Loading [MathJax]/extensions/TeX/boldsymbol.js
The ODE problem is solved by a finite difference scheme
- Mesh in time: 0= t_0 < t_1 \cdots < t_N=T
- Assume constant \Delta t = t_{n}-t_{n-1}
- u^n : numerical approx to the exact solution at t_n
The \theta rule,
u^{n+1} = \frac{1 - (1-\theta) a\Delta t}{1 + \theta a\Delta t}u^n,
\quad n=0,1,\ldots,N-1
contains the Forward Euler ( \theta=0 ),
the Backward Euler ( \theta=1 ),
and the Crank-Nicolson ( \theta=0.5 )
schemes.