

	$\frac{\partial u}{\partial t} = \alpha \frac{\partial^2 u}{\partial x^2},$	$x \in (0, L), t \in (0, T]$	(1)
	u(x,0)=I(x),	$x \in [0, L]$	(2)
	u(0, t) = 0,	t > 0,	(3)
	u(L,t)=0,	t>0 .	(4)
Note:			

• Numerous applications throughout physics and biology

Step 1: Discretizing the domain

Mesh in time:

$$0 = t_0 < t_1 < t_2 < \dots < t_{N_t-1} < t_{N_t} = T$$
(5)

Mesh in space:

 $0 = x_0 < x_1 < x_2 < \dots < x_{N_x-1} < x_{N_x} = L$ (6)

Uniform mesh with constant mesh spacings Δt and Δx :

 $x_i = i\Delta x, \ i = 0, \dots, N_x, \quad t_i = n\Delta t, \ n = 0, \dots, N_t$ (7)

The discrete solution

The numerical solution is a mesh function: u_iⁿ ≈ u_e(x_i, t_n)
 Finite difference stencil (or scheme): equation for u_iⁿ involving neighboring space-time points

Step 2: Fulfilling the equation at the mesh points

Require the PDE (1) to be fulfilled at an arbitrary interior mesh point (x_i, t_n) leads to

$$\frac{\partial}{\partial t}u(x_i, t_n) = \alpha \frac{\partial^2}{\partial x^2}u(x_i, t_n)$$
(8)

Applies to all interior mesh points: $i=1,\ldots,N_x-1$ and $n=1,\ldots,N_t-1$

For n=0 we have the initial conditions u=I(x) and $u_t=0$

At the boundaries i = 0, N_x we have the boundary condition u = 0.

Step 3: Replacing derivatives by finite differences

Use a forward difference in time and a centered difference in space (Forward Euler scheme)

$$[D_t^+ u = \alpha D_x D_x u]_i^n \tag{9}$$

Written out,

$$\frac{u_i^{n+1} - u_i^n}{\Delta t} = \alpha \frac{u_{i+1}^n - 2u_i^n + u_{i-1}^n}{\Delta x^2} \tag{10}$$

Initial condition: $u_i^0 = I(x_i), i = 0, 1, \dots, N_x$.

Step 4: Formulating a recursive algorithm

- Nature of the algorithm: compute *u* in space at $t = \Delta t, 2\Delta t, 3\Delta t, \dots$
- Two time levels are involved in the general discrete equation: *n* + 1 and *n*
- u_i^n is already computed for $i = 0, ..., N_x$, and u_i^{n+1} is the unknown quantity

 $F = \alpha \frac{\Delta t}{\Delta x^2}$

Solve the discretized PDE for the unknown u_i^{n+1} :

$$u_i^{n+1} = u_i^n + F\left(u_{i+1}^n - 2u_i^n + u_{i-1}^n\right)$$
(11)

where

The computational algorithm for the Forward Euler scheme

- **(**) compute $u_i^0 = I(x_i), i = 0, ..., N_x$
- **4** for $n = 0, 1, \dots, N_t$:
 - compute u_i^{n+1} from (11) for all the internal spatial points $i = 1, ..., N_x 1$
 - e set the boundary values $u_i^{n+1} = 0$ for i = 0 and $i = N_x$

Notice

We visit one mesh point (x_i, t_{n+1}) at a time, and we have an explicit formula for computing the associated u_i^{n+1} value. The spatial points can be updated in any sequence, but the time levels t_n must be updated in cronological order: t_n before t_{n+1} .

Forward Euler applied to an initial	plug profile	Forward Euler applie	d to a Gaussian profile
$N_x = 50$. The method results in a growi F > 0.5. Choosing $F = 0.5$ gives a strange Lowe saw tooth-like curve. smo Link to movie file Link	ng, unstable solution if ering F to 0.25 gives a oth (expected) solution. to movie file	$N_x = 50.\ F = 0.5.$ Link to movie file	Link to movie file

Backward Euler scheme

Backward difference in time, centered difference in space:

$$[D_t^- u = D_x D_x u]_i^n \tag{12}$$

Written out:

$$\frac{u_i^n - u_i^{n-1}}{\Delta t} = \alpha \frac{u_{i+1}^n - 2u_i^n + u_{i-1}^n}{\Delta x^2}$$
(13)

Assumption: u_i^{n-1} is computed, but all quantities at the new time level t_n are unknown.

Notice

We cannot solve wrt u_i^n because that unknown value is coupled to two other unknown values: u_{i-1}^n and u_{i+1}^n . That is, all the new unknown values are coupled to each other in a *linear system of algebraic equations*.

Let's write out the equations for $N_x = 3$

Equation (13) written for
$$i = 1, \dots, Nx - 1 = 1, 2$$
 becomes

$$\frac{u_1^n - u_1^{n-1}}{\Delta t} = \alpha \frac{u_2^n - 2u_1^n + u_0^n}{\Delta x^2}$$
(14)
$$\frac{u_2^n - u_2^{n-1}}{\Delta t^2} = \alpha \frac{u_3^n - 2u_2^n + u_1^n}{\Delta x^2}$$
(15)

$$\frac{\Delta t}{\Delta t} = \alpha \frac{\Delta t^2 + \Delta t}{\Delta x^2} \tag{1}$$

(The boundary values u_0^n and u_3^n are known as zero.)

Collecting the unknown new values on the left-hand side and writing as 2×2 matrix system:

$$\left(\begin{array}{cc} 1+2F & -F \\ -F & 1+2F \end{array}\right) \left(\begin{array}{c} u_1^n \\ u_2^n \end{array}\right) = \left(\begin{array}{c} u_1^{n-1} \\ u_2^{n-1} \end{array}\right)$$

Two classes of discretization methods: explicit and implicit

The linear system for a general N_x

Discretization methods that lead linear systems are known as *implicit methods*.

Explicit

Discretization methods that avoid linear systems and have an explicit formula for each new value of the unknown are called explicit methods.

$$-F_o u_{i-1}^n + (1+2F_o) u_i^n - F_o u_{i+1}^n = u_{i-1}^{n-1}$$
(16)
for $i = 1, ..., N_X - 1$.
What are the unknowns in the linear system?
• either u_i^n for $i = 1, ..., N_X - 1$ (all internal spatial mesh points)
• or u_i^n , $i = 0, ..., N_X$ (all spatial points)
The linear system in matrix notation:

$$AU = b, \quad U = (u_0^n, ..., u_{N_X}^n)$$

A is ver	A is very sparse: a tridiagonal matrix								
	(A _{0,0}	$A_{0,1}$	0						0
	$A_{1,0}$	$A_{1,1}$	0	÷.,					÷
	0	$A_{2,1}$	A _{2,2}	A _{2,3}	$\{ f_{i,j} \}$				
	÷	֥.,		֥.,	$\mathcal{T}_{\mathcal{T}}_{\mathcal{T}_{\mathcal{T}_{\mathcal{T}_{\mathcal{T}_{\mathcal{T}}_{\mathcal{T}_{\mathcal{T}}_{\mathcal{T}_{\mathcal{T}}_{\mathcal{T}}}}}}}}}}$	0			1
A =	÷		÷.,	÷.,	14. 1	÷.,	1. j.		:
	÷			0	$A_{i,i-1}$	$A_{i,i}$	$A_{i,i+1}$	14. 1	÷
	÷				÷.,	÷.,	÷.,	14. 1	0
	÷					÷.,	1. 1.	1. A.	$A_{N_x-1,N}$
	0						0	A_{N_x,N_x-1}	A_{N_x,N_x}
								(1	17)

Detailed expressions for the matrix entries	
The nonzero elements are given by	
$A_{i,i-1} = -F_o$	(18)
$A_{i,i} = 1 + 2F_o$	(19)
$A_{i,i+1} = -F_o$	(20)
for $i = 1,, N_x - 1$.	
The equations for the boundary points correspond to	
$A_{0,0} = 1, A_{0,1} = 0, A_{N_x,N_x-1} = 0, A_{N_x,N_x} = 1$	

Nai (N .	ive Python implementation with a dense $(+1) \times (N_c + 1)$ matrix
(10)	$= \lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} \frac{1}{n} \sum_{i$
	$ \begin{array}{llllllllllllllllllllllllllllllllllll$
	<pre># Data structures for the linear system A = zeros((Nx+1, Nx+1)) b = zeros(Nx+1)</pre>
	<pre>for i in range(1, Nx): A[i,i-1] = -F A[i,i+1] = -F A[i,i] = 1 + 2*F A[0,0] = A[Nx,Nx] = 1</pre>
	<pre># Set initial condition u(x,0) = I(x) for i in range(0, Nx+1): u_1[i] = I(x[i])</pre>
	<pre>import scipy.linalg</pre>
	<pre>for n in range(0, Nt): # Compute b and solve linear system for i in range(1, Nx): b[i] = n t[i]</pre>

ckward Euler applied to a plug profile	Backward Euler applie	ed to a Gaussian profile
$N_{ m x}=$ 50. $F=$ 0.5.	$N_{ m x}=50$.	F = 5.
Link to movie file	Link to movie file	Link to movie file

Crank-Nicolson scheme

Ba

The PDE is sampled at points $(x_i, t_{n+\frac{1}{2}})$ (at the spatial mesh points, but in between two temporal mesh points).

$$\frac{\partial}{\partial t}u(x_i, t_{n+\frac{1}{2}}) = \alpha \frac{\partial^2}{\partial x^2}u(x_i, t_{n+\frac{1}{2}})$$
for $i = 1, \dots, N_x - 1$ and $n = 0, \dots, N_t - 1$.

Centered differences in space and time:

 $\left[D_t u = \alpha D_x D_x u\right]_i^{n+\frac{1}{2}}$

Averaging in time is necessary in the Crank-Nicolson scheme

Right-hand side term:

$$\frac{1}{\Delta x^2} \left(u_{i-1}^{n+\frac{1}{2}} - 2u_i^{n+\frac{1}{2}} + u_{i+1}^{n+\frac{1}{2}} \right)$$

Problem: $u_i^{n+\frac{1}{2}}$ is not one of the unknowns we compute. Solution: replace $u_i^{n+\frac{1}{2}}$ by an arithmetic average:

$$u_i^{n+\frac{1}{2}} \approx \frac{1}{2} \left(u_i^n + u_i^{n+1} \right)$$

In compact notation (arithmetic average in time \overline{u}^t):

 $[D_t u = \alpha D_x D_x \overline{u}^t]_i^{n+\frac{1}{2}}$

Right-hand side:

The Laplace and Poisson equation

Crank-Nicolson applied to a Gaussian profile

Laplace equation:

 $N_{\rm x} = 50$.

Link to movie file

 $\nabla^2 u = 0$, 1D: u''(x) = 0

F = 5.

Link to movie file

Poisson equation:

$$-\nabla^2 u = f$$
, $1D: -u''(x) = f(x)$

These are limiting behavior of time-dependent diffusion equations if

$$\lim_{t\to\infty}\frac{\partial u}{\partial t}=0$$

Then $u_t = \alpha u_{xx} + 0$ in the limit $t \to \infty$ reduces to

 $u_{xx} + f = 0$

We can solve 1D Poisson/Laplace equation by going to infinity in time-dependent diffusion equations

Looking at the numerical schemes, $F \to \infty$ leads to the Laplace or Poisson equations (without f or with f, resp.).

Good news: choose F large in the BE or CN schemes and one time step is enough to produce the stationary solution for $t \to \infty$.

Extensions

These extensions are performed exactly as for a wave equation as they only affect the spatial derivatives (which are the same as in the wave equation).

- Variable coefficients
- Neumann and Robin conditions
- 2D and 3D

Future versions of this document will for completeness and independence of the wave equation document feature info on the three points. The Robin condition is new, but straightforward to handle:

$$-\alpha \frac{\partial u}{\partial n} = h_T(u - U_s), \quad [-\alpha D_x u = h_T(u - U_s)]_i^n$$

Damping of a discontinuity; problem

Problem

Two pieces of a material, at different temperatures, are brought in contact at t = 0. Assume the end points of the pieces are kept at the initial temperature. How does the heat flow from the hot to the cold piece?

 $Or:\ A\ huge\ ion\ concentration\ on\ one\ side\ of\ a\ synapse\ in\ the\ brain\ (concentration\ discontinuity)\ is\ released\ and\ ions\ move\ by\ diffusion\ .$

Damping of a discontinuity; Backward Euler simulation $F = \frac{1}{2}$	Damping of a di
	Discrete model:
Movie	results in the exp
	ш

Damping of a	discontinuity;	Forward	Euler	simulation	$F = \frac{1}{2}$
Movie					

Damping of a	discontinuity;	Crank-Nicolson s	cheme

Discrete model:

 $[D_t u = \alpha D_x D_x \overline{u}^t]_i^n$

results in a tridiagonal linear system

Analysis of the finite difference schemes

Stability:

- |A| < 1: decaying numerical solutions (as we want)
- A < 0: oscillating numerical solutions (as we do not want)

Accuracy:

• Compare numerical and exact amplification factor: A vs $A_{e} = \exp(-\alpha k^{2} \Delta t)$

Analysis of the Forward Euler scheme

 $[D_t^+ u = \alpha D_x D_x u]_q^n$

Inserting

 $u_q^n = A^n e^{ikq\Delta x}$

leads to

$$A = 1 - 4F \sin^2\left(rac{k\Delta x}{2}
ight), \quad F = rac{lpha\Delta t}{\Delta x^2} ext{ (mesh Fourier number)}$$

The complete numerical solution is

$$u_q^n = (1 - 4F\sin^2 p)^n e^{ikq\Delta x}, \quad p = k\Delta x/2$$

Key spatial discretization quantity: the dimensionless $p=rac{1}{2}k\Delta x$

Observations

- The key spatial discretization parameter is the dimensionless $p=rac{1}{2}k\Delta x$
- The key temporal discretization parameter is the dimensionless $F=\alpha\Delta t/\Delta x^2$
- Important: Δt and Δx in combination with α and k determine accuracy
- Crank-Nicolson gives oscillations and not much damping of short waves for increasing *F*
- These waves will manifest themselves as high frequency oscillatory noise in the solution
- Steep solutions will have short waves with significant (visible) amplitudes
- All schemes fail to dampen short waves enough

The problems of correct damping for $u_t = u_{xx}$ is partially manifested in the similar time discretization schemes for $u'(t) = -\alpha u(t)$.