Study guide: Finite difference methods for wave motion

Hans Petter Langtangen ${ }^{1,2}$ Svein Linge ${ }^{3,1}$
Center for Biomedical Computing, Simula Research Laboratory ${ }^{1}$
Department of Informatics, University of Oslo ${ }^{2}$
Department of Process, Energy and Environmental Technology, University College
Jul 13, 2016
-

Finite difference methods for waves on a string

Waves on a string can be modeled by the wave equation

$$
\frac{\partial^{2} u}{\partial t^{2}}=c^{2} \frac{\partial^{2} u}{\partial x^{2}}
$$

$u(x, t)$ is the displacement of the string
Demo of waves on a string.

The complete initial-boundary value problem		
$\frac{\partial^{2} u}{\partial t^{2}}=c^{2} \frac{\partial^{2} u}{\partial x^{2}}$,	$x \in(0, L)$,	$t \in(0, T]$
$u(x, 0)=I(x)$,	$x \in[0, L]$	(2)
$\frac{\partial}{\partial t} u(x, 0)=0$,	$x \in[0, L]$	(3)
$u(0, t)=0$,	$t \in(0, T]$	(4)
$u(L, t)=0$,	$t \in(0, T]$	(5)

Input data in the problem

- Initial condition $u(x, 0)=I(x)$: initial string shape
- Initial condition $u_{t}(x, 0)=0$: string starts from rest
- $c=\sqrt{T / \varrho}$: velocity of waves on the string
- (T is the tension in the string, ϱ is density of the string)
- Two boundary conditions on $u: u=0$ means fixed ends (no displacement)

Rule for number of initial and boundary conditions:

- $u_{t t}$ in the PDE: two initial conditions, on u and u_{t} - u_{t} (and no $u_{t t}$) in the PDE: one initial conditions, on u
- $u_{x x}$ in the PDE: one boundary condition on u at each boundary point
- Our numerical method is sometimes exact (!)
- Our numerical method is sometimes subject to serious

Demo of a vibrating string ($C=1.0012$)

Mesh in time:

- The numerical solution is a mesh function: $u_{i}^{n} \approx u_{\mathrm{e}}\left(x_{i}, t_{n}\right)$
- The numerical solution is a mesh function: $u_{i}^{n} \approx u_{e}\left(x_{i}, t_{n}\right)$
- Finite difference stencil (or scheme): equation for u_{i}^{n} involving neighboring space-time points

$$
0=t_{0}<t_{1}<t_{2}<\cdots<t_{N_{t}-1}<t_{N_{t}}=T
$$

Mesh in space:

$$
\begin{equation*}
0=x_{0}<x_{1}<x_{2}<\cdots<x_{N_{x}-1}<x_{N_{x}}=L \tag{7}
\end{equation*}
$$

Uniform mesh with constant mesh spacings Δt and Δx :

```
x}=i\Deltax,i=0
```

x}=i\Deltax,i=0
.,Nx,}\mp@subsup{t}{i}{}=n\Deltat,n=0,···,N

```
.,Nx,}\mp@subsup{t}{i}{}=n\Deltat,n=0,\ldots,N
```


Step 2: Fulfilling the equation at the mesh points

Let the PDE be satisfied at all interior mesh points:

$$
\frac{\partial^{2}}{\partial t^{2}} u\left(x_{i}, t_{n}\right)=c^{2} \frac{\partial^{2}}{\partial x^{2}} u\left(x_{i}, t_{n}\right),
$$

for $i=1, \ldots, N_{x}-1$ and $n=1, \ldots, N_{t}-1$.
For $n=0$ we have the initial conditions $u=I(x)$ and $u_{t}=0$, and at the boundaries $i=0, N_{x}$ we have the boundary condition $u=0$

Step 3: Replacing derivatives by finite differences

Widely used finite difference formula for the second-order derivative:

$$
\frac{\partial^{2}}{\partial t^{2}} u\left(x_{i}, t_{n}\right) \approx \frac{u_{i}^{n+1}-2 u_{i}^{n}+u_{i}^{n-1}}{\Delta t^{2}}=\left[D_{t} D_{t} u\right]_{i}^{n}
$$

and

$$
\frac{\partial^{2}}{\partial x^{2}} u\left(x_{i}, t_{n}\right) \approx \frac{u_{i+1}^{n}-2 u_{i}^{n}+u_{i-1}^{n}}{\Delta x^{2}}=\left[D_{x} D_{x} u\right]_{i}^{n}
$$

Step 3: Algebraic version of the PDE

Step 3: Algebraic version of the initial conditions

- Need to replace the derivative in the initial condition
$u_{t}(x, 0)=0$ by a finite difference approximation
- The differences for $u_{t t}$ and $u_{x x}$ have second-order accuracy
- Use a centered difference for $u_{t}(x, 0)$
$\left[D_{2 t} u\right]_{i}^{n}=0, \quad n=0 \quad \Rightarrow \quad u_{i}^{n-1}=u_{i}^{n+1}, \quad i=0, \ldots, N_{x}$
The other initial condition $u(x, 0)=I(x)$ can be computed by

$$
u_{i}^{0}=I\left(x_{i}\right), \quad i=0, \ldots, N_{x}
$$

- Nature of the algorithm: compute u in space at
$t=\Delta t, 2 \Delta t, 3 \Delta t$,
- Three time levels are involved in the general discrete equation: $n+1, n, n-1$
- u_{i}^{n} and u_{i}^{n-1} are then already computed for $i=0, \ldots, N_{x}$, and u_{i}^{n+1} is the unknown quantity
Write out $\left[D_{t} D_{t} u=c^{2} D_{x} D_{x}\right]_{i}^{n}$ and solve for u_{i}^{n+1},

$$
\begin{equation*}
u_{i}^{n+1}=-u_{i}^{n-1}+2 u_{i}^{n}+C^{2}\left(u_{i+1}^{n}-2 u_{i}^{n}+u_{i-1}^{n}\right) \tag{12}
\end{equation*}
$$

$$
c=c \frac{\Delta t}{\Delta x},
$$

(13)
is known as the (dimensionless) Courant number

Observe

There is only one parameter, C, in the discrete model: C lumps mesh parameters Δt and Δx with the only physical parameter, the wave velocity c. The value C and the smoothness of $I(x)$ govern the quality of the numerical solution.

The finite difference stencil

The stencil for the first time level

- Problem: the stencil for $n=1$ involves u_{i}^{-1}, but time $t=-\Delta t$ is outside the mesh
- Remedy: use the initial condition $u_{t}=0$ together with the stencil to eliminate u_{i}^{-1}
Initial condition:

$$
\left[D_{2 t} u=0\right]_{i}^{0} \quad \Rightarrow \quad u_{i}^{-1}=u_{i}^{1}
$$

Insert in stencil $\left[D_{t} D_{t} u=c^{2} D_{x} D_{x}\right]_{i}^{0}$ to get

$$
\begin{equation*}
u_{i}^{1}=u_{i}^{0}-\frac{1}{2} c^{2}\left(u_{i+1}^{n}-2 u_{i}^{n}+u_{i-1}^{n}\right) \tag{14}
\end{equation*}
$$

The algorithm

(- Compute $u_{i}^{0}=I\left(x_{i}\right)$ for $i=0, \ldots, N_{x}$
(Compute u_{i}^{1} by (14) and set $u_{i}^{1}=0$ for the boundary points $i=0$ and $i=N_{x}$, for $n=1,2, \ldots, N-1$

- For each time level $n=1,2, \ldots, N_{t}$ - apply (12) to find u_{i}^{n+1} for $i=1, \ldots, N_{x}-1$
0 set $u_{i}^{n+1}=0$ for the boundary points $i=0, i=N_{x}$.

Moving finite difference stencil
web page or a movie file.

- Arrays
- u [i] stores u_{i}^{n+1}
$\because \mathrm{u}[\mathrm{i}]$ stores u_{i}^{n+1}
- u_2[i] stores u_{i}^{n-1}

Naming convention
u is the unknown to be computed (a spatial mesh function), $u_{_} \mathrm{k}$ is the computed spatial mesh function k time steps back in time.

Important to minimize the memory usage

The algorithm only needs to access the three most recent time levels, so we need only three arrays for u_{i}^{n+1}, u_{i}^{n}, and u_{i}^{n-1} $i=0, \ldots, N_{x}$. Storing all the solutions in a two-dimensional array of size $\left(N_{x}+1\right) \times\left(N_{t}+1\right)$ would be possible in this simple one-dimensional PDE problem, but not in large 2D problems and not even in small 3D problems.

```
Sketch of an implementation (2)
    #Given mesh points as arrays x and t (x[i], t[n])
    dx = x[1] - x[0]
    C= c*dt/dx
    #
    # Set initial condition (0) = I(x)
    # Set initial condition
    # Apply special formula for first step, incorporating du/dt=0
```



```
    # Suitch variables before next step
    for nin mange(1, Nt):
        for i in range(1, Mx): moints at time t[n+1]
```



```
        # Insert boundary conditions
```


Verification

- Think about testing and verification before you start
implementing the algorithm
- Powerful testing tool: method of manufactured solutions and computation of convergence rates
- Will need a source term in the PDE and $u_{t}(x, 0) \neq 0$
- Even more powerful method: exact solution of the scheme

A slightly generalized model problem

Discrete model for the generalized model problem

$\left[D_{t} D_{t} u=c^{2} D_{x} D_{x}+f\right]_{i}^{n}$
(20)
$\left.\begin{array}{rlrl}u_{t t} & =c^{2} u_{x x}+f(x, t), & & (15) \\ u(x, 0) & =I(x), & x \in[0, L] & (16) \\ u_{t}(x, 0) & =V(x), & & x \in[0, L] \\ u(0, t) & =0, & & (17) \\ u(L, t) & =0, & & t>0,\end{array}\right)\left(\begin{array}{l}18) \\ \end{array}\right.$

Writing out and solving for the unknown u_{i}^{n+1}
$u_{i}^{n+1}=-u_{i}^{n-1}+2 u_{i}^{n}+C^{2}\left(u_{i+1}^{n}-2 u_{i}^{n}+u_{i-1}^{n}\right)+\Delta t^{2} f_{i}^{n}$

Centered difference for $u_{t}(x, 0)=V(x)$:

$$
\left[D_{2 t} u=V\right]_{i}^{0} \quad \Rightarrow \quad u_{i}^{-1}=u_{i}^{1}-2 \Delta t V_{i},
$$

Inserting this in the stencil (21) for $n=0$ leads to
$u_{i}^{1}=u_{i}^{0}-\Delta t V_{i}+\frac{1}{2} C^{2}\left(u_{i+1}^{n}-2 u_{i}^{n}+u_{i-1}^{n}\right)+\frac{1}{2} \Delta t^{2} f_{i}^{n}$

Manufactured solution: principles

Disadvantage with the previous physical solution: it does not test $V \neq 0$ and $f \neq 0$

- Method of manufactured solution:
- Choose some $u_{e}(x, t)$
- Insert in PDE and fit f foundary and initial conditions compatible with the chosen $u_{\mathrm{e}}(x, t)$
- Standing waves occur in real life on a string
- Can be analyzed mathematically (known exact solution)

$$
\begin{equation*}
\left.u_{\mathrm{e}}(x, y, t)\right)=A \sin \left(\frac{\pi}{L} x\right) \cos \left(\frac{\pi}{L} c t\right) \tag{23}
\end{equation*}
$$

- PDE data: $f=0$, boundary conditions $u_{e}(0, t)=u_{e}(L, 0)=0$, initial conditions $I(x)=A \sin \left(\frac{\pi}{L} x\right)$ and $V=0$
- Note: $u_{i}^{n+1} \neq u_{\mathrm{e}}\left(x_{i}, t_{n+1}\right.$, and we do not know the error, so testing must aim at reproducing the expected convergence rates

Manufactured solution: example

$u_{\mathrm{e}}(x, t)=x(L-x) \sin t$
PDE $u_{t t}=c^{2} u_{x x}+f:$
$-x(L-x) \sin t=-2 \sin t+f \quad \Rightarrow f=(2-x(L-x)) \sin t$
Implied initial conditions:
$u(x, 0)=I(x)=0$ $u_{t}(x, 0)=V(x)=-x(L-x)$

Boundary conditions
$u(x, 0)=u(x, L)=0$

- Introduce common mesh parameter: $h=\Delta t, \Delta x=c h / C$
- This h keeps C and $\Delta t / \Delta x$ constant
- Select coarse mesh $h: h_{0}$

Run experiments with $h_{i}=2^{-i} h_{0}$ (halving the cell size),

$$
i=0, \ldots, m
$$

Record the error E_{i} and h_{i} in each experimen

- Manufactured solution with computation of convergence rates: much manual work
- Simpler and more powerful: use an exact solution for u_{i}^{n}
- A linear or quadratic u_{e} in x and t is often a good candidate

Here, choose u_{e} such that $u_{\mathrm{e}}(x, 0)=u_{e}(L, 0)=0$:

$$
u_{\mathrm{e}}(x, t)=x(L-x)\left(1+\frac{1}{2} t\right),
$$

Insert in the PDE and find f :

$$
f(x, t)=2(1+t) c^{2}
$$

Initial conditions:

$$
I(x)=x(L-x), \quad V(x)=\frac{1}{2} x(L-x)
$$

Analytical work with the discrete equations (1)

$\left[D_{x} D_{x} u_{e}\right]_{i}^{n}=\left(1+\frac{1}{2} t_{n}\right)\left[D_{x} D_{x}\left(x L-x^{2}\right)\right]_{i}=\left(1+\frac{1}{2} t_{n}\right)\left[L D_{x} D_{x} x-D_{x} D_{x} x^{2}\right.$

$$
=-2\left(1+\frac{1}{2} t_{n}\right)
$$

Now, $f_{i}^{n}=2\left(1+\frac{1}{2} t_{n}\right) c^{2}$ and we get
$\left[D_{t} D_{t} u_{\mathrm{e}}-c^{2} D_{x} D_{x} u_{\mathrm{e}}-f\right]_{i}^{n}=0-c^{2}(-1) 2\left(1+\frac{1}{2} t_{n}+2\left(1+\frac{1}{2} t_{n}\right) c^{2}=0\right.$
Moreover, $u_{\mathrm{e}}\left(x_{i}, 0\right)=I\left(x_{i}\right), \partial u_{\mathrm{e}} / \partial t=V\left(x_{i}\right)$ at $t=0$, and $u_{\mathrm{e}}\left(x_{0}, t\right)=u_{\mathrm{e}}\left(x_{N_{x}}, 0\right)=0$. Also the modified scheme for the first time step is fulfilled by $u_{\mathrm{e}}\left(x_{i}, t_{n}\right)$.

We want to show that u_{e} also solves the discrete equations! Useful preliminary result:

$$
\begin{aligned}
& {\left[D_{t} D_{t} t^{2}\right]^{n}=\frac{t_{n+1}^{2}-2 t_{n}^{2}+t_{n-1}^{2}}{\Delta t^{2}}=(n+1)^{2}-n^{2}+(n-1)^{2}=2} \\
& {\left[D_{t} D_{t} t\right]^{n}=\frac{t_{n+1}-2 t_{n}+t_{n-1}}{\Delta t^{2}}=\frac{((n+1)-n+(n-1)) \Delta t}{\Delta t^{2}}=0}
\end{aligned}
$$

Hence,
$\left[D_{t} D_{t} u_{e}\right]_{i}^{n}=x_{i}\left(L-x_{i}\right)\left[D_{t} D_{t}\left(1+\frac{1}{2} t\right)\right]^{n}=x_{i}\left(L-x_{i}\right) \frac{1}{2}\left[D_{t} D_{t} t\right]^{n}=0$

Testing with the exact discrete solution

- We have established that
$u_{i}^{n+1}=u_{\mathrm{e}}\left(x_{i}, t_{n+1}\right)=x_{i}\left(L-x_{i}\right)\left(1+t_{n+1} / 2\right)$
- Run one simulation with one choice of $c, \Delta t$, and Δx
- Check that $\max _{i}\left|u_{i}^{n+1}-u_{\mathrm{e}}\left(x_{i}, t_{n+1}\right)\right|<\epsilon, \epsilon \sim 10^{-14}$
(machine precision + some round-off errors)
- This is the simplest and best verification test

Later we show that the exact solution of the discrete equations can be obtained by $C=1$ (!)

Implementation

The algorithm

- Compute $u_{i}^{0}=I\left(x_{i}\right)$ for $i=0, \ldots, N_{x}$
- Compute u_{i}^{1} by (14) and set $u_{i}^{1}=0$ for the boundary points
$i=0$ and $i=N_{x}$, for $n=1,2, \ldots, N-1$,
- For each time level $n=1,2, \ldots, N_{t}-1$ - apply (12) to find u_{i}^{n+1} for $i=1, \ldots, N_{x}-1$
$\Delta x=c \Delta t / C$.
def solver(T, $V, f, C, L, d t, C, T$, user_action=None) :

$t=\operatorname{dtr}+c \mid f$ oat (C)
$\mathrm{dx}=\operatorname{int}($ round $(\mathrm{L} / \mathrm{dx})$

$\mathrm{dx}=\mathrm{x}[1]-\mathrm{x}[0]$
$\mathrm{C} 2=\mathrm{C}=* 2$
if f is None or $f==0$
f $=$ lambda $x, t=0$
if v is None or $v=0$:

$\begin{array}{ll}\mathbf{u}_{-1}=\operatorname{zeros}(\mathbb{N} x+1) & \# \text { Solution at } 1 \text { time level back } \\ u_{-}=\text {zeros }(N x+1) & \# \text { Solution at } 2 \text { time Levels back }\end{array}$
import time; to = time.clock() \#for measuring CPO time
\# Load initial condition into
for
\# Lood initial condit
for in in inge
un $1[i]=I(\mathbb{i n}[i])$

Making a solver function (2)
def solver(I, v, f, c, L, dt, C, T, user_action=None):
\# Special formula for first time step
$\mathbf{n}=0$

$u[0]=0 ; u[\mathrm{Nx}]=0$
if user_action is not None:
user_action (u, $x, t, 1$)
\# Suitch variables before next step
$u_{-} 2[:]$, u_1 $\left.1:\right]=u_{-}, \mathbf{u}$
def solver(I, V, f, c, L, Nx, C, T, user_action=None)
\# Time loop
for n in range ($1, \mathrm{Nt}$)
\# Update all inner p p
for i in range 1, , Na_{x}

Verification: exact quadratic solution

Exact solution of the PDE problem and the discrete equations:
$u_{\mathrm{e}}(x, t)=x(L-x)\left(1+\frac{1}{2} t\right)$

def $\begin{aligned} & \mathrm{I}(\mathrm{x}): \\ & \text { return u_exact }(\mathrm{x}, 0)\end{aligned}$
def
$\mathrm{V}(\mathrm{x})$:
return $0.5 * u$ _exact $(x, 0)$
$\underset{\text { def }}{f(x, t)} \underset{\text { return }}{ } 2 *(1+0.5 * t) * c * * 2$
$\mathrm{L}=2.5$
$\mathrm{c}=1.5$
$\mathrm{c}=1.5$
NX $=6$, Very coarse mesh for this exact test
$d t=\mathrm{C} *(\mathrm{~L} / \mathrm{Nx}) / \mathrm{c}$
$\mathrm{T}=18$
def assert_no-error ($u, x, t, n)$:

Visualization: animating $u(x, t)$

Make a viz function for animating the curve, with plotting in a
user_action function plot_u:
def viz

"Mrirun solver and visualize u at each time level."""

 \# seconds, else insert a pause of 0.2 be tween
time.sleep (2) if tn$]=0$ else time.sleep(0.2) plt.savefig('frame_'O4d. png' \% n) \# for movie making
lass PlotMatplotilib:
def -_call \quad (self

Making movie files

- Store spatial curve in a file, for each time level
- Name files like 'something_\%o4d.png' \% frame_counter
- Combine files to a movie
erminal> $\begin{aligned} & \text { scitools movie encoder=html output_filemovie. htm } \\ & \text { fps }=4 \text { frame }-* \text {.png } \\ & \# \text { web page with a player }\end{aligned}$

erminal> avconv -r 4 -i mame_- $04 a$.png - movie.fly

mportant

Zero padding (\% $\% 4 \mathrm{~d}$) is essential for correct sequence of frames
in something_*.png (Unix alphanumeric sort)

- Remove old frame_*.png files before making a new movie
- Vibrations of a guitar string
- Triangular initial shape (at rest)

$$
I(x)= \begin{cases}a x / x_{0}, & x<x_{0} \\ a(L-x) /\left(L-x_{0}\right), & \text { otherwise }\end{cases}
$$

Appropriate data:

- $L=75 \mathrm{~cm}, x_{0}=0.8 \mathrm{~L}, a=5 \mathrm{~mm}$, time frequency $\nu=440 \mathrm{~Hz}$

Resulting movie for $C=0.8$

Movie of the vibrating string
$\mathrm{L}=0.75$
$\mathrm{x0}=0.8 \times \mathrm{L}$
$\mathrm{a}=0.005$
$a=0.005$
freq $=440$
wavelength $=2 * \mathrm{~L}$
$\mathrm{c}=$ freq*wavelengt

\#\# Choose ${ }^{2 t}$ the same as the stability limit for $\|_{x=50}$
$\mathrm{dt}=\mathrm{L} / 50$.

def convergence_rates (

The benefits of scaling

- It is difficult to figure out all the physical parameters of a case
- And it is not necessary because of a powerful: scaling

Introduce new x, t, and u without dimension:

$$
\bar{x}=\frac{x}{L}, \quad \bar{t}=\frac{c}{L} t, \quad \bar{u}=\frac{u}{a}
$$

Insert this in the PDE (with $f=0$) and dropping bars

$$
u_{t t}=u_{x x}
$$

Initial condition: set $a=1, L=1$, and $x_{0} \in[0,1]$ in (26).
In the code: set $\mathrm{a}=\mathrm{c}=\mathrm{L}=1, \mathrm{x} 0=0.8$, and there is no need to
calculate with wavelengths and frequencies to estimate c !
Just one challenge: determine the period of the waves and an appropriate end time (see the text for details).

Vectorization

- Problem: Python loops over long arrays are slow
- One remedy: use vectorized (numpy) code instead of explicit loops
- Other remedies: use Cython, port spatial loops to Fortran or C
- Speedup: 100-1000 (varies with N_{x})

Next: vectorized loops

Operations on slices of arrays

- Introductory example: compute $d_{i}=u_{i+1}-u_{i}$

- Note: all the differences here are independent of each other
- Note: al the differences here are independent of each
- Therefore $d=\left(u_{1}, u_{2}, \ldots, u_{n}\right)-\left(u_{0}, u_{1}, \ldots, u_{n-1}\right)$
- Therefore $d=\left(u_{1}, u_{2}, \ldots, u_{n}\right)-\left(u_{0}, u_{1}, \ldots, u_{n-1}\right)$
- In numpy code: $\mathrm{u}[1: \mathrm{n}]-\mathrm{u}[0: \mathrm{n}-1]$ or just $\mathrm{u}[1:]$
$\stackrel{-}{ }{ }_{u[:-1]}$

Finite difference schemes basically contains differences between array elements with shifted indices. Consider the updating formula
$\begin{aligned} \text { for } \underset{i}{ } \text { in range }(1, n-1): \\ u 2[i] \\ u[i-1]-2 * u[i]\end{aligned}+u[i+1]$

Newcomers to vectorization are encouraged to choose a small array u, say with five elements, and simulate with pen and paper both he lop version and the vectorized version.

The vectorization consists of replacing the loop by arithmetics on slices of arrays of length $\mathrm{n}-2$.

Note: u2 gets length n-2.
If u 2 is already an array of length n , do update on "inner" elements

Vectorization of finite difference schemes (2)

Vectorized implementation in the solver function

Scalar loop

def $f(x)$ \qquad
\# Scalar version

\# Vectorized version
$\mathrm{u} 2[1:-1]=\mathrm{u}[:-2]-2 * \mathrm{u}[1:-1]+\mathrm{u}[2:]+\mathrm{f}(\mathrm{x}[1:-1])$
Vectorized loop:

or

Program: wave1D_u0v.py

Verification of the vectorized version

def test
Check the scalar and vectorized versions for
a quadratic $u(x, t)=x(L-x)(1+t / 2)$ that is ex
actly reproduced.
The following function must work for as array or scalar
__exact $=1$ ambda $\mathbf{x}, \mathrm{t}: \mathbf{x} *(\mathrm{~L}-\mathrm{x}) *(1+0.5 * \mathrm{t})$

$\mathrm{L}=2.5$
$\mathrm{c}=1.5$
$\mathrm{C}=0.75$
$\mathrm{Nx}=3$

measuring the CPU time

- Observe substantial speed-up: vectorized version is about $N_{\chi} / 5$ times faster
Much bigger improvements for 2D and 3D codes
- Boundary condition $u=0$: u changes sign
- Boundary condition $u_{x}=0$: wave is perfectly reflected
- How can we implement u_{x} ? (more complicated than $u=0$)

Demo of boundary conditions

Discretization of derivatives at the boundary (1)

How can we incorporate the condition $u_{x}=0$ in the finite
difference scheme?

- We used centeral differences for $u_{t t}$ and $u_{x x}: \mathcal{O}\left(\Delta t^{2}, \Delta x^{2}\right)$
accuracy
Also for $u_{t}(x, 0)$
- Should use central difference for u_{x} to preserve second order accuracy

$$
\begin{equation*}
\frac{u_{-1}^{n}-u_{1}^{n}}{2 \Delta x}=0 \tag{28}
\end{equation*}
$$

Visualization of modified boundary stencil

Discrete equation for computing u_{0}^{3} in terms of u_{0}^{2}, u_{0}^{1}, and u_{1}^{2} Animation in a web page or a movie file.

Implementation of Neumann conditions

- Use the general stencil for interior points also on the boundary
- Replace u_{i-1}^{n} by u_{i+1}^{n} for $i=0$
- Replace u_{i+1}^{n} by u_{i-1}^{n} for $i=N_{x}$
$i=0$
ip1 $=\mathrm{i}+1$

$\mathrm{i}=\mathrm{Nx}$
$\mathrm{im} 1 \mathrm{i}=\mathrm{i}-1$

\# Or just one loop over all points
for i in range ($0, \mathrm{Nx}+1$):

Program wave1D_dno.py
- Tedious to write index sets like $i=0, \ldots, N_{x}$ and $n=0, \ldots, N_{t}$
- Notation not valid if i or n starts at 1 instead..
- Both in math and code it is advantageous to use index sets
- $i \in \mathcal{I}_{x}$ instead of $i=0, \ldots, N_{x}$
- Definition: $\mathcal{I}_{x}=\left\{0, \ldots, N_{x}\right\}$
- The first index: $i=\mathcal{I}_{x}^{0}$
- The last index: $i=\mathcal{I}_{x}^{-1}$
- All interior points: $i \in \mathcal{I}_{x}^{i}, \mathcal{I}_{x}^{i}=\left\{1, \ldots, N_{x}-1\right\}$
- \mathcal{I}_{x}^{-}means $\left\{0, \ldots, N_{x}-1\right\}$
- \mathcal{I}_{x}^{+}means $\left\{1, \ldots, N_{x}\right\}$

Index sets in action (1)

Index sets for a problem in the x, t plane:

$$
\mathcal{I}_{x}=\left\{0, \ldots, N_{x}\right\}, \quad \mathcal{I}_{t}=\left\{0, \ldots, N_{t}\right\},
$$

Implemented in Python as
$\mathrm{Ix}=\operatorname{range}(0, \mathrm{~N}+1)$
$\mathrm{It}=\operatorname{range}(0, N \mathrm{Nt}+1)$

Index sets in action (2)

Alternative implementation via ghost cells

A finite difference scheme can with the index set notation be specified as

$$
u_{i}^{n+1}=-u_{i}^{n-1}+2 u_{i}^{n}+C^{2}\left(u_{i+1}^{n}-2 u_{i}^{n}+u_{i-1}^{n}\right), \quad i \in \mathcal{I}_{x}^{i}, n \in \mathcal{I}_{t}^{i}
$$

Corresponding implementation
the mesh to cover u^{n}. and u^{n}, Instan

$$
u_{i}=0, \quad i=\mathcal{I}_{x}^{0}, n \in \mathcal{I}_{t}^{i}
$$

- The extra left and right cell are called ghost cells

$$
u_{i}=0, \quad i=\mathcal{I}_{x}^{-1}, n \in \mathcal{I}_{t}^{i}
$$

- The extra points are called ghost points
- The u_{-1}^{n} and u_{N+1}^{n} values are called ghost values
- Update ghost values as $u_{i-1}^{n}=u_{i+1}^{n}$ for $i=0$ and $i=N_{x}$
for n in $\mathrm{It}[1:-1]$:

$i=\operatorname{Ix}[0] ;$
$i=\operatorname{Ix}[-1] ; \mathrm{u}[\mathrm{ij}]=0$
Program wave1D_dn.py

Add ghost points:

$\mathrm{x}=1$ inspace ($0, \mathrm{~L}, \mathrm{~N} \mathrm{x}+1$) \# Mesh points without ghost points

- A major indexing problem arises with ghost cells since Python indices must start at 0
- $u[-1]$ will always mean the last element in u

Math indexing: $-1,0,1,2, \ldots, N_{x}+1$

- Python indexing: $0, \ldots, \mathrm{Nx}+2$

Remedy: use index sets

Generalization: variable wave velocity

Heterogeneous media: varying $c=c(x)$

Implementation of ghost cells (2)
$\mathrm{u}=\mathrm{zeros}\left(\mathrm{N}_{\mathrm{x}}+3\right)$
$\mathrm{Ix}=$ range $(1, \mathrm{u}$
\# Boundary values: u[tx [0]], u[tx[[-17]
Set initial conditions

\# Loop over all physical mesh points
for i in Ix:

Program: wave1D_dn0_ghost.py

The model PDE with a variable coefficient

$$
\begin{equation*}
\frac{\partial^{2} u}{\partial t^{2}}=\frac{\partial}{\partial x}\left(q(x) \frac{\partial u}{\partial x}\right)+f(x, t) \tag{31}
\end{equation*}
$$

This equation sampled at a mesh point (x_{i}, t_{n}):

$$
\frac{\partial^{2}}{\partial t^{2}} u\left(x_{i}, t_{n}\right)=\frac{\partial}{\partial x}\left(q\left(x_{i}\right) \frac{\partial}{\partial x} u\left(x_{i}, t_{n}\right)\right)+f\left(x_{i}, t_{n}\right),
$$

Discretizing the variable coefficient (2)

Then discretize the inner operators:

$$
\phi_{i+\frac{1}{2}}=q_{i+\frac{1}{2}}\left[\frac{\partial u}{\partial x}\right]_{i+\frac{1}{2}}^{n} \approx q_{i+\frac{1}{2}} \frac{u_{i+1}^{n}-u_{i}^{n}}{\Delta x}=\left[q D_{x} u\right]_{i+\frac{1}{2}}^{n}
$$

Similarly,

$$
\phi_{i-\frac{1}{2}}=q_{i-\frac{1}{2}}\left[\frac{\partial u}{\partial x}\right]_{i-\frac{1}{2}}^{n} \approx q_{i-\frac{1}{2}} \frac{u_{i}^{n}-u_{i-1}^{n}}{\Delta x}=\left[q D_{\times} u\right]_{i-\frac{1}{2}}^{n}
$$

These intermediate results are now combined to

$$
\left[\frac{\partial}{\partial x}\left(q(x) \frac{\partial u}{\partial x}\right)\right]_{i}^{n} \approx \frac{1}{\Delta x^{2}}\left(q_{i+\frac{1}{2}}\left(u_{i+1}^{n}-u_{i}^{n}\right)-q_{i-\frac{1}{2}}\left(u_{i}^{n}-u_{i-1}^{n}\right)\right)
$$

In operator notation:

$$
\begin{equation*}
\left[\frac{\partial}{\partial x}\left(q(x) \frac{\partial u}{\partial x}\right)\right]_{i}^{n} \approx\left[D_{x} q D_{x} u\right]_{i}^{n} \tag{33}
\end{equation*}
$$

Remark
 Many are tempted to use the chain rule on the term $\frac{\partial}{\partial x}\left(q(x) \frac{\partial u}{\partial x}\right)$ but this is not a good idea

- Given $q(x)$: compute $q_{i+\frac{1}{2}}$ as $q\left(x_{i+\frac{1}{2}}\right)$
- Given q at the mesh points: q_{i}, use an average

$$
\begin{array}{ll}
q_{i+\frac{1}{2}} \approx \frac{1}{2}\left(q_{i}+q_{i+1}\right)=\left[q^{\chi}\right]_{i} & \text { (arithmetic mean) } \\
q_{i+\frac{1}{2}} \approx 2\left(\frac{1}{q_{i}}+\frac{1}{q_{i+1}}\right)^{-1} & \text { (harmonic mean) } \tag{35}\\
q_{i+\frac{1}{2}} \approx\left(q_{i} q_{i+1}\right)^{1 / 2} & \text { (geometric mean) }
\end{array}
$$

The arithmetic mean in (34) is by far the most used averaging technique.

Discretization of variable-coefficient wave equation in operator notation

Neumann condition and a variable coefficient

Consider $\partial u / \partial x=0$ at $x=L=N_{x} \Delta x$

$$
\frac{u_{i+1}^{n}-u_{i-1}^{n}}{2 \Delta x}=0 \quad u_{i+1}^{n}=u_{i-1}^{n}, \quad i=N_{x}
$$

We clearly see the type of finite differences and averaging! Write out and solve wrt u_{i}^{n+1} :

$$
u_{i}^{n+1}=-u_{i}^{n-1}+2 u_{i}^{n}+\left(\frac{\Delta t}{\Delta x}\right)^{2} \times
$$

$$
\left(\frac{1}{2}\left(q_{i}+q_{i+1}\right)\left(u_{i+1}^{n}-u_{i}^{n}\right)-\frac{1}{2}\left(q_{i}+q_{i-1}\right)\left(u_{i}^{n}-u_{i-1}^{n}\right)\right)+
$$

Implementation of variable coefficients

Assume $c[i]$ holds c_{i} the spatial mesh points

Here: $\mathrm{C} 2=(\mathrm{dt} / \mathrm{dx}) * * 2$
Vectorized version
$\mathrm{u}[1:-1]=-\mathrm{u}^{2} 2[1:-1]+2 * \mathrm{u}_{1} 1[1:-1]+$

Neumann condition $u_{x}=0$: same ideas as in 1 D (modified stenci or ghost cells).

A more general model PDE with variable coefficients

$$
\begin{equation*}
\varrho(x) \frac{\partial^{2} u}{\partial t^{2}}=\frac{\partial}{\partial x}\left(q(x) \frac{\partial u}{\partial x}\right)+f(x, t) \tag{39}
\end{equation*}
$$

A natural scheme is
$\left[\varrho D_{t} D_{t} u=D_{x} \bar{q}^{x} D_{x} u+f\right]_{i}^{n}$
Or
$\left[D_{t} D_{t} u=\varrho^{-1} D_{x} \bar{q}^{\times} D_{x} u+f\right]^{n}$
(41)

No need to average ρ, just sample at i

Why do waves die out?

Damping (non-elastic effects, air resistance)
-2D/3D: conservation of energy makes an amplitude reduction by $1 / \sqrt{r}$ (2D) or $1 / r$ (3D)

Simplest damping model (for physical behavior, see demo):

$$
\frac{\partial^{2} u}{\partial t^{2}}+b \frac{\partial u}{\partial t}=c^{2} \frac{\partial^{2} u}{\partial x^{2}}+f(x, t),
$$

$b \geq 0$: prescribed damping coefficient.
Discretization via centered differences to ensure $\mathcal{O}\left(\Delta t^{2}\right)$ error:

$$
\begin{equation*}
\left[D_{t} D_{t} u+b D_{2 t} u=c^{2} D_{x} D_{x} u+f\right]_{i}^{n} \tag{43}
\end{equation*}
$$

Need special formula for $u_{i}^{1}+$ special stencil (or ghost cells) for
Neumann conditions.

Building a general 1D wave equation solver

The program wave1D_dn_vc.py solves a fairly general 1D wave equation:
$u_{t}=\left(c^{2}(x) u_{x}\right)_{x}+f(x, t), \quad x \in(0, L), t \in(0, T] \quad$ (44)

$$
u(x, 0)=I(x)
$$

$$
u_{t}(x, 0)=V(t)
$$

$$
x \in[0, L]
$$

$$
\begin{array}{lll}
u_{x}(0, t)=0, & t \in(0, T] \\
u_{x}(L, t)=0, & t \in(0, T]
\end{array}
$$

Can be adapted to many needs.

Finite difference methods for 2D and 3D wave equations

Constant wave velocity c :

$$
\begin{equation*}
\frac{\partial^{2} u}{\partial t^{2}}=c^{2} \nabla^{2} u \text { for } \boldsymbol{x} \in \Omega \subset \mathbb{R}^{d}, t \in(0, T] \tag{49}
\end{equation*}
$$

Variable wave velocity:

$$
\begin{equation*}
\varrho \frac{\partial^{2} u}{\partial t^{2}}=\nabla \cdot(q \nabla u)+f \text { for } \boldsymbol{x} \in \Omega \subset \mathbb{R}^{d}, t \in(0, T] \tag{50}
\end{equation*}
$$

Examples on wave equations written out in 2D/3D

3D, constant c :

$$
\nabla^{2} u=\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}+\frac{\partial^{2} u}{\partial z^{2}}
$$

2 D , variable c :

$$
\varrho(x, y) \frac{\partial^{2} u}{\partial t^{2}}=\frac{\partial}{\partial x}\left(q(x, y) \frac{\partial u}{\partial x}\right)+\frac{\partial}{\partial y}\left(q(x, y) \frac{\partial u}{\partial y}\right)+f(x, y, t)
$$

Compact notation:

Boundary and initial conditions

We need one boundary condition at each point on $\partial \Omega$:
(1) u is prescribed ($u=0$ or known incoming wave)
(-) $\partial u / \partial n=\boldsymbol{n} \cdot \nabla u$ prescribed $(=0$: reflecting boundary)

- open boundary (radiation) condition: $u_{t}+\boldsymbol{c} \cdot \nabla u=0$ (let waves travel undisturbed out of the domain)

PDEs with second-order time derivative need two initial conditions:
(1) $u=1$,
(1) $u_{t}=V$.

Mesh point: $\left(x_{i}, y_{j}, z_{k}, t_{n}\right)$

- x direction: $x_{0}<x_{1}<\cdots<x_{N_{x}}$
- y direction: $y_{0}<y_{1}<\cdots<y_{n}$
- z direction: $z_{0}<z_{1}<\cdots<z_{N_{z}}$
- $u_{i, j, k}^{n} \approx u_{e}\left(x_{i}, y_{j}, z_{k}, t_{n}\right)$

Special stencil for the first time step

- The stencil for $u_{i, j}^{1}(n=0)$ involves $u_{i, j}^{-1}$ which is outside the time mesh
- Remedy: use discretized $u_{t}(x, 0)=V$ and the stencil for $n=0$
to develop a special stencil (as in the 1D case)

$$
\left[D_{2 t} u=V\right]_{i, j}^{0} \quad \Rightarrow \quad u_{i, j}^{-1}=u_{i, j}^{1}-2 \Delta t V_{i, j}
$$

$$
u_{i, j}^{n+1}=u_{i, j}^{n}-2 \Delta V_{i, j}+\frac{1}{2} c^{2} \Delta t^{2}\left[D_{x} D_{x} u+D_{y} D_{y} u\right]_{i, j}^{n}
$$

$$
\left[D_{t} D_{t} u=c^{2}\left(D_{x} D_{x} u+D_{y} D_{y} u\right)+f\right]_{i, j, k}^{n},
$$

Written out in detail:

$u_{i, j}^{n-1}$ and $u_{i, j}^{n}$ are known, solve for $u_{i, j}^{n+1}$:
$u_{i, j}^{n+1}=2 u_{i, j}^{n}+u_{i, j}^{n-1}+c^{2} \Delta t^{2}\left[D_{x} D_{x} u+D_{y} D_{y} u\right]_{i, j}^{n}$

Variable coefficients (1)

3D wave equation:

$$
\varrho u_{t t}=\left(q u_{x}\right)_{x}+\left(q u_{y}\right)_{y}+\left(q u_{z}\right)_{z}+f(x, y, z, t)
$$

Just apply the 1D discretization for each term:
$\left[\varrho D_{t} D_{t} u=\left(D_{x} \bar{q}^{x} D_{x} u+D_{y} \bar{q}^{y} D_{y} u+D_{z} \bar{q}^{z} D_{z} u\right)+f\right]_{i, j, k}^{n} \quad(54)$
Need special formula for $u_{i, j, k}^{1}$ (use $\left[D_{2 t} u=V\right]^{0}$ and stencil for $n=0$).

Variable coefficients (2)

Written out:

$$
u_{i, k}^{n+1}=-u_{i, k, k}^{n-1}+2 u_{i, k}^{n}+
$$

$$
=\frac{1}{\varrho_{i, j, k}} \frac{1}{\Delta x^{2}}\left(\frac{1}{2}\left(q_{i, j, k}+q_{i+1, j, k}\right)\left(u_{i+1, j, k}^{n}-u_{i, j, k}^{n}\right)-\right.
$$

$$
\left.\frac{1}{2}\left(q_{i-1, j, k}+q_{i, j, k}\right)\left(u_{i, j, k}^{n}-u_{i-1, j, k}^{n}\right)\right)+
$$

$$
=\frac{1}{\varrho_{i, j, k}} \frac{1}{\Delta x^{2}}\left(\frac{1}{2}\left(q_{i, j, k}+q_{i, j+1, k}\right)\left(u_{i, j+1, k}^{n}-u_{i, j, k}^{n}\right)-\right.
$$

$$
\left.\frac{1}{2}\left(q_{i, j-1, k}+q_{i, j, k}\right)\left(u_{i, j, k}^{n}-u_{i, j-1, k}^{n}\right)\right)+
$$

$$
=\frac{1}{\varrho_{i, j, k}} \frac{1}{\Delta x^{2}} \frac{1}{2}\left(q_{i, j, k}+q_{i, j, k+1}\right)\left(u_{i, j, k+1}^{n}-u_{i, j, k}^{n}\right)-
$$

$$
\left.\frac{1}{2}\left(q_{i, j, k-1}+q_{i, j, k}\right)\left(u_{i, j, k}^{n}-u_{i, j, k-1}^{n}\right)\right)+
$$

Neumann boundary condition in 2D

Use ideas from 1D! Example: $\frac{\partial u}{\partial n}$ at $y=0, \frac{\partial u}{\partial n}=-\frac{\partial u}{\partial y}$
Boundary condition discretization:

$$
\left[-D_{2 y} u=0\right]_{i, 0}^{n} \quad \Rightarrow \quad \frac{u_{i, 1}^{n}-u_{i,-1}^{n}}{2 \Delta y}=0, i \in \mathcal{I}_{x}
$$

Insert $u_{i,-1}^{n}=u_{i, 1}^{n}$ in the stencil for $u_{i, j=0}^{n+1}$ to obtain a modified stencil on the boundary
Pattern: use interior stencil also on the bundary, but replace j - 1 by $j+1$
Alternative: use ghost cells and ghost values

$$
+\quad \Delta t^{2} f_{i, j, k}^{n}
$$

Set initial condition $u_{i, j}^{0}=I\left(x_{i}, y_{j}\right)$
(- Compute $u_{i, j}^{1}=\cdots$ for $i \in \mathcal{I}_{x}^{i}$ and $j \in \mathcal{I}^{\prime}$

- Set $u_{i, j}^{1}=0$ for the boundaries $i=0, N_{x}, j=0, N$
- For $n=1,2, \ldots, N$
- Find $u_{i}^{n+1}=\cdots$ for $i \in \mathcal{I}_{x}^{i}$ and $j \in \mathcal{I}^{i}$
(1) Set $u_{i, j}^{i+1}=0$ for the boundaries $i=0, N_{x}, j=0, N_{y}$

Scalar computations: mesh

Program: wave2D_u0.py

Mesh:

$\mathrm{y}=1 \mathrm{Inspa}=\mathrm{x} 11$
$\mathrm{dy}=\mathrm{y}[1]$
$\mathrm{dy}=\mathrm{y}[1]-\mathrm{y}[0]$
$\mathrm{t}=1$ inspace $(0, \mathrm{~N} * \mathrm{dt}, \mathrm{N}+1)$)

\# mesh points in time
\# help variables

Scalar computations: arrays

Store $u_{i, j}^{n+1}, u_{i, j}^{n}$, and $u_{i, j}^{n-1}$ in three two-dimensional arrays:

$u_{i, j}^{n+1}$ corresponds to $u[i, j]$, etc.

Scalar computations: initial condition

for i in 1

if $\left.\begin{array}{c}\text { user_action is not None: } \\ \text { user_action }\left(u_{-} 1, x, x, y, y, y v, t, 0\right)\end{array}\right)$
Arguments xv and yv : for vectorized computations

Scalar computations: primary stencil

def advance_scalar ($\mathbf{u}, \mathbf{u}, \mathbf{n}, \mathrm{n}, \mathrm{u}$ _nm1, $\mathrm{f}, \mathrm{x}, \mathrm{y}, \mathrm{t}, \mathrm{n}, \mathrm{Cx} 2, \mathrm{Cy} 2, \mathrm{dt} 2$,
Ix $=$ range (0 , u-shape $[0]$) ; $;$ Iy $=$ range (0 , u.shape [1] $) ~$

else:
f1 $=2 ; \quad$ D2 $=1$
for i in Ix $[1:-1]:$

f step1: ${ }^{C x} 2 * u_{-} \mathrm{xx}+\mathrm{Cy}_{2} * \mathrm{C}_{-}-\mathrm{yy}+\mathrm{dt2} 2 * \mathrm{f}(\mathrm{x}[\mathrm{i}], \mathrm{y}[\mathrm{j}], \mathrm{t}[\mathrm{n}])$

$\#$ Bounda
j
$j=$ Iy $[0]$
$\mathrm{j}=\mathrm{Iy}[0]$
for i in $\operatorname{Ix}: u[i, j]=0$
$\underset{\substack{j \\ \text { for } \\ i \\ i \\ i \\ i \\ i \\ \text { in } \\ \text { in } \\ \text { in } \\ \text { I } \\ \text { I }}}{ }$

return u

Mesh with 30×30 cells: vectorization reduces the CPU time by a factor of 70 (!).
Need special coordinate arrays xv and yv such that $I(x, y)$ and
$f(x, y, t)$ can be vectorized
from numpy import newaxis

if step 1

```
        ctum, cart(dt2) # s
        Cx2 = 0.5*Cx2; Cy2 = save . 5*Cy2; dt2 = 0.5*dt2 # redefine
```

 else \({ }^{\text {D1 }}\)

Cx $2 * u-x x+C y 2 * u-y y+d t 2 * f$ _a $[1:-1,1:-1]$

\# Bound
$j=0$
$\mathrm{j}=0$
$\mathrm{u}[:, \mathrm{j}, \mathrm{j}=0$
$j=\mathrm{u}$. .shape
$i=1]-1$

it:
$i=0$
$u[i,:]$
i
$\mathrm{u}[\mathrm{i},:]=0$
$\mathrm{i}=\mathrm{u}=\mathrm{i}$ shape $[0]-1$
.
$\mathrm{u}[i,:]=$
return u

Verification: quadratic solution (1)

Verification: quadratic solution (2)

- $\left[D_{t} D_{t} 1\right]^{n}=0$
- $\left[D_{t} D_{t} t\right]^{n}=0$
- $\left[D_{t} D_{t} t^{2}\right]=2$
- $D_{t} D_{t}$ is a linear operator
$\left[D_{t} D_{t}(a u+b v)\right]^{n}=a\left[D_{t} D_{t} u\right]^{n}+b\left[D_{t} D_{t} v\right]^{n}$

$$
\begin{aligned}
{\left[D_{x} D_{x} u_{e}\right]_{i, j}^{n} } & =\left[y\left(L_{y}-y\right)\left(1+\frac{1}{2} t\right) D_{x} D_{x} x\left(L_{x}-x\right)\right]_{i, j}^{n} \\
& =y_{j}\left(L_{y}-y_{j}\right)\left(1+\frac{1}{2} t_{n}\right) 2
\end{aligned}
$$

- Similar calculations for $\left[D_{y} D_{y} u_{e}\right]_{i, j}^{n}$ and $\left[D_{t} D_{t} u_{e}\right]_{i, j}^{n}$ terms - Must also check the equation for $u_{i, j}^{1}$

Analysis of the difference equations

Properties of the solution of the wave equation

$$
\frac{\partial^{2} u}{\partial t^{2}}=c^{2} \frac{\partial^{2} u}{\partial x^{2}}
$$

Solutions:

$$
u(x, t)=g_{R}(x-c t)+g_{L}(x+c t)
$$

If $u(x, 0)=I(x)$ and $u_{t}(x, 0)=0$:

$$
u(x, t)=\frac{1}{2} I(x-c t)+\frac{1}{2} I(x+c t)
$$

Two waves: one traveling to the right and one to the left

A wave propagates perfectly $(C=1)$ and hits a medium with $1 / 4$ of the wave velocity ($C=0.25$). A part of the wave is reflected and the rest is transmitted.

Representation of waves as sum of sine/cosine waves
Build $I(x)$ of wave components $e^{i k x}=\cos k x+i \sin k x$:

$$
I(x) \approx \sum_{k \in K} b_{k} e^{i k x}
$$

- Fit b_{k} by a least squares or projection method
- k is the frequency of a component ($\lambda=2 \pi / k$ is the wave
k is the frequency
- K is some set of all k needed to approximate $I(x)$ well
- b_{k} must be computed (Fourier coefficients)

Since $u(x, t)=\frac{1}{2} l(x-c t)+\frac{1}{2} l(x+c t)$, the exact solution is

$$
u(x, t)=\frac{1}{2} \sum_{k \in K} b_{k} e^{i k(x-c t)}+\frac{1}{2} \sum_{k \in K} b_{k} e^{i k(x+c t)}
$$

Our interest: one component $e^{i(k x-\omega t)}, \omega=k c$ \qquad

Preliminary results

$$
\left[D_{t} D_{t} e^{i \omega t}\right]^{n}=-\frac{4}{\Delta t^{2}} \sin ^{2}\left(\frac{\omega \Delta t}{2}\right) e^{i \omega n \Delta t}
$$

By $\omega \rightarrow k, t \rightarrow x, n \rightarrow q)$ it follows that

$$
\left[D_{x} D_{x} e^{i k x}\right]_{q}=-\frac{4}{\Delta x^{2}} \sin ^{2}\left(\frac{k \Delta x}{2}\right) e^{i k q \Delta x}
$$

\square

A similar wave component is also a solution of the finite
difference scheme (!)

Idea: a similar discrete $u_{q}^{n}=e^{i\left(k x_{q}-\omega \omega_{n}\right)}$ solution (corresponding to the exact $\left.e^{i(k x-\omega t)}\right)$ solves

$$
\left[D_{t} D_{t} u=c^{2} D_{x} D_{x} u\right]_{q}^{n}
$$

Note: we expect numerical frequency $\tilde{\omega} \neq \omega$

- How accurate is $\tilde{\omega}$ compared to ω ?
- What about the wave amplitude (can $\tilde{\omega}$ become complex)?

Insertion of the numerical wave component

Inserting a basic wave component $u=e^{i\left(k x_{q}-\tilde{\omega} t_{n}\right)}$ in the scheme requires computation of

$$
\begin{aligned}
{\left[D_{t} D_{t} e^{i k x} e^{-i \tilde{\omega} t}\right]_{q}^{n} } & =\left[D_{t} D_{t} e^{-i \tilde{\omega} t}\right]^{n} e^{i k \Delta x} \\
& =-\frac{4}{\Delta t^{2}} \sin ^{2}\left(\frac{\tilde{\omega} \Delta t}{2}\right) e^{-i \tilde{\omega} n t t} e^{i k g \Delta x} \\
{\left[D_{x} D_{x} e^{i k x} e^{-i \tilde{\omega} t}\right]_{q}^{n} } & =\left[D_{x} D_{x} e^{i k x}\right]_{q} e^{-i \tilde{\omega} n \Delta t} \\
& =-\frac{4}{\Delta x^{2}} \sin ^{2}\left(\frac{k \Delta x}{2}\right) e^{i k g \Delta x} e^{-i \tilde{\omega} n \Delta t}
\end{aligned}
$$

The complete scheme,

$$
\left[D_{t} D_{t} e^{i k x} e^{-i \tilde{\omega} t}=c^{2} D_{x} D_{x} e^{i k x} e^{-i \tilde{\omega} t}\right]_{q}^{n}
$$

leads to an equation for $\tilde{\omega}$ (which can readily be solved):
$\sin ^{2}\left(\frac{\tilde{\omega} \Delta t}{2}\right)=C^{2} \sin ^{2}\left(\frac{k \Delta x}{2}\right), \quad C=\frac{c \Delta t}{\Delta x}$ (Courant number)
Taking the square root:

$$
\sin \left(\frac{\tilde{\omega} \Delta t}{2}\right)=C \sin \left(\frac{k \Delta x}{2}\right)
$$

Can easily solve for an explicit formula for $\tilde{\text { w }}$:

$$
\tilde{\omega}=\frac{2}{\Delta t} \sin ^{-1}\left(C \sin \left(\frac{k \Delta x}{2}\right)\right)
$$

Note:

- This $\tilde{\omega}=\tilde{\omega}(k, c, \Delta x, \Delta t)$ is the numerical dispersion relation
- Inserting $e^{k x-\omega t}$ in the PDE leads to $\omega=k c$, which is the
a analytical/exact dispersion relation
- Speed of waves might be easier to imagine:

Exact speed: $c=\omega / k$,
Numerical speed: $\tilde{c}=\tilde{\omega} / k$

- We shall investigate \tilde{c} / c to see how wrong the speed of a numerical wave component is

Computing the error in wave velocity

- Introduce $p=k \Delta x / 2$
(the important dimensionless spatial discretization parameter)
measures no of mesh points in space per wave length in
space
- Shortest possible wave length in mesh: $\lambda=2 \Delta x$
$k=2 \pi / \lambda=\pi / \Delta x$, and $p=k \Delta x / 2=\pi / 2 \Rightarrow p \in(0, \pi / 2]$
- Study error in wave velocity through \tilde{c} / c as function of p
$r(C, p)=\frac{\tilde{c}}{C}=\frac{2}{k c \Delta t} \sin ^{-1}(C \sin p)=\frac{2}{k C \Delta x} \sin ^{-1}(C \sin p)=\frac{1}{C p} \sin ^{-1}$
Can plot $r(C, p)$ for $p \in(0, \pi / 2], C \in(0,1]$

Visualizing the error in wave velocity

$\underset{\text { return }}{\operatorname{def}} \underset{\sim}{r(C,}(C * p) * \operatorname{asin}(C * \sin (p))$

Taylor expanding the error in wave velocity
For small p, Taylor expand $\tilde{\omega}$ as polynomial in p :

(0,7)

-
\ggg \# Drop the remaind
$\ggg \mathrm{rs}=\mathrm{rs}$. removeo ()
$\gg \mathrm{rs}=\mathrm{rs.remove0(})$
\ggg Factorize each term
$\ggg \mathrm{rs}=$ Ifactort

$\mathrm{p} * * 2 *(\mathrm{C}-1) *(\mathrm{C}+1) * / 6+1$
Leading error term is $\frac{1}{6}\left(C^{2}-1\right) p^{2}$ or
$\frac{1}{6}\left(\frac{k \Delta x}{2}\right)^{2}\left(C^{2}-1\right)=\frac{k^{2}}{24}\left(c^{2} \Delta t^{2}-\Delta x^{2}\right)=\mathcal{O}\left(\Delta t^{2}, \Delta x^{2}\right)$

Smooth wave, few short waves (large k) in $I(x)$:

Not so smooth wave, significant short waves (large k) in $I(x)$:

Recall that right-hand side is in $[-C, C]$. Then $C>1$ means

$$
\underbrace{\sin \left(\frac{\tilde{\omega} \Delta t}{2}\right)}_{>1}=C \sin \left(\frac{k \Delta x}{2}\right)
$$

Complex $\tilde{\omega}$ will lead to exponential growth of the amplitude
Stability criterion: real $\tilde{\omega}$

- Then $\sin (\tilde{\omega} \Delta t / 2) \in[-1,1]$
- $k \Delta x / 2$ is always real, so right-hand side is in $[-C, C]$
- Then we must have $C \leq 1$

Stability criterion:

$$
C=\frac{c \Delta t}{\Delta x} \leq 1
$$

Extending the analysis to 2D (and 3D)

$u(x, y, t)=g\left(k_{x} x+k_{y} y-\omega t\right)$
is a typically solution of

$$
u_{t t}=c^{2}\left(u_{x x}+u_{y y}\right)
$$

Can build solutions by adding complex Fourier components of the form
$e^{i\left(k_{x} x+k_{y} y-\omega t\right)}$

Discrete wave components in 2D

$$
\left[D_{t} D_{t} u=c^{2}\left(D_{x} D_{x} u+D_{y} D_{y} u\right)\right]_{q, r}^{n}
$$

This equation admits a Fourier component

$$
u_{q, r}^{n}=e^{i\left(k_{x} \Delta \Delta x+k_{y} r \Delta y-\tilde{\omega} n \Delta t\right)}
$$

Inserting the expression and using formulas from the 1D analysis:

$$
\sin ^{2}\left(\frac{\tilde{\omega} \Delta t}{2}\right)=C_{x}^{2} \sin ^{2} p_{x}+C_{y}^{2} \sin ^{2} p_{y}
$$

where

$$
C_{x}=\frac{c \Delta t}{\Delta x}, \quad C_{y}=\frac{c \Delta t}{\Delta y}, \quad p_{x}=\frac{k_{x} \Delta x}{2}, \quad p_{y}=\frac{k_{y} \Delta y}{2}
$$

Real-valued $\tilde{\omega}$ requires

$$
C_{x}^{2}+C_{y}^{2} \leq 1
$$

or

$$
\Delta t \leq \frac{1}{c}\left(\frac{1}{\Delta x^{2}}+\frac{1}{\Delta y^{2}}\right)^{-1 / 2}
$$

$$
\Delta t \leq \frac{1}{c}\left(\frac{1}{\Delta x^{2}}+\frac{1}{\Delta y^{2}}+\frac{1}{\Delta z^{2}}\right)^{-1 / 2}
$$

For $c^{2}=c^{2}(x)$ we must use the worst-case value
$\bar{c}=\sqrt{\max _{x \in \Omega} c^{2}(x)}$ and a safety factor $\beta<1$.

$$
\Delta t \leq \beta \frac{1}{\bar{c}}\left(\frac{1}{\Delta x^{2}}+\frac{1}{\Delta y^{2}}+\frac{1}{\Delta z^{2}}\right)^{-1 / 2}
$$

Numerical dispersion relation in 2D (2)

$$
\frac{\tilde{c}}{c}=\frac{1}{C k h} \sin ^{-1}\left(c\left(\sin ^{2}\left(\frac{1}{2} k h \cos \theta\right)+\sin ^{2}\left(\frac{1}{2} k h \sin \theta\right)\right)^{\frac{1}{2}}\right)
$$

Can make color contour plots of $1-\tilde{c} / c$ in polar coordinates with θ as the angular coordinate and $k h$ as the radial coordinate.

Now $\tilde{\omega}$ depends on

- C reflecting the number cells a wave is displaced during a time step
kh reflecting the number of cells per wave length in space
- θ expressing the direction of the wave

Numerical dispersion relation in 2D (3)

