# Study guide: Finite difference methods for wave motion

Hans Petter Langtangen<sup>1,2</sup> Svein Linge<sup>3,1</sup>

Center for Biomedical Computing, Simula Research Laboratory<sup>1</sup>

Department of Informatics, University of Oslo<sup>2</sup>

Department of Process, Energy and Environmental Technology, University College of Southeast Norway<sup>3</sup>

Jul 14, 2016

© 2016, Hans Petter Langtangen, Svein Linge. Released under CC Attribution 4.0 license

- Finite difference methods for waves on a string
- 2 Verification
- 3 Implementation
  - Making a solver function (3)
- 4 Vectorization
- 5 Generalization: reflecting boundaries
- 6 Generalization: variable wave velocity
- 7 Building a general 1D wave equation solver
- 8 Finite difference methods for 2D and 3D wave equations
- 9 Implementation of 2D/3D problems
- Analysis of the difference equations

# Finite difference methods for waves on a string

Waves on a string can be modeled by the wave equation

$$\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2}$$

u(x, t) is the displacement of the string Demo of waves on a string.

### The complete initial-boundary value problem

$$\frac{\partial^{2} u}{\partial t^{2}} = c^{2} \frac{\partial^{2} u}{\partial x^{2}}, \qquad x \in (0, L), \ t \in (0, T] \qquad (1)$$

$$u(x, 0) = I(x), \qquad x \in [0, L] \qquad (2)$$

$$\frac{\partial}{\partial t} u(x, 0) = 0, \qquad x \in [0, L] \qquad (3)$$

$$u(0, t) = 0, \qquad t \in (0, T] \qquad (4)$$

$$u(L, t) = 0, \qquad t \in (0, T] \qquad (5)$$

### Input data in the problem

- Initial condition u(x,0) = I(x): initial string shape
- Initial condition  $u_t(x,0) = 0$ : string starts from rest
- $c = \sqrt{T/\varrho}$ : velocity of waves on the string
- (T is the tension in the string,  $\varrho$  is density of the string)
- Two boundary conditions on u: u = 0 means fixed ends (no displacement)

#### Rule for number of initial and boundary conditions:

- ullet  $u_{tt}$  in the PDE: two initial conditions, on u and  $u_t$
- ullet  $u_t$  (and no  $u_{tt}$ ) in the PDE: one initial conditions, on u
- u<sub>xx</sub> in the PDE: one boundary condition on u at each boundary point

# Demo of a vibrating string (C = 0.8)

- Our numerical method is sometimes exact (!)
- Our numerical method is sometimes subject to serious non-physical effects

Demo of a vibrating string (C = 1.0012)

Ooops!

### Step 1: Discretizing the domain

Mesh in time:

$$0 = t_0 < t_1 < t_2 < \dots < t_{N_t - 1} < t_{N_t} = T$$
 (6)

Mesh in space:

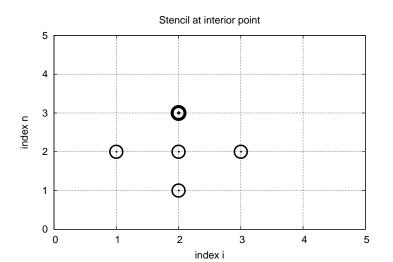
$$0 = x_0 < x_1 < x_2 < \dots < x_{N_x - 1} < x_{N_x} = L \tag{7}$$

Uniform mesh with constant mesh spacings  $\Delta t$  and  $\Delta x$ :

$$x_i = i\Delta x, i = 0, \dots, N_x, \quad t_i = n\Delta t, n = 0, \dots, N_t$$
 (8)

#### The discrete solution

- The numerical solution is a mesh function:  $u_i^n \approx u_e(x_i, t_n)$
- Finite difference stencil (or scheme): equation for  $u_i^n$  involving neighboring space-time points



# Step 2: Fulfilling the equation at the mesh points

Let the PDE be satisfied at all interior mesh points:

$$\frac{\partial^2}{\partial t^2} u(x_i, t_n) = c^2 \frac{\partial^2}{\partial x^2} u(x_i, t_n), \tag{9}$$

for  $i = 1, ..., N_x - 1$  and  $n = 1, ..., N_t - 1$ .

For n = 0 we have the initial conditions u = I(x) and  $u_t = 0$ , and at the boundaries i = 0,  $N_x$  we have the boundary condition u = 0.

### Step 3: Replacing derivatives by finite differences

Widely used finite difference formula for the second-order derivative:

$$\frac{\partial^2}{\partial t^2}u(x_i,t_n)\approx\frac{u_i^{n+1}-2u_i^n+u_i^{n-1}}{\Delta t^2}=[D_tD_tu]_i^n$$

and

$$\frac{\partial^{2}}{\partial x^{2}}u(x_{i},t_{n}) \approx \frac{u_{i+1}^{n} - 2u_{i}^{n} + u_{i-1}^{n}}{\Delta x^{2}} = [D_{x}D_{x}u]_{i}^{n}$$

### Step 3: Algebraic version of the PDE

Replace derivatives by differences:

$$\frac{u_i^{n+1} - 2u_i^n + u_i^{n-1}}{\Delta t^2} = c^2 \frac{u_{i+1}^n - 2u_i^n + u_{i-1}^n}{\Delta x^2},$$
 (10)

In operator notation:

$$[D_t D_t u = c^2 D_X D_X]_i^n (11)$$

### Step 3: Algebraic version of the initial conditions

- Need to replace the derivative in the initial condition  $u_t(x,0) = 0$  by a finite difference approximation
- ullet The differences for  $u_{tt}$  and  $u_{xx}$  have second-order accuracy
- Use a centered difference for  $u_t(x,0)$

$$[D_{2t}u]_i^n = 0, \quad n = 0 \quad \Rightarrow \quad u_i^{n-1} = u_i^{n+1}, \quad i = 0, \dots, N_x$$

The other initial condition u(x,0) = I(x) can be computed by

$$u_i^0 = I(x_i), \quad i = 0, \ldots, N_x$$

# Step 4: Formulating a recursive algorithm

- Nature of the algorithm: compute u in space at  $t = \Delta t, 2\Delta t, 3\Delta t, ...$
- ullet Three time levels are involved in the general discrete equation:  $n+1,\ n,\ n-1$
- $u_i^n$  and  $u_i^{n-1}$  are then already computed for  $i=0,\ldots,N_x$ , and  $u_i^{n+1}$  is the unknown quantity

Write out  $[D_t D_t u = c^2 D_x D_x]_i^n$  and solve for  $u_i^{n+1}$ ,

$$u_i^{n+1} = -u_i^{n-1} + 2u_i^n + C^2 \left( u_{i+1}^n - 2u_i^n + u_{i-1}^n \right)$$
 (12)

#### The Courant number

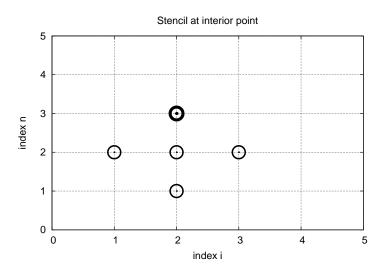
$$C = c \frac{\Delta t}{\Delta x},\tag{13}$$

is known as the (dimensionless) Courant number

#### Observe

There is only one parameter, C, in the discrete model: C lumps mesh parameters  $\Delta t$  and  $\Delta x$  with the only physical parameter, the wave velocity c. The value C and the smoothness of I(x) govern the quality of the numerical solution.

### The finite difference stencil



### The stencil for the first time level

- Problem: the stencil for n = 1 involves  $u_i^{-1}$ , but time  $t = -\Delta t$  is outside the mesh
- Remedy: use the initial condition  $u_t = 0$  together with the stencil to eliminate  $u_i^{-1}$

Initial condition:

$$[D_{2t}u=0]_i^0 \Rightarrow u_i^{-1}=u_i^1$$

Insert in stencil  $[D_t D_t u = c^2 D_x D_x]_i^0$  to get

$$u_i^1 = u_i^0 - \frac{1}{2}C^2 \left( u_{i+1}^n - 2u_i^n + u_{i-1}^n \right) \tag{14}$$

# The algorithm

- Compute  $u_i^0 = I(x_i)$  for  $i = 0, ..., N_x$
- ② Compute  $u_i^1$  by (14) and set  $u_i^1=0$  for the boundary points i=0 and  $i=N_x$ , for  $n=1,2,\ldots,N-1$ ,
- **3** For each time level  $n = 1, 2, ..., N_t 1$ 
  - **1** apply (12) to find  $u_i^{n+1}$  for  $i = 1, ..., N_x 1$
  - e set  $u_i^{n+1} = 0$  for the boundary points i = 0,  $i = N_x$ .

# Moving finite difference stencil

web page or a movie file.

# Sketch of an implementation (1)

- Arrays:
  - u[i] stores  $u_i^{n+1}$
  - $u_1[i]$  stores  $u_i^n$
  - u\_2[i] stores  $u_i^{n-1}$

#### Naming convention

u is the unknown to be computed (a spatial mesh function),  $u_k$  is the computed spatial mesh function k time steps back in time.

### PDE solvers should save memory

#### Important to minimize the memory usage

The algorithm only needs to access the *three most recent time levels*, so we need only three arrays for  $u_i^{n+1}$ ,  $u_i^n$ , and  $u_i^{n-1}$ ,  $i=0,\ldots,N_x$ . Storing all the solutions in a two-dimensional array of size  $(N_x+1)\times(N_t+1)$  would be possible in this simple one-dimensional PDE problem, but not in large 2D problems and not even in small 3D problems.

# Sketch of an implementation (2)

```
# Given mesh points as arrays x and t (x[i], t[n])
dx = x[1] - x[0]
dt = t[1] - t[0]
C = c*dt/dx
                       # Courant number
Nt = len(t)-1
C2 = C**2
                       # Help variable in the scheme
# Set initial condition u(x,0) = I(x)
for i in range(0, Nx+1):
    u 1[i] = I(x[i])
# Apply special formula for first step, incorporating du/dt=0
for i in range(1, Nx):
    u[i] = u_1[i] - 0.5*C**2(u_1[i+1] - 2*u_1[i] + u_1[i-1])
\mathbf{u}[0] = 0; \mathbf{u}[Nx] = 0 # Enforce boundary conditions
# Switch variables before next step
u_2[:], u_1[:] = u_1, u
for n in range(1, Nt):
    # Update all inner mesh points at time t[n+1]
    for i in range(1, Nx):
        u[i] = 2u_1[i] - u_2[i] - 
               C**2(u_1[i+1] - 2*u_1[i] + u_1[i-1])
    # Insert boundary conditions
    u[0] = 0; u[Nx] = 0
```

- 1 Finite difference methods for waves on a string
- 2 Verification
- 3 Implementation
  - Making a solver function (3)
- 4 Vectorization
- 5 Generalization: reflecting boundaries
- 6 Generalization: variable wave velocity
- Building a general 1D wave equation solver
- 8 Finite difference methods for 2D and 3D wave equations
- 9 Implementation of 2D/3D problems
- Analysis of the difference equations

### Verification

- Think about testing and verification before you start implementing the algorithm!
- Powerful testing tool: method of manufactured solutions and computation of convergence rates
- Will need a source term in the PDE and  $u_t(x,0) \neq 0$
- Even more powerful method: exact solution of the scheme

# A slightly generalized model problem

Add source term f and nonzero initial condition  $u_t(x,0)$ :

$$u_{tt} = c^{2}u_{xx} + f(x, t),$$

$$u(x, 0) = I(x),$$

$$u_{t}(x, 0) = V(x),$$

$$u(0, t) = 0,$$

$$u(L, t) = 0,$$

$$(15)$$

$$x \in [0, L]$$

$$t > 0,$$

$$t > 0,$$

$$t > 0,$$

$$(18)$$

### Discrete model for the generalized model problem

$$[D_t D_t u = c^2 D_x D_x + f]_i^n (20)$$

Writing out and solving for the unknown  $u_i^{n+1}$ :

$$u_i^{n+1} = -u_i^{n-1} + 2u_i^n + C^2(u_{i+1}^n - 2u_i^n + u_{i-1}^n) + \Delta t^2 f_i^n$$
 (21)

### Modified equation for the first time level

Centered difference for  $u_t(x,0) = V(x)$ :

$$[D_{2t}u = V]_i^0 \quad \Rightarrow \quad u_i^{-1} = u_i^1 - 2\Delta t V_i,$$

Inserting this in the stencil (21) for n = 0 leads to

$$u_i^1 = u_i^0 - \Delta t V_i + \frac{1}{2} C^2 \left( u_{i+1}^n - 2 u_i^n + u_{i-1}^n \right) + \frac{1}{2} \Delta t^2 f_i^n$$
 (22)

# Using an analytical solution of physical significance

- Standing waves occur in real life on a string
- Can be analyzed mathematically (known exact solution)

$$u_{e}(x, y, t)) = A \sin\left(\frac{\pi}{L}x\right) \cos\left(\frac{\pi}{L}ct\right)$$
 (23)

- PDE data: f=0, boundary conditions  $u_{\rm e}(0,t)=u_{\rm e}(L,0)=0$ , initial conditions  $I(x)=A\sin\left(\frac{\pi}{L}x\right)$  and V=0
- Note:  $u_i^{n+1} \neq u_e(x_i, t_{n+1})$ , and we do not know the error, so testing must aim at reproducing the expected convergence rates

### Manufactured solution: principles

- Disadvantage with the previous physical solution: it does not test  $V \neq 0$  and  $f \neq 0$
- Method of manufactured solution:
  - Choose some  $u_e(x, t)$
  - Insert in PDE and fit f
  - Set boundary and initial conditions compatible with the chosen  $u_{\rm e}(x,t)$

### Manufactured solution: example

$$u_{\rm e}(x,t) = x(L-x)\sin t$$

PDE  $u_{tt} = c^2 u_{xx} + f$ :

$$-x(L-x)\sin t = -2\sin t + f \quad \Rightarrow f = (2-x(L-x))\sin t$$

Implied initial conditions:

$$u(x,0) = I(x) = 0$$
  
 $u_t(x,0) = V(x) = -x(L-x)$ 

Boundary conditions:

$$u(x,0)=u(x,L)=0$$

# Testing a manufactured solution

- Introduce common mesh parameter:  $h = \Delta t$ ,  $\Delta x = ch/C$
- This h keeps C and  $\Delta t/\Delta x$  constant
- Select coarse mesh h: h<sub>0</sub>
- Run experiments with  $h_i = 2^{-i}h_0$  (halving the cell size),  $i = 0, \dots, m$
- Record the error  $E_i$  and  $h_i$  in each experiment
- Compute pariwise convergence rates  $r_i = \ln E_{i+1}/E_i/\ln h_{i+1}/h_i$
- Verification:  $r_i \rightarrow 2$  as i increases

### Constructing an exact solution of the discrete equations

- Manufactured solution with computation of convergence rates: much manual work
- Simpler and more powerful: use an exact solution for  $u_i^n$
- ullet A linear or quadratic  $u_e$  in x and t is often a good candidate

# Analytical work with the PDE problem

Here, choose  $u_e$  such that  $u_e(x,0) = u_e(L,0) = 0$ :

$$u_{\rm e}(x,t) = x(L-x)(1+\frac{1}{2}t),$$

Insert in the PDE and find f:

$$f(x,t) = 2(1+t)c^2$$

Initial conditions:

$$I(x) = x(L-x), \quad V(x) = \frac{1}{2}x(L-x)$$

# Analytical work with the discrete equations (1)

We want to show that  $u_{\rm e}$  also solves the discrete equations!

Useful preliminary result:

$$[D_t D_t t^2]^n = \frac{t_{n+1}^2 - 2t_n^2 + t_{n-1}^2}{\Delta t^2} = (n+1)^2 - n^2 + (n-1)^2 = 2$$

$$[D_t D_t t]^n = \frac{t_{n+1} - 2t_n + t_{n-1}}{\Delta t^2} = \frac{((n+1) - n + (n-1))\Delta t}{\Delta t^2} = 0$$
(25)

Hence,

$$[D_t D_t u_e]_i^n = x_i (L - x_i) [D_t D_t (1 + \frac{1}{2}t)]^n = x_i (L - x_i) \frac{1}{2} [D_t D_t t]^n = 0$$

# Analytical work with the discrete equations (1)

$$[D_{X}D_{X}u_{e}]_{i}^{n} = (1 + \frac{1}{2}t_{n})[D_{X}D_{X}(xL - x^{2})]_{i} = (1 + \frac{1}{2}t_{n})[LD_{X}D_{X}x - D_{X}D_{X}x^{2}]_{i}$$
$$= -2(1 + \frac{1}{2}t_{n})$$

Now,  $f_i^n = 2(1 + \frac{1}{2}t_n)c^2$  and we get

$$[D_t D_t u_e - c^2 D_x D_x u_e - f]_i^n = 0 - c^2 (-1) 2(1 + \frac{1}{2} t_n + 2(1 + \frac{1}{2} t_n) c^2 = 0$$

Moreover,  $u_{\rm e}(x_i,0)=I(x_i)$ ,  $\partial u_{\rm e}/\partial t=V(x_i)$  at t=0, and  $u_{\rm e}(x_0,t)=u_{\rm e}(x_{N_x},0)=0$ . Also the modified scheme for the first time step is fulfilled by  $u_{\rm e}(x_i,t_n)$ .

### Testing with the exact discrete solution

- We have established that  $u_i^{n+1} = u_e(x_i, t_{n+1}) = x_i(L x_i)(1 + t_{n+1}/2)$
- Run one simulation with one choice of c,  $\Delta t$ , and  $\Delta x$
- Check that  $\max_i |u_i^{n+1} u_e(x_i, t_{n+1})| < \epsilon$ ,  $\epsilon \sim 10^{-14}$  (machine precision + some round-off errors)
- This is the simplest and best verification test

Later we show that the exact solution of the discrete equations can be obtained by  $\mathcal{C}=1$  (!)

## Testing with the exact discrete solution

- We have established that  $u_i^{n+1} = u_e(x_i, t_{n+1}) = x_i(L x_i)(1 + t_{n+1}/2)$
- Run one simulation with one choice of c,  $\Delta t$ , and  $\Delta x$
- Check that  $\max_i |u_i^{n+1} u_e(x_i, t_{n+1})| < \epsilon, \ \epsilon \sim 10^{-14}$  (machine precision + some round-off errors)
- This is the simplest and best verification test

Later we show that the exact solution of the discrete equations can be obtained by  $\mathcal{C}=1$  (!)

- 1 Finite difference methods for waves on a string
- 2 Verification
- Implementation
  - Making a solver function (3)
- 4 Vectorization
- 5 Generalization: reflecting boundaries
- 6 Generalization: variable wave velocity
- 7 Building a general 1D wave equation solver
- 8 Finite difference methods for 2D and 3D wave equations
- 9 Implementation of 2D/3D problems
- Analysis of the difference equations



## The algorithm

- Compute  $u_i^0 = I(x_i)$  for  $i = 0, ..., N_x$
- ② Compute  $u_i^1$  by (14) and set  $u_i^1=0$  for the boundary points i=0 and  $i=N_x$ , for  $n=1,2,\ldots,N-1$ ,
- **3** For each time level  $n = 1, 2, ..., N_t 1$ 
  - **1** apply (12) to find  $u_i^{n+1}$  for  $i = 1, ..., N_x 1$
  - e set  $u_i^{n+1} = 0$  for the boundary points i = 0,  $i = N_x$ .

### What do to with the solution?

- Different problem settings demand different actions with the computed  $u_i^{n+1}$  at each time step
- Solution: let the solver function make a callback to a user function where the user can do whatever is desired with the solution
- Advantage: solver just solves and user uses the solution

```
def user_action(u, x, t, n):
    # u[i] at spatial mesh points x[i] at time t[n]
# plot u
# or store u
```

## Making a solver function (1)

We specify  $\Delta t$  and C, and let the solver function compute  $\Delta x = c\Delta t/C$ .

```
def solver(I, V, f, c, L, dt, C, T, user_action=None):
    """Solve u_tt=c^2*u_xx + f on (0,L)x(0,T]."""
   Nt = int(round(T/dt))
   t = linspace(0, Nt*dt, Nt+1) # Mesh points in time
   dx = dt*c/float(C)
   Nx = int(round(L/dx))
   x = linspace(0, L, Nx+1)
                                # Mesh points in space
   dx = x[1] - x[0]
   C2 = C**2
                                  # Help variable in the scheme
   if f is None or f == 0:
      f = lambda x, t: 0
   if V is None or V == 0:
       V = lambda x: 0
   u = zeros(Nx+1) # Solution array at new time level
   u_1 = zeros(Nx+1) # Solution at 1 time level back
   u_2 = zeros(Nx+1) # Solution at 2 time levels back
   import time; t0 = time.clock() # for measuring CPU time
    # Load initial condition into u_1
   for i in range(0,Nx+1):
       u_1[i] = I(x[i])
```

# Making a solver function (2)

```
def solver(I, V, f, c, L, dt, C, T, user_action=None):
    # Special formula for first time step
   \mathbf{n} = 0
   for i in range(1, Nx):
        u[i] = u_1[i] + dt*V(x[i]) + 
               0.5*C2*(u_1[i-1] - 2*u_1[i] + u_1[i+1]) + 
               0.5*dt**2*f(x[i], t[n])
   u[0] = 0; u[Nx] = 0
    if user action is not None:
        user action(u. x. t. 1)
    # Switch variables before next step
   u_2[:], u_1[:] = u_1, u
def solver(I, V, f, c, L, Nx, C, T, user_action=None):
    # Time loop
   for n in range(1, Nt):
        # Update all inner points at time t[n+1]
        for i in range(1, Nx):
            u[i] = -u_2[i] + 2*u_1[i] + 
                     C2*(u_1[i-1] - 2*u_1[i] + u_1[i+1]) + 
                     dt**2*f(x[i], t[n])
```

### Verification: exact quadratic solution

u = u exact(x. t[n])

```
Exact solution of the PDE problem and the discrete equations:
u_{e}(x, t) = x(L - x)(1 + \frac{1}{2}t)
 def test_quadratic():
     """Check that u(x, t) = x(L-x)(1+t/2) is exactly reproduced."""
     def u_exact(x, t):
         return x*(L-x)*(1 + 0.5*t)
     def I(x):
         return u_exact(x, 0)
     def V(x):
         return 0.5*u_exact(x, 0)
     def f(x, t):
         return 2*(1 + 0.5*t)*c**2
     L = 2.5
     c = 1.5
     C = 0.75
     Nx = 6 # Very coarse mesh for this exact test
     dt = C*(L/Nx)/c
     T = 18
     def assert_no_error(u, x, t, n):
```

## Visualization: animating u(x, t)

Make a viz function for animating the curve, with plotting in a user\_action function plot\_u:

```
def viz(
   I, V, f, c, L, dt, C, T, # PDE parameters
   umin, umax,
                             # Interval for u in plots
                           # Simulation with animation?
   animate=True,
   tool='matplotlib', # 'matplotlib' or 'scitools'
   solver_function=solver, # Function with numerical algorithm
    """Run solver and visualize u at each time level."""
   def plot_u_st(u, x, t, n):
        """user_action function for solver."""
       plt.plot(x, u, 'r-',
                xlabel='x', vlabel='u',
                axis=[0, L, umin, umax],
                title='t=%f' % t[n], show=True)
        # Let the initial condition stay on the screen for 2
        # seconds, else insert a pause of 0.2 s between each plot
       time.sleep(2) if t[n] == 0 else time.sleep(0.2)
       plt.savefig('frame_%04d.png' % n) # for movie making
   class PlotMatplotlib:
       def __call__(self, u, x, t, n):
            """user_action function for solver."""
           if n == 0:
```

### Making movie files

- Store spatial curve in a file, for each time level
- Name files like 'something\_%04d.png' % frame\_counter
- Combine files to a movie

```
Terminal> scitools movie encoder=html output_file=movie.html \
fps=4 frame_*.png # web page with a player

Terminal> avconv -r 4 -i frame_%04d.png -c:v flv movie.flv

Terminal> avconv -r 4 -i frame_%04d.png -c:v libtheora movie.ogg

Terminal> avconv -r 4 -i frame_%04d.png -c:v libx264 movie.mp4

Terminal> avconv -r 4 -i frame_%04d.png -c:v libpvx movie.webm
```

#### **Important**

- Zero padding (%04d) is essential for correct sequence of frames in something\_\*.png (Unix alphanumeric sort)
- Remove old frame\_\*.png files before making a new movie

### Running a case

- Vibrations of a guitar string
- Triangular initial shape (at rest)

$$I(x) = \begin{cases} ax/x_0, & x < x_0 \\ a(L-x)/(L-x_0), & \text{otherwise} \end{cases}$$
 (26)

Appropriate data:

 $\bullet$  L=75 cm,  $x_0=0.8L$ , a=5 mm, time frequency u=440 Hz

### Implementation of the case

```
def guitar(C):
    """Triangular wave (pulled guitar string)."""
   L = 0.75
    x0 = 0.8*L
    a = 0.005
   freq = 440
   wavelength = 2*L
    c = freq*wavelength
    omega = 2*pi*freq
   num_periods = 1
    T = 2*pi/omega*num_periods
    # Choose dt the same as the stability limit for Nx=50
   dt = L/50./c
    def T(x):
        return a*x/x0 if x < x0 else a/(L-x0)*(L-x)
   umin = -1.2*a; umax = -umin
    cpu = viz(I, 0, 0, c, L, dt, C, T, umin, umax,
              animate=True, tool='scitools')
def convergence_rates(
   u_exact,
                             # Python function for exact solution
    I, V, f, c, L,
                          # physical parameters
    dtO, num_meshes, C, T): # numerical parameters
    Walf the time atom and estimate companyance mates for
```

Resulting movie for C = 0.8

Movie of the vibrating string

## The benefits of scaling

- It is difficult to figure out all the physical parameters of a case
- And it is not necessary because of a powerful: scaling

Introduce new x, t, and u without dimension:

$$\bar{x} = \frac{x}{l}, \quad \bar{t} = \frac{c}{l}t, \quad \bar{u} = \frac{u}{a}$$

Insert this in the PDE (with f = 0) and dropping bars

$$u_{tt} = u_{xx}$$

Initial condition: set a = 1, L = 1, and  $x_0 \in [0, 1]$  in (26).

In the code: set a=c=L=1, x0=0.8, and there is no need to calculate with wavelengths and frequencies to estimate c!

Just one challenge: determine the period of the waves and an appropriate end time (see the text for details).

- 1 Finite difference methods for waves on a string
- 2 Verification
- Implementation
  - Making a solver function (3)
- 4 Vectorization
- 5 Generalization: reflecting boundaries
- 6 Generalization: variable wave velocity
- 7 Building a general 1D wave equation solver
- 8 Finite difference methods for 2D and 3D wave equations
- 9 Implementation of 2D/3D problems
- Analysis of the difference equations

### Vectorization

- Problem: Python loops over long arrays are slow
- One remedy: use vectorized (numpy) code instead of explicit loops
- Other remedies: use Cython, port spatial loops to Fortran or C
- Speedup: 100-1000 (varies with  $N_x$ )

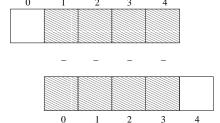
Next: vectorized loops

### Operations on slices of arrays

• Introductory example: compute  $d_i = u_{i+1} - u_i$ 

```
n = u.size
for i in range(0, n-1):
    d[i] = u[i+1] - u[i]
```

- Note: all the differences here are independent of each other.
- Therefore  $d = (u_1, u_2, \dots, u_n) (u_0, u_1, \dots, u_{n-1})$
- In numpy code: u[1:n] u[0:n-1] or just u[1:] u[:-1]



## Test the understanding

Newcomers to vectorization are encouraged to choose a small array  $\mathbf{u}$ , say with five elements, and simulate with pen and paper both the loop version and the vectorized version.

## Vectorization of finite difference schemes (1)

Finite difference schemes basically contains differences between array elements with shifted indices. Consider the updating formula

```
for i in range(1, n-1):
u2[i] = u[i-1] - 2*u[i] + u[i+1]
```

The vectorization consists of replacing the loop by arithmetics on slices of arrays of length n-2:

```
u2 = u[:-2] - 2*u[1:-1] + u[2:]

u2 = u[0:n-2] - 2*u[1:n-1] + u[2:n] # alternative
```

Note: u2 gets length n-2.

If u2 is already an array of length n, do update on "inner" elements

```
u2[1:-1] = u[:-2] - 2*u[1:-1] + u[2:]

u2[1:n-1] = u[0:n-2] - 2*u[1:n-1] + u[2:n] # alternative
```

## Vectorization of finite difference schemes (2)

Include a function evaluation too:

```
def f(x):
    return x**2 + 1

# Scalar version
for i in range(1, n-1):
    u2[i] = u[i-1] - 2*u[i] + u[i+1] + f(x[i])

# Vectorized version
u2[1:-1] = u[:-2] - 2*u[1:-1] + u[2:] + f(x[1:-1])
```

### Vectorized implementation in the solver function

#### Scalar loop:

```
for i in range(1, Nx): u[i] = 2*u_1[i] - u_2[i] + \\ C2*(u_1[i-1] - 2*u_1[i] + u_1[i+1])
```

#### Vectorized loop:

or

Program: wave1D\_u0v.py

### Verification of the vectorized version

coluen(T V f c I d+ C T

```
def test_quadratic():
    Check the scalar and vectorized versions for
    a quadratic u(x,t)=x(L-x)(1+t/2) that is exactly reproduced.
    # The following function must work for x as array or scalar
   u_{exact} = lambda x, t: x*(L - x)*(1 + 0.5*t)
    I = lambda x: u_exact(x, 0)
    V = lambda x: 0.5*u_exact(x, 0)
    # f is a scalar (zeros_like(x) works for scalar x too)
   f = lambda x, t: np.zeros_like(x) + 2*c**2*(1 + 0.5*t)
   I_{\cdot} = 2.5
   c = 1.5
   C = 0.75
   Nx = 3 # Very coarse mesh for this exact test
   dt = C*(L/Nx)/c
   T = 18
    def assert_no_error(u, x, t, n):
        u_e = u_exact(x, t[n])
        tol = 1E-13
        diff = np.abs(u - u_e).max()
        assert diff < tol
    solver(I, V, f, c, L, dt, C, T,
           user_action=assert_no_error, version='scalar')
```

# Efficiency measurements

- Run wave1D\_u0v.py for  $N_x$  as 50,100,200,400,800 and measuring the CPU time
- Observe substantial speed-up: vectorized version is about  $N_x/5$  times faster

Much bigger improvements for 2D and 3D codes!

- 1 Finite difference methods for waves on a string
- 2 Verification
- Implementation
  - Making a solver function (3)
- 4 Vectorization
- Generalization: reflecting boundaries
- 6 Generalization: variable wave velocity
- Building a general 1D wave equation solver
- 8 Finite difference methods for 2D and 3D wave equations
- 9 Implementation of 2D/3D problems
- Analysis of the difference equations

## Generalization: reflecting boundaries

- Boundary condition u = 0: u changes sign
- Boundary condition  $u_x = 0$ : wave is perfectly reflected
- How can we implement  $u_x$ ? (more complicated than u = 0)

Demo of boundary conditions

### Neumann boundary condition

$$\frac{\partial u}{\partial n} \equiv \boldsymbol{n} \cdot \nabla u = 0 \tag{27}$$

For a 1D domain [0, L]:

$$\left. \frac{\partial}{\partial n} \right|_{x=L} = \frac{\partial}{\partial x}, \quad \left. \frac{\partial}{\partial n} \right|_{x=0} = -\frac{\partial}{\partial x}$$

Boundary condition terminology:

- $\bullet$   $u_x$  specified: Neumann condition
- u specified: Dirichlet condition

### Discretization of derivatives at the boundary (1)

- How can we incorporate the condition  $u_x = 0$  in the finite difference scheme?
- We used centeral differences for  $u_{tt}$  and  $u_{xx}$ :  $\mathcal{O}(\Delta t^2, \Delta x^2)$  accuracy
- Also for  $u_t(x,0)$
- Should use central difference for u<sub>x</sub> to preserve second order accuracy

$$\frac{u_{-1}^n - u_1^n}{2\Delta x} = 0 (28)$$

## Discretization of derivatives at the boundary (2)

$$\frac{u_{-1}^n-u_1^n}{2\Delta x}=0$$

- Problem:  $u_{-1}^n$  is outside the mesh (fictitious value)
- Remedy: use the stencil at the boundary to eliminate  $u_{-1}^n$ ; just replace  $u_{-1}^n$  by  $u_1^n$

$$u_i^{n+1} = -u_i^{n-1} + 2u_i^n + 2C^2(u_{i+1}^n - u_i^n), \quad i = 0$$
 (29)

# Visualization of modified boundary stencil

Discrete equation for computing  $u_0^3$  in terms of  $u_0^2$ ,  $u_0^1$ , and  $u_1^2$ : Animation in a web page or a movie file.

### Implementation of Neumann conditions

- Use the general stencil for interior points also on the boundary
- Replace  $u_{i-1}^n$  by  $u_{i+1}^n$  for i=0
- Replace  $u_{i+1}^n$  by  $u_{i-1}^n$  for  $i = N_x$

```
i = 0
ip1 = i+1
im1 = ip1 # i-1 -> i+1
u[i] = u_1[i] + C2*(u_1[im1] - 2*u_1[i] + u_1[ip1])
i = Nx
im1 = i-1
ip1 = im1 # i+1 -> i-1
u[i] = u_1[i] + C2*(u_1[im1] - 2*u_1[i] + u_1[ip1])
# Or just one loop over all points
for i in range(0, Nx+1):
    ip1 = i+\bar{1} if i < Nx else i-1
    im1 = i-1 if i > 0 else i+1
   u[i] = u_1[i] + C2*(u_1[im1] - 2*u_1[i] + u_1[ip1])
```

Program wave1D\_dn0.py

# Moving finite difference stencil

web page or a movie file.

### Index set notation

- Tedious to write index sets like  $i = 0, ..., N_x$  and  $n = 0, ..., N_t$
- Notation not valid if i or n starts at 1 instead...
- Both in math and code it is advantageous to use index sets
- ullet  $i\in\mathcal{I}_{x}$  instead of  $i=0,\ldots,\mathcal{N}_{x}$
- Definition:  $\mathcal{I}_x = \{0, \dots, N_x\}$
- The first index:  $i = \mathcal{I}_x^0$
- The last index:  $i = \mathcal{I}_{x}^{-1}$
- ullet All interior points:  $i \in \mathcal{I}_{\mathsf{x}}^i, \ \mathcal{I}_{\mathsf{x}}^i = \{1, \dots, \mathit{N}_{\mathsf{x}} 1\}$
- ullet  $\mathcal{I}_{x}^{-}$  means  $\{0,\ldots,\mathcal{N}_{x}-1\}$
- $\mathcal{I}_{x}^{+}$  means  $\{1,\ldots,N_{x}\}$

### Index set notation in code

| hon  |
|------|
|      |
| ]    |
| 1]   |
| :]   |
| -1]  |
| :-1] |
|      |

### Index sets in action (1)

Index sets for a problem in the x, t plane:

$$\mathcal{I}_{x} = \{0, \dots, N_{x}\}, \quad \mathcal{I}_{t} = \{0, \dots, N_{t}\},$$
 (30)

Implemented in Python as

```
Ix = range(0, Nx+1)
It = range(0, Nt+1)
```

### Index sets in action (2)

A finite difference scheme can with the index set notation be specified as

$$\begin{split} u_i^{n+1} &= -u_i^{n-1} + 2u_i^n + C^2 \left( u_{i+1}^n - 2u_i^n + u_{i-1}^n \right), \quad i \in \mathcal{I}_x^i, \ n \in \mathcal{I}_t^i \\ u_i &= 0, \quad i = \mathcal{I}_x^0, \ n \in \mathcal{I}_t^i \\ u_i &= 0, \quad i = \mathcal{I}_x^{-1}, \ n \in \mathcal{I}_t^i \end{split}$$

Corresponding implementation:

Program wave1D\_dn.py

### Alternative implementation via ghost cells

- Instead of modifying the stencil at the boundary, we extend the mesh to cover  $u^n_{-1}$  and  $u^n_{N_x+1}$
- The extra left and right cell are called ghost cells
- The extra points are called ghost points
- The  $u_{-1}^n$  and  $u_{N_v+1}^n$  values are called ghost values
- Update ghost values as  $u_{i-1}^n = u_{i+1}^n$  for i = 0 and  $i = N_x$
- Then the stencil becomes right at the boundary

## Implementation of ghost cells (1)

#### Add ghost points:

```
u = zeros(Nx+3)
u_1 = zeros(Nx+3)
u_2 = zeros(Nx+3)
x = linspace(0, L, Nx+1) # Mesh points without ghost points
```

- A major indexing problem arises with ghost cells since Python indices must start at 0.
- u[-1] will always mean the last element in u
- Math indexing:  $-1, 0, 1, 2, ..., N_x + 1$
- Python indexing: 0,..,Nx+2
- Remedy: use index sets

## Implementation of ghost cells (2)

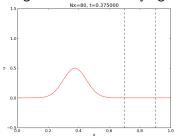
```
u = zeros(Nx+3)
Ix = range(1, u.shape[0]-1)
# Boundary values: u[Ix[0]], u[Ix[-1]]
# Set initial conditions
for i in Ix:
   u_1[i] = I(x[i-Ix[0]]) # Note i-Ix[0]
# Loop over all physical mesh points
for i in Ix:
   u[i] = -u_2[i] + 2*u_1[i] + 
          C2*(u_1[i-1] - 2*u_1[i] + u_1[i+1])
# Update ghost values
i = Ix[0]
                 # x=0 boundary
u[i-1] = u[i+1]
i = Ix[-1]
          # x=L boundary
u[i-1] = u[i+1]
```

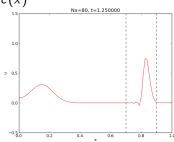
Program: wave1D\_dn0\_ghost.py.

- 1 Finite difference methods for waves on a string
- 2 Verification
- 3 Implementation
  - Making a solver function (3)
- 4 Vectorization
- 5 Generalization: reflecting boundaries
- 6 Generalization: variable wave velocity
- 7 Building a general 1D wave equation solver
- 8 Finite difference methods for 2D and 3D wave equations
- 9 Implementation of 2D/3D problems
- Analysis of the difference equations

#### Generalization: variable wave velocity







#### The model PDE with a variable coefficient

$$\frac{\partial^2 u}{\partial t^2} = \frac{\partial}{\partial x} \left( q(x) \frac{\partial u}{\partial x} \right) + f(x, t) \tag{31}$$

This equation sampled at a mesh point  $(x_i, t_n)$ :

$$\frac{\partial^2}{\partial t^2}u(x_i,t_n)=\frac{\partial}{\partial x}\left(q(x_i)\frac{\partial}{\partial x}u(x_i,t_n)\right)+f(x_i,t_n),$$

## Discretizing the variable coefficient (1)

The principal idea is to first discretize the outer derivative.

Define

$$\phi = q(x) \frac{\partial u}{\partial x}$$

Then use a centered derivative around  $x=x_i$  for the derivative of  $\phi$ :

$$\left[\frac{\partial \phi}{\partial x}\right]_{i}^{n} \approx \frac{\phi_{i+\frac{1}{2}} - \phi_{i-\frac{1}{2}}}{\Delta x} = [D_{x}\phi]_{i}^{n}$$

## Discretizing the variable coefficient (2)

Then discretize the inner operators:

$$\phi_{i+\frac{1}{2}} = q_{i+\frac{1}{2}} \left[ \frac{\partial u}{\partial x} \right]_{i+\frac{1}{2}}^{n} \approx q_{i+\frac{1}{2}} \frac{u_{i+1}^{n} - u_{i}^{n}}{\Delta x} = [qD_{x}u]_{i+\frac{1}{2}}^{n}$$

Similarly,

$$\phi_{i-\frac{1}{2}} = q_{i-\frac{1}{2}} \left[ \frac{\partial u}{\partial x} \right]_{i-\frac{1}{2}}^{n} \approx q_{i-\frac{1}{2}} \frac{u_{i}^{n} - u_{i-1}^{n}}{\Delta x} = [qD_{x}u]_{i-\frac{1}{2}}^{n}$$

#### Discretizing the variable coefficient (3)

These intermediate results are now combined to

$$\left[\frac{\partial}{\partial x}\left(q(x)\frac{\partial u}{\partial x}\right)\right]_{i}^{n} \approx \frac{1}{\Delta x^{2}}\left(q_{i+\frac{1}{2}}\left(u_{i+1}^{n}-u_{i}^{n}\right)-q_{i-\frac{1}{2}}\left(u_{i}^{n}-u_{i-1}^{n}\right)\right)$$
(32)

In operator notation:

$$\left[\frac{\partial}{\partial x}\left(q(x)\frac{\partial u}{\partial x}\right)\right]_{i}^{n} \approx \left[D_{x}qD_{x}u\right]_{i}^{n} \tag{33}$$

#### Remark

Many are tempted to use the chain rule on the term  $\frac{\partial}{\partial x} \left( q(x) \frac{\partial u}{\partial x} \right)$ , but this is not a good idea!

## Computing the coefficient between mesh points

- Given q(x): compute  $q_{i+\frac{1}{2}}$  as  $q(x_{i+\frac{1}{2}})$
- Given q at the mesh points:  $q_i$ , use an average

$$q_{i+\frac{1}{2}} pprox \frac{1}{2} (q_i + q_{i+1}) = [\overline{q}^x]_i$$
 (arithmetic mean) (34)

$$q_{i+\frac{1}{2}} \approx 2\left(\frac{1}{q_i} + \frac{1}{q_{i+1}}\right)^{-1}$$
 (harmonic mean) (35)

$$q_{i+\frac{1}{2}} \approx (q_i q_{i+1})^{1/2}$$
 (geometric mean) (36)

The arithmetic mean in (34) is by far the most used averaging technique.

# Discretization of variable-coefficient wave equation in operator notation

$$[D_t D_t u = D_x \overline{q}^x D_x u + f]_i^n$$
(37)

We clearly see the type of finite differences and averaging!

Write out and solve wrt  $u_i^{n+1}$ :

$$u_{i}^{n+1} = -u_{i}^{n-1} + 2u_{i}^{n} + \left(\frac{\Delta t}{\Delta x}\right)^{2} \times \left(\frac{1}{2}(q_{i} + q_{i+1})(u_{i+1}^{n} - u_{i}^{n}) - \frac{1}{2}(q_{i} + q_{i-1})(u_{i}^{n} - u_{i-1}^{n})\right) + \Delta t^{2} f_{i}^{n}$$
(38)

#### Neumann condition and a variable coefficient

Consider  $\partial u/\partial x = 0$  at  $x = L = N_x \Delta x$ :

$$\frac{u_{i+1}^n - u_{i-1}^n}{2\Delta x} = 0 \quad u_{i+1}^n = u_{i-1}^n, \quad i = N_x$$

Insert  $u_{i+1}^n = u_{i-1}^n$  in the stencil (38) for  $i = N_x$  and obtain

$$u_i^{n+1} \approx -u_i^{n-1} + 2u_i^n + \left(\frac{\Delta t}{\Delta x}\right)^2 2q_i(u_{i-1}^n - u_i^n) + \Delta t^2 f_i^n$$

(We have used 
$$q_{i+\frac{1}{2}}+q_{i-\frac{1}{2}}\approx 2q_{i}$$
.)

Alternative: assume dq/dx = 0 (simpler).

#### Implementation of variable coefficients

Assume c[i] holds  $c_i$  the spatial mesh points

Here: C2=(dt/dx)\*\*2

Vectorized version:

Neumann condition  $u_x = 0$ : same ideas as in 1D (modified stencil or ghost cells).

#### A more general model PDE with variable coefficients

$$\varrho(x)\frac{\partial^2 u}{\partial t^2} = \frac{\partial}{\partial x} \left( q(x) \frac{\partial u}{\partial x} \right) + f(x, t)$$
 (39)

A natural scheme is

$$[\varrho D_t D_t u = D_x \overline{q}^x D_x u + f]_i^n \tag{40}$$

0r

$$[D_t D_t u = \varrho^{-1} D_x \overline{q}^x D_x u + f]_i^n$$
(41)

No need to average  $\varrho$ , just sample at i

## Generalization: damping

Why do waves die out?

- Damping (non-elastic effects, air resistance)
- 2D/3D: conservation of energy makes an amplitude reduction by  $1/\sqrt{r}$  (2D) or 1/r (3D)

Simplest damping model (for physical behavior, see demo):

$$\frac{\partial^2 u}{\partial t^2} + b \frac{\partial u}{\partial t} = c^2 \frac{\partial^2 u}{\partial x^2} + f(x, t), \tag{42}$$

b > 0: prescribed damping coefficient.

Discretization via centered differences to ensure  $\mathcal{O}(\Delta t^2)$  error:

$$[D_t D_t u + b D_{2t} u = c^2 D_x D_x u + f]_i^n$$
 (43)

Need special formula for  $u_i^1$  + special stencil (or ghost cells) for Neumann conditions.

- 1 Finite difference methods for waves on a string
- 2 Verification
- Implementation
  - Making a solver function (3)
- 4 Vectorization
- 5 Generalization: reflecting boundaries
- 6 Generalization: variable wave velocity
- Building a general 1D wave equation solver
- 8 Finite difference methods for 2D and 3D wave equations
- 9 Implementation of 2D/3D problems
- Analysis of the difference equations

#### Building a general 1D wave equation solver

The program wave1D\_dn\_vc.py solves a fairly general 1D wave equation:

$$u_{t} = (c^{2}(x)u_{x})_{x} + f(x,t), \qquad x \in (0,L), \ t \in (0,T] \quad (44)$$

$$u(x,0) = I(x), \qquad x \in [0,L] \quad (45)$$

$$u_{t}(x,0) = V(t), \qquad x \in [0,L] \quad (46)$$

$$u(0,t) = U_{0}(t) \text{ or } u_{x}(0,t) = 0, \qquad t \in (0,T] \quad (47)$$

$$u(L,t) = U_{L}(t) \text{ or } u_{x}(L,t) = 0, \qquad t \in (0,T] \quad (48)$$

Can be adapted to many needs.

#### Collection of initial conditions

The function pulse in wave1D\_dn\_vc.py offers four initial conditions:

- a rectangular pulse ("plug")
- a Gaussian function (gaussian)
- 3 a "cosine hat": one period of  $1 + \cos(\pi x, x \in [-1, 1])$
- half a "cosine hat": half a period of  $\cos \pi x$ ,  $x \in [-\frac{1}{2}, \frac{1}{2}]$

Can locate the initial pulse at x = 0 or in the middle

```
>>> import wave1D_dn_vc as w
>>> w.pulse(loc='left', pulse_tp='cosinehat', Nx=50, every_frame=10)
```

- Finite difference methods for waves on a string
- 2 Verification
- Implementation
  - Making a solver function (3)
- 4 Vectorization
- 5 Generalization: reflecting boundaries
- 6 Generalization: variable wave velocity
- 7 Building a general 1D wave equation solver
- 8 Finite difference methods for 2D and 3D wave equations
- 9 Implementation of 2D/3D problems
- Analysis of the difference equations

#### Finite difference methods for 2D and 3D wave equations

Constant wave velocity c:

$$\frac{\partial^2 u}{\partial t^2} = c^2 \nabla^2 u \text{ for } \mathbf{x} \in \Omega \subset \mathbb{R}^d, \ t \in (0, T]$$
 (49)

Variable wave velocity:

$$\varrho \frac{\partial^2 u}{\partial t^2} = \nabla \cdot (q \nabla u) + f \text{ for } \mathbf{x} \in \Omega \subset \mathbb{R}^d, \ t \in (0, T]$$
 (50)

## Examples on wave equations written out in 2D/3D

3D, constant c:

$$\nabla^2 u = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2}$$

2D, variable c:

$$\varrho(x,y)\frac{\partial^2 u}{\partial t^2} = \frac{\partial}{\partial x}\left(q(x,y)\frac{\partial u}{\partial x}\right) + \frac{\partial}{\partial y}\left(q(x,y)\frac{\partial u}{\partial y}\right) + f(x,y,t)$$
(51)

Compact notation:

$$u_{tt} = c^{2}(u_{xx} + u_{yy} + u_{zz}) + f,$$

$$\varrho u_{tt} = (qu_{x})_{x} + (qu_{z})_{z} + (qu_{z})_{z} + f$$
(52)

## Boundary and initial conditions

We need *one* boundary condition at *each point* on  $\partial\Omega$ :

- $\mathbf{0}$  u is prescribed (u = 0 or known incoming wave)
- ②  $\partial u/\partial n = \mathbf{n} \cdot \nabla u$  prescribed (= 0: reflecting boundary)
- ullet open boundary (radiation) condition:  $u_t + c \cdot 
  abla u = 0$  (let waves travel undisturbed out of the domain)

PDEs with second-order time derivative need two initial conditions:

- **1** u = 1
- $u_t = V$ .

#### Mesh

- Mesh point:  $(x_i, y_i, z_k, t_n)$
- x direction:  $x_0 < x_1 < \cdots < x_{N_x}$
- y direction:  $y_0 < y_1 < \cdots < y_{N_y}$
- z direction:  $z_0 < z_1 < \cdots < z_{N_z}$
- $\bullet \ u_{i,j,k}^n \approx u_{\rm e}(x_i,y_j,z_k,t_n)$

#### Discretization

$$[D_t D_t u = c^2 (D_X D_X u + D_Y D_Y u) + f]_{i,j,k}^n,$$

Written out in detail:

$$\frac{u_{i,j}^{n+1} - 2u_{i,j}^{n} + u_{i,j}^{n-1}}{\Delta t^{2}} = c^{2} \frac{u_{i+1,j}^{n} - 2u_{i,j}^{n} + u_{i-1,j}^{n}}{\Delta x^{2}} + c^{2} \frac{u_{i,j+1}^{n} - 2u_{i,j}^{n} + u_{i,j-1}^{n}}{\Delta v^{2}} + f_{i,j}^{n},$$

 $u_{i,j}^{n-1}$  and  $u_{i,j}^n$  are known, solve for  $u_{i,j}^{n+1}$ :

$$u_{i,j}^{n+1} = 2u_{i,j}^n + u_{i,j}^{n-1} + c^2 \Delta t^2 [D_X D_X u + D_Y D_Y u]_{i,j}^n$$

## Special stencil for the first time step

- The stencil for  $u_{i,j}^1$  (n=0) involves  $u_{i,j}^{-1}$  which is outside the time mesh
- Remedy: use discretized  $u_t(x,0) = V$  and the stencil for n = 0 to develop a special stencil (as in the 1D case)

$$[D_{2t}u = V]_{i,j}^{0} \quad \Rightarrow \quad u_{i,j}^{-1} = u_{i,j}^{1} - 2\Delta t V_{i,j}$$

$$u_{i,j}^{n+1} = u_{i,j}^{n} - 2\Delta V_{i,j} + \frac{1}{2}c^{2}\Delta t^{2}[D_{x}D_{x}u + D_{y}D_{y}u]_{i,j}^{n}$$

## Variable coefficients (1)

3D wave equation:

$$\varrho u_{tt} = (qu_x)_x + (qu_y)_y + (qu_z)_z + f(x, y, z, t)$$

Just apply the 1D discretization for each term:

$$[\varrho D_t D_t u = (D_x \overline{q}^x D_x u + D_y \overline{q}^y D_y u + D_z \overline{q}^z D_z u) + f]_{i,j,k}^n$$
 (54)

Need special formula for  $u_{i,j,k}^1$  (use  $[D_{2t}u=V]^0$  and stencil for n=0).

## Variable coefficients (2)

Written out:

$$\begin{split} u_{i,j,k}^{n+1} &= -u_{i,j,k}^{n-1} + 2u_{i,j,k}^{n} + \\ &= \frac{1}{\varrho_{i,j,k}} \frac{1}{\Delta x^{2}} (\frac{1}{2} (q_{i,j,k} + q_{i+1,j,k}) (u_{i+1,j,k}^{n} - u_{i,j,k}^{n}) - \\ &\frac{1}{2} (q_{i-1,j,k} + q_{i,j,k}) (u_{i,j,k}^{n} - u_{i-1,j,k}^{n})) + \\ &= \frac{1}{\varrho_{i,j,k}} \frac{1}{\Delta x^{2}} (\frac{1}{2} (q_{i,j,k} + q_{i,j+1,k}) (u_{i,j+1,k}^{n} - u_{i,j,k}^{n}) - \\ &\frac{1}{2} (q_{i,j-1,k} + q_{i,j,k}) (u_{i,j,k}^{n} - u_{i,j-1,k}^{n})) + \\ &= \frac{1}{\varrho_{i,j,k}} \frac{1}{\Delta x^{2}} (\frac{1}{2} (q_{i,j,k} + q_{i,j,k+1}) (u_{i,j,k+1}^{n} - u_{i,j,k}^{n}) - \\ &\frac{1}{2} (q_{i,j,k-1} + q_{i,j,k}) (u_{i,j,k}^{n} - u_{i,j,k-1}^{n})) + \\ &+ \Delta t^{2} f_{i,i,k}^{n} \end{split}$$

#### Neumann boundary condition in 2D

Use ideas from 1D! Example:  $\frac{\partial u}{\partial n}$  at y=0,  $\frac{\partial u}{\partial n}=-\frac{\partial u}{\partial y}$ 

Boundary condition discretization:

$$[-D_{2y}u=0]_{i,0}^n \quad \Rightarrow \quad \frac{u_{i,1}^n-u_{i,-1}^n}{2\Delta y}=0, \ i\in\mathcal{I}_x$$

Insert  $u_{i,-1}^n = u_{i,1}^n$  in the stencil for  $u_{i,j=0}^{n+1}$  to obtain a modified stencil on the boundary.

Pattern: use interior stencil also on the bundary, but replace j-1 by j+1

Alternative: use ghost cells and ghost values

- 1 Finite difference methods for waves on a string
- 2 Verification
- Implementation
  - Making a solver function (3)
- 4 Vectorization
- 5 Generalization: reflecting boundaries
- 6 Generalization: variable wave velocity
- 7 Building a general 1D wave equation solver
- 8 Finite difference methods for 2D and 3D wave equations
- 1 Implementation of 2D/3D problems
- Analysis of the difference equations

## Implementation of 2D/3D problems

$$u_{t} = c^{2}(u_{xx} + u_{yy}) + f(x, y, t), (x, y) \in \Omega, t \in (0, T]$$

$$u(x, y, 0) = I(x, y), (x, y) \in \Omega$$

$$(56)$$

$$u_{t}(x, y, 0) = V(x, y), (x, y) \in \Omega$$

$$(57)$$

$$u = 0, (x, y) \in \partial\Omega, t \in (0, T]$$

$$(58)$$

$$\Omega = [0, L_x] \times [0, L_y]$$

Discretization:

$$[D_t D_t u = c^2 (D_x D_x u + D_y D_y u) + f]_{i,j}^n,$$

#### Algorithm

- Set initial condition  $u_{i,j}^0 = I(x_i, y_i)$
- **2** Compute  $u^1_{i,j} = \cdots$  for  $i \in \mathcal{I}_{\mathsf{x}}^i$  and  $j \in \mathcal{I}_{\mathsf{y}}^i$
- Set  $u_{i,j}^1 = 0$  for the boundaries  $i = 0, N_x$ ,  $j = 0, N_y$
- **o** For  $n = 1, 2, ..., N_t$ :
  - Find  $u_{i,j}^{n+1} = \cdots$  for  $i \in \mathcal{I}_x^i$  and  $j \in \mathcal{I}_y^i$
  - ② Set  $u_{i,j}^{n+1} = 0$  for the boundaries  $i = 0, N_x$ ,  $j = 0, N_y$

Program: wave2D\_u0.py

dt.2 = dt.\*\*2

#### Scalar computations: arrays

Store  $u_{i,j}^{n+1}$ ,  $u_{i,j}^n$ , and  $u_{i,j}^{n-1}$  in three two-dimensional arrays:

 $u_{i,j}^{n+1}$  corresponds to u[i,j], etc.

#### Scalar computations: initial condition

```
Ix = range(0, u.shape[0])
Iy = range(0, u.shape[1])
It = range(0, t.shape[0])

for i in Ix:
    for j in Iy:
        u_1[i,j] = I(x[i], y[j])

if user_action is not None:
    user_action(u_1, x, xv, y, yv, t, 0)
```

Arguments xv and yv: for vectorized computations

## Scalar computations: primary stencil

```
def advance_scalar(u, u_n, u_nm1, f, x, y, t, n, Cx2, Cy2, dt2,
                   V=None, step1=False):
    Ix = range(0, u.shape[0]); Iy = range(0, u.shape[1])
    if step1:
       dt = sqrt(dt2) # save
       Cx2 = 0.5*Cx2; Cy2 = 0.5*Cy2; dt2 = 0.5*dt2 # redefine
       D1 = 1: D2 = 0
    else:
       D1 = 2; D2 = 1
    for i in Ix[1:-1]:
       for j in Iy[1:-1]:
           u_x = u_n[i-1,j] - 2*u_n[i,j] + u_n[i+1,j]
           u_y = u_n[i, j-1] - 2*u_n[i, j] + u_n[i, j+1]
           u[i,j] = D1*u_n[i,j] - D2*u_nm1[i,j] + 
                     Cx2*u_xx + Cy2*u_yy + dt2*f(x[i], y[j], t[n])
            if step1:
               u[i,j] += dt*V(x[i], y[j])
    # Boundary condition u=0
    j = Iy[0]
   for i in Ix: u[i,j] = 0
   j = Iy[-1]
   for i in Ix: u[i,j] = 0
    i = Ix[0]
   for j in Iy: u[i,j] = 0
   i = Ix[-1]
   for j in Iy: u[i,j] = 0
   return u
```

#### Vectorized computations: mesh coordinates

Mesh with 30  $\times$  30 cells: vectorization reduces the CPU time by a factor of 70 (!).

Need special coordinate arrays xv and yv such that I(x, y) and f(x, y, t) can be vectorized:

```
from numpy import newaxis
xv = x[:,newaxis]
yv = y[newaxis,:]

u_1[:,:] = I(xv, yv)
f_a[:,:] = f(xv, yv, t)
```

#### Vectorized computations: stencil

```
def advance_vectorized(u, u_n, u_nm1, f_a, Cx2, Cy2, dt2,
                       V=None, step1=False):
    if step1:
        dt = sqrt(dt2) # save
        Cx2 = 0.5*Cx2; Cy2 = 0.5*Cy2; dt2 = 0.5*dt2 # redefine
        D1 = 1: D2 = 0
    else:
        D1 = 2; D2 = 1
   u_x = u_n[:-2,1:-1] - 2*u_n[1:-1,1:-1] + u_n[2:,1:-1]
   u_yy = u_n[1:-1,:-2] - 2*u_n[1:-1,1:-1] + u_n[1:-1,2:]
   u[1:-1,1:-1] = D1*u_n[1:-1,1:-1] - D2*u_nm1[1:-1,1:-1] + 
                   Cx2*u_xx + Cy2*u_yy + dt2*f_a[1:-1,1:-1]
    if step1:
        u[1:-1,1:-1] += dt*V[1:-1, 1:-1]
    # Boundary condition u=0
    i = 0
   u[:,j] = 0
   j = u.shape[1]-1
   \mathbf{u}[:,j] = 0
    i = 0
   u[i,:] = 0
   i = u.shape[0]-1
   u[i,:] = 0
   return u
```

# Verification: quadratic solution (1)

Manufactured solution:

$$u_{e}(x, y, t) = x(L_{x} - x)y(L_{y} - y)(1 + \frac{1}{2}t)$$
 (59)

Requires 
$$f = 2c^2(1 + \frac{1}{2}t)(y(L_y - y) + x(L_x - x)).$$

This  $u_e$  is ideal because it also solves the discrete equations!

# Verification: quadratic solution (2)

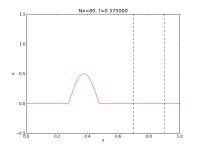
- $D_t D_t t]^n = 0$
- $[D_t D_t t^2] = 2$
- $D_t D_t$  is a linear operator:  $[D_t D_t (au + bv)]^n = a[D_t D_t u]^n + b[D_t D_t v]^n$

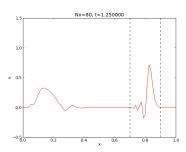
$$\begin{aligned} [D_X D_X u_{\mathsf{e}}]_{i,j}^n &= [y(L_Y - y)(1 + \frac{1}{2}t)D_X D_X x(L_X - x)]_{i,j}^n \\ &= y_j(L_Y - y_j)(1 + \frac{1}{2}t_n)2 \end{aligned}$$

- Similar calculations for  $[D_y D_y u_e]_{i,i}^n$  and  $[D_t D_t u_e]_{i,i}^n$  terms
- Must also check the equation for  $u_{i,j}^1$

- Finite difference methods for waves on a string
- 2 Verification
- Implementation
  - Making a solver function (3)
- 4 Vectorization
- 5 Generalization: reflecting boundaries
- 6 Generalization: variable wave velocity
- 7 Building a general 1D wave equation solver
- 8 Finite difference methods for 2D and 3D wave equations
- 9 Implementation of 2D/3D problems
- Analysis of the difference equations

#### Analysis of the difference equations





#### Properties of the solution of the wave equation

$$\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2}$$

Solutions:

$$u(x,t) = g_R(x-ct) + g_L(x+ct)$$

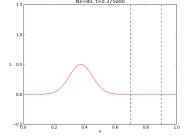
If u(x,0) = I(x) and  $u_t(x,0) = 0$ :

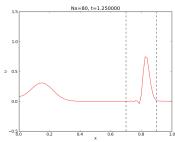
$$u(x,t) = \frac{1}{2}I(x-ct) + \frac{1}{2}I(x+ct)$$

Two waves: one traveling to the right and one to the left

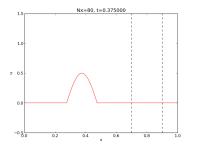
#### Simulation of a case with variable wave velocity

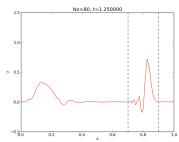
A wave propagates perfectly (C=1) and hits a medium with 1/4 of the wave velocity (C=0.25). A part of the wave is reflected and the rest is transmitted.





# Let us change the shape of the initial condition slightly and see what happens





#### Representation of waves as sum of sine/cosine waves

Build I(x) of wave components  $e^{ikx} = \cos kx + i \sin kx$ :

$$I(x) \approx \sum_{k \in K} b_k e^{ikx}$$

- $\bullet$  Fit  $b_k$  by a least squares or projection method
- k is the frequency of a component ( $\lambda=2\pi/k$  is the wave length in space)
- K is some set of all k needed to approximate I(x) well
- bk must be computed (Fourier coefficients)

Since  $u(x,t) = \frac{1}{2}I(x-ct) + \frac{1}{2}I(x+ct)$ , the exact solution is

$$u(x,t) = \frac{1}{2} \sum_{k \in K} b_k e^{ik(x-ct)} + \frac{1}{2} \sum_{k \in K} b_k e^{ik(x+ct)}$$

Our interest: one component  $e^{i(kx-\omega t)}$ ,  $\omega=kc$ 

# A similar wave component is also a solution of the finite difference scheme (!)

ldea: a similar discrete  $u_q^n=e^{i(kx_q-\tilde{\omega}t_n)}$  solution (corresponding to the exact  $e^{i(kx-\omega t)}$ ) solves

$$[D_t D_t u = c^2 D_X D_X u]_q^n$$

Note: we expect numerical frequency  $\tilde{\omega} \neq \omega$ 

- How accurate is  $\tilde{\omega}$  compared to  $\omega$ ?
- ullet What about the wave amplitude (can  $ilde{\omega}$  become complex)?

#### Preliminary results

$$[D_t D_t e^{i\omega t}]^n = -\frac{4}{\Delta t^2} \sin^2 \left(\frac{\omega \Delta t}{2}\right) e^{i\omega n \Delta t}$$

By  $\omega o k$ , t o x, n o q) it follows that

$$[D_x D_x e^{ikx}]_q = -\frac{4}{\Delta x^2} \sin^2\left(\frac{k\Delta x}{2}\right) e^{ikq\Delta x}$$

#### Insertion of the numerical wave component

Inserting a basic wave component  $u=e^{i(k x_q-\tilde{\omega}t_n)}$  in the scheme requires computation of

$$\begin{split} [D_t D_t e^{ikx} e^{-i\tilde{\omega}t}]_q^n &= [D_t D_t e^{-i\tilde{\omega}t}]^n e^{ikq\Delta x} \\ &= -\frac{4}{\Delta t^2} \sin^2 \left(\frac{\tilde{\omega}\Delta t}{2}\right) e^{-i\tilde{\omega}n\Delta t} e^{ikq\Delta x} \\ [D_x D_x e^{ikx} e^{-i\tilde{\omega}t}]_q^n &= [D_x D_x e^{ikx}]_q e^{-i\tilde{\omega}n\Delta t} \\ &= -\frac{4}{\Delta x^2} \sin^2 \left(\frac{k\Delta x}{2}\right) e^{ikq\Delta x} e^{-i\tilde{\omega}n\Delta t} \end{split}$$

#### The equation for $\tilde{\omega}$

The complete scheme,

$$[D_t D_t e^{ikx} e^{-i\tilde{\omega}t} = c^2 D_x D_x e^{ikx} e^{-i\tilde{\omega}t}]_q^n$$

leads to an equation for  $\tilde{\omega}$  (which can readily be solved):

$$\sin^2\left(\frac{\tilde{\omega}\Delta t}{2}\right) = C^2\sin^2\left(\frac{k\Delta x}{2}\right), \quad C = \frac{c\Delta t}{\Delta x}$$
 (Courant number)

Taking the square root:

$$\sin\left(\frac{\tilde{\omega}\Delta t}{2}\right) = C\sin\left(\frac{k\Delta x}{2}\right)$$

#### The numerical dispersion relation

Can easily solve for an explicit formula for  $\tilde{\omega}$ :

$$\tilde{\omega} = \frac{2}{\Delta t} \sin^{-1} \left( C \sin \left( \frac{k \Delta x}{2} \right) \right)$$

Note:

- ullet This  $ilde{\omega}= ilde{\omega}(k,c,\Delta x,\Delta t)$  is the numerical dispersion relation
- Inserting  $e^{kx-\omega t}$  in the PDE leads to  $\omega=kc$ , which is the analytical/exact dispersion relation
- Speed of waves might be easier to imagine:
  - Exact speed:  $c = \omega/k$ ,
  - Numerical speed:  $\tilde{c} = \tilde{\omega}/k$
- We shall investigate  $\tilde{c}/c$  to see how wrong the speed of a numerical wave component is

## The special case C=1 gives the exact solution

- For C=1,  $\tilde{\omega}=\omega$
- The numerical solution is exact (at the mesh points), regardless of  $\Delta x$  and  $\Delta t = c^{-1}\Delta x!$
- The only requirement is constant c
- The numerical scheme is then a simple-to-use analytical solution method for the wave equation

### Computing the error in wave velocity

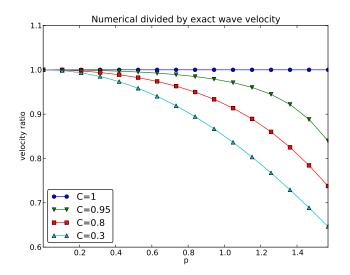
- Introduce  $p = k\Delta x/2$  (the important dimensionless spatial discretization parameter)
- p measures no of mesh points in space per wave length in space
- Shortest possible wave length in mesh:  $\lambda = 2\Delta x$ ,  $k = 2\pi/\lambda = \pi/\Delta x$ , and  $p = k\Delta x/2 = \pi/2 \implies p \in (0, \pi/2]$
- Study error in wave velocity through  $\tilde{c}/c$  as function of p

$$r(C,p) = \frac{\tilde{c}}{c} = \frac{2}{kc\Delta t}\sin^{-1}(C\sin p) = \frac{2}{kC\Delta x}\sin^{-1}(C\sin p) = \frac{1}{Cp}\sin^{-1}(C\sin p)$$

Can plot 
$$r(C, p)$$
 for  $p \in (0, \pi/2]$ ,  $C \in (0, 1]$ 

## Visualizing the error in wave velocity

```
def r(C, p):
    return 1/(C*p)*asin(C*sin(p))
```



Note: the shortest waves have the largest error and short waves

#### Taylor expanding the error in wave velocity

For small p, Taylor expand  $\tilde{\omega}$  as polynomial in p:

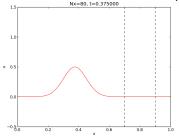
```
>>> C, p = symbols('C p')
\Rightarrow\Rightarrow rs = r(C, p).series(p, 0, 7)
>>> print rs
1 - p**2/6 + p**4/120 - p**6/5040 + C**2*p**2/6 -
C**2*p**4/12 + 13*C**2*p**6/720 + 3*C**4*p**4/40 -
C**4*p**6/16 + 5*C**6*p**6/112 + 0(p**7)
>>> # Drop the remainder O(...) term
>>> rs = rs.remove0()
>>> # Factorize each term
>>> rs = [factor(term) for term in rs.as_ordered_terms()]
>>> rs = sum(rs)
>>> print rs
p**6*(C - 1)*(C + 1)*(225*C**4 - 90*C**2 + 1)/5040 +
p**4*(C - 1)*(C + 1)*(3*C - 1)*(3*C + 1)/120 +
p**2*(C - 1)*(C + 1)/6 + 1
```

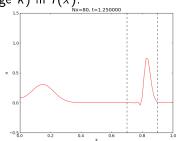
Leading error term is  $\frac{1}{6}(C^2-1)p^2$  or

$$\frac{1}{6}\left(\frac{k\Delta x}{2}\right)^2(C^2-1)=\frac{k^2}{24}\left(c^2\Delta t^2-\Delta x^2\right)=\mathcal{O}(\Delta t^2,\Delta x^2)$$

### Example on effect of wrong wave velocity (1)

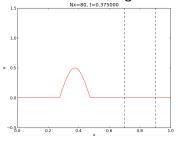
Smooth wave, few short waves (large k) in I(x):

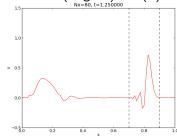




### Example on effect of wrong wave velocity (1)

#### Not so smooth wave, significant short waves (large k) in I(x):





#### Stability

$$\sin\left(\frac{\tilde{\omega}\Delta t}{2}\right) = C\sin\left(\frac{k\Delta x}{2}\right)$$

- Exact  $\omega$  is real
- ullet Complex  $ilde{\omega}$  will lead to exponential growth of the amplitude
- ullet Stability criterion: real  $ilde{\omega}$
- Then  $\sin(\tilde{\omega}\Delta t/2) \in [-1,1]$
- $k\Delta x/2$  is always real, so right-hand side is in [-C, C]
- ullet Then we must have  $C \leq 1$

#### Stability criterion:

$$C = \frac{c\Delta t}{\Delta x} \le 1$$

#### Why C > 1 leads to non-physical waves

Recall that right-hand side is in [-C, C]. Then C > 1 means

$$\underbrace{\sin\left(\frac{\tilde{\omega}\Delta t}{2}\right)}_{>1} = C\sin\left(\frac{k\Delta x}{2}\right)$$

- $|\sin x| > 1$  implies complex x
- Here: complex  $\tilde{\omega} = \tilde{\omega}_r \pm i \tilde{\omega}_i$
- One  $\tilde{\omega}_i < 0$  gives  $\exp(i \cdot i \tilde{\omega}_i) = \exp(-\tilde{\omega}_i)$  and exponential growth
- This wave component will after some time dominate the solution give an overall exponentially increasing amplitude (non-physical!)

#### Extending the analysis to 2D (and 3D)

$$u(x, y, t) = g(k_x x + k_y y - \omega t)$$

is a typically solution of

$$u_{tt} = c^2 (u_{xx} + u_{yy})$$

Can build solutions by adding complex Fourier components of the form

$$e^{i(k_x x + k_y y - \omega t)}$$

#### Discrete wave components in 2D

$$[D_t D_t u = c^2 (D_X D_X u + D_Y D_Y u)]_{q,r}^n$$

This equation admits a Fourier component

$$u_{q,r}^n = e^{i(k_x q \Delta x + k_y r \Delta y - \tilde{\omega} n \Delta t)}$$

Inserting the expression and using formulas from the 1D analysis:

$$\sin^2\left(\frac{\tilde{\omega}\Delta t}{2}\right) = C_x^2\sin^2 p_x + C_y^2\sin^2 p_y$$

where

$$C_x = \frac{c\Delta t}{\Delta x}, \quad C_y = \frac{c\Delta t}{\Delta y}, \quad p_x = \frac{k_x \Delta x}{2}, \quad p_y = \frac{k_y \Delta y}{2}$$

#### Stability criterion in 2D

Rreal-valued  $\tilde{\omega}$  requires

$$C_x^2 + C_y^2 \le 1$$

or

$$\Delta t \leq rac{1}{c} \left(rac{1}{\Delta x^2} + rac{1}{\Delta y^2}
ight)^{-1/2}$$

#### Stability criterion in 3D

$$\Delta t \leq \frac{1}{c} \left( \frac{1}{\Delta x^2} + \frac{1}{\Delta y^2} + \frac{1}{\Delta z^2} \right)^{-1/2}$$

For  $c^2 = c^2(x)$  we must use the worst-case value  $\bar{c} = \sqrt{\max_{x \in \Omega} c^2(x)}$  and a safety factor  $\beta \leq 1$ :

$$\Delta t \leq \beta \frac{1}{\bar{c}} \left( \frac{1}{\Delta x^2} + \frac{1}{\Delta y^2} + \frac{1}{\Delta z^2} \right)^{-1/2}$$

#### Numerical dispersion relation in 2D (1)

$$\tilde{\omega} = \frac{2}{\Delta t} \sin^{-1} \left( \left( C_x^2 \sin^2 p_x + C_y^2 \sin_y^p \right)^{\frac{1}{2}} \right)$$

For visualization, introduce  $\theta$ :

$$k_x = k \sin \theta$$
,  $k_y = k \cos \theta$ ,  $p_x = \frac{1}{2}kh \cos \theta$ ,  $p_y = \frac{1}{2}kh \sin \theta$ 

Also: 
$$\Delta x = \Delta y = h$$
. Then  $C_x = C_y = c\Delta t/h \equiv C$ .

Now  $\tilde{\omega}$  depends on

- C reflecting the number cells a wave is displaced during a time step
- kh reflecting the number of cells per wave length in space
- ullet heta expressing the direction of the wave

#### Numerical dispersion relation in 2D (2)

$$\frac{\tilde{c}}{c} = \frac{1}{Ckh} \sin^{-1} \left( C \left( \sin^2 \left( \frac{1}{2} kh \cos \theta \right) + \sin^2 \left( \frac{1}{2} kh \sin \theta \right) \right)^{\frac{1}{2}} \right)$$

Can make color contour plots of  $1-\tilde{c}/c$  in polar coordinates with  $\theta$  as the angular coordinate and kh as the radial coordinate.

# Numerical dispersion relation in 2D (3)

