Computing, Simula Research Laboratory
2Department of Informatics, University of Oslo

May 22, 2013

Contents

1 Introduction 2

2 FEniCS solver with boundary conditions in Fortran 3
2.1 The FEniCS solver . 5
2.2 The Fortran code for modeling boundary conditions 5
2.3 Coupling the Python FEniCS solver with the Fortran routine . . 7

3 FEniCS solver with optimization in Octave 8
3.1 Basic use of Pytave . 9
3.2 Calling the MATLAB/Octave software 9
3.3 The FEniCS PDE solver . 13
3.4 Coupling FEniCS and the MATLAB/Octave software 15
3.5 Installing Pytave . 15

4 How to interface a C++/DOLFIN code from Python 16
4.1 The C++ class . 16
4.2 Compiling and linking at the Python DOLFIN level 17
4.3 Compiling and linking at the Instant level 18

5 FEniCS solver coupled with ODE solver in C++ 20
5.1 Wrapping with F2PY . 21
5.2 A pure C version of the C++ class 26
5.3 Wrapping with SWIG . 28
5.4 Wrapping with Cython . 35

1

6 Acknowledgment 37

1 Introduction

FEniCS is an easy-to-use tool for solving partial differential equations (PDEs) and
enables very flexible specifications of PDE problems. However, many scientific
problems require (much) more than solving PDEs, and in those cases a FEniCS
solver must be coupled to other types of software. This is usually easy and
convenient if the FEniCS solver is coded in Python and the other software is
either written in Python or easily accessible from Python.

Coupling of FEniCS solvers in Python with MATLAB, Fortran, C, or C++
codes is possible, and in principle straightforward, but there might be a lot
of technical details in practice. Many potential FEniCS users already have
substantial pieces of software in other more traditional scientific computing
languages, and the new solvers they write in FEniCS may need to communicate
with this existing and well-tested software. Unfortunately, the world of gluing
computer code in very different languages with the aid of tools like F2PY, SWIG,
Cython, and Instant is seldom the focal point of a computational scientist. We
have therefore written this document to provide some examples and associated
detailed explanations on how the mentioned tools can be used to combine FEniCS
solvers in Python with other code written in MATLAB, Fortran, C, and C++.
We believe that even if the examples are short and limited in complexity, the
couplings are technically complicated and broad enough to cover a range of
different situations in the real world.

To illustrate the tools and techniques, we focus on four specific case studies:

1. A flow problem with boundary conditions depending on a system of ODEs.
The ODE solver and the ODE system are implemented in Fortran, and we
use F2PY to generate wrapper code such that the ODE solver is accessible
from Python.

2. A flow optimization problem. The goal here is to compute the optimal
placement, permeability and size of a porous medium within a flow field
such that certain flow properties are minimized in a given region. A FEniCS
flow solver is coupled to sophisticated MATLAB/Octave code for steps in
the optimization process (kriging and surrogate modeling).

3. DOLFIN library-level programming in C++. A new C++ utility, based
on DOLFIN, for fast repeated evaluations of finite element functions on
parallel computers is developed. We glue C++ code, DOLFIN, and Python
with the aid of the FEniCS JIT compiler Instant.

4. A parabolic FEniCS solver in Python coupled to a C++ ODE solver at
each node. In this example we illustrate F2PY, SWIG, and Cython as
alternative ways for coupling C++ and Python codes.

2

This tutorial is meant for FEniCS users. For introductions to FEniCS, see the
gentle tutorial [4], the paper [6], or the more comprehensive book about the
FEniCS project [5].

The present tutorial is found on GitHub: https://github.com/hplgit/

fenics-mixed. The following command downloads all the files:

Terminal> git clone https://github.com/hplgit/fenics-mixed.git

The source code for the examples are located in the subdirectory doc/src/src-
fenics-mixed1. The code examples are tested with FEniCS version 1.2.

2 FEniCS solver with boundary conditions in
Fortran

Fortran programs are usually easy to interface in Python by using the wrapper
code generator F2PY2. F2PY supports Fortran 77, Fortran 90, and even C (and
thereby C++, see Section 5). It is our experience that F2PY is much more
straightforward to use than the other tools we describe for interfacing Python
with compiled languages. F2PY is therefore a natural starting point for our
examples.

Figure 1: An illustration of a cerebral aneurysm.

The present worked example involves solving the Navier-Stokes equations by
a FEniCS solver, but calling up a Fortran 77 code for modeling the boundary
conditions. The physical problem concerns blood flow in a cerebral aneurysm. An
aneurysm is a balloon-shaped deformation of a cerebral artery, see Figure 1. Some
aneurysms rupture and cause stroke, while other remain stable for long periods

1https://github.com/hplgit/fenics-mixed/blob/master/doc/src/src-fenics-mixed
2http://www.scipy.org/f2py

3

https://github.com/hplgit/fenics-mixed
https://github.com/hplgit/fenics-mixed
https://github.com/hplgit/fenics-mixed/blob/master/doc/src/src-fenics-mixed
https://github.com/hplgit/fenics-mixed/blob/master/doc/src/src-fenics-mixed
http://www.scipy.org/f2py

of time, and it is currently not possible to determine the rupture risk in a patient-
specific manner. Computational studies have recently demonstrated that fluid
dynamics simulations can be used to discriminate ruptured from non-ruptured
aneurysms [2, 1, 14, 12], retrospectively, and have therefore demonstrated the
potential of simulations to many clinicians.

Figure 2: A DOLFIN mesh illustrating a patient-specific aneurysm geometry.

To model blood flow we assume that blood is Newtonian and incompressible
with a viscosity of 0.0035 Pa s and density similar to water. The equations read

ρ(
∂v

∂t
+ (v · ∇)v) = −∇p+ µ∆v + f in Ω (1)

∇ · v = 0 in Ω (2)

Here, v and p are the unknown blood velocity and pressure, respectively, while
µ is the viscosity and ρ the density.

Quite often the outlet boundary conditions are unknown. It is therefore
common to model the boundary conditions using differential equations of lower
dimension. In our case, we assume that the pressure at the inlet or outlet
boundaries can be modeled by a system of ODEs:

∂Pi

∂t
= f(Pi, v, p, . . .) on ∂Ωo. (3)

These ODEs are coupled to the Navier-Stokes equations through the inlet or
outlet boundary condition

µ
∂v

∂n
+ pn = Po on ∂Ωo (4)

4

2.1 The FEniCS solver

The Navier-Stokes solver is implemented in FEniCS as a class NSSolver. The
typical usage of the class goes as follows:

solver = NSSolver ()

solver.setIC()

t = 0

dt = 0.01

T = 1.0

P1, P2 = 0, 0

while t < T:

t += dt

solver.advance_one_time_step ((P1, P2), t)

The setIC() function sets the initial conditions. Futhermore, P1 and P2 are
the pressures at the two outlets at time t. The implementation details of class
NSSolver are not essential to this document, so we just refer the reader to the
relatively short NSSolver.py3 file.

2.2 The Fortran code for modeling boundary conditions

The NSSolver class sets Dirichlet condition for the pressure on inlet and outlet
boundaries in terms of prescribed constants in a list P (one for each prescribed
outlet or inlet). Our aim now is to use a lower-dimensional flow model for
computing the Dirichlet values in P based on physics and the current velocity
and pressure fields. One such model is formulated in terms of ODEs. For an
outlet boundary, let P be the pressure at the boundary. Then the model for P is

C
∂P

∂t
= Q− P/Rd,

where

Q =

∫
∂Ωo

v · nds

is the volume flux through the boundary ∂Ωo (easily computed in the FEniCS
solver). The parameters C and Rd must be prescribed along with the initial
value of P .

The differential equation for P can be discretized by a very simple Forward
Euler scheme. With i denoting the time level corresponding to small time steps
δt in the fluid solver time step ∆t, we can write

P i+1 = P i + δt(Q− P/Rd)/C,

for i = 0, . . . , N−1, where ∆t = Nδt, and then the new pressure outlet condition
is P = PN for the next time step. P 0 is taken as P at time t (P is the outlet
pressure value at time t+ ∆t).

The computational model for P is implemented in Fortran. (Our specific
model is a simple one; the problem setting is that another research group is

3https://github.com/hplgit/fenics-mixed/blob/master/doc/src/src-fenics-mixed/ns/NSSolver.py

5

https://github.com/hplgit/fenics-mixed/blob/master/doc/src/src-fenics-mixed/ns/NSSolver.py

continuously developing such models, and their software is in Fortran.) The
solver in Fortran is implemented in a file PMODEL.f4 with the content

SUBROUTINE PMODEL(P, P_1 , R_D , Q, C, N, T)

C Integrate P in N steps from 0 to T, given start value P_1

INTEGER N

REAL*8 P(0:N), P_1 , R_D , Q, C, T

REAL*8 DT

INTEGER I

Cf2py intent(in) P0 , R, Q, C, N

Cf2py intent(out) P

DT = T/N

P(0) = P_1

DO I = 0, N-1

P(i+1) = P(i) + DT*(Q - P(i)/R_D)/C

END DO

END SUBROUTINE PMODEL

Given P_1 as the value of P at time t, the subroutine computes P at all the N

local time steps (of length DT) up to time t+T, with P(N) as the final value at
that time. We shall call PMODEL at every time step in the flow solver and let T

correspond to the fluid solver time step ∆t.
The subroutine is plain Fortran 77 except for some special comment lines

starting with CF2PY. These are needed because in Fortran, subroutine arguments
are both input and output, but in Python one normally takes all input as
arguments to a function and returns all output arguments. This is technically
not possible in Fortran (or C or C++). With the CF2PY comment lines we can
help the F2PY translater to make the Fortran subroutine look more ”Pythonic”
from the Python side. To this end, we need to specify what arguments that are
input and output. All arguments are input by default, but here we still list them
to have complete specification of every argument in this function. The output
argument, to be returned to Python, must be specified, here P.

Creating a shared library of the Fortran code that we can call from Python
as an ordinary module is easy:

Terminal> F2PY -c -m bcmodelf77 ../PMODEL.f

Here, -m bcmodelf77 tells F2PY that the module name is be bcmodelf77, the
-c instructs F2PY to compile and create a shared library bcmodelf77.so, and
PMODEL.f is the name of the Fortran file to analyze and compile. Our convention
is to compile F2PY modules in a subdirectory of the Fortran code, which explains
why the file here has name ../PMODEL.f.

A little test code5 can compare the Fortran ODE solver with a couple of
manual lines in Python:

import nose.tools as nt

def test_bcmodelf77 ():

4https://github.com/hplgit/fenics-mixed/blob/master/doc/src/src-fenics-mixed/ns/f77/PMODEL.f
5https://github.com/hplgit/fenics-mixed/blob/master/doc/src/src-fenics-mixed/ns/f77/f2py/test.py

6

https://github.com/hplgit/fenics-mixed/blob/master/doc/src/src-fenics-mixed/ns/f77/PMODEL.f
https://github.com/hplgit/fenics-mixed/blob/master/doc/src/src-fenics-mixed/ns/f77/f2py/test.py

import bcmodelf77

C = 0.127

R_d = 5.43

N = 2

P_1 = 16000

Q = 1000

T = 0.01

P_ = bcmodelf77.pmodel(P_1 , R_d , Q, C, N, T)

Manual formula:

P1_ = P_1 + T/2*(Q - P_1/R_d)/C

P1_ = P1_ + T/2*(Q - P1_/R_d)/C

nt.assert_almost_equal(

P_[-1], P1_ , places=10 , msg=’F77: %g, manual coding: %s’

%

(P_[-1], P1_))

if __name__ == ’__main__ ’:

test_bcmodelf77 ()

Note that F2PY turns all upper case letters into lower case when viewed from
Python. Also note that this test function is created as a nose unit test. Running
nosetests in that directory finds all test_* functions in all files and executes
these functions.

Instead of calling the Fortran function directly with many parameters, we
wrap a class around the function such that the syntax of each call to compute P
becomes simpler. The idea is to let parameters that are constant through the
fluid flow simulation be attributes in the class so that it is sufficient to provide
the varying parameters in the call to PMODEL. The Python code6 hopefully
explains this idea clearly:

class BCModel:

def __init__(self , C, R_d , N, T):

self.C, self.R, self.N, self.T = C, R_d , N, T

def __call__(self , P, Q):

P_ = bcmodelf77.pmodel(

P, self.R, Q, self.C, self.N, self.T)

return P_

We can now set all constant parameters at once,

pmodel = BCModel(C=0.127 , R_d=5.43, N=2, T=0.01)

and there after call the Fortran subroutine PMODEL by pmodel(P, Q), i.e., with
only the arguments that change from time step to time step in the fluid solver.

2.3 Coupling the Python FEniCS solver with the Fortran
routine

It remains to make the final glue between the FEniCS solver and the Fortran
subroutine. In the FEniCS solver, we import the BCModel class and make a
list of such objects, with one element for each outlet boundary where we want

6https://github.com/hplgit/fenics-mixed/blob/master/doc/src/src-fenics-mixed/ns/BCModel.py

7

https://github.com/hplgit/fenics-mixed/blob/master/doc/src/src-fenics-mixed/ns/BCModel.py

to use the ODE model. Then we invoke a time loop where new u and p are
computed, then we compute the flux Q, and finally we compute new outlet
pressures by calling up each ODE solver in turn. All this code is collected in the
file CoupledSolver.py7:

import NSSolver

from BCModel import BCModel

solver = NSSolver.NSSolver ()

solver.setIC()

t = 0

dt = 0.01 # fluid solver time step

T = 5.0 # end time of simulation

C = 0.127

R = 5.43

N = 1000 # use N steps in the ODE solver in [t,t+dt]

num_outlets = 2 # no out outflow boundaries

Create an ODE model for the pressure at each outlet boundary

pmodels = [BCModel(C, R, N, dt) for i in range(0,num_outlets)]

P_ = [16000 , 100] # start values for outlet pressures

while t < T:

t += dt

Compute u_ and p_ using known outlet pressures P_

solver.advance_one_time_step(P_ , t)

Compute the flux at outlet boundaries

Q = solver.flux()

Advance outlet pressure boundary condition to the

next time step (for each outlet boundary)

(pmodels returns a vector of size N containg the

the solution between [t, t+dt].

We take the last one with [-1])

for i in range(0, num_outlets):

P_[i] = pmodels[i](P_[i], Q[i])[-1]

3 FEniCS solver with optimization in Octave

While Python has gained significant momentum in scientific computing in re-
cent years, Matlab and its open source counterpart Octave are still much more
dominating tools in the community. There are tons of MATLAB/Octave code
around that FEniCS users may like to take advantage of. Fortunately, MATLAB
and Octave both have Python interfaces so it is straightforward to call MAT-
LAB/Octave from FEniCS simulators implemented in Python. The technical
details of such coupling is the presented with the aid of an example.

7https://github.com/hplgit/fenics-mixed/blob/master/doc/src/src-fenics-mixed/ns/CoupledSolver.py

8

https://github.com/hplgit/fenics-mixed/blob/master/doc/src/src-fenics-mixed/ns/CoupledSolver.py

3.1 Basic use of Pytave

First we show how to operate Octave from Python. Our focus is on the Octave
interface named Pytave8. The basic Pytave command is

result = pytave.feval(n, "func", A, B, ...)

for running the function func in the Octave engine with arguments A, B, and so
forth, resulting in n returned objects to Python. For example, computing the
eigenvalues of a matrix is done by

import numpy , pytave

A = numpy.random.random([2,2])

e = pytave.feval(1, "eig", A)

print ’Eigenvalues:’, e

The eigenvalues and eigenvectors of a generalized eigenvalue problem Av = λBv
is computed by obtain both the eigenvalues and the eigenvectors, we do

A = numpy.random.random([2,2])

B = numpy.random.random([2,2])

e, v = pytave.feval(2, "eig", A, B)

print ’Eigenvalues:’, e

print ’Eigenvectors:’, v

Note that we here have two input arguments, A and B, and two output arguments,
e and v (and because of the latter the first argument to feval is 2).

We could equally well solved these eigenvalue problems directly in numpy

without any need for Octave, but the next example shows how to take advantage
of a package with many MATLAB/Octave files offering functionality that is not
available in Python.

3.2 Calling the MATLAB/Octave software

The following scientific application involves the coupling of our FEniCS flow
solver with a MATLAB/Octave toolbox for solving optimization problems based
on Kriging and the surrogate managment method. Our task is to minimize the
fluid velocity in a certain region by placing a porous media within the domain.
We can choose the size, placement and permeability of the porous media, but
are not allowed to affect the pressure drop from the inlet to the outlet much.
Figures 3 and 4 show the flow velocity with two different placements of two
different porous media.

For this particular application we assume that the Reynolds number is low
such that the flow can be modeled by the Stokes problem. Furthermore, the
additional resistance caused by the porous medium is modeled by a positive
lower order term Ku resulting in the Brinkman model. The equations then reads

8http://launchpad.net/pytave

9

http://launchpad.net/pytave

Figure 3: Velocity problem around a porous media with K0 = 1000, x0 =
0.4, c = 0.1.

−∆u+Ku−∇p = 0, in Ω (5)

∇ · u = 0, in Ω (6)

u = (0, 0), on y = 0, 1 (7)

u = (y(1− y), 0), on x = 0 (8)

∂u

∂n
+ pn = 0, on x = 1 (9)

with

K = K0 if |x− x0| ≤ c, |y − 0.5| ≤ c,
while K = 0 outside this rectangular region.

When K = 0 we have viscous Stokes flow while inside the porous medium,
K = K0, and the Ku term in the equation dominates over the viscous term ∆u.

The goal functional that we seek to minimize is

J(K0, x0, c) = ux|(x=1,y=0.5) +

∫
Ω

(∇p)2 dx (10)

Here, u and p are functions of K0, x0, and c, and ux is the x component of u.
The MATLAB/Octave code for the surrogate management and Kriging is

based on Dace9, but has been extended by Alison Marsden et. al. [10, 9, 8] to

9http://www2.imm.dtu.dk/ hbn/dace/

10

http://www2.imm.dtu.dk/~hbn/dace/

Figure 4: Velocity problem around a porous media with near optimal values:
K0 = 564, x0 = 0.92, c = 0.10.

implement surrogate management. This algorithm consists of four main steps 1)
search, 2) poll, 3) refine and 4) run simulations, with a flow chart appearing in
Figure 5. The two first steps find new sample points K0, x0, and c, while refine
increases the resolution in the parameter space, and finally the fourth step runs
simulations with the new sample points.

The main algorithm is implemented in Python (file opimize_flow_by_SMF.

py10) and listed below. It calls three key Python functions: search, poll, and
refine, which make calls to the MATLAB/Octave package.

main loop

while nit <= max_nit and refine_ok and not converged:

search step

if cost_improve:

Ai_new = search(Aall , Jall , curr_bestA , theta ,

upb , lob , N, amin , amax , spc , delta)

prev_it = "search"

Ai_new = coarsen(Ai_new)

else:

poll step

if prev_it == "search":

Ai_new = poll(Aall , Jall , curr_bestA , N,

delta , spc , amin , amax)

prev_it = "poll"

refine if previous poll did not lead to cost improvement

if prev_it == "poll":

refine_ok , delta , spc = refine(delta , deltamin , spc)

if refine_ok:

10https://github.com/hplgit/fenics-mixed/blob/master/doc/src/src-fenics-mixed/opt-flow/optimize flow by SMF.py

11

https://github.com/hplgit/fenics-mixed/blob/master/doc/src/src-fenics-mixed/opt-flow/optimize_flow_by_SMF.py
https://github.com/hplgit/fenics-mixed/blob/master/doc/src/src-fenics-mixed/opt-flow/optimize_flow_by_SMF.py

Figure 5: The flow chart of the surrogate management method.

Ai_new = search(Aall , Jall , curr_bestA , theta ,

upb , lob , N, amin , amax , spc ,

delta)

prev_it = "search"

else:

Ai_new = None

nit += 1

run simulations on the new parameters

if not Ai_new == None:

Ai_new , J_new = run_simulations(Ai_new)

stack the new runs to the previous

Jall = numpy.hstack ((Jall , J_new))

Aall = numpy.vstack ((Aall , Ai_new))

monitor convergence (write to files)

monitor(Aall , Jall , nit , curr_bestA , curr_bestJ ,

delta , prev_it , improve , spc)

12

check convergence

cost_improve , curr_bestA , curr_bestJ = check(

Ai_new , J_new , nit , curr_bestJ , curr_bestA)

else:

cost_improve = 0

The search and poll steps are both implemented in Python but are mainly
wrappers around MATLAB/Octave functions. The search step is implemented
as follows:

def search(Aall , Jall , curr_bestA , theta , upb ,

lob , N, amin , amax , spc , delta):

""" Search step."""

make sure that all points are unique

(Am , Jm) = pytave.feval(2, "dsmerge", Aall , Jall)

next_ptsall = []

next_pts = None

max_no_searches = 100

no_searches = 0

while next_pts == None and no_searches < max_no_searches:

next_ptsall , min_est , max_mse_pt = pytave.feval(

3, "krig_min_find_MADS_oct",

Am, Jm , curr_bestA , theta , upb , lob ,

N, amin , amax , spc , delta)

next_pts = check_for_new_points(next_ptsall , Aall)

no_searches += 1

return next_pts

Here, dsmerge and krig_min_find_MADS_oct are functions available in the
MATLAB/Octave files dsmerge.m and krig_min_find_MADS_oct.m. We need
to notify Octave about the directory (SMF) where these files can be found:

pytave.feval(0, "addpath", "SMF")

3.3 The FEniCS PDE solver

The FEniCS solver11 first defines the inflow condition (class EssentialBC), the
K coefficient in the PDEs, and the Dirichlet boundary:

class EssentialBC(Expression):

def eval(self , v, x):

if x[0] < DOLFIN_EPS:

y = x[1]

v[0] = y*(1-y); v[1] = 0

else:

v[0] = 0; v[1] = 0

def value_shape(self):

return (2,)

class K(Expression):

def __init__(self , K0 , x0 , c):

self.K0 , self.x0 , self.c = K0, x0 , c

11https://github.com/hplgit/fenics-mixed/blob/master/doc/src/src-fenics-mixed/opt-flow/flow problem.py

13

https://github.com/hplgit/fenics-mixed/blob/master/doc/src/src-fenics-mixed/opt-flow/flow_problem.py

def eval(self , v, x):

x0, K0 , c = self.x0, self.K0, self.c

if abs(x[0] - x0) <= c and abs(x[1] - 0.5) <= c:

v[0] = K0

else:

v[0] = 1

def dirichlet_boundary(x):

return bool(x[0] < DOLFIN_EPS or x[1] < DOLFIN_EPS or \

x[1] > 1.0 - DOLFIN_EPS)

The core of the solver is the following class:

class FlowProblem2Optimize:

def __init__(self , K0 , x0 , c, plot):

self.K0 , self.x0 , self.c, self.plot = K0, x0, c, plot

def run(self):

K0, x0 , c = self.K0, self.x0, self.c

mesh = UnitSquareMesh(20, 20)

V = VectorFunctionSpace(mesh , "Lagrange", 2)

Q = FunctionSpace(mesh , "Lagrange", 1)

W = MixedFunctionSpace([V,Q])

u, p = TrialFunctions(W)

v, q = TestFunctions(W)

k = K(K0, x0, c)

u_inflow = EssentialBC ()

bc = DirichletBC(W.sub(0), u_inflow , dirichlet_boundary)

f = Constant(0)

a = inner(grad(u), grad(v))*dx + k*inner(u, v)*dx + \

div(u)*q*dx + div(v)*p*dx

L = f*q*dx

w = Function(W)

solve(a == L, w, bc)

u, p = w.split()

u1, u2 = split(u)

goal1 = assemble(inner(grad(p), grad(p))*dx)

goal2 = u(1.0, 0.5)[0]*1000

goal = goal1 + goal2

if self.plot:

plot(u)

key_variables = dict(K0=K0 , x0=x0, c=c, goal1=goal1 ,

goal2=goal2 , goal=goal)

print key_variables

return goal1 , goal2

14

3.4 Coupling FEniCS and the MATLAB/Octave software

It now remains to do the coupling of the optimization algorithm that makes use
of MATLAB/Octave files and the FEniCS flow solver. The following function
performs the task:

def run_simulations(Ai):

""" Run a sequence of simulations with input parameters Ai."""

import flow_problem

plot = True

if len(Ai.shape) == 1: # only one set of parameters

J = numpy.zeros(1)

K0, x0 , c = Ai

p = flow_problem.FlowProblem2Optimize(K0, x0, c, plot)

goal1 , goal2 = p.run()

J[0] = goal1 + goal2

else: # several sets of parameters

J = numpy.zeros(len(Ai))

i = 0

for a in Ai:

K0, x0 , c = a

p = flow_problem.FlowProblem2Optimize(K0, x0, c, plot)

goal1 , goal2 = p.run()

J[i] = goal1 + goal2

i = i+1

return Ai, J

3.5 Installing Pytave

Obviously, Pytave depends on Octave, which can be somewhat challenging
to install. Prebuilt binaries are available for Linux (Debian/Ubuntu, Fedora,
Gentoo, SuSE, and FreeBSD), Mac OS X (via MacPorts or Homebrew), and
Windows (requires Cygwin). On Debian-based systems (including Ubuntu) you
are recommended to run these commands

Install Octave
sudo apt-get update
sudo apt-get install libtool automake libboost-python-dev libopenmpi-dev
sudo apt-get install octave octave3.2-headers

Install Pytave
bzr branch lp:pytave
cd pytave
bzr revert -r 51
autoreconf --install
./configure
sudo python setup.py install

Pytave has not yet been officially released, but it is quite stable and has a rather
complete interface to Octave. Unfortunately, the latest changeset has a bug and
that is why we need to revert to a previous revision (bzr revert -r 51).

There are at least two Python modules that interface MATLAB: pymat212

and pymatlab13, but the authors do not have MATLAB installed and were
unable to test these packages.

12http://code.google.com/p/pymat2/
13http://pypi.python.org/pypi/pymatlab

15

http://code.google.com/p/pymat2/
http://pypi.python.org/pypi/pymatlab

4 How to interface a C++/DOLFIN code from
Python

Although FEniCS can easily and flexibly be extended by Python code, the need
for speed in scientific computing occasionally makes a demand to implement new
finite element functionality in C++. The present example shows how one can
extend DOLFIN’s finite element functionality through a new piece of C++ code
and call this functionality from a Python FEniCS solver.

FEniCS finite element functions can be evaluated at an arbitrary point in the
mesh. In a parallel computing setting, however, the evaluation point must be in
the part of the mesh that belongs to the current process and the searching for
the element containing the point is not optimally efficient. Therefore, one may
want to have a utility for fast evaluation of finite element functions at prescribed
points on parallel computers. We can write a class Probe for this purpose. The
constructor takes a spatial point x and precomputes which element that contains
the point and other data useful for later fast evaluation of functions at x. A
member function eval(u) takes any Function object u and stores its value(s) at
the point x. With get_values(i) we can retrieve all values component i of the
function computed in previous calls to eval. For a scalar function there is only
one component (i=0), but the class supports vector and tensor functions too.

The name Probe reflects the use of such a class: we insert a probe, as in a
physical experiment, and measure the response at that point through time. In
FEniCS simulators it means that we want to record the evolution in time of
some field at a given spatial point. For long time series there can be a lot of
evaluations of the field at this point, and class Probe will be much more efficient
than the standard FEniCS point evaluation of fields (which performs a lot of
searching to find the element containing the point).

4.1 The C++ class

Class Probe is a fairly short C++ code that makes use of various DOLFIN C++
classes and programming conventions. The header file reads

#include <dolfin/function/FunctionSpace.h>

#include <dolfin/function/Function.h>

namespace dolfin

{

class Probe

{

public:

Probe(const Array<double>& point , const FunctionSpace& V);

void eval(const Function& u);

std::vector<double> get_values(std::size_t component);

std::size_t num_components () {return value_size_loc ;};

std::size_t number_of_eval_calls () {return

_probes[0].size();};

std::vector<double> get_point ();

void erase(std::size_t i);

void clear();

16

private:

std::vector<std::vector<double> > basis_matrix;

std::vector<double> coefficients;

double _x[3];

boost::shared_ptr<const FiniteElement> _element;

Cell* dolfin_cell;

UFCCell* ufc_cell;

std::size_t value_size_loc;

std::vector<std::vector<double> > _probes;

};

}

The most important functionality for users lies in the constructor and the eval

and get_values functions, while the rest of the class contains short convenience
functions and data structures for help with fast function evaluations. Note that
eval does not return any value, it just records the value.

The reader may consult the corresponding Probe.cpp14 file for all imple-
mentation details. Obviously, this type of code requires familiarity with the
DOLFIN classes, but looking at the DOLFIN code itself is a good starting point
for learning about those classes, the associated implementation conventions, and
other programming tools that the DOLFIN library makes use of.

4.2 Compiling and linking at the Python DOLFIN level

The next, and often more technically challenging, step is to compile the C++
code, link it to DOLFIN, and make it callable from a FEniCS solver in Python.
Fortunately, this is not so difficult if we use the FEniCS Just-in-time (JIT)
compiler Instant, which is already the compiler that DOLFIN applies when
compiling variational forms. Instant employs SWIG in its JIT compiling, and
some knowledge of SWIG is therefore required to understand how Instant works.
However, hardly any SWIG knowledge is needed if we use the convenience func-
tion compile_extension_module found in the Python package dolfin package.
This function is a high-level interface to Instant functionality.

Basically, the compile_extension_module function requires a declaration
of our C++ code to be interfaced, a list of .cpp source code files, and some
information on where files are found. Compilation and linking are then taken care
of automatically. The C++ code to be interfaced in this example is contained in
the Probe.h header file. The call to the compile_extension_module function
is then

from dolfin import *

import numpy

import os

header_file = open("Probe/Probe.h", "r")

code = header_file.read()

header_file.close()

probe_module = compile_extension_module(

code=code , source_directory="Probe", sources=["Probe.cpp"],

include_dirs=[".", os.path.abspath("Probe")])

14https://github.com/hplgit/fenics-mixed/blob/master/doc/src/src-fenics-mixed/probe/Probe/Probe.cpp

17

https://github.com/hplgit/fenics-mixed/blob/master/doc/src/src-fenics-mixed/probe/Probe/Probe.cpp

We can now import probe_module in the forthcoming code and use it for fast
evaluations at some point x:

mesh = UnitCubeMesh(10, 10 , 10)

V = FunctionSpace(mesh , ’CG’, 1)

x = numpy.array ((0.5, 0.5, 0.5))

probe = probe_module.Probe(x, V)

u0 = interpolate(Expression(’x[0]’), V)

Fast evaluation of U0 at x:

probe.eval(u0)

print "The number of probes is ", probe.number_of_eval_calls ()

print "The value at ", x, " is ", probe.get_values(0)

To summarize, with compile_extension_module the compilation and linking
of C++ and DOLFIN code to make accessible in Python is a matter of one
function call.

4.3 Compiling and linking at the Instant level

We shall now go into details how the steps above would be done by using basic
Instant only, as this explains how to use Instant for interfacing C++ code in
general. Instant provides the build_module function for building a Python
module out of the C++ code:

compiled_module = instant.build_module(

code=code ,

source_directory=source_dir ,

additional_declarations=additional_decl ,

system_headers=system_headers ,

include_dirs=include_dirs ,

swigargs=swigargs ,

sources=sources ,

cmake_packages=cmake_packages)

Here,

• code is the C++ code that is to be wrapped,

• source_directory is the directory where the C++ .cpp files are found,

• additional_declarations are additional declaration needed to make
SWIG behave properly,

• system_headers is a list of the additional header files needed for compila-
tion,

• include_dirs is a list of additional include directories required for compi-
lation,

• swigargs is the arguments that shall be passed to SWIG on the command
line,

18

• sources is a list of C++ files that shall be compiled into the Pyhton
module, and

• cmake_packages is a list of packages that the CMake compilation depend
on.

The following code illustrates the setting of these variables:

system_headers = [’numpy/arrayobject.h’,

’dolfin/function/Function.h’,

’dolfin/function/FunctionSpace.h’]

swigargs = [’-c++’, ’-fcompact ’, ’-O’, ’-I.’, ’-small ’]

cmake_packages = [’DOLFIN ’]

sources = ["Probe.cpp"]

source_dir = "Probe"

The Probe class employs several DOLFIN classes. Hence, for this class to work
properly it is crucial that the JIT compiler and SWIG are told how to relate to
the DOLFIN classes. Instant provides the hook additional_declarations for
providing additional declarations to SWIG. Such declarations require knowledge
of how to write SWIG interface files. In the current example, the additional
declarations look like the following string:

additional_decl = """

%init%{

import_array ();

%}

// Include global SWIG interface files:

// Typemaps , shared_ptr declarations , exceptions , version

%include <boost_shared_ptr .i>

// Global typemaps and forward declarations

%include "dolfin/swig/typemaps/includes.i"

%include "dolfin/swig/ forwarddeclarations .i"

// Global exceptions

%include <exception.i>

// Local shared_ptr declarations

%shared_ptr (dolfin :: Function)

%shared_ptr (dolfin :: FunctionSpace)

// %import types from submodule function of SWIG module function

%import(module =" dolfin.cpp.function ")

"dolfin/function/Function.h"

%import(module =" dolfin.cpp.function ")

"dolfin/function/ FunctionSpace .h"

%feature (" autodoc", "1");

"""

The init part containing import_array is always needed when NumPy [11]
arrays are involved. Thereafter, we include various SWIG interface files (ending
in .i) that we need in DOLFIN-related code. We also need shared pointers for
dolfin::Function and dolfin::FunctionSpace. In addition we need header

19

files for Function and FunctionSpace classes in DOLFIN. Note that the import
and include statements in SWIG may seem similar, but that whereas include
makes SWIG generate wrappers for the code included, the import directive
simply provides SWIG with the necessary type information.

We refer to the complete file instant_test_probe.py15 for how all of the
information about is put together and executed in order to build the extension
module using plain Instant functionality.

5 FEniCS solver coupled with ODE solver in
C++

In this final example we will consider a solver for a reaction-diffusion equation
described by a parabolic PDE coupled to a set of ODEs. The equation can be
written as

ut = ∆u+ f(u, s), ∀x ∈ Ω, t > 0,

st = g(u, s), ∀x ∈ Ω, t > 0.

Here, u is a scalar function, subscript t means differentiation with respect to
time, s is a scalar field (governed pointwise by an ODE), and ∆u is a Laplace
term. The problem is usually solved using a first order operator splitting scheme,
where we at a time level first solve the PDE with f evaluated at the previous
time level, and thereafter we update the ODEs using the most recent value of u.
More precisely,

un = un−1 + ∆t(∆un + f(un−1, sn−1)),

sn = sn−1 + ∆tg(un, sn−1),

The superscript n denotes the time level, and ∆t is the time step.
The solver for the parabolic problem is implemented in FEniCS, while the

ODE solver is implemented in a homemade C++ code. We will glue these two
different solvers together using Python. The C++ code consists basically of the
class ODEFieldSolver declared in a file ODEFieldSolver.h16:

class ODEFieldSolver {

int n; // no of points (or regions)

double* s; // discrete values of unknown s)

double* s_1; // s at the previous time level

double* u; // discrete values of external field u

double dt; // time step size

public:

ODEFieldSolver ();

~ODEFieldSolver ();

void redim(int n); // allocate data structures

15https://github.com/hplgit/fenics-mixed/blob/master/doc/src/src-fenics-mixed/probe/instant test probe.py
16https://github.com/hplgit/fenics-mixed/blob/master/doc/src/src-fenics-mixed/ODEFieldSolver/ODEFieldSolver.h

20

https://github.com/hplgit/fenics-mixed/blob/master/doc/src/src-fenics-mixed/probe/instant_test_probe.py
https://github.com/hplgit/fenics-mixed/blob/master/doc/src/src-fenics-mixed/ODEFieldSolver/ODEFieldSolver.h

int size(); // return the no of points/regions

virtual double g(double s, double u);

void set_dt(double dt);

void set_IC(int n, double* in_array);

void set_u (int n, double* in_array);

void set_IC(double const_value);

void set_u (double const_value);

void advance_one_timestep ();

};

The set_IC functions set the initial condition of the ODE system, and set_u

provides the u field (the ”environment”) to the ODE system. Note that there
are two versions of set_IC and set_u: one for a constant value one for spatial
variations. We refer to the ODEFieldSolver.cpp17 file for implementational
details.

The mathematics behind the shown class is to have n regional or pointwise
values of u and s, and then solve st = g(s, u) in each region or at each point. In
the present case we will solve for s at the nodes in the finite element mesh used
to compute u. The s and u functions are in the C++ code represented by plain
C arrays holding nodal values. The usage of the C++ code typically goes like
this:

ODEFieldSolver solver = ODEFieldSolver ();

solver.redim(n); // allocate data

solver.set_dt(dt); // set time step

solver.set_IC(n, s0); // set initial conditions

t = 0

while (t <= T) {

solver.set_u(n, u); // give access to PDE solution

solver.advance_one_timestep ();

// plot solver.s

}

A subclass must be written to specify the desired g function.
We need to wrap the C++ class in Python such that the FEniCS Python

solver can call the C++ code. We would then need to transfer the computed s
back to Python. To this end, we add a member function get_s to the class so
that we can fill some array on the user’s side with the most recently computed s

values:

class ODEFieldSolver {

...

void get_s (int& n, double* out_array);

};

5.1 Wrapping with F2PY

The easiest way to interface Fortran, C, and C++ code is to use F2PY. Although
F2PY was made for interfacing Fortran and most of the documentation is written
with Fortran codes in mind, it is convenient to interface C and C++ too. Or more
precisely, F2PY can interface a pure C API, not C++ classes. The idea is then to

17https://github.com/hplgit/fenics-mixed/blob/master/doc/src/src-fenics-mixed/ODEFieldSolver/ODEFieldSolver.cpp

21

https://github.com/hplgit/fenics-mixed/blob/master/doc/src/src-fenics-mixed/ODEFieldSolver/ODEFieldSolver.cpp

construct a set of C functions on top of the C++ classes for accessing high-level
operations using the those classes. The example involving class ODEFieldSolver
will illustrate the elements in this technique.

C API to C++ code. The first step is to decide on the C API. The exposed
functions in Python must do essentially the same as the main program. A
possible set of functions is

• set_ic_and_dt(int n, double* s0, double dt) for initializing the class
object and setting the initial conditions and the time step. Also a variant
set_const_ic_and_dt for constant initial condition s0 is handy.

• set_u(int n, double* u) for assigning the u function to the class.

• advance_one_timestep() for computing the solution at a time step.

• get_s(int n, double* s) for getting access to the computed array s in
the ODEFieldSolver class.

These functions must make use of a global variable holding a ODEFieldSolver

object and interact with this object as appropriate. The complete code of the C
API18 then becomes

#include "ODEFieldSolver.h"

ODEFieldSolver solver = ODEFieldSolver ();

extern "C" {

void set_ic_and_dt(int n, double* s0, double dt)

{

solver.redim(n);

solver.set_dt(dt);

solver.set_IC(n, s0);

}

void set_const_ic_and_dt(int n, double s0, double dt)

{

solver.redim(n);

solver.set_dt(dt);

solver.set_const_IC(s0);

}

void set_u(int n, double* u)

{

solver.set_u(n, u);

}

void advance_one_timestep ()

{

solver.advance_one_timestep ();

}

18https://github.com/hplgit/fenics-mixed/blob/master/doc/src/src-fenics-mixed/ODEFieldSolver/f2py-cpp/capi2cpp.cpp

22

https://github.com/hplgit/fenics-mixed/blob/master/doc/src/src-fenics-mixed/ODEFieldSolver/f2py-cpp/capi2cpp.cpp
https://github.com/hplgit/fenics-mixed/blob/master/doc/src/src-fenics-mixed/ODEFieldSolver/f2py-cpp/capi2cpp.cpp

void get_s(int n, double* s)

{

solver.get_s(n, s);

}

}

Writing corresponding Fortran signatures. The nice thing about F2PY
is that it can automatically make a Python interface to this C code, where
NumPy arrays can be passed to the functions taking plain C arrays as arguments.
For this to work, F2PY needs a specification of all the C functions in terms of
Fortran 90 module syntax. However, F2PY can generate this module for us if
we specify the function signatures in plain Fortran 77. This is done as follows:

subroutine set_ic_and_dt(n, s0 , dt)

Cf2py intent(c) set_ic_and_dt

integer n

real*8 s0(0:n-1), dt

Cf2py intent(c) n, s0 , dt

return

end

subroutine set_const_ic_and_dt(n, s0 , dt)

Cf2py intent(c) set_const_ic_and_dt

integer n

real*8 s0, dt

Cf2py intent(c) n, s0 , dt

return

end

subroutine set_u(n, u)

Cf2py intent(c) set_u

integer n

real*8 u(0:n-1)

Cf2py intent(c) n, u

return

end

subroutine advance_one_timestep ()

Cf2py intent(c) advance_one_timestep

return

end

subroutine get_s(n, s)

Cf2py intent(c) get_s

integer n

Cf2py intent(c) n

real*8 s(0:n-1)

Cf2py intent(c, in , out) s

return

end

For each C function we

• write the corresponding Fortran subroutine or function header,

23

• insert an F2PY-specific comment (CF2PY) that tells that the function is in
C: intent(c),

• specify that all variables are in C: intent(c) (Fortran treats all arguments
as pointers, so the specification of C variables is strictly needed only for
non-pointers),

• specify if we want the Python interface to return one or more output
arguments.

Regarding the last point, we specify s in get_s as intent(c,in,out), meaning
that we in Python can call this function as s = get_s(s). The s argument is
needed for the function to avoid reallocating the returned array every time the
function is call. Instead we reuse the storage provied in the s array.

If the Fortran 77 signatures are in a file signatures_capi2cpp.f we can get
F2PY to generate a Fortran 90 module in a file ODEFieldSolvercpp.pyf by the
command

Terminal> F2PY -m ODEFieldSolvercpp -h ODEFieldSolvercpp.pyf \
--overwrite-signature signatures_capi2cpp.f

The -m option specifies the name of the extension module that contains the
Python interfaces to the C API.

The module typically looks like

! -*- f90 -*-

! Note: the context of this file is case sensitive.

python module ODEFieldSolvercpp ! in

interface ! in :ODEFieldSolvercpp

subroutine set_ic_and_dt(n,s0,dt)

intent(c) set_ic_and_dt

integer ,

optional ,intent(c),check(len(s0)>=n),depend(s0) :

: n=len(s0)

real*8 dimension(n),intent(c) :: s0

real*8 intent(c) :: dt

end subroutine set_ic_and_dt

subroutine set_const_ic_and_dt(n,s0,dt)

intent(c) set_const_ic_and_dt

integer intent(c) :: n

real*8 intent(c) :: s0

real*8 intent(c) :: dt

end subroutine set_const_ic_and_dt

subroutine set_u(n,u)

intent(c) set_u

integer ,

optional ,intent(c),check(len(u)>=n),depend(u) ::

n=len(u)

real*8 dimension(n),intent(c) :: u

end subroutine set_u

subroutine advance_one_timestep ! in :

ODEFieldSolvercpp:signatures_capi2cpp.f

intent(c) advance_one_timestep

end subroutine advance_one_timestep

24

subroutine get_s(n,s)

intent(c) get_s

integer ,

optional ,intent(c),check(len(s)>=n),depend(s) ::

n=len(s)

real*8 dimension(n),intent(c,in,out) :: s

end subroutine get_s

end interface

end python module ODEFieldSolvercpp

! This file was auto-generated with f2py (version:2).

! See http://cens.ioc.ee/projects/f2pye/

Those who are familiar with Fortran 90 modules can write such code by hand
instead of first writing Fortran 77 headers and letting F2PY generate the module.

Building the extension module. With the aid of the Fortran 90 specification
of the C functions, F2PY can compile and link the extension module by a
command like

Terminal> F2PY -c --fcompiler=gfortran -I.. --build-dir tmp1 \
-DF2PY_REPORT_ON_ARRAY_COPY=1 \
ODEFieldSolvercpp.pyf ../ODEFieldSolver.cpp capi2cpp.cpp

The -DF2PY_REPORT_ON_ARRAY_COPY=1 option is handy for letting F2PY notify
us if arrays are copied when transferred from Python to C, as we want to avoid
time-consuming copies. The C++ class is assumed to be in the parent directory
(note -I.. and the ../ prefix in the filename). All the files generated and built
by F2PY will reside in the tmp1 directory for later inspection if run into build
problems.

The result of the above compile command is a C/C++ extension module in
the file ODEFieldSolvercpp.so. The module can be loaded into Python and
examined for content:

>>> import ODEFieldSolvercpp
>>> dir(ODEFieldSolvercpp)
[’__doc__’, ’__file__’, ’__name__’, ’__package__’, ’__version__’,
’advance_one_timestep’, ’get_s’, ’set_const_ic_and_dt’,
’set_ic_and_dt’, ’set_u’]

>>> print ODEFieldSolvercpp.__doc__
This module ’ODEFieldSolvercpp’ is auto-generated with F2PY (version:2).
Functions:

set_ic_and_dt(s0,dt,n=len(s0))
set_const_ic_and_dt(n,s0,dt)
set_u(u,n=len(u))
advance_one_timestep()
s = get_s(s,n=len(s))

A word of caution is required for newcomers to F2PY: it is extremely important
to study the doc strings of the various functions before trying to call them from
Python. The reason is that F2PY drops unnecessary arguments, such as array
lengths (since these are contained in NumPy array objects), and all output
arguments are returned and removed from the subroutine’s argument list. The
function arguments and return values are therefore different in Python and C! For
example, the set_ic_and_dt function only needs s0 transferred from Python

25

since n can be deduced from the F2PY-generated interface. The signature of
this function, as seen from Python, is then

>>> print ODEFieldSolvercpp.set_ic_and_dt.__doc__
set_ic_and_dt - Function signature:
set_ic_and_dt(s0,dt,[n])

Required arguments:
s0 : input rank-1 array(’d’) with bounds (n)
dt : input float

Optional arguments:
n := len(s0) input int

Furthermore, the get_s function has specified its s argument as input and
output (intent(c,in,out)) and the doc string shows the correct call syntax:

>>> print ODEFieldSolvercpp.get_s.__doc__
get_s - Function signature:
s = get_s(s,[n])

Required arguments:
s : input rank-1 array(’d’) with bounds (n)

Optional arguments:
n := len(s) input int

Return objects:
s : rank-1 array(’d’) with bounds (n)

Main program in Python. The Python code for calling the C++ functions
in the ODEFieldSolvercpp module can take the following form:

import ODEFieldSolvercpp as solver

import numpy

s0 = numpy.array([0, 1, 4], float) # ensure float elements!

u = numpy.array([0, 1, 1], float)

n = s0.size

s = numpy.zeros(n)

solver.set_ic_and_dt(s0, dt=0.1)

for n in range(1, 8):

solver.set_u(u)

solver.advance_one_timestep ()

s = solver.get_s(s)

print n, s

5.2 A pure C version of the C++ class

It may be illustrative to also see a pure C code that implements the same type
of actions as the C++ class. The class variables are here global variables in
a library and all the class functions are stand-alone C functions working with
these global variables. A bit more sophisticated implementation would collect
the global variables in a global struct instead, so that the functions work with
the struct. The advantage of a pure C code is that F2PY can interface all parts
of this code directly without any need to make a C API to C++ code. (Having
said that, we should add that making a C API to C++ codes is often a good
exercise as it tends to emphasize faster computing with arrays rather than with
special (potentially small) C++ objects. Python interfacing of C++ this way
may lead to sound redesign of the C++ code.)

The pure C implementation goes as follows:

26

#include <stdlib.h>

#include <stdio.h>

/* global variables */

double* s;

double* s_1;

double* u;

double dt;

int n;

void redim(int n_)

{

n = n_;

s = malloc(sizeof(double)*n);

s_1 = malloc(sizeof(double)*n);

u = malloc(sizeof(double)*n);

}

void deallocate ()

{

free(s); free(s_1); free(u);

}

/* Note: do not mix upper and lower case letters as in set_IC_ ...

This leads to undefined symbols when f2py compiles the code.

*/

void set_ic_and_dt(int n_, double* s0, double dt_)

{

int i;

redim(n_);

dt = dt_;

for (i=0; i<n; i++) {

s_1[i] = s0[i];

}

}

void set_const_ic_and_dt(int n_, double s0, double dt_)

{

int i;

redim(n_);

dt = dt;

for (i=0; i<n; i++) {

s_1[i] = s0;

}

}

void set_u(int n_, double* u_)

{

int i;

for (i=0; i<n; i++) {

u[i] = u_[i];

}

}

double g(double s_ , double u_) {

/* return s_*u_*(1 - s_); */

27

return s_;

}

void advance_one_timestep ()

{

/* Use the Forward Euler time integration for simplicity */

int i;

for (i=0; i<n; i++) {

s[i] = s_1[i] + dt*g(s_1[i], u[i]);

/* For debugging: */

/* printf ("i=%d, s_1 =%g, dt=%g, g=%g, s=%g\n",

i, s_1[i], dt , g(s_1[i], u[i]), s[i]); */

}

/* Update for next time step */

for (i=0; i<n; i++) { s_1[i] = s[i]; }

}

void get_s(int n_, double* s_)

{

int i;

for (i=0; i<n; i++) {

s_[i] = s[i];

}

}

By writing the corresponding Fortran 77 signatures, F2PY can generate a
Fortran 90 module specification of the extension module, and this code can be
compiled as explained above. We refer to the files in the f2py-c19 directory for
details.

5.3 Wrapping with SWIG

Next, we employ the tool SWIG20 to wrap the C++ class directly and make
it available as a Python class. SWIG is also used in DOLFIN and Instant, as
demonstrated in Section 4. Useful references on SWIG in a FEniCS context are
[6, 7, 13, 3].

To use SWIG, you must first write an interface file (ending in .i) that tells
SWIG about the parts of the C++ code you want to access from Python. The
next step is to run SWIG to generate (a lot of) wrapper code in C. The final
step is to compile the wrapper code and your C++ code and link with required
libraries.

A first attempt to write an interface for our ODEFieldSolver class consists
in listing just the class declaration:

%module ODEFieldSolver

%{

#include <arrayobject.h>

#include <sstream>

#include "ODEFieldSolver.h"

%}

19https://github.com/hplgit/fenics-mixed/blob/master/doc/src/src-fenics-mixed/ODEFieldSolver/f2py-c
20http://www.swig.org

28

https://github.com/hplgit/fenics-mixed/blob/master/doc/src/src-fenics-mixed/ODEFieldSolver/f2py-c
http://www.swig.org

%init %{

import_array ();

%}

class ODEFieldSolver {

int n; // no of points (or regions)

double* s; // discrete values of unknown s)

double* s_1; // s at the previous time level

double* u; // discrete values of external field u

double dt; // time step size

public:

ODEFieldSolver ();

~ODEFieldSolver ();

void redim(int n); // allocate data structures

int size(); // return the no of points/regions

virtual double g(double s, double u);

void set_dt(double dt);

void set_IC(int n, double* in_array);

void set_u (int n, double* in_array);

void set_IC(double const_value);

void set_u (double const_value);

void advance_one_timestep ();

void get_s (int& n, double* out_array);

};

All SWIG commands start with %. The %module command defines the name
of the module. Following this command comes a list of header files needed by
the module. The %init command includes code that should be executed when
the module is imported in Python. When using NumPy arrays in C++ code we
always need to call the import_array function to initialize the NumPy package
(removal of this statement will result in a segmentation fault!). The rest of the
code defines the interface that should be wrapped, that is; the declaration of the
class ODEFieldSolver.

SWIG is meant to automate interfacing of C and C++ code, and there is
mainly only one thing that needs to be addressed manually: the handling of
pointers to arrays. Consider for instance the set_IC function. Here, in_array
is a pointer to the first element of a double precision array of length n. However,
the fact that in_array is an array is not explicitly stated in C++, and therefore
SWIG simply by default handles the pointer as a plain pointer, and this is not
what we want. SWIG does, however, offer typemaps for changing this default
behavior. With typemaps we can specify that the pointer in_array is a NumPy
array object (PyObject) when it comes from Python, and we can extract the
underlying data pointer (double*) and communicate it to C.

To enable NumPy arrays to be passed to the functions set_IC and set_u

we provide the following typemap.

%typemap(in) (int n, double* array){

if (!PyArray_Check($input)) {

PyErr_SetString(PyExc_TypeError , "Not a NumPy array");

return NULL; ;

29

}

PyArrayObject* pyarray;

pyarray = (PyArrayObject*)$input;

if (!(PyArray_TYPE(pyarray) == NPY_DOUBLE)) {

PyErr_SetString(PyExc_TypeError , "Not a NumPy array of

doubles");

return NULL; ;

}

$1 = int(pyarray->dimensions[0]);

$2 = (double*)pyarray->data;

}

Typemap code often looks complicated, at least when viewed for the first
time. The logic is straightforward, though, once some basic knowledge of the
C API of Python and NumPy is acquired. The idea with the typemap is to
recognize a set of arguments in C/C++, here n and in_array, and then execute
some C/C++ code to transform a Python object to the C/C++ arguments.
In the present example we want to map a NumPy array object to an integer
n (the array size) and a plain C array in_array (the array data). All Python
objects, when viewed in C, are of type PyObject. We can think of PyObject as
a superclass for all the different object types in Python. The special NumPy
array object type is PyArrayObject.

SWIG has some special variables prefixed with $, which in the present
example are $input for the incoming NumPy array object, and $1 and $2 for
the outgoing C/C++ arguments n and in_array. The first if statement checks
that the incoming array is of right type, and if not, a TypeError exception is
raised. The return NULL statement is essential for this exception to work. The
next step is to cast the PyObject pointer in $input to the correct array object
type, PyArrayObject, because we need this object to call C functionality in
the NumPy object to extract the data and the array size. For safety reasons,
we insert a test that the array data are of type NPY_DOUBLE so that the array
element types in Python and C match. Then we come to the final and most
essential point: extracting data from the NumPy array object and storing them
in n ($1) and in_array ($2):

$1 = int(pyarray->dimensions[0]);

$2 = (double*)pyarray->data;

Because we have overloaded the set_IC function, we also need to provide
SWIG with a typecheck to determine which of the C++ functions to use. A
suitable typecheck is:

%typecheck(SWIG_TYPECHECK_DOUBLE_ARRAY) (int n, double* array) {

$1 = PyArray_Check($input) ? 1 : 0;

}

The function

void get_s(int n, double *array);

should return NumPy arrays when called from Python as

30

s = odesolver.get_s()

That is, we would like to be able to call this function from Python without
providing and input array, and instead get an output array. This means that
an array must be created before being passed to C++ and then returned to
Python. To accomplish this we hide the function by calling it _get_s. Then
we extend the interface using the %extend and %pythoncode directives with a
Python function get_s. The Python function get_s allocate an array before
passing it to the hidden _get_s function and thereafter it returns the array. The
code is

/* Wrap ODEFieldSolver :: get_s in a Python function */

%rename (_get_s) ODEFieldSolver::get_s;

%extend ODEFieldSolver{

%pythoncode %{

def get_s(self):

import numpy as np

a = np.zeros(self.size())

self._get_s(a)

return a

%}

}

To summarize, the complete SWIG interface file for wrapping the ODEFieldSolver
class is listed next.

%module ODEFieldSolver

%{

#include <arrayobject.h>

#include <sstream>

#include "ODEFieldSolver.h"

%}

%init %{

import_array ();

%}

%typecheck(SWIG_TYPECHECK_DOUBLE_ARRAY) (int n, double* array) {

$1 = PyArray_Check($input) ? 1 : 0;

}

%typemap(in) (int n, double* array){

if (!PyArray_Check($input)) {

PyErr_SetString(PyExc_TypeError , "Not a NumPy array");

return NULL; ;

}

PyArrayObject* pyarray;

pyarray = (PyArrayObject*)$input;

if (!(PyArray_TYPE(pyarray) == NPY_DOUBLE)) {

PyErr_SetString(PyExc_TypeError , "Not a NumPy array of

doubles");

return NULL; ;

}

$1 = int(pyarray->dimensions[0]);

31

$2 = (double*)pyarray->data;

}

/* Wrap ODEFieldSolver :: get_s in a Python function */

%rename (_get_s) ODEFieldSolver::get_s;

%extend ODEFieldSolver{

%pythoncode %{

def get_s(self):

import numpy as np

a = np.zeros(self.size())

self._get_s(a)

return a

%}

}

%include std_string.i

%include "ODEFieldSolver.h"

To make SWIG generate the wrapper code, we run

swig -python -c++ -I. -I.. ODEFieldSolver.i

SWIG supports many languages and we therefore specify what languages we
need wrapper code for by the -python and -c++ flags. Further, -I is used to
specify where SWIG should look for interface files (with extension .i). The C++
class files are located in the parent directory. SWIG will from this command
generate two files ODEFieldSolver.py and ODEFieldSolver_wrap.cxx. The
latter needs to be compiled and linked with the ODEFieldSolver code to form a
shared library with name _ODEFieldSolver.so. The ODEFieldSolver.py file is
the module to use from Python and this is nothing but a Python class wrapper to
_ODEFieldSolver.so module. Building the shared library is most conveniently
done via a standard setup.py script. The following setup.py21 file provides an
appropriate recipe for writing this kind of files:

import os, numpy

from distutils.core import setup , Extension

name = ’ODEFieldSolver ’

swig_cmd =’swig -python -c++ -I.. -I. %s.i’ % name

os.system(swig_cmd)

sources = [’../%s.cpp’ % name , ’%s_wrap.cxx’ % name]

setup(name=name ,

ext_modules= [

Extension(’_’ + name ,

sources ,

include_dirs=[’..’,

numpy.get_include () +

"/numpy"])])

To create and install the extension module locally in the current working
directory (.), we run

python setup.py install --install -platlib =.

21https://github.com/hplgit/fenics-mixed/blob/master/doc/src/src-fenics-mixed/ODEFieldSolver/swig/setup.py

32

https://github.com/hplgit/fenics-mixed/blob/master/doc/src/src-fenics-mixed/ODEFieldSolver/swig/setup.py

Now we can do import ODEFieldSolver in Python and access the C++ class
as a Python class.

The FEniCS solver for the parabolic PDE can be implemented as a class:

class ParabolicSolver:

def __init__(self , N, dt):

""" Set up PDE problem for NxN mesh and time step dt."""

from dolfin import UnitSquareMesh , FunctionSpace ,

TrialFunction , \

TestFunction , Function , dx, dot , grad

mesh = UnitSquareMesh(N,N)

self.V = V = FunctionSpace(mesh , "Lagrange", 1)

u = TrialFunction(V)

v = TestFunction(V)

a = u*v*dx + dt*dot(grad(u), grad(v))*dx

self.a = a

self.dt = dt

self.mesh = mesh

self.U = Function(V)

def advance_one_timestep(self , f, u_1):

"""

Solve the PDE for one time step.

f: the source term in the PDE.

u_1: solution at the previous time step.

"""

from dolfin import TestFunction , dx, solve

V, a, dt = self.V, self.a, self.dt # strip off self prefix

v = TestFunction(V)

L = (u_1 + dt*f)*v*dx

solve(self.a == L, self.U)

return self.U

The following pseudo code illustrates how to work with this code and the
ODE solver:

for i in range(num_time_steps): # time loop
<compute f>
<call ParabolicSolver’s advance_one_time_step>
<compute g>
<call the ODE solver>

A complete code22 goes as follows:

import dolfin

import numpy

def F(S, U):

if isinstance(S, dolfin.Function) and isinstance(U,

dolfin.Function):

from dolfin import *

22https://github.com/hplgit/fenics-mixed/blob/master/doc/src/src-fenics-mixed/ODEFieldSolver/swig/test coupled solver.py

33

https://github.com/hplgit/fenics-mixed/blob/master/doc/src/src-fenics-mixed/ODEFieldSolver/swig/test_coupled_solver.py

f = sin(S)*exp(U)

return f

if isinstance(S, numpy.ndarray) and isinstance(U,

numpy.ndarray):

from numpy import *

f = sin(S)*exp(U)

return f

class ParabolicSolver:

def __init__(self , N, dt):

""" Set up PDE problem for NxN mesh and time step dt."""

from dolfin import UnitSquareMesh , FunctionSpace ,

TrialFunction , \

TestFunction , Function , dx, dot , grad

mesh = UnitSquareMesh(N,N)

self.V = V = FunctionSpace(mesh , "Lagrange", 1)

u = TrialFunction(V)

v = TestFunction(V)

a = u*v*dx + dt*dot(grad(u), grad(v))*dx

self.a = a

self.dt = dt

self.mesh = mesh

self.U = Function(V)

def advance_one_timestep(self , f, u_1):

"""

Solve the PDE for one time step.

f: the source term in the PDE.

u_1: solution at the previous time step.

"""

from dolfin import TestFunction , dx , solve

V, a, dt = self.V, self.a, self.dt # strip off self prefix

v = TestFunction(V)

L = (u_1 + dt*f)*v*dx

solve(self.a == L, self.U)

return self.U

import dolfin

import numpy

N = 12 # mesh partition

dt = 0.01 # time step

parabolicsolver = ParabolicSolver(N, dt)

U1 = dolfin.Function(parabolicsolver.V)

U0 = dolfin.Function(parabolicsolver.V)

U0.vector ()[:] = numpy.random.random(parabolicsolver.V.dim())

Q = dolfin.FunctionSpace(parabolicsolver.mesh , "DG", 0)

S0_ex = dolfin.Expression("x[0]")

S0 = dolfin.interpolate(S0_ex , Q)

S1 = dolfin.Function(Q)

34

import ODEFieldSolver # import module wrapping the ODE solver

odesolver = ODEFieldSolver.ODEFieldSolver ()

odesolver.redim(S0.vector ().size(0))

odesolver.set_IC(S0.vector ().array())

plot = True

for i in range(0, 23): # time loop

f = F(S0, U0)

U1 = parabolicsolver.advance_one_timestep(f, U0)

U1c = dolfin.project(U1, Q)

odesolver.set_u(U1c.vector ().array())

odesolver.advance_one_timestep ()

S1.vector ()[:] = odesolver.get_s()

U0 = U1

S0 = S1

if plot:

dolfin.plot(U1, title="U")

dolfin.plot(S1, title="S")

dolfin.interactive ()

5.4 Wrapping with Cython

Cython can also be used to wrap C/C++ code. To this end we define the C++
class in a .pyx file23:

cimport numpy as cnp

import numpy as np

cdef extern from "ODEFieldSolver.h":

cppclass ODEFieldSolver_ "ODEFieldSolver":

ODEFieldSolver ()

void redim(int n)

int size()

double g(double s, double u)

void set_dt(double dt)

void set_IC(int n, double* array)

void set_const_IC(double s0)

void set_u (int n, double* array)

void set_IC(double val)

void set_u (double const_value)

void advance_one_timestep ()

void get_s (int n, double* array)

Here, we redefine the name to ODEFieldSolver_ such that we may shadow
the underlying class with the following Python class:

cdef class ODEFieldSolver:

cdef ODEFieldSolver_ *wrapped

def __init__(self):

23https://github.com/hplgit/fenics-mixed/blob/master/doc/src/src-fenics-mixed/ODEFieldSolver/cython/ODEFieldSolver.pyx

35

https://github.com/hplgit/fenics-mixed/blob/master/doc/src/src-fenics-mixed/ODEFieldSolver/cython/ODEFieldSolver.pyx

self.wrapped = new ODEFieldSolver_ ()

def __dealloc__(self):

if self.wrapped != NULL:

del self.wrapped

We have a pointer called wrapped to the underlying SWIG-generated C
interface to the C++ code. Simple functions like e.g. redim are straightforward
to wrap,

def redim(self , n):

self.wrapped.redim(n)

For the set_IC function we need to check that the input argument is a
contiguous 1-dimensional numpy array of type double. This is spesified as
cnp.ndarray[double, ndim=1, mode=’c’]. Further, we check that the length
of the input array is the same as self.wrapped.size before we pass the input
array to the underlying C++ object.

def set_IC(self , cnp.ndarray[double , ndim=1, mode=’c’]

array):

if array.shape[0] != self.wrapped.size():

raise ValueError(’incorrect dimension on array’)

self.wrapped.set_IC(array.shape[0], &array[0])

We allow the user to employ the get_s function both with and without
an input argument, refered to as out. If the user does not supply any input,
i.e., if out is None then we create an array of appropriate type and size.
Otherwise, we check that out has the appropriate type and size before the array
is passed to the C++ object’s get_s function. At the end, we simply return
out.

def get_s(self ,

cnp.ndarray[double , ndim=1, mode=’c’] out=None):

if out is None:

out = np.empty(self.wrapped.size(), dtype=np.double)

elif out.shape[0] != self.wrapped.size():

raise ValueError(’incorrect dimension on out’)

self.wrapped.get_s(out.shape[0], &out[0])

return out

Finally, the module is built using a setup.py24 script for mixing Python,
Cython, and C++ code:

from distutils.core import setup

from distutils.extension import Extension

from Cython.Distutils import build_ext

setup(

cmdclass = {’build_ext ’: build_ext},

ext_modules = [Extension("ODEFieldSolver",

["ODEFieldSolver.pyx",

"../ ODEFieldSolver.cpp"],

include_dirs=[’..’],

24https://github.com/hplgit/fenics-mixed/blob/master/doc/src/src-fenics-mixed/ODEFieldSolver/cython/setup.py

36

https://github.com/hplgit/fenics-mixed/blob/master/doc/src/src-fenics-mixed/ODEFieldSolver/cython/setup.py

language=’c++’)]

)

6 Acknowledgment

The first author want to thank Alison L. Marsden, Weiguang Yang, and Mahdi
Esmaily-Mohgadam for discussions and code for Example 2 and 3, and for hosting
the first author during the summer 2012. Furthermore, Dag Sverre Seljebotn
provided the code for the Cython wrapping in example 3. Mikael Mortensen
provided the code for the Probe in Example 1.

References

[1] J.R. Cebral, F. Mut, J. Weir, and C. Putman. Quantitative characteriza-
tion of the hemodynamic environment in ruptured and unruptured brain
aneurysms. American Journal of Neuroradiology, 32(1):145–151, 2011.

[2] J.R. Cebral, F. Mut, J. Weir, and C.M. Putman. Association of hemody-
namic characteristics and cerebral aneurysm rupture. American Journal of
Neuroradiology, 32(2):264–270, 2011.

[3] J. E. Hake and K.-A. Mardal. Lessons learned in mixed language pro-
gramming. In A. Logg, K.-A. Mardal, and G.N. Wells, editors, Automated
Solution of Differential Equations by the Finite Element Method. Springer,
2012.

[4] H. P. Langtangen. A FEniCS tutorial. In Anders Logg, Kent-Andre Mardal,
and Garth N. Wells, editors, Automated Solution of Differential Equations
by the Finite Element Method, pages 1–73. Springer, 2012.

[5] A. Logg, K.-A. Mardal, and G. N. Wells. Automated Solution of Differential
Equations by the Finite Element Method. Springer, 2012.

[6] A. Logg and G. N. Wells. Dolfin: Automated finite element computing.
ACM Transactions on Mathematical Software, 37(2), 2010.

[7] A. Logg, G. N. Wells, and J. E. Hake. Dolfin: a C++/Python finite element
library. In A. Logg, K.-A. Mardal, and G.N. Wells, editors, Automated
Solution of Differential Equations by the Finite Element Method. Springer,
2012.

[8] A. Marsden, W. Yang, J. Feinstein, S. Shadden, and I. E. Vignon-Clementel.
Optimization of a y-graft design for improved hepatic flow distribution in
the fontan circulation. Annals of Biomedical Engineering, 1:508, 2012.

[9] A. L. Marsden, J. A. Feinstein, and C. A. Taylor. A computational framework
for derivative-free optimization of cardiovascular geometries. Computer
Methods in Applied Mechanics and Engineering, 197(21):1890–1905, 2008.

37

[10] A. L. Marsden, M. Wang, J. E. Dennis, and P. Moin. Optimal aeroacoustic
shape design using the surrogate management framework. Optimization
and Engineering, 5(2):235–262, 2004.

[11] T. Oliphant et al. NumPy array processing package for Python. http:

//www.numpy.org.

[12] K. Valen-Sendstad, K.-A. Mardal, M. Mortensen, B. A. P. Reif, and H. P.
Langtangen. Direct numerical simulation of transitional flow in a patient-
specific intracranial aneurysm. Journal of Biomechanics, 44(16):2826–2832,
2011.

[13] I. Wilbers, K.-A. Mardal, and M. S. Alnæs. Instant: Just-in-time compilation
of C/C++ in Python. In A. Logg, K.-A. Mardal, and G.N. Wells, editors,
Automated Solution of Differential Equations by the Finite Element Method.
Springer, 2012.

[14] J. Xiang, S. K. Natarajan, M. Tremmel, D. Ma, J. Mocco, L. N. Hop-
kins, A.H. Siddiqui, E. I. Levy, and H. Meng. Hemodynamic-morphologi
discriminants for intracranial aneurysm rupture. Stroke, 42:144–152, 2011.

38

http://www.numpy.org
http://www.numpy.org

	Introduction
	FEniCS solver with boundary conditions in Fortran
	The FEniCS solver
	The Fortran code for modeling boundary conditions
	Coupling the Python FEniCS solver with the Fortran routine

	FEniCS solver with optimization in Octave
	Basic use of Pytave
	Calling the MATLAB/Octave software
	The FEniCS PDE solver
	Coupling FEniCS and the MATLAB/Octave software
	Installing Pytave

	How to interface a C++/DOLFIN code from Python
	The C++ class
	Compiling and linking at the Python DOLFIN level
	Compiling and linking at the Instant level

	FEniCS solver coupled with ODE solver in C++
	Wrapping with F2PY
	A pure C version of the C++ class
	Wrapping with SWIG
	Wrapping with Cython

	Acknowledgment

