Study guide: Finite difference methods for wave

motion

2 Svein Linge>!

Hans Petter Langtangen®
Center for Biomedical Computing, Simula Research Laboratory®
Department of Informatics, University of Oslo?

Department of Process, Energy and Environmental Technology, University College
of Southeast Norway?

Jul 13, 2016

@© 2016, Hans Petter Langtangen, Svein Linge. Released under CC Attribution 4.0 license

‘ The complete initial-boundary value problem

‘ Finite difference methods for waves on a string

Waves on a string can be modeled by the wave equation

Pu_ 2
o2~ ox?
u(x, t) is the displacement of the string

Demo of waves on a string.

‘ Input data in the problem

o Initial condition u(x,0) = /(x): initial string shape
o Initial condition u¢(x,0) = 0: string starts from rest
e ¢ =/ T/p: velocity of waves on the string

32 =S o xe(0,L), te(0, 7] (1)
u(x,0) = I(x), xe[0,L] (2)

7]
&u(x, 0) =0, x €[0,L] (3)
u(0,t) =0, te(0,T] (4)
u(L,t)=0, te(0,T] (5)

Demo of a vibrating strin

o Our numerical method is sometimes exact (!)

@ Our numerical method is sometimes subject to serious
non-physical effects

o (T is the tension in the string, o is density of the string)

@ Two boundary conditions on u: u = 0 means fixed ends (no
displacement)

Rule for number of initial and boundary conditions:

@ ug in the PDE: two initial conditions, on v and u;
o u; (and no uy) in the PDE: one initial conditions, on u

@ Uy, in the PDE: one boundary condition on v at each
boundary point

| Demo of a vibrating string (C = 1.0012)

Ooops!

‘ Step 1: Discretizing the domain

Mesh in time:

O=th<th<b< - <ty_1 <ty =T (6)

Mesh in space:

0=x0 <x1 <X <---<Xpp—1 <Xy, =L 7)

Uniform mesh with constant mesh spacings At and Ax:

xp =iAx, i=0,....Ny, ti=nAt, n=0,...,N; (8)

‘ Step 2: Fulfilling the equation at the mesh points

Let the PDE be satisfied at all interior mesh points:

92 2?
WU(X"‘ ty) = czwu(x,-‘ tn), 9)

fori=1,...,Ny—landn=1,... Ny —1.

For n = 0 we have the initial conditions u = /(x) and u; = 0, and
at the boundaries i = 0, N, we have the boundary condition u = 0.

Step 3: Algebraic version of the PDE

Replace derivatives by differences:

nl ooy n-1 N oyn 40
ulT m2uf T Ul 207+ U,

At? Ax? (10)

In operator notation:

[D:Dru = 2D D,]} (11)

‘ The discrete solution

@ The numerical solution is a mesh function: u? ~ ue(x;, tn)
o Finite difference stencil (or scheme): equation for uf’ involving
neighboring space-time points

Stencil at interior point

5
4
o)
c 8 18}
x
3
S
£, fo 0O fo
© © ©
e
1 ©

‘ Step 3: Replacing derivatives by finite differences

Widely used finite difference formula for the second-order derivative:

? umtt —2yf 4yt

ﬁ“(xh tn) ~ # = [DtDyu]}
and

2 ul = 2ul + ul

S u(xi, ty) o LS T TEL (D pu)?

Ox? Ax?

Step 3: Algebraic version of the initial conditions

o Need to replace the derivative in the initial condition
ut(x,0) = 0 by a finite difference approximation

o The differences for uy and uy, have second-order accuracy
o Use a centered difference for u:(x, 0)
[Dou]? =0, n=0 = w7 =u"t i=0,...,Ns

i i

The other initial condition u(x,0) = /(x) can be computed by

W =10x), i=0,..., Ny

‘ Step 4: Formulating a recursive algorithm

o Nature of the algorithm: compute v in space at
t = At,2At, 3A¢, ...

o Three time levels are involved in the general discrete equation:
n+1,nn-—1

o uf and uy-"f1 are then already computed for i =0, ..., Ny, and
u™1 is the unknown quantity

Write out [D;Dsu = c?DyDy]? and solve for u*?,

uttt = T 20l + €2 (ufyr —2u) + uy) (12)

‘ The finite difference stencil

Stencil at interior point

5
4
Fo)
- 3 ©
x
3
S
£, 0O 0O 0O
O O ©
e
1 O
0
0 1 2 3 4 5

index i

‘ The algorithm

Q@ Compute uf = I(x;) for i =0,..., Ny
@ Compute u} by (14) and set u} = 0 for the boundary points
i=0andi= Ny forn=12....N—-1,
© For each time level n=1,2,... Ny —1
0 apply (12) to find v for i =1,..., Ny — 1

@ set u™! = 0 for the boundary points i =0, i = N,.

number

‘ The Coura

C=c—, (13)

is known as the (dimensionless) Courant number

There is only one parameter, C, in the discrete model: C lumps
mesh parameters At and Ax with the only physical parameter, the
wave velocity c¢. The value C and the smoothness of /(x) govern
the quality of the numerical solution.

‘ The stencil for the first time level

@ Problem: the stencil for n = 1 involves u/fl, but time
t = —At is outside the mesh

o Remedy: use the initial condition u; = 0 together with the
stencil to eliminate ufl

Initial condition:

[Daru = 0],Q = ul=4u

Insert in stencil [D;Diu = CZDXDX]? to get

1
uf = uf — ECZ (uPpy —2uf +uly) (14)

‘ Moving finite difference stencil

web page or a movie file.

‘ Sketch of an implementation (1)

o Arrays:
o u[i] stores u,"Jr1
o u_1[i] stores uf

o u_2[i] stores u~!

Naming convention

u is the unknown to be computed (a spatial mesh function), u_k is
the computed spatial mesh function k time steps back in time.

of an implementation (2)

Given mesh points as arrays = and t (z[i], t[n])

dx = x[1] - x[0]

dt = t[1] - ¢[0]

C = c*dt/dx # Courant number

Nt = len(t)-1

C2 = Ck*2 # Help variable in the scheme

Set initial condition u(z,0) = I(z)
for i in range(0, Nx+1):
u_1[i] = I(x[i])

Apply special formula for first step, incorporating du/dt=0
for i in range(1, Nx):

ulil = uw_1[i] - 0.5#C#*2(u_1[i+1] - 2#u_1[i] + w_1[i-11)
uf0] = 0; ulNx] =0 # Enforce boundary conditions

Switch variables before mext step
u2[:1, u1l:] =ul, u

for n in range(l, Nt):
Update all inner mesh points at time t[n+1]
for i in range(1, Nx):
uli]l = 2u_1[i] - uw_2[i] -\
Cx#2(u_1[i+1] - 2%u_1[il + u_1[i-1])

Insert boundary conditions
ul0] = 0; wulNx] =0

‘ A slightly generalized model problem

Add source term f and nonzero initial condition u¢(x,0):

U = P + F(x, 1), (15)
u(x,0) = I(x), x € [o,L] (16)
ug(x,0) = V(x), xe[0,L] (17)
u(0,t) =0, t>0, (18)
u(L,t) =0, t>0 (19)

‘ PDE solvers should save memory

Important to minimize the memory usage

The algorithm only needs to access the three most recent time
levels, so we need only three arrays for u;’“, uf, and u,f'_l,
i=0,...,Ny. Storing all the solutions in a two-dimensional array
of size (Nx + 1) x (N; + 1) would be possible in this simple
one-dimensional PDE problem, but not in large 2D problems and
not even in small 3D problems.

‘ Verificati

o Think about testing and verification before you start
implementing the algorithm!

o Powerful testing tool: method of manufactured solutions and
computation of convergence rates

o Will need a source term in the PDE and u¢(x,0) # 0
@ Even more powerful method: exact solution of the scheme

‘ Discrete model for the generalized model problem

[D¢Deu = 2Dy Dy + f]7 (20)
Writing out and solving for the unknown u{’“:

UMt = T 20l + CP(uly — 2uf + Ul) + AT (21)

i

‘ Modified equation for the first time level Using an analytical solution of physical significance

. tandi i | life tri
Centered difference for u(x, 0) = V(x): o Standing waves occur in real life on a string

o Can be analyzed mathematically (known exact solution)

[Dyru=V]? = u'=ul 20tV A (T u
i i ue(x,y, t)) = Asin (LX) cos (Lct) (23)

Inserting this in the stencil (21) for n = 0 leads to
o PDE data: f =0, boundary conditions ue(0,t) = ue(L,0) =0,
initial conditions /(x) = Asin (7x) and V =0

1 1
ut =u? — AtV + 2C? (Ul —2uf +uf) + AL (22) o Note: uf“ # ue(xi, th+1, and we do not know the error, so
2 2 testing must aim at reproducing the expected convergence
rates

Manufactured solution: principles ‘ Manufactured solution: example

ve(x, t) = x(L — x)sint
PDE uy = Pug + f:

o Disadvantage with the previous physical solution: it does not

test V #0and f #0 —x(L—x)sint=-2sint+f =f=(2-x(L—x))sint
o Method of manufactured solution:
o Choose some ue(x, t) Implied initial conditions:

o Insert in PDE and fit f

o Set boundary and initial conditions compatible with the chosen
ue(x, t)

u(x,0)=1I(x)=0

ue(x,0) = V(x) = —x(L — x)
Boundary conditions:

u(x,0) = u(x,L) =0

‘ Testing a manufactured solution ‘ Constructing an exact solution of the discrete equations

o Introduce common mesh parameter: h = At, Ax = ch/C
@ This h keeps C and At/Ax constant
o Select coarse mesh h: hy o Manufactured solution with computation of convergence rates:
o Run experiments with h; = 2~ hy (halving the cell size), much manual work
i=0,....,m o Simpler and more powerful: use an exact solution for uf
o Record the error E; and h; in each experiment o A linear or quadratic ue in x and t is often a good candidate
o Compute pariwise convergence rates
ri=InEiy1/Ei/ Inhig1/hi
@ Verification: r; — 2 as / increases

‘ Analytical work with the PDE problem

Here, choose ue such that ue(x,0) = ue(L,0) = 0:

e) = x(L = X)(1+ 51),
Insert in the PDE and find f:

f(x,t) =2(1 + t)c?

Initial conditions:

169 =x(L =), V()= 3x(L—x)

| Analytical work with the discrete equations (1)

1 1
[DxDxte]f = (1 + 5t)[DxDx(xL = x®)]i = (1 + 5 0)[LD<Dox = DD

1
= —2(1+5tn)

Now, £;7 =2(1 + %1‘,,)c2 and we get

i

[D:Dytie— ¢ D Dyve — 7 = 07c2(71)2(1+%t,,+2(1+%t,,)c2 -0

Moreover, ug(x;,0) = I(x;), due/Ot = V(x;) at t =0, and
ue(xo, t) = te(xn,,0) = 0. Also the modified scheme for the first
time step is fulfilled by wue(x;, tn).

‘ Implementation

| Analytical work with the discrete equations (1)

We want to show that ue also solves the discrete equations!

Useful preliminary result:

2 2 2
thi1 = 2ty Tt

[D:Dt?]" = N =(n+12 =P+ (n—1P2=2
(24)
thr1 —2th+thr ((n+1)—n+(n—1))At
(25)
Hence,

1 1
[D¢Drue]? = xi(L — x;)[DeDe (1 + 51:)]" =x;(L— x,-)E[DtDtt]" =0

‘ Testing with the exact discrete solution

o We have established that
uf ™t = ue(xi, tay1) = xi(L = xi) (1 + tay1/2)
@ Run one simulation with one choice of ¢, At, and Ax
o Check that max; |ulf'4rl — Ue(Xi, tar1)| < €, e~ 10714
(machine precision + some round-off errors)

@ This is the simplest and best verification test

Later we show that the exact solution of the discrete equations can
be obtained by C =1 (!)

‘ The algorithm

@ Compute uf = I(x;) for i =0,..., Ny

i
@ Compute u} by (14) and set u} = 0 for the boundary points
i=0and i= Ny forn=1,2....N—1,
© For each time level n=1,2,..
0 apply (12) to find v for i =1,..., Ny — 1
@ set u!™! = 0 for the boundary points i =0, i = N,.

at do to with the solu

o Different problem settings demand different actions with the

computed ! at each time step

@ Solution: let the solver function make a callback to a user
function where the user can do whatever is desired with the
solution

o Advantage: solver just solves and user uses the solution

def user_action(u, x, t, n):
uli] at spatial mesh points z[i] at time t[n]
plot u
or store u

| Making a solver function (2)
def solver(I, V, f, ¢, L, dt, C, T, user_action=None):

Special formula for first time step
n =0
for i in range(1, Nx):
ulil = w_1[i] + de*V(x[i]) + \
0.5%C2% (u_1[i-1] - 2#u_1[i] + u_1[i+11) + \
0.5+dt**2+f (x[i], t[n])
uf0] = 0; wulNx] =0

if user_action is not None:
user_action(u, x, t, 1)

Switch variables before next step
u2l:], uil:]l =ud, u

def solver(I, V, f, c, L, Nx, C, T, user_action=None):
Time loop

for n in range(1, Nt):
Update all inner points at time t[n+1]
for i in range(1, Nx):
ulil = - w_2[i] + 2+u_1[i] + \
C2*(u_1[i-1] - 2%u_1[i] + uw_1[i+1]) + \
dt=*2+f (x[i], t[n])

Make a viz function for animating the curve, with plotting in a
user_action function plot_u:

def viz(
1, V, f, ¢, L, dt, C, T, # PDE parameters
umin, umax, # Interval for u in plots
animate=True, # Simulation with animation?
tool="matplotlib’, # ’matplotlid’ or ’scitools’
solver_function=solver, # Function with numerical algorithm

"""Run solver and visualize u at each time level."""

def plot_u_st(u, x, t, n):
"niyser_action function for solver. """
plt.plot(x, u, 'r-’,
xlabel="x’, ylabel=’u’,
axis=[0, L, umin, umax],
title='t=Yf’ ’ t[nl, show=True)
Let the initial condition stay on the screen for 2
seconds, else insert a pause of 0.2 s between each plot
time.sleep(2) if tln] == 0 else time.sleep(0.2)
plt.savefig(’frame_%04d.png’ % n) # for movie making

class PlotMatplotlib:
def __call__(self, u, x, t, n):
""'user_action function for solver.”""
if n == 0:

| Making a solver function (1)

We specify At and C, and let the solver function compute
Ax = cAt/C.

def solver(I, V, f, c, L, dt, C, T, user_action=None):
nnnSolye u_tt=c-2+u_zz + f on (0,L)z(0,T]."""
Nt = int(round(T/dt))
t = linspace(0, Ntxdt, Nt+1) # Hesh points in time
dx = dt*c/float(C)
Nx = int(round(L/dx))
x = linspace(0, L, Nx+1)
dx = x[1] - x[0]
C2 = Cxx2 # Help variable in the scheme
if f is None or f ==

lambda x, t: 0

if V is None or V ==

lambda x: 0

Mesh points in space

zeros(Nx+1) # Solution array at new time level
_1 = zeros(Nx+1) # Solution at 1 time level back
_2 = zeros(Nx+1) # Solution at 2 time levels back

g e

import time; tO = time.clock() # for measuring CPU time

Load initial condition into u_1
for i in range(0,Nx+1):

u_1[i] = 1(x[il)

‘ Verification: exact quadratic solution
Exact solution of the PDE problem and the discrete equations:
ue(x, t) = x(L — x)(1 + 3t)

def test_quadratic():
nniCheck that u(z,t)=e(L-z)(1+t/2) is ewactly reproduced.”""

def u_exact(x, t):
return x*(L-x)*(1 + 0.5%t)

def I(x):

return u_exact(x, 0)
def V(x):

return 0.5%u_exact(x, 0)
def f(x, t):

return 2%(1 + 0.5%t)*c**2
L=2.5
c=1.5
C=0.75
Nx = 6 # Very coarse mesh for this ezact test
dt = Cx(L/Nx)/c
T = 18

def assert_no_error(u, x, t, n):
ue = u exact(x, t[n])

o Store spatial curve in a file, for each time level
o Name files like >something_%04d.png’ % frame_counter

o Combine files to a movie

encoder=html output_file=movie.html \

@ Zero padding (%04d) is essential for correct sequence of frames
in something_*.png (Unix alphanumeric sort)

o Remove old frame_%.png files before making a new movie

‘ Running a case

o Vibrations of a guitar string
o Triangular initial shape (at rest)

ax/xq, X < X
I(x) = { a(L ” X)/(L — x), otherv?/ise (26)

Appropriate data:

e L=75cm, xp =0.8L, a=5 mm, time frequency v = 440 Hz

C

Movie of the vibrating string

o Problem: Python loops over long arrays are slow

o One remedy: use vectorized (numpy) code instead of explicit
loops

@ Other remedies: use Cython, port spatial loops to Fortran or C

@ Speedup: 100-1000 (varies with N,)

Next: vectorized loops

‘ Implementation of the case

def guitar(C):
"nuTriangular wave (pulled guitar string).”""
L =0.75
x0 = 0.8+*L
a = 0.005
freq = 440
wavelength = 2L
¢ = freq+wavelength
omega = 2+pi*freq
num_periods = 1
T = 2+pi/omega*num_periods
Choose dt the same as the stability limit for Nz=50
dt = L/50./c

def I(x):
return a*x/x0 if x < x0 else a/(L-x0)*(L-x)
umin = -1.2%a; umax = -umi:
cpu = viz(I, 0, 0, ¢, L, dt, C, T, umin, umax,
animate-True, tool=’scitools’)

def convergence_rates (
u_exact, # Python function for ezact solution
I,V, f,c,L, # physical parameters
dt0, num_meshes, C, T): # numerical parameters

win

Halé tho timo ctom and pctimata matos fam

‘ The benefits of scaling

o It is difficult to figure out all the physical parameters of a case

o And it is not necessary because of a powerful: scaling
Introduce new x, t, and u without dimension:

_ X 7 Ct _ u
Xx=—, =—t, U=—
L’ L a

Insert this in the PDE (with f = 0) and dropping bars

Ut = Uxx

Initial condition: set a=1, L =1, and xg € [0,1] in (26).

In the code: set a=c=L=1, x0=0.8, and there is no need to
calculate with wavelengths and frequencies to estimate c!

Just one challenge: determine the period of the waves and an
appropriate end time (see the text for details).

‘ Operations on slices of arl

o Introductory example: compute d; = uj11 — u;

n = u.size
for i in range(0, n-1):
dlil = uli+1] - ulil

o Note: all the differences here are independent of each other.

o Therefore d = (u1, u, ..., up) — (Uo, tn, ..., Up—1)

o In numpy code: ul1:n] - u[0:n-1] or just u[1:] -
ul:-1]

‘ Test the understan

Newcomers to vectorization are encouraged to choose a small array
u, say with five elements, and simulate with pen and paper both
the loop version and the vectorized version.

Vectorization of finite difference schemes (2)

Include a function evaluation too:

def f(x):
return x**2 + 1

Scalar version
for i in range(1l, n-1):
u2[il = uli-11 - 2*ulil + uli+1] + £(x[i])

Vectorized version
u2(i:-1] = ul:-2] - 2%u[1:-1] + u[2:] + £(x[1:-1])

‘ Verification of the vectorized versio

def test_quadratic():

Check the scalar and vectorized versions for

a quadratic u(z,t)=z(L-z)(1+t/2) that is ewactly reproduced.
nii

The following function must work for z as array or scalar
u_exact = lambda x, t: x*(L - x)*(1 + 0.5%t)

I = lambda x: u_exact(x, 0)

V = lambda x: 0.5%u_exact(x, 0)

f is a scalar (zeros_like(z) works for scalar © too)
f = lambda x, t: np.zeros_like(x) + 2*c**2*(1 + 0.5%t)
L=2.5

c 1.5

C=0.75

Nx = 3 # Very coarse mesh for this emact test

d C+(L/Nx)/c

T 8

def assert_no_error(u, x, t, n):
u_e = u_exact(x, t[n])
tol = 1E-13
diff = np.abs(u - u_e).max()
assert diff < tol

solver(I, V, f, ¢, L, dt, C, T,
user_action=assert_no_error, version=’scalar’)
coluax(T V£ .~ T ar o T

of fi

‘ Vectorizati ite difference schemes (1)

Finite difference schemes basically contains differences between
array elements with shifted indices. Consider the updating formula

for i in range(1, n-1):
u2l[i] = uli-1] - 2+uli] + uli+1]

The vectorization consists of replacing the loop by arithmetics on
slices of arrays of length n-2:

u2
u2

ul:-2] - 2+ul1:-1] + u[2:]
ul0:n-2] - 2#ull:n-1] + u[2:n] # alternative

Note: u2 gets length n-2.

If u2 is already an array of length n, do update on "inner" elements

ul:-2] - 2*u[1:-1] + u[2:]
ul0:n-2] - 2#uli:n-1] + ul[2:n] # alternative

u2[1:-1]
u2[1:n-1]

‘ Vectorized implementation in the solver function

Scalar loop:
for i in range(l, Nx):

ulil = 2%u_1[i] - u_2[4] + \
C2+(u_1[i-1] - 2*u_1[i] + w_1[i+1])

Vectorized loop:

uli:-1] = - w2[1:-1] + 2%u_1[1:-1] + \
C2%(u_1[:-2] - 2%u_1[1:-1] + u_1[2:])

or

uli1:Nx] = 2+u_1[1:Nx]- u_2[1:Nx] + \
C2+(u_1[0:Nx-1]1 - 2#u_1[1:Nx] + u_1[2:Nx+1])

Program: wavelD_uOv.py

measurements

‘ Efficie

o Run wavel1D_uOv.py for Ny as 50,100,200,400,800 and
measuring the CPU time

o Observe substantial speed-up: vectorized version is about
N,/5 times faster

Much bigger improvements for 2D and 3D codes!

‘ Generalization: reflecti oundaries

@ Boundary condition u = 0: u changes sign
o Boundary condition u, = 0: wave is perfectly reflected
o How can we implement u,? (more complicated than u = 0)

Demo of boundary conditions

‘ Discretization of derivatives at the boundary (1)

@ How can we incorporate the condition uy = 0 in the finite
difference scheme?

o We used centeral differences for us and u: O(At?, Ax?)
accuracy

o Also for us(x,0)

@ Should use central difference for uy to preserve second order
accuracy

n n
uy —uf

“ax (28)

‘ Visualization of modified ndary stencil

Discrete equation for computing ug in terms of u2, ut, and v?:
o s Ug i

Animation in a web page or a movie file.

‘ Neumann boundary condition

du _
(,)n:rrVufO (27)
For a 1D domain [0, L]:
oy _o o) __ 9
on|,_, 0x’ 9n|,_, Ox

Boundary condition terminology:

o uy specified: Neumann condition

o u specified: Dirichlet condition

| Discretization of derivatives at the boundary (2)

uy —uf —0
2Ax
@ Problem: u”, is outside the mesh (fictitious value)

o Remedy: use the stencil at the boundary to eliminate u”;; just
replace u”; by uf

™t =t 2w + 287 (ufy —uf), i=0 (29)

‘ Implementation of Neumann conditi

o Use the general stencil for interior points also on the boundary
o Replace uf ; by ufly, fori=0
o Replace ufy; by uf') for i = Ny

i=0
ipt

+1

imi = ipl # i-1 -> i+t
ulil = u_1[i] + C2*(u_1[im1] - 2%u_1[i] + u_1[ip1l)

ip1l = iml # i+1 -> i-1
uli]l = w_1[i] + C2%(u_1[im1] - 2*%u_1[i] + u_1[ip1l)

Or just one loop over all points

for i in range(0, Nx+1):
ipl = i+l if i < Nx else i-1
i i-1 if i > 0 else i+l
ulil = u_1lil + C2*(u_1[im1] - 2*u_1[i] + u_1[ip1])

Program wave1D_dnO.py

‘ Moving finite difference stencil ‘ Index set notation

o Tedious to write index sets like i = 0,..., N, and
n=0,...,N¢
o Notation not valid if / or n starts at 1 instead...
o Both in math and code it is advantageous to use index sets
web page or a movie file. o i €Z,instead of i =0,..., Ny
o Definition: Z, = {0,..., Ny}

o The first index: i = Z°

o The last index: i = Z!

o All interior points: i € Z., T = {1,..., Ny — 1}
o 7 means {0,..., Ny —1}

o Z} means {1,..., Ny}

| Index set notation in code | Index sets in action (1)

Index sets for a problem in the x, t plane:
Notation Python

T Ix
z Ix[0] To={0,.... Ny}, Te={0....,N;}, (30)
It Ix[-1]
Ic Ix[1:] .
I+ 1§[;,1] Implemented in Python as
s
Ix = range(0, Nx+1)
It = range(0, Nt+1)

‘ Index sets in action (2) ‘ Alternative implementation via ghost cells

A finite difference scheme can with the index set notation be
specified as

o Instead of modifying the stencil at the boundary, we extend

n+1 n—1 n 2 (0 n .0 c i i
ul™t = —u] 2ul + C* (vl y —2u] +ui), €I, nel
P2t (i+1 P+ ’*1) ’ €l ncly the mesh to cover u”; and ufy ,,

o i_ 70 i .
u=0 i=I,nel @ The extra left and right cell are called ghost cells
. 1 i . .
u=0, i=I , nel; @ The extra points are called ghost points
o The u”; and Lt,’(,erl values are called ghost values
Corresponding implementation: o Update ghost values as u? ; = uf; for i =0 and i = Ny
for n in It[1:-1]: @ Then the stencil becomes right at the boundary
for i in Ix[1:-1]:
ulil = - u_2[i] + 2%u_1[i] + \

C2+(u_1[i-11 - 2*u_1[il + u_1[i+1])
i = Ix[0]; wulil =0
i = Ix[-1]; ulil = 0

Program wave1D_dn.py

| Implementation of ghost cells (1)

Add ghost points:

u = zeros(Nx+3)
u_l = zeros(Nx+3)
u_2 = zeros(Nx+3)

x = linspace(0, L, Nx+1) # Hesh points without ghost points

@ A major indexing problem arises with ghost cells since Python
indices must start at 0.

o u[-1] will always mean the last element in u

@ Math indexing: —1,0,1,2,..., Ny +1

o Python indexing: 0,..,Nx+2

o Remedy: use index sets

. variable wave velocity

‘ Generalizatio

Heterogeneous media: varying ¢ = c(x)

Hxe80,t=0,375000 s Hx=80, £=1.250000

| Discretizing the variable coefficient (1)

The principal idea is to first discretize the outer derivative.
Define ou

o= q(X)a
Then use a centered derivative around x = x; for the derivative of
ol

R ‘
~—2——2 —[D,¢ n
L)x} Ax [Dxo;

i

| Implementation of ghost cells (2)

u = zeros(Nx+3)
Ix = range(1, u.shape[0]-1)

Boundary values: u[Ix[0]], ul[Ix[-1]]

Set initial conditions
for i in Ix:
u_1[i] = I(x[i-Ix[0]]1) # Note i-Ix[0]

Loop over all physical mesh points
for i in Ix:
uli]l = - u 2[i] + 2%u_1[i] + \
C2%(u_1[i-1] - 2%u_1[i] + u_1[i+11)

Update ghost values
i=Ix[0 # x=0 boundary
uli-1] = u[i+1]
i = Ix[-1] # x=L boundary
uli-1] = u[i+1]

Program: wave1D_dn0O_ghost.py.

a variable coefficient

‘ The model PDE wi

2y i o
g? - % <q(x)37> +f(x 1) (31)

This equation sampled at a mesh point (x;, t,):

o2 d J
Fulitn) = 5= <G(Xi)au(xi, tn)) + f(xis ta),

| Discretizing the variable coefficient (2)

Then discretize the inner operators:

, dul” ulyy — uf n
Pitt = dips [&] s 9G+3 " Ax [qDX“]iJr%
2
Similarly,
oul” uf —ui, n
Gi-y = di-y [ox],;l MayT Ak o 1Py

‘ Discretizing the variable coefficient (3) ‘ Computing the coefficient between mesh points

These intermediate results are now combined to

o Given g(x): compute g1 s q(xH%)

17} ou\1" 1 o Given g at the mesh points: g;, use an average
{37 (‘l(x &)]/ ~ A2 (qH»% (ufir = uf) — gy (uf = ”in—l))
(32) 1 _ .
In operator notation: Givg ¥ 2 (@i + gi41) = [q7]; (arithmetic mean) (34)
11\t

0 ou\1" g 1~2 (7 +) harmonic mean 35

[ﬁx < (X)E)] ~ [DxqDsu]} (33) e G Giv1 ()38

' Gip1 =~ (q,-q,url)l/2 (geometric mean) (36)

The arithmetic mean in (34) is by far the most used averaging
technique.

Many are tempted to use the chain rule on the term % (q(x)%),
but this is not a good ideal

Discretization of variable-coefficient wave equation in ‘ Neumann condition and a variable coefficient

operator notation
Consider u/0x =0 at x = L = N, Ax:
[D:Dru = DG Dxu + £} (37)
T . Uiy — Uy .
We clearly see the type of finite differences and averaging! oA = 0 ulyy=uly, i=Ny
X
Write out and solve wrt u;’“:
Insert uf’,; = ul’ ; in the stencil (38) for i = N and obtain
At\? - Ar\2
1 -1 +1 1) 2
Ut = —uft 4 2u] + (E) X u ™ T F2u] + (E) 2qi(uf_y — uf') + At F"
1 n n 1 n n
§(qi + qiy1)(ufyy — uf) = E(qi +qi1)(uf = ulq)) + (We have used sl + g1~ 2g;.)
ALf" (38) Alternative: assume dq/dx = 0 (simpler).
‘ Implementation of variable coefficients ‘ A more general model PDE with variable coefficients
Assume c[i] holds ¢; the spatial mesh points
Pu 0 ou
for i in range(l, Nx): Q(X)ﬁ = o q(x)a—x +f(x,t) (39)
ulil = - u_2[i] + 2*u_1[i] + \
C2#(0.5%(q[i] + q[i+1])*(u_1[i+1] - uw_1[i]) -\
0.5%(q[i] + qli-11)*(u_1[i] - u_1[i-11)) + \ A natural scheme is
dt2+f (x[i], t[n])
Here: C2=(dt/dx)**2 [0D:Deu = Dxq*Dxu + f]} (40)
Vectorized ion:
ectorized version Or
ull:-1] = - w_2[1:-1] + 2%u_1[1:-1] + \
C2#(0.5%(ql1:-1] + q[2:1)*(u_1[2:] - w_1[1:-1]) - 1
0.5%(ql1:-11 + gq[:-2D)#*(u_1[1:-1] - u_1[:-21)) + \ D¢Diu = 07> Dyq* D, 17 41
at2ef (x[1:-11, Efn]) (DeDru = 0™ DDt + £]; 1)
. N d t , just le at i
Neumann condition uy, = 0: same ideas as in 1D (modified stencil © need to average o, Just sample at 1
or ghost cells).

‘ Generalization: damping ‘ Building a general 1D wave equation solver

Why do waves die out?

o Damping (non-elastic effects, air resistance)

e 2D/3D: conservation of energy makes an amplitude reduction The program wave1D_dn_vc.py solves a fairly general 1D wave
by 1/4/r (2D) or 1/r (3D) equation:

Simplest damping model (for physical behavior, see demo):

ue= (e + f(x 1), xe(0,L), te(0,T] (44)

@+b0l Z@Jrf(t) (42) 0)=1 0,L] (45

ot? at o2 Xt u(x,0) = I(x), xe[0,L] (45)

ug(x,0) = V(t), x e[0,L] (46)

b > 0: prescribed damping coefficient. u(0,t) = Up(t) or ux(0,£) =0, te (0, T] (47)
L, t) = Up(t) or ux(L,t) =0, te(0,T] (48

Discretization via centered differences to ensure O(At?) error: u(L.t) () or (L, 1) €(0.7] (48)

Can be adapted to many needs.
[D:Deu + bDaru = 2Dy Dyu + f]7 (43)

Need special formula for u} + special stencil (or ghost cells) for
Neumann conditions.

‘ Collection of initial conditions Finite difference methods for 2D and wave equations

The function pulse in wave1D_dn_vc.py offers four initial

conditions: Constant wave velocity c:

Q a rectangular pulse ("plug")

&u
@ a Gaussian function (gaussian) Fr AV2ufor x e QCRY, te(0,T] (49)
© a "cosine hat": one period of 1+ cos(rx, x € [—1,1]
Q half a "cosine hat": half a period of cosmx, x € [-1,1 Variable wave velocity:
Can locate the initial pulse at x = 0 or in the middle % V. (qVu)+ Florx € QCRY, £ (0,T] (50)
G

>>> import wavelD_dn_vc as w
>>> w.pulse(loc="left’, pulse_tp=’cosinehat’, Nx=50, every_frame=10)

Examples on wave equations written out in 2D/3D ‘ Boundary and initial conditions

3D, constant c:
2y Pu u We need one boundary condition at each point on 02:
V=24 -5+ >
Ox2 Oy? 022))) .
@ u is prescribed (u = 0 or known incoming wave)
2D, variable c: @ Ju/dn = n-Vu prescribed (= 0: reflecting boundary)
@ open boundary (radiation) condition: u; + ¢ - Vu =0 (let
waves travel undisturbed out of the domain)
(Gt = 2 () 32) + o (aten 32 + et
O YIHE T ax axy Ox dy By dy ,y,() PDEs with second-order time derivative need two initial conditions:
51
Compact notation: O u=1
Q u=V.
Uy = cz(uxx +uyy +uz) + f, (52)
ouee = (qux)x + (quz)z + (quz)z + f (53)

@ Mesh point: (x;, yj, zk, tn)

@ x direction: xg < x1 < --- < Xp,
o y direction: yo < y1 <--- <y,
o z direction: zg < z; < -+ < zp,
°

ul Ue(Xi, Yjs Zks tn)

‘ Special stencil for the first time step

o The stencil for u,-ld. (n=0) involves u,.’d.1 which is outside the
time mesh

o Remedy: use discretized u;(x,0) = V and the stencil for n =0
to develop a special stencil (as in the 1D case)

[Daru=VI; = =ul;—24tV;

1
uft = - 20V + EcZAtZ[DXDXu + DyDyulf;

Variable coefficients (2)

Written out:
1 -1
Ul = =l 20l
1 1 n n
= Em(i(qu.k + Qi) (U jk = Ul k)=
1J,
1
E(fol,j,k +qija) (] — Ul j)+
1 1 1
= ER(E(qi,j,k + Qi.j+1,k)(u,"1,j+1.k - pr,j,k)*
s
1
E(qi\/—l,k +qiga) (U] — Uiy)+
1 1 1
RN (E(Qid'.k + Qi k1) (U7 1 — U7~
i,

1
E(Qr',j,k—l +Gija) (U] — Ul k1)) +

2
+ AL

‘ Discretization

[DeDeu = P(Dy Dy + Dy Dyu) + 17 4,

Written out in detail:

ntl o n n—1 n _oyn n
up =20l 2ty 2uf; ol
= }

At? Ax?
2 Uiy — 20+ Ui)
Ayz ijo

n-1 n ntl,
u’; and uf; are known, solve for ufi

u,fjl = 2u,'v"/v + u,’-"/-’l + czAtz[DXDXu + DyDyu]f’_j

| Variable coefficients (1)

3D wave equation:

Out = (qux)x + (q”y)y + (q”z)z + f(Xsy,Za t)

Just apply the 1D discretization for each term:

[0D:Dsu = (D@ Dyu + Dyg Dyu + D.g*Dou) + f17;, (54)

Need special formula for u}; , (use [Dyeu = V]° and stencil for
n=0).

‘ Neumann boundary condition in 2D

Use ideas from 1D! Example: % aty =0, % = —%
Boundary condition discretization:
ufly —ul_y
i i~ .
[-Dyu=0]7y = “2ny =0, i€,

Insert uf!_; = uf'y in the stencil for uﬁleo to obtain a modified
stencil on the boundary.

Pattern: use interior stencil also on the bundary, but replace j —1
by j+1

Alternative: use ghost cells and ghost values

problems

‘ Implementati

U = A(Uee + tyy) + F(x, v, 1), (x,y)€Q, te(0,T]

(55)

u(x,y,0) = I(x,y), (xy)eQ
(56)

ue(x,y,0) = V(x,y), (x,y)eQ
(57)

u=0, (x,y) €09, te(0,T]

(58)

Q=1[0,LJ]x[0,L]

Discretization:

[DeDeu = A(DyDyu + Dy Dyu) + f]7

ijo

‘ Scalar computatio

Program: wave2D_u0.py

def solver(I, V, f, ¢, Lx, Ly, Nx, Ny, dt, T,
user_action=lone, version=’scalar’):

Mesh:
x = linspace(0, Lx, Nx+1) # mesh points in ¢ dir
y = linspace(0, Ly, Ny+1) # mesh points in y dir
= x[1] - x[0]
y[11 - ylo]

Nt = int(round(T/float(dt)))

t = linspace(0, N+dt, N+1) # mesh points in time
Cx2 = (c*dt/dx)*#2; Cy2 = (c*dt/dy)**2 # help varisbles

dt2 = dt#*2

Scalar computatio

Ix = range(0, u.shape[0])
Iy = range(0, u.shape[1])
It = range(0, t.shape[0])
for i in Ix:
for j in Iy
u_1[i, _]] I(x[il, y[jD
if user_action is not Nome:

user_action(u_1, x, xv, y, yv, t, 0)

Arguments xv and yv: for vectorized computations

‘ Algorithm

@ Set initial condition uu (xi,y7)
@ Compute u,-J- =...forieZiandje I;
Q Set uil_j = 0 for the boundaries i = 0, Ny, j =0, N,
Q Forn=1,2,..., Ng
© Find ufj' =-.. fori€Z} and j€ I}
@ Set uﬂ/.“ = 0 for the boundaries i =0, Ny, j =0, N,

‘ Scalar computations: ar

Store u"“, u,J, and u in three two-dimensional arrays:

u = zeros((Nx+1,Ny+1)) # solution array
u_1 = zeros((Nx+1,Ny+1)) # solution at t-dt
u_2 = zeros((Nx+1,Ny+1)) # solution at t-2*dt

n+l i.q
uf; corresponds to uli, j], etc.

‘ Scalar computations: primary stencil

def advance_scalar(u, u_n, u_nml, f, x, y, t, n, Cx2, Cy2, dt2,
V=None, stepl=False):
Ix = range(0, u.shape[0]); Iy = range(0, u.shapel1])
if stepl:
dt = sqrt(dt2) # save
Cx2 = 0.5%Cx2; Cy2 = 0.5+Cy2; dt2 = 0.5+#dt2 # redefine
D1 =1; D2 =20
else:
D1 =2; D2=1
for i in Ix[1:-1]:
for j in Iy[1:-11:
u_xx = u_nf[i-1,j] - 2*u_n[i,j] + u_n[i+1,j]
unli,j-11 - 2*u_nli,j]l + u_nli, _'|+1]
u[1 j1 = Dixu_n[i,j]l - D2*u_nmi[i,j]l +
Cx2*u_xx + Cy2*u_yy + dtZ*f(x[:L] y[31, tlnl)
if stepl:
uli,jl += dexV(x[il, y[j])
Boundary condition u=0

j = 1ylol
for i in Ix: uli,jl =0
j = Iy[-1]
for i in Ix: uli,jl = 0
i = Ix[0]
for j in Iy: uli,jl =0
i = Ix[-1]

for j in Iy: uli,jl =0
return u

‘ Vectorized computations: mesh coordinates

Mesh with 30 x 30 cells: vectorization reduces the CPU time by a
factor of 70 (1).

Need special coordinate arrays xv and yv such that /(x,y) and
f(x,y,t) can be vectorized:
from numpy import newaxis

xv = x[:,newaxis]
yv = ylnewaxis, :]

u_1l = I@v, yv)
fal:,:1 = £@xv, yv, t)

Verification: quadratic solution (1)

Manufactured solution:

oy) = x(Le =yl - A+ 50 (59)

Requires f = 2c?(1 + 3t)(y(Ly — y) + x(Lx — x)).

This ue is ideal because it also solves the discrete equations!

Analysis of the difference equations

‘ Vectorized computations: stencil

def advance_vectorized(u, u_n, u_nmi, f_a, Cx2, Cy2, dt2,
V=None, stepl=False):
if stepl:
dt = sqrt(dt2) # save

D1 =1; D2 =0

else:
=2; D2 =1
u_xx = un[:-2,1:-1] - 2*u_n[1:-1,1:-1] + u_n[2:,1:-1]
u_yy = unli:-1,:-2] - 2#u_nl[1:-1,1:-1] + u_n[1:-1,2:]
ull:-1,1:-1] = Di%u_n[1:-1,1:-1] - D2*u_nmi[i:-1,1:-1] + \
Cx2+u_xx + Cy2+u_yy + dt2#f_a[l:-1,1:-1]
if stepl:

uli:-1,1:-1] += dt*V[1:-1, 1:-1]
Boundary condition u=0

j=0

ul:,j1 = 0

j = u.shape[1]-1
ul:,j1 = 0
i=0

uli,:] =0

i -'u.shapel[0]-1
uli,:1 =0
return u

Cx2 = 0.5%Cx2; Cy2 = 0.5%Cy2; dt2 = 0.5%dt2 # redefine

Verification: quadratic solution (2)

o [D:D:1]" =
o [D:D;t]" =0
° [DrDttZ] =2
o D;D; is a linear operator:
[D¢Dy(au + bv)]" = a[D¢Dyu]" + b[D¢Dyv]”

1
[DxDer]Zj =Ly)T+ Et)DxDXX(Lx —x) an

1
=y(Ly —y) 1+ Etn)Q

o Similar calculations for [DyDyue]l’.’_j and [DtD[ue]j-’J terms

o Must also check the equation for ub

‘ Properties of the solution of the wave equation

2%u ,%u
gu_ 2y
ot? 0x?

Solutions:

u(x, t) = gr(x — ct) + gu(x + ct)
If u(x,0) = I(x) and u¢(x,0) = 0:

u(x, t) = %I(x —et)+ %/(x L)

Two waves: one traveling to the right and one to the left

‘ Simulation of a case with variable wave velocity

A wave propagates perfectly (C = 1) and hits a medium with 1/4
of the wave velocity (C = 0.25). A part of the wave is reflected
and the rest is transmitted.

‘ Representation of waves as sum of sine/cosine waves

Build /(x) of wave components e** = cos kx + i sin kx:

I(x) ~ Z bye™

keK

o Fit by by a least squares or projection method

o k is the frequency of a component (A = 27 /k is the wave
length in space)

o K is some set of all k needed to approximate /(x) well

o by must be computed (Fourier coefficients)

Since u(x, t) = 3/(x — ct) + 1/(x + ct), the exact solution is

_1 k(x—ct) | L ik(x-+ct)
U(X’t)_ﬁkez}(bkel xe +§k€z,<bk61 X

Our interest: one component ellkx—wt) = ke

‘ Preliminary results

DDyet]n = — 4 sin? wAt iwnAt
At? 2

By w — k, t — x, n — q) it follows that

i 4 kA i
[D)(D)(e,kx]q — 7AX2 sin? (2X> efkabx

Let us change the shape of the initial condition slightly and

see what happens

A similar wave component is also a solution of the finite

difference scheme (!)

(ke

Idea: a similar discrete ug = e ~@tn) solution (corresponding to

the exact e/(*—<)) solves

[D¢Dyu = Dy Dyul
Note: we expect numerical frequency @ # w

@ How accurate is & compared to w?

o What about the wave amplitude (can & become complex)?

‘ Insertion of the numerical wave component

Inserting a basic wave component u = e/(ka=@t) {5 the scheme
requires computation of

[Dt Dteikxe—ia-:]; — [Dt Dte—im]neikqAx

_ 4 sin2 LAt e ionit gikalx
At? 2

[DXDXelkxe—/wt]g — [Dx Dxerkx]qe—lwnAt

4 kA p
- sin2 (> X) eikalx g—iGnAt

‘ The equation for &

The complete scheme,
[D;Dye™e 5t — 2D, D, ere it

leads to an equation for & (which can readily be solved):

Lo (OAL\ 5 .o (kAx _ cAt
sin (—2)7C sin (—2 , C= Ax (Courant number)

Taking the square root:

sin (LzAt> = Csin (L?x)

‘ The special case C gives the exact soluti

eForC=10=w
@ The numerical solution is exact (at the mesh points),
regardless of Ax and At = ¢! Ax!

@ The only requirement is constant ¢

The numerical scheme is then a simple-to-use analytical
solution method for the wave equation

Visualizing the error in wave velocity

def r(C, p):
return 1/(C*p)*asin(C*sin(p))

Numerical divided by exact wave velocity

velocity ratio
°
©

°
®

0.7]

‘ The numerical dispersion relation

Can easily solve for an explicit formula for &:
2 kA
&= osin”! (Csin (TX))

o This @ = &(k, ¢, Ax, At) is the numerical dispersion relation

o Inserting ek—wt iy the PDE leads to w = kc, which is the
analytical/exact dispersion relation

Note:

o Speed of waves might be easier to imagine:
o Exact speed: ¢ = w/k,
o Numerical speed: & =@ /k
o We shall investigate &/c to see how wrong the speed of a
numerical wave component is

‘ Computing the error in wave velocity

o Introduce p = kAx/2
(the important dimensionless spatial discretization parameter)
@ p measures no of mesh points in space per wave length in
space
o Shortest possible wave length in mesh: A = 2Ax,
k=2r/X=mn/Ax, and p = kDAx/2 =7/2 = pe (0,7/2]
@ Study error in wave velocity through &/c as function of p
1

2 ey L
AR SN (Csinp) = Cpsm (

é Py
b C =
< sin_*(Csinp)

2
"GP = 2= 1oAr

Can plot r(C, p) for p € (0,7/2], C € (0,1]

‘ Taylor expanding the error in wave velocity

For small p, Taylor expand & as polynomial in p:

>>> C, p = symbols(°C p’)

>>> rs = r(C, p).series(p, 0, 7)

>>> print rs

1 - p**¥2/6 + p**4/120 - p**6/5040 + C**2+p**2/6 -
CHk2¥phxd/12 + 13*Chk*2kp*k6/720 + 3kCakdxphx4/40 -
Cr*4¥p¥*6/16 + 5*CHkGkpk*6/112 + 0(p**7)

>>> # Drop the remainder 0(...) term

>>> rs = rs.removel()

>>> # Factorize each term

>>> rs = [factor(term) for term in rs.as_ordered_terms()]
>>> rs = sum(rs)

>>> print rs

prr6x(C - 1)#(C + 1)*(225%C**4 - 90*C*2 + 1)/5040 +
pr*4*(C - 1)*(C + 1)*(3*%C - 1)*(3*C + 1)/120 +

p**2%(C - 1)*(C + 1)/6 + 1

Leading error term is é(C2 —1)p? or
1 (kAx

2 2
5 <?> (€2 -1)= % (A% — AX%) = O(A, AXP)

g wave velocity (1)

‘ Example on effect of w

Smooth wave, few short waves (large k) in /(x):

o Exact w is real

o Complex @ will lead to exponential growth of the amplitude
@ Stability criterion: real @

e Then sin(®At/2) € [-1,1]

e kAx/2is always real, so right-hand side is in [-C, C]

@ Then we must have C <1

Stability criterion:

Extending the analysis to 2

u(x,y, t) = gkex + kyy — wt)
is a typically solution of

U = Cz(uxx + uyy)

Can build solutions by adding complex Fourier components of the
form

eilkax+hyy—wt)

| Example on effect of wrong wave velocity (1)

Not so smooth wave, significant short waves (large k) in /(x):

‘ Why C > 1 leads to non-physical waves

Recall that right-hand side is in [-C, C]. Then C > 1 means

o |sinx| > 1 implies complex x

o Here: complex & = @, + i®;

e One &; < 0 gives exp(i - id;) = exp(—&;) and exponential
growth

o This wave component will after some time dominate the
solution give an overall exponentially increasing amplitude
(non-physicall)

‘ Discrete wave components in 2D

[D:Dru = CZ(DXDXU + DyDy”)]g.r
This equation admits a Fourier component

= i(kxaBx+kyrAy—nAt)

Inserting the expression and using formulas from the 1D analysis:

. LAt . .
sin? (%) = CX2 sin? py + Cy2 sin? Py

where

‘ Stability criterion in 2D

Rreal-valued & requires
C+C2<1

or

1/ 1 1\"V?
At< - -
t c<Ax2+Ay2>

Numerical dispersion relation in 2D (1)

€

2 1
= Esin’1 <(C3 sin py + C7 sin§)2>

For visualization, introduce 6:

ke = ksin®, k, = kcos®, pX:%khcosﬁ, py:%khsiné

Also: Ax = Ay = h. Then C, = C, = cAt/h=C
Now & depends on
o C reflecting the number cells a wave is displaced during a time

step
@ kh reflecting the number of cells per wave length in space

o 0 expressing the direction of the wave

Numerical dispersion relation in 2D

-0.270

-0.345 »
-04203
-0.495
~0.570 5
-0.645 3
-0.720
-0.795

—-0.870 2
-0.945 %

‘ Stability criterion in 3D

Al 11 -2
T c\Ax2 Ay? Az?

For ¢? = c?(x) we must use the worst-case value

¢ = /maxycq c2(x) and a safety factor 3 < 1:

1 1 1\ 2
At<pz (Axﬁfyz*E)

‘ Numerical dispersion relation in 2D

1
e_ 1 . 201 2l
o= sin <C (sm (2khcos¢9)+sm (2kh5|n9)

Can make color contour plots of 1 — &/c in polar coordinates with
0 as the angular coordinate and kh as the radial coordinate.

