
Experience with Using Python for Teaching

Scientific Computing

Hans Petter Langtangen (hpl@simula.no)

May 15, 2014

Abstract

This essay explains why and how we have chosen Python as the language of choice for
teaching scientific computing at the University of Oslo. By teaching students Python and
numerics from day one, various bachelor programs have taken advantage of this knowledge
and reformed classical science courses by using programming and numerical simulation to
solve mathematical problems. We have learned several lessons:

• The choice of Python as a teaching language for scientific computing has been a great
success and is highly recommended.

• Python provides a natural, continuous glue between MATLAB-style "flat programs", pro-
cedural programming, object-oriented programming, generative programming, and even
functional programming.

• It is possible to treat quite advanced problems very early in the studies. For example,
at the end of the first semester our students implement an object-oriented toolbox for
solving a wide class of nonlinear vibration problems (!).

• Replacing classical mathematical solution techniques by programming and numerical
simulation in science courses is indeed challenging, but possible and often natural. The
experience is very positive: the relevance of mathematics is much increased and pro-
gramming is a great pedagogical tool for learning abstract mathematical thinking.

• Students come with all sorts of laptops. Force everyone to use Ubuntu as this minimizes
the technical hassle with installing complicated mathematical software.

We started with a course on Python scripting

In 1999, I started a course (IN228, renamed to INF3331) about scientific scripting at the Uni-
versity of Oslo. The purpose was to use a real scripting language, primarily Perl, to do all the
administrative computer work associated with scientific investigations. During the 90s we had
tried to throw the "Camel Book" for Perl4 and the "Unix Power Tools" book at people, but few (if
any) understood why and how they should apply such tools to their scientific work.

Within a couple of years, we naturally moved from Perl to Python as the primary scripting
language, because Python did the same as Perl, but with a more readable syntax and hence
easier maintenance. Students picked up Python significantly faster than Perl, and we started
realizing the pedagogical strengths of the Python language. I wrote a book1 for the course,

1http://goo.gl/q8tM7D

http://goo.gl/q8tM7D


but the publisher was initially only modestly interested because the market was considered too
small. Our gut feeling, however, told that scripting with Python with time would gain a significant
position in the scientific computing community. At the time of this writing, this is a fact. Over
2000 students have completed the course, and the book has been very popular world wide.

The course addressed experienced Fortran, C, C++, or Java programmers and aimed at
teaching them the power of a dynamically typed environment. Early in the 2000s, our research
group started using Python for scientific computations, not only scripting. Our students used
Python (with NumPy, SciPy, and friends) as a MATLAB replacement and migrated slow parts
of the code to Fortran or C++ when needed. It stroke us that students should learn about this
effective numerical computing environment as early as possible.

We chose Python for learning computer programming

Most universities buy an introductory programming course from their computer science depart-
ment. Very often the offer is a standard Java course. Exceptionally the choice is C, C++, or
perhaps something more exotic like Scheme. The primary examples are frequently math-free
toy problems (“class Dog is a subclass of class Animal, and class Dog has four instances of
class Leg”). Our experience is that the combination of programming and mathematical applica-
tion is challenging and requires much training. Without such training, the students must usually
relearn to program when they meet a need for programming in science courses with languages
like MATLAB, Fortran, C, or C++.

At the University of Oslo, the introductory Java course was free of any mathematics and
not synchronized with the needs in later science courses. The mentioned relearning of pro-
gramming consumed much time when they met a totally different language and totally different
applications of programming at the end of the bachelor studies. We therefore decided around
2006 to develop an introductory programming course that could lay a firm foundation for contin-
ued programming in all later courses that could benefit from integrating numerical simulations.
We would therefore teach programming in the context of relevant algorithms like numerical inte-
gration, differentiation, solution of differential equations, and Monte Carlo simulation.

The introductory programming course was scheduled for the very first semester, meaning
that the students would learn to program and use the computer to solve mathematical problems
from day one. But what should be the language of choice? MATLAB or C++ were obvious
candidates because of their popularity. These two languages are, however, very different in
nature, and it is not natural to integrate them in a course. Python, on the other hand, can be
used for MATLAB-style programming and object-oriented or generative C++-style programming.
In this way Python provides a natural glue between different programming styles. We also
knew that Python was much easier to use and teach than C++. The most convincing argument
was, nevertheless, that Python may act as a MATLAB replacement for students and professors,
doing the same things as MATLAB, and for free, but with a much more powerful programming
language at disposal.

Again I wrote a book2 for the introductory programming course, this time addressing new-
comers to programming and concentrating the examples on numerical computing. Needless to
say, there were many skeptics: Python was of marginal interest to scientific computing, Python
was a bad first language because of its dynamic typing, mixing programming and mathematics
is inferior to first mastering calculus and Java separately - and the arguments went on and on
to avoid radical changes.

2http://goo.gl/SWEQlz

2

http://goo.gl/SWEQlz


The course3 is now a huge success, and the book is a best-seller in its category. Since
2007, more than 1500 students have passed the exam and used the programming technology
to solve mathematical problems in about 20 other courses in the Bachelor programs at the
University of Oslo. The introduction of programming and numerical simulation in all these other
courses was a huge undertaking known as the Computing in Science Education project. This
project has attracted worldwide attention as it represents a long-awaited reform of the science
education. The idea is trivial: let programming and computer simulations change the curriculum!
However, the implementation among professors is extremely demanding most places. The
fortunate situation in Oslo is that professors across disciplines have managed to collaborate on
how programming and simulation can be integrated in classical courses and used to replace
the classical strong attention on complicated and specialized mathematical techniques for very
simplified physical problems. Recently, the Computing in Science Education project has been
acknowledged by the University and the government in Norway through prestigious awards4

and generous funding. The ideas are being implemented at other Norwegian colleges and
universities as well as at several institutions abroad.

Programming is a splendid tool for teaching abstract mathematics

For the skeptics, we have some additional scientific arguments in favor of the described ap-
proach. We quickly experienced that programming numerical algorithms allows the students to
solve hard or impossible math problems occurring in real applications. This power to conquer
the mathematics is very motivating in itself. Also, the combination of programming and math-
ematics appear to be difficult and therefore needs to be trained systematically. The reason is
that classical mathematical training concerns specific problems (such as multiplying two spe-
cific polynomials) while programming must addresses abstract mathematical quantities (like a
general polynomial). The students therefore need to understand that a specific mathematical
problem belongs to an abstract class of problems, pick a general solution method for that class
of problems, implement this method, and then apply the general tool (a Python function) to solve
the original, specific problem. This is the power of mathematics in a nutshell and the reason
why mathematics has been such a great success in our society. Programming is a natural tool
to teach this way of using mathematics, while pen and paper techniques tend to decrease the
abstract view on mathematical quantities. Obviously, teaching programming and mathematics
separately in the classical way, and then expecting the students to master the combination, fails
because few will then master the necessary abstract view of the mathematics on their own.

There is impact of teaching Python

The world is changed only when people do new things. When students learn Python, they bring
this knowledge to later courses and then to industry. Their knowledge automatically creates a
demand for using the tools they prefer. Many companies in the Oslo region that apply Python to-
day discovered the language through new employees who had picked up Python in the scripting
course. Similarly, students create Python examples and projects in other courses and thereby
attract attention to the tool and its applications.

The science education at the University of Oslo puts much emphasis on learning other lan-
guages, in particular MATLAB, R, C, C++, and Fortran. We teach (a subset of) Python in a way
that eases the transition to and from MATLAB. For high performance we emphasize reusing

3http://www.uio.no/studier/emner/matnat/ifi/INF1100/index-eng.xml
4http://simula.no/news/computing-in-science-education-receives-learning-environment-award

3

http://www.uio.no/studier/emner/matnat/ifi/INF1100/index-eng.xml
http://www.mn.uio.no/english/about/collaboration/cse/
http://simula.no/news/computing-in-science-education-receives-learning-environment-award


Fortran and C libraries from Python or migrating slow Python code to compiled languages. Our
experience shows that users who gain a good knowledge of Python tend to prefer that language
and do as much as possible in Python before the quest for high performance demands using
compiled languages. It seems that many students and professors, when their knowledge of
Python is at the level of their MATLAB skills, steadily drift to do most of their work in Python.
The numerical functionality in Python is not superior to MATLAB, so this drift is more rooted in
Python’s clear syntax, powerful software engineering tools, easy integration with Fortran and
C/C++, and rich set of libraries for non-numerical tasks.

The described trend among students and professors are also found in industry: Python
steadily eats of the MATLAB market because people find the language stronger and more con-
venient. Our efforts in teaching and professional use of Python contribute to the observed
exponential growth.

We let the students play with advanced problems

As mentioned, we start with numerics and programming when the 19-year old new students
arrive at the University. About 300 students enter courses on classical calculus, numerical
calculus, and programming of the latter. The programming course covers basic MATLAB-style
procedural programming in the first half of the fall semester, while the second half is spent
on statistical simulations, ordinary differential equations, and class programming (recall that
classes and object-oriented programming were invented in Oslo so we have no other choice!).
The final project is to create a flexible, object-oriented toolbox for studying nonlinear vibration
problems described by the standard model

mẍ + f(ẋ) + s(x) = F (t)

The development environment for programming consists of the well-proven terminal window and
a text editor (gedit, emacs, or vi).

Many reviews of the course book5 claim that the book is quite advanced and may fit the
graduate level. However, most of the book is in fact covered the very first semester in Oslo.
This works well and the course has received excellent student critiques. Scientists usually
think of Monte Carlo simulation and nonlinear differential equations as advanced topics, not
belonging to first semester courses, but the methods and their applications can be exposed
in very intuitive ways suitable for newbies. At least the students can train their programming
skills on such problems and be able to produce solutions to what many traditionally think of as
advanced problems. A deeper understanding of what they actually do needs to wait until they
master a broader set of courses. My main message is that what is basic and what is advanced
should be continuously up for discussion.

We use Ubuntu to minimize installation problems

Many fear to introduce programming and simulation in courses because there are so many
technical details. For example, how shall students install Python and 30 software packages
on their personal laptops? This question quickly scares teachers. We have found a solution
that has proven to be successful over the last four years: force all students to use Ubuntu, and
provide support for Ubuntu only!

5http://www.amazon.com/Scientific-Programming-Computational-Science-Engineering/dp/3642183654/ref=sr_1_1?ie=UTF8&qid=1340530481&sr=8-1&keywords=langtangen

4

http://www.amazon.com/Scientific-Programming-Computational-Science-Engineering/dp/3642183654/ref=sr_1_1?ie=UTF8&qid=1340530481&sr=8-1&keywords=langtangen


Mac users typically run Ubuntu in a virtual machine (VirtualBox6, or preferably, VMWare
Player7 or VMWare Fusion8), while Windows users can run a virtual machine or have a dual boot.
The Wubi9 software makes installing the dual boot solution very easy. On Ubuntu we have one
package (python-scitools) that installs everything the students need in one command. Later
courses can just provide a one-line command with their needs for additional packages.

There are several reasons why we dare to force the use of only one operating system:

1. Installation of programming tools and mathematical software on Windows and Mac OS X
requires comprehensive competence that very few students have and want to gain.

2. On Debian Linux systems, including Ubuntu, installation of complex mathematical soft-
ware is done by a one-line command.

3. Debian Linux has the largest collection of mathematical software today.

4. When the students need to compile and link their own software, this seems to be easier
on Linux systems than on Mac OS X and Windows. Although Mac OS X is basically
Unix, there are many technical peculiarities that quickly calls for competence beyond what
students and the average teacher have.

5. Ubuntu’s graphical interface is very similar to Windows or Mac OS X so students pick up
Ubuntu without any noise.

6. Students struggle much more with the logic of programming than with Emacs and Unix
commands.

I should add that Fedora Scientific10 may provide a viable alternative to Ubuntu, especially on
sites where Fedora is already the supported Linux system. Fedora Scientific now offers a lot of
very useful mathematics software11

In future cloud supercomputing I imagine one can just upload the Linux image (running in
a virtual machine) to the cloud service and avoid tedious installation processes. By archiving
the image along with scientific results, one can at any time rerun simulations - the complete
operating system, all the needed software, and all data reside in the image. This is key to
reproducible science.

So far, I have not heard one single negative comment that we support only one operating
system. When we tried to support Unix, Linux, Windows, and Mac, there were a lot of complaints
from students that they did not have access to the right software and that technical problems
with computers stole too much attention. These complaints have simply disappeared with the
standardization on Ubuntu. So we have learned that giving people more choices does not
necessarily make them happier.

A final comment. The use of Ubuntu is mainly motivated by the total need of mathematical
packages and programming tools during a student’s entire stay at the university. If the need is
basically an environment for doing Python programming, the Enthought Python Distribution12 or

6http://www.virtualbox.org/
7http://www.vmware.com/products/player
8http://www.vmware.com/products/fusion/overview.html/
9http://wubi-installer.org

10http://www.floss4science.com/fedora-scientific-amit-saha/
11http://spins.fedoraproject.org/scientific-kde/
12http://www.enthought.com/products/epd.php

5

http://www.virtualbox.org/
http://www.vmware.com/products/player
http://www.vmware.com/products/player
http://www.vmware.com/products/fusion/overview.html/
http://wubi-installer.org
http://www.floss4science.com/fedora-scientific-amit-saha/
http://spins.fedoraproject.org/scientific-kde/
http://www.enthought.com/products/epd.php


the Python(x,y)13 package provide user-friendly environments on any standard Windows com-
puter.

Resources

• Published formats of this essay: PDF14, HTML15, Sphinx16

• The book Python Scripting for Computational Science17

• The book A Primer on Scientific Computing with Python18

• Student information19 on our introductory programming course where Python is used

• The Computing in Science Education20 reform of science courses at the University of Oslo

• How to access Python on your computer21

13http://code.google.com/p/pythonxy/
14http://hplgit.github.com/teamods/edu/uiopy/uiopy.pdf
15http://hplgit.github.com/teamods/edu/uiopy/uiopy.html
16http://hplgit.github.com/teamods/edu/uiopy/sphinx-fenics_minimal2/index.html
17http://goo.gl/q8tM7D
18http://goo.gl/SWEQlz
19http://www.uio.no/studier/emner/matnat/ifi/INF1100/index-eng.xml
20http://www.mn.uio.no/english/about/collaboration/cse/
21http://hplgit.github.com/edu/accesspy/accesspy.html

6

http://code.google.com/p/pythonxy/
http://hplgit.github.com/teamods/edu/uiopy/uiopy.pdf
http://hplgit.github.com/teamods/edu/uiopy/uiopy.html
http://hplgit.github.com/teamods/edu/uiopy/sphinx-fenics_minimal2/index.html
http://goo.gl/q8tM7D
http://goo.gl/SWEQlz
http://www.uio.no/studier/emner/matnat/ifi/INF1100/index-eng.xml
http://www.mn.uio.no/english/about/collaboration/cse/
http://hplgit.github.com/edu/accesspy/accesspy.html

