Study guide: Finite difference schemes for diffusion processes

Hans Petter Langtangen ${ }^{1,2}$ Svein Linge ${ }^{3,1}$
Center for Biomedical Computing, Simula Research Laboratory ${ }^{1}$
Department of Informatics, University of Oslo ${ }^{2}$
Department of Process, Energy and Environmental Technology, University College

$$
\text { May 23, } 2016
$$

4.0 icense

The 1D diffusion equation

The famous diffusion equation, also known as the heat equation, reads

$$
\frac{\partial u}{\partial t}=\alpha \frac{\partial^{2} u}{\partial x^{2}}
$$

Here,

- $u(x, t)$: unknown
- α : diffusion coefficient

Alternative, compact notation:

$$
u_{t}=\alpha u_{x x}
$$

The initial-boundary value problem for 1D diffusion

$\frac{\partial u}{\partial t}$	$=\alpha \frac{\partial^{2} u}{\partial x^{2}}$,	$x \in(0, L)$,	$t \in(0, T]$
$u(x, 0)$	$=I(x)$,	$x \in[0, L]$	
$u(0, t)$	$=0$,	$t>0$,	
$u(L, t)$	$=0$,		$t>0$.

Note:

- First-order derivative in time: one initial condition

Second-order derivative in space: a boundary condition at each point of the boundary (2 points in 1D)
Numerous applications throughout physics and biology

Step 1: Discretizing the domain

Mesh in time:

$$
0=t_{0}<t_{1}<t_{2}<\cdots<t_{N_{t}-1}<t_{N_{t}}=T
$$

Mesh in space

$$
\begin{equation*}
0=x_{0}<x_{1}<x_{2}<\cdots<x_{N_{x}-1}<x_{N_{x}}=L \tag{6}
\end{equation*}
$$

Uniform mesh with constant mesh spacings Δt and Δx

$$
\begin{equation*}
x_{i}=i \Delta x, i=0, \ldots, N_{x}, \quad t_{i}=n \Delta t, n=0, \ldots, N_{t} \tag{7}
\end{equation*}
$$

The discrete solution

- The numerical solution is a mesh function: $u_{i}^{n} \approx u_{\mathrm{e}}\left(x_{i}, t_{n}\right)$ - The numerical solution is a mesh function: $u_{i}^{n} \approx u_{e}\left(x_{i}, t_{n}\right)$
- Finite difference stencil (or scheme): equation for u_{i}^{n} involving neighboring space-time points

Step 2: Fulfilling the equation at the mesh points

Require the PDE (1) to be fuffilled at an arbitrary interior mesh point (x_{i}, t_{n}) leads to

$$
\begin{equation*}
\frac{\partial}{\partial t} u\left(x_{i}, t_{n}\right)=\alpha \frac{\partial^{2}}{\partial x^{2}} u\left(x_{i}, t_{n}\right) \tag{8}
\end{equation*}
$$

Applies to all interior mesh points: $i=1, \ldots, N_{x}-1$ and $n=1, \ldots, N_{t}-1$
For $n=0$ we have the initial conditions $u=I(x)$ and $u_{t}=0$ At the boundaries $i=0, N_{x}$ we have the boundary condition $u=0$.

Use a forward difference in time and a centered difference in space (Forward Euler scheme):

$$
\left[D_{t}^{+} u=\alpha D_{x} D_{x} u\right]_{i}^{n}
$$

Written out

$$
\begin{equation*}
\frac{u_{i}^{n+1}-u_{i}^{n}}{\Delta t}=\alpha \frac{u_{i+1}^{n}-2 u_{i}^{n}+u_{i-1}^{n}}{\Delta x^{2}} \tag{11}
\end{equation*}
$$

Initial condition: $u_{i}^{0}=I\left(x_{i}\right), i=0,1, \ldots, N_{x}$.

The mesh Fourier number

$$
F=\alpha \frac{\Delta t}{\Delta x^{2}}
$$

Observe
There is only one parameter, F, in the discrete model: F lumps mesh parameters Δt and Δx with the only physical parameter, the diffusion coefficient α. The value F and the smoothness of $I(x)$ govern the quality of the numerical solution.
compute $u_{i}^{0}=I\left(x_{i}\right), i=0, \quad N$
for $n=0,1, \ldots, N_{t}$

- compute u_{i}^{n+1} from (11) for all the internal spatial points

0 compute u_{i}^{n} fron
$i=1, \ldots, N_{x}-1$

- set the boundary values $u_{i}^{n+1}=0$ for $i=0$ and $i=N_{x}$

Notice

We visit one mesh point $\left(x_{i}, t_{n+1}\right)$ at a time, and we have an
We visit one mesh point $\left(x_{i}, t_{n+1}\right)$ at a time, and we have an explicit formula for computing the associated u_{i}^{n-1} value. The
spatial points can be updated in any sequence, but the time levels spatial points can be updated in any sequence, but the t_{1}
t_{n} must be updated in cronological order: t_{n} before t_{n+1}

Step 4: Formulating a recursive algorithm

- Nature of the algorithm: compute u in space at
$t=\Delta t, 2 \Delta t, 3 \Delta t$, .
- Two time levels are involved in the general discrete equation
- u_{i}^{n} is aready computed for $i=0, \ldots, N_{x}$, and u_{i}^{n+1} is the
unknown quantity
Solve the discretized PDE for the unknown u_{i}^{n+1} :

$$
u_{i}^{n+1}=u_{i}^{n}+F\left(u_{i+1}^{n}-2 u_{i}^{n}+u_{i-1}^{n}\right)
$$

where

$$
F=\alpha \frac{\Delta t}{\Delta x^{2}}
$$

$\mathrm{dt}=\mathrm{t}[1]-\mathrm{t}[0]$
$\mathrm{F}=\mathrm{a} * \mathrm{dt} / \mathrm{dx} * * 2$

\# Set initial condition $u(x, 0)=I(x)$
$\begin{array}{ll}\text { or } i \text { in rane } \\ u_{-} 1[i] & =I(x[i])\end{array}$
for n in range (0 , Nt)

\# Insert boundary conditio
$\mathrm{u}[0]=0 ; \mathrm{u}[\mathrm{Nx}]=0$
\# Vpate u_{-1} before next step
$u_{-} 1[:]=u$
to or more efficient switch of references

- Program: diffu1D_u0.py
- Produces animation on the screen
- Each frame stored in tmp_frame\%o4d.png files
tmp_frame0000.png, tmp_frame0001.png, ..
How to make movie file in modern formats:

Forward Euler applied to an initial plug profile

$N_{x}=50$. The method results in a growing, unstable solution if $\underset{\text { Choosing }}{F>0.5} \mathrm{~F}=0.5$ gives a strange saw tooth-like curv
Link to movie file
Lowering F to 0.25 gives a smooth (expected) solution Link to movie file

Backward Euler scheme

Backward difference in time, centered difference in space:

$$
\left[D_{t}^{-} u=D_{x} D_{x} u\right]_{i}^{n}
$$

Written out
(14)

$$
\frac{u_{i}^{n}-u_{i}^{n-1}}{\Delta t}=\alpha \frac{u_{i+1}^{n}-2 u_{i}^{n}+u_{i-1}^{n}}{\Delta x^{2}}
$$

(15)

Assumption: u_{i}^{n-1} is computed, but all quantities at the new time level t_{n} are unknown.

Notice

We cannot solve wrt u_{i}^{n} because that unknown value is coupled to two other unknown values: u_{i-1}^{n} and u_{i+1}^{n}. That is, all the new unknown values are coupled to each other in a linear system of algebraic equations.

Forward Euler applied to a Gaussian profile
$N_{x}=50 . F=0.5$.
Link to movie file
Link to movie file

Let's write out the equations for $N_{x}=3$

Equation (13) written for $i=1, \ldots, N x-1=1,2$ becomes

$$
\begin{aligned}
& \frac{u_{1}^{n}-u_{1}^{n-1}}{\Delta t}=\alpha \frac{u_{2}^{n}-2 u_{1}^{n}+u_{0}^{n}}{\Delta x^{2}} \\
& \frac{u_{2}^{n}-u_{2}^{n-1}}{\Delta t}=\alpha \frac{u_{3}^{n}-2 u_{2}^{n}+u_{1}^{n}}{\Delta x^{2}}
\end{aligned}
$$

(The boundary values u_{0}^{n} and u_{3}^{n} are known as zero.)
Collecting the unknown new values on the left-hand side and writing as 2×2 matrix system:

$$
\left(\begin{array}{cc}
1+2 F & -F \\
-F & 1+2 F
\end{array}\right)\binom{u_{1}^{n}}{u_{2}^{n}}=\binom{u_{1}^{n-1}}{u_{2}^{n-1}}
$$

Implicit
 Discretization methods that lead linear systems are known as
 implicit methods.

Explicit
Discretization methods that avoid linear systems and have an Discretization methods that avoid linear systems and have an
explicit formula for each new value of the unknown are called explicit methods.
$-F_{o} u_{i-1}^{n}+\left(1+2 F_{o}\right) u_{i}^{n}-F_{o} u_{i+1}^{n}=u_{i-1}^{n-1}$
for $i=1, \ldots, N_{x}-1$.
What are the unknowns in the linear system?
(1) either u_{i}^{n} for $i=1, \ldots, N_{x}-1$ (all internal spatial mesh points) © or $u_{i}^{n}, i=0, \ldots, N_{x}$ (all spatial points)

The linear system in matrix notation

$$
A U=b, \quad U=\left(u_{0}^{n}, \ldots, u_{N_{x}}^{n}\right)
$$

Detailed expressions for the matrix entries

The nonzero elements are given by
$A_{i, i-1}=-F_{o}$
(18)
(19)
$A_{i, i+1}=-F_{o}$
(20)
for $i=1, \ldots, N_{x}-1$.
The equations for the boundary points correspond to

$$
A_{0,0}=1, \quad A_{0,1}=0, \quad A_{N_{x}, N_{x}-1}=0, \quad A_{N_{x}, N_{x}}=1
$$

The right-hand side

$$
b=\left(\begin{array}{c}
b_{0} \\
b_{1} \\
\vdots \\
b_{i} \\
\vdots \\
b_{N_{*}}
\end{array}\right)
$$

with

$$
\begin{align*}
b_{0} & =0 \tag{22}\\
b_{i} & =u_{i}^{n-1}, \quad i=1, \ldots, N_{x}-1 \\
b_{N_{x}} & =0
\end{align*}
$$

(23)
(24)

Naive Python implementation with a dense

$\left(N_{x}+1\right) \times\left(N_{x}+1\right)$ matrix

$\mathrm{x}=1$ inspace $(0, \mathrm{~L}, \mathrm{~L} \mathbf{N}+1) \quad$ \# mesh points in space
$\mathrm{dx}=\mathrm{x}[1]-\mathrm{x}[0]$

$u=\operatorname{zeros}(N x+1)$
$u_{-} 1=\operatorname{zeros}(\mathbb{N x}+1)$
\# Data structures for the linear system

for i in range $(1, N x)$
$\begin{aligned} & \mathrm{A}[\mathrm{i}, \mathrm{i}-1] \\ & \mathrm{A}[\mathrm{i}, \mathrm{i}+1]\end{aligned}=-\mathrm{F}$
$\mathrm{A}[\mathrm{i}, \mathrm{i}]=1+2 * \mathrm{~F}$
$\mathrm{~A}[0,0]=\mathrm{A}[\mathrm{Nx}, \mathrm{Nx}] \stackrel{ }{=}$
Set initial condition $u(x, 0)=I(x)$

import scipy.1inalg
for n in range (0, Nt):
for i in range (1 Solve linear system
for i in range (1 , NX NX):

A sparse matrix representation will dramatically reduce the

computational complexity

- With a dense matrix, the algorithm leads to $\mathcal{O}\left(N_{x}^{3}\right)$ operations
- Utilizing the sparsity, the algorithm has complexity $\mathcal{O}\left(N_{x}\right)$!
scipy. sparse enables storage and calculations with the three nonzero diagonals only
Representation of sparse matrix and right-hand side

Backward Euler applied to a plug profile
$N_{x}=50 . F=0.5$.
Link to movie file

Crank-Nicolson scheme

The PDE is sampled at points ($x_{i}, t_{n+\frac{1}{2}}$) (at the spatial mesh points, but in between two temporal mesh points).

$$
\frac{\partial}{\partial t} u\left(x_{i}, t_{n+\frac{1}{2}}\right)=\alpha \frac{\partial^{2}}{\partial x^{2}} u\left(x_{i}, t_{n+\frac{1}{2}}\right.
$$

for $i=1, \ldots, N_{x}-1$ and $n=0, \ldots, N_{t}-1$.
Centered differences in space and time:

$$
\left[D_{t} u=\alpha D_{x} D_{x} u\right]_{i}^{n+\frac{1}{2}}
$$

Computing the sparse matrix

diagonal $[:]=1++$
lower $[:]=-\mathrm{F} \# 1$
upper $:]=-\mathrm{F} \# 1$
Ippen I:
iagonal $[0]=1$
pper $[0]$
upper
diagonal $\left[\begin{array}{l}\text { Nox }] \\ \text { lower }[-1]\end{array}=0\right.$
$\underset{A}{\text { import }}=$ scipy.sparse diagona1s $=[$ main, 1 lower, upper]
offsets $=[0,-1,1]$, shape $=(N x+1, N x+1)$

\# Set initial condition
for i
i

(0, Ne)

ut: $=$ scipy. sparse. . 1 inalg. spsolve (A,
\# Suitch variables before next step
ut
$u_{-} 1, u=u, u_{-1}$

Backward Euler applied to a Gaussian profile

$N_{x}=50$.
Link to movie file

$$
F=5 .
$$

$$
\begin{aligned}
& F=5 . \\
& \text { Link to movie file }
\end{aligned}
$$

Averaging in time is necessary in the Crank-Nicolson scheme
Right-hand side term:

$$
\frac{1}{\Delta x^{2}}\left(u_{i-1}^{n+\frac{1}{2}}-2 u_{i}^{n+\frac{1}{2}}+u_{i+1}^{n+\frac{1}{2}}\right)
$$

Problem: $u_{i}^{n+\frac{1}{2}}$ is not one of the unknowns we compute
Solution: replace $u_{i}^{n+\frac{1}{2}}$ by an arithmetic average:

$$
u_{i}^{n+\frac{1}{2}} \approx \frac{1}{2}\left(u_{i}^{n}+u_{i}^{n+1}\right)
$$

In compact notation (arithmetic average in time \bar{u}^{t}):

$$
\left[D_{t} u=\alpha D_{x} D_{x} t^{t}\right]_{i}^{n+\frac{1}{2}}
$$

obse

- The unknowns are $u_{i-1}^{n+1}, u_{i}^{n+1}, u_{i-1}^{n+1}$
- These unknowns are coupled to each other (in a linear system) - Must solve $A U=b$ at each time level

Now,

$$
\begin{aligned}
A_{i, i-1} & =-\frac{1}{2} F_{o} \\
A_{i, i} & =\frac{1}{2}+F_{o} \\
A_{i, i+1} & =-\frac{1}{2} F_{o}
\end{aligned}
$$

for internal points. For boundary points,

Crank-Nicolson never blows up, so any F can be used (modulo loss of accuracy).
$N_{x}=50 . F=5$ give
$N_{x}=50$.
instabilities.
Link to movie file
$N_{x}=50 . F=0.5$ gives a smooth Link to movie file

Crank-Nicolson applied to a Gaussian profile

$N_{x}=50$.

Link to movie file

$$
F=5
$$

$f=5$.
Link to movie file

The θ rule

The θ rule condenses a family of finite difference approximations in time to one formula

- $\theta=0$ gives the Forward Euler scheme in time
- $\theta=1$ gives the Backward Euler scheme in time
- $\theta=\frac{1}{2}$ gives the Crank-Nicolson scheme in time

Applied to $u_{t}=\alpha u_{x x}$:

$$
\frac{u_{i}^{n+1}-u_{i}^{n}}{\Delta t}=\alpha\left(\theta \frac{u_{i+1}^{n+1}-2 u_{i}^{n+1}+u_{i-1}^{n+1}}{\Delta x^{2}}+(1-\theta) \frac{u_{i+1}^{n}-2 u_{i}^{n}+u_{i-1}^{n}}{\Delta x^{2}}\right)
$$

Matrix entries

$$
A_{i, i-1}=-F_{o} \theta, \quad A_{i, i}=1+2 F_{o} \theta \quad, A_{i, i+1}=-F_{o} \theta
$$

Right-hand side:

The Laplace and Poisson equation

Laplace equation:

$$
\nabla^{2} u=0, \quad \text { 1D: } u^{\prime \prime}(x)=0
$$

Poisson equation:

$$
-\nabla^{2} u=f, \quad 1 \mathrm{D}:-u^{\prime \prime}(x)=f(x)
$$

These are limiting behavior of time-dependent diffusion equations if

$$
\lim _{t \rightarrow \infty} \frac{\partial u}{\partial t}=0
$$

Then $u_{t}=\alpha u_{x x}+0$ in the limit $t \rightarrow \infty$ reduces to
$u_{x x}+f=0$

We can solve ID Poisson/Laplace equation by going to
infinity in time-dependent diffusion equations

Looking at the numerical schemes, $F \rightarrow \infty$ leads to the Laplace or Poisson equations (without f or with f, resp.).
Good news: choose F large in the BE or CN schemes and one time step is enough to produce the stationary solution for $t \rightarrow \infty$.

These extensions are performed exactly as for a wave equation as
they only affect the spatial derivatives (which are the same as in
the wave equation).

- Variable coefficients
- Neumann and Robin conditions
- 2D and 3D

Future versions of this document will for completeness and
Future versions of this document will for completeness and
independence of the wave equation document feature info on the
independence of the wave equation document feature info on the
three points. The Robin condition is new, but straightforward to
handle:

$$
-\alpha \frac{\partial u}{\partial n}=h_{T}\left(u-U_{s}\right), \quad\left[-\alpha D_{x} u=h_{T}\left(u-U_{s}\right)\right]_{i}^{n}
$$

Solutions of diffusion problems are expected to be smooth. Can we understand when they are not?

Method: $\mathrm{CN}, \mathrm{C}=5, \mathrm{t}=0.206897$

Properties of the solution

The PDE

$$
u_{t}=\alpha u_{x x}
$$

admits solutions

$$
u(x, t)=Q e^{-\alpha k^{2} t} \sin (k x)
$$

Observations from this solution

- The initial shape $I(x)=Q \sin k x$ undergoes a damping $\exp \left(-\alpha k^{2} t\right)$
- The damping is very strong for short waves (large k)
- The damping is weak for long waves (small k)
- Consequence: u is smoothened with time

High frequency components of the solution are very quickly damped

Damping of a discontinuity; problem

Problem

Two pieces of a material, at different temperatures, are brought in
Two pieces of a material, at different temperatures, are brought in
contact at $t=0$. Assume the end points of the pieces are kept at contact at $t=0$. Assume the end points of the pieces are kept at
the initial temperature. How does the heat flow from the hot to the cold piece?

Or: A huge ion concentration on one side of a synapse in the brain (concentration discontinuity) is released and ions move by diffusion.

Solution

Assume a 1D model is sufficient (e.g., insulated rod):

$$
u(x, 0)= \begin{cases}U_{L}, & x<L / 2 \\ U_{R}, & x \geq L / 2\end{cases}
$$

$\frac{\partial u}{\partial t}=\alpha \frac{\partial^{2} u}{\partial x^{2}}, \quad u(0, t)=U_{L}, u(L, t)=U_{R}$

Damping of a discontinuity; Forward Euler scheme

Discrete model:

$$
\left[D_{t}^{+} u=\alpha D_{x} D_{x}\right]_{i}^{n}
$$

results in the explicit updating formula

$$
u_{i}^{n+1}=u_{i}^{n}+F\left(u_{i+1}^{n}-2 u_{i}^{n}+u_{i-1}^{n}\right)
$$

Discrete model:

$$
\left[D_{t} u=\alpha D_{x} D_{x} \bar{u}^{t}\right]_{i}^{n}
$$

results in a tridiagonal linear system

Represent $I(x)$ as a Fourier series

$$
I(x) \approx \sum_{k \in K} b_{k} e^{i k x}
$$

The corresponding sum for u is

$$
u(x, t) \approx \sum_{k \in K} b_{k} e^{-\alpha k^{2} t} e^{i k x}
$$

Such solutions are also accepted by the numerical schemes, but with an amplification factor A different from $\exp \left(-\alpha k^{2} t\right)$:

$$
u_{q}^{n}=A^{n} e^{i k g \Delta x}=A^{n} e^{i k x}
$$

Analysis of the finite difference schemes

Stability:

- $|A|<1$: decaying numerical solutions (as we want)
- $A<0$: oscillating numerical solutions (as we do not want)

Accuracy:

- Compare numerical and exact amplification factor: A vs $A_{\mathrm{e}}=\exp \left(-\alpha k^{2} \Delta t\right)$
Analysis of the Forward Euler scheme

$$
\left[D_{t}^{+} u=\alpha D_{x} D_{x} u\right]_{q}^{n}
$$

Inserting
leads to $u_{q}^{n}=A^{n} e^{i k g \Delta x}$
$A=1-4 F \sin ^{2}\left(\frac{k \Delta x}{2}\right), \quad F=\frac{\alpha \Delta t}{\Delta x^{2}}$ (mesh Fourier number)

$$
A=1-4 F \sin ^{2}\left(\frac{k \Delta x}{2}\right), \quad F=\frac{\alpha \Delta t}{\Delta x^{2}} \text { (mesh Fourier number) }
$$

The complete numerical solution is

$$
u_{q}^{n}=\left(1-4 F \sin ^{2} p\right)^{n} e^{i k g \Delta x}, \quad p=k \Delta x / 2
$$

Key spatial discretization quantity: the dimensionless $p=\frac{1}{2} k \Delta x$
Results for stability
We always have $A \leq 1$. The condition $A \geq-1$ implies

$$
4 F \sin ^{2} p \leq 2
$$

The worst case is when $\sin ^{2} p=1$, so a sufficient criterion for
stability is
or: $\quad F \leq \frac{1}{2}$

$$
\Delta t \leq \frac{\Delta x^{2}}{2 \alpha}
$$

Implications of the stability result
Less favorable criterion than for $u_{t t}=c^{2} u_{x x}$: halving Δx implies
time step $\frac{1}{4} \Delta t$ (not just $\frac{1}{2} \Delta t$ as in a wave equation). Need very
small time steps for fine spatial meshes!

Analysis of the Backward Euler scheme

$$
\left[D_{t}^{-} u=\alpha D_{x} D_{x} u\right]_{q}^{n}
$$

$$
u_{q}^{n}=A^{n} e^{i k q \Delta x}
$$

$A=\left(1+4 F \sin ^{2} p\right)^{-1}$

$$
u_{q}^{n}=\left(1+4 F \sin ^{2} p\right)^{-n} e^{i k g \Delta x}
$$

Stability: We see that $|A|<1$ for all $\Delta t>0$ and that $A>0$ (no oscillations)

The scheme

$$
\left[D_{t} u=\alpha D_{x} D_{x} x^{x}\right]_{q}^{n+\frac{1}{2}}
$$

leads to

$$
\begin{gathered}
A=\frac{1-2 F \sin ^{2} p}{1+2 F \sin ^{2} p} \\
u_{q}^{n}=\left(\frac{1-2 F \sin ^{2} p}{1+2 F \sin ^{2} p}\right)^{n} e^{i k p \Delta x}
\end{gathered}
$$

Stability: The criteria $A>-1$ and $A<1$ are fulfilled for any $\Delta t>0$
$A_{\mathrm{e}}=\exp \left(-\alpha k^{2} \Delta t\right)=\exp \left(-4 F p^{2}\right)$
$A=1-4 F \sin ^{2}\left(\frac{k \Delta x}{2}\right) \quad$ Forward Euler
$A=\left(1+4 F \sin ^{2} p\right)^{-1} \quad$ Backward Euler
$A=\frac{1-2 F \sin ^{2} p}{1+2 F \sin ^{2} p} \quad$ Crank-Nicolson
Note: $A_{e}=\exp \left(-\alpha k^{2} \Delta t\right)=\exp \left(-F k^{2} \Delta x^{2}\right)=\exp \left(-F 4 p^{2}\right)$.

Summary of accuracy of amplification factors; time steps
around the Forward Euler stability limit

Observations

- The key spatial discretization parameter is the dimensionless
$p=\frac{1}{2} k \Delta x$
- The key temporal discretization parameter is the dimensionless $F=\alpha \Delta t / \Delta x^{2}$
- Important: Δt and Δx in combination with α and k
determine accuracy
- Crank-Nicolson gives oscillations and not much damping of
short waves for increasing F
- These waves will manifest themselves as high frequency
oscillatory noise in the solution
- Steep solutions will have short waves with significant (visible)
amplitudes
- All schemes fail to dampen short waves enough

The problems of correct damping for $u_{t}=u_{x x}$ is partially manifested in the similar time discretization schemes for
$u^{\prime}(t)=-\alpha u(t)$.

