$$
\newcommand{\half}{\frac{1}{2}}
\newcommand{\halfi}{{1/2}}
\newcommand{\tp}{\thinspace .}
\newcommand{\uex}{{u_{\small\mbox{e}}}}
\newcommand{\uexd}[1]{{u_{\small\mbox{e}, #1}}}
\newcommand{\vex}{{v_{\small\mbox{e}}}}
\newcommand{\Aex}{{A_{\small\mbox{e}}}}
\newcommand{\E}[1]{\hbox{E}\lbrack #1 \rbrack}
\newcommand{\Var}[1]{\hbox{Var}\lbrack #1 \rbrack}
\newcommand{\xpoint}{\boldsymbol{x}}
\newcommand{\normalvec}{\boldsymbol{n}}
\newcommand{\Oof}[1]{\mathcal{O}(#1)}
\newcommand{\x}{\boldsymbol{x}}
\renewcommand{\u}{\boldsymbol{u}}
\renewcommand{\v}{\boldsymbol{v}}
\newcommand{\acc}{\boldsymbol{a}}
\newcommand{\rpos}{\boldsymbol{r}}
\newcommand{\e}{\boldsymbol{e}}
\newcommand{\f}{\boldsymbol{f}}
\newcommand{\F}{\boldsymbol{F}}
\newcommand{\stress}{\boldsymbol{\sigma}}
\newcommand{\I}{\boldsymbol{I}}
\newcommand{\T}{\boldsymbol{T}}
\newcommand{\q}{\boldsymbol{q}}
\newcommand{\g}{\boldsymbol{g}}
\newcommand{\dfc}{\alpha} % diffusion coefficient
\newcommand{\ii}{\boldsymbol{i}}
\newcommand{\jj}{\boldsymbol{j}}
\newcommand{\kk}{\boldsymbol{k}}
\newcommand{\ir}{\boldsymbol{i}_r}
\newcommand{\ith}{\boldsymbol{i}_{\theta}}
\newcommand{\Ix}{\mathcal{I}_x}
\newcommand{\Iy}{\mathcal{I}_y}
\newcommand{\Iz}{\mathcal{I}_z}
\newcommand{\It}{\mathcal{I}_t}
\newcommand{\setb}[1]{#1^0} % set begin
\newcommand{\sete}[1]{#1^{-1}} % set end
\newcommand{\setl}[1]{#1^-}
\newcommand{\setr}[1]{#1^+}
\newcommand{\seti}[1]{#1^i}
\newcommand{\stepzero}{*}
\newcommand{\stephalf}{***}
\newcommand{\stepone}{**}
\newcommand{\baspsi}{\psi}
\newcommand{\dx}{\, \mathrm{d}x}
\newcommand{\ds}{\, \mathrm{d}s}
\newcommand{\Real}{\mathbb{R}}
\newcommand{\Integer}{\mathbb{Z}}
$$
References
- L. N. Trefethen.
Trefethen's index cards - Forty years of notes about People, Words and Mathematics,
World Scientific,
2011.
- H. P. Langtangen.
Finite Difference Computing with Exponential Decay Models,
Lecture Notes in Computational Science and Engineering,
Springer,
2016,
http://hplgit.github.io/decay-book/doc/web/.
- H. P. Langtangen and G. K. Pedersen.
Scaling of Differential Equations,
Simula Springer Brief Series,
Springer,
2016,
http://hplgit.github.io/scaling-book/doc/web/.
- E. Hairer, S. P. N\orsett and G. Wanner.
Solving Ordinary Differential Equations I. Nonstiff Problems,
Springer,
1993.
- I. P. Omelyan, I. M. Mryglod and R. Folk.
Optimized Forest-Ruth- and Suzuki-like algorithms for integration of motion in many-body systems,
Computer Physics Communication,
146(2),
pp. 188-202,
2002,
https://arxiv.org/abs/cond-mat/0110585.
- H. P. Langtangen.
A Primer on Scientific Programming with Python,
fifth edition,
Texts in Computational Science and Engineering,
Springer,
2016.
- R. LeVeque.
Finite Difference Methods for Ordinary and Partial Differential Equations: Steady-State and Time-Dependent Problems,
SIAM,
2007.
- J. Strikwerda.
Numerical Solution of Partial Differential Equations in Science and Engineering,
second edition,
SIAM,
2007.
- L. Lapidus and G. F. Pinder.
Numerical Solution of Partial Differential Equations in Science and Engineering,
Wiley,
1982.
- Y. Saad.
Iterative Methods for Sparse Linear Systems,
second edition,
SIAM,
2003,
http://www-users.cs.umn.edu/~saad/IterMethBook_2ndEd.pdf.
- R. Barrett, M. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout, R. Pozo, C. Romine and H. V. d. Vorst.
Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods,
second edition,
SIAM,
1994,
http://www.netlib.org/linalg/html_templates/Templates.html.
- O. Axelsson.
Iterative Solution Methods,
Cambridge University Press,
1996.
- C. Greif and U. M. Ascher.
A First Course in Numerical Methods,
Computational Science and Engineering,
SIAM,
2011.
- M. Hjorth-Jensen.
Computational Physics,
Institute of Physics Publishing,
2016,
https://github.com/CompPhysics/ComputationalPhysics1/raw/gh-pages/doc/Lectures/lectures2015.pdf.
- R. Rannacher.
Finite element solution of diffusion problems with irregular data,
Numerische Mathematik,
43,
pp. 309-327,
1984.
- D. Duran.
Numerical Methods for Fluid Dynamics - With Applications to Geophysics,
second edition,
Springer,
2010.
- C. A. J. Fletcher.
Computational Techniques for Fluid Dynamics, Vol. 1: Fundamental and General Techniques,
second edition,
Springer,
2013.
- C. T. Kelley.
Iterative Methods for Linear and Nonlinear Equations,
SIAM,
1995.