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We shall model a very complex phenomenon by simple
math....

Assumptions:
@ We consider a perfectly mixed population in a confined area
@ No spatial transport, just temporal evolution

@ We do not consider individuals, just a grand mix of them
(cf. statistical mechanics vs thermodynamics)
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We shall model a very complex phenomenon by simple

math....

@ We consider a perfectly mixed population in a confined area

@ No spatial transport, just temporal evolution

@ We do not consider individuals, just a grand mix of them
(cf. statistical mechanics vs thermodynamics)

We consider very simple models, but these can be extended to full models that
are used world-wide by health authorities. Typical diseases modeled are flu,
measles, swine flu, HIV, ...

All these slides and associated programs are available from
https://github.com/hplgit/disease-modeling.
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We keep track of 3 categories in the SIR model

@ S: susceptibles - who can get the disease

@ I: infected - who have developed the disease and infect
susceptibles

@ R: recovered - who have recovered and become immune

Mathematical quantities:

S(t), I(t), R(t): no of people in each category

Find and solve equations for S(t), /(t), R(t)

s HOHE




The traditional modeling approach is very mathematical -

our idea is to model, program and experiment

*]
(*]
"]
(]

Numerous books on mathematical biology treat the SIR model
Quick modeling step (max 2 pages)
Nonlinear differential equation model

Cannot solve the equations, so focus is on discussing stability
(eigenvalues), qualitative properties, etc.

Very few extensions of the model to real-life situations




Dynamics in a time interval At: At 8S/ people move from

S to |

S-l interaction:

@ In a mix of S and | people, there are S/ possible pairs

@ A certain fraction At of S/ meet in a (small) time interval
At, with the result that the infected “successfully” infects the
susceptible

@ The loss At 3SI in the S catogory is a corresponding gain in
the | category




Dynamics in a time interval At: At 8S/ people move from

S to |

S-l interaction:

@ In a mix of S and | people, there are S/ possible pairs

@ A certain fraction At of S/ meet in a (small) time interval
At, with the result that the infected “successfully” infects the
susceptible

@ The loss At 3SI in the S catogory is a corresponding gain in
the | category

It is reasonable that the fraction depends on At (twice as many infected in
2At as in At). B is some unknown parameter we must measure, supposed to
not depend on At, but maybe time t. 8 lumps a lot of biological and
sociological effects into one number.




For practical calculations, we must express the S-I

interaction with symbols

Loss in S(t) from time t to t + At:

S(t+ At) = S(t) — At 5S(t)I(t)

Gain in /(t):

I(t + At) = I(t) + At 8S(t)1(¢t)



Modeling the interaction between R and |

R-I interaction:

o After some days, the infected has recovered and moves to the
R category

@ A simple model: in a small time At (say 1 day), a fraction
At v of the infected are removed (v must be measured)

We must subtract this fraction in the balance equation for /:

I(t+ At) = I(t) + At S(t)I(t) — Atvi(t)

The loss At vl is a gain in R:

R(t + At) = R(t) + Atvl(t)



We have three equations for S, /, and R

S(t+ At) = S(t) — At 5S(t)1(¢) (1)
I(t+ At) = I(t) + At fS(t)I(t) — Atvi(t) (2)
R(t + At) = R(t) + Atvl(t) (3)

R RE=E

Before we can compute with these, we must

@ know 8 and v
e know S(0) (many), /(0) (few), R(0) (07)

@ choose At



The computation involves just simple arithmetics

@ Set At = 6 minutes
@ Set 8 =0.0013, » = 0.8333
e Set 5(0) =50, /(0)=1, R(0)=0

S(At) = 5(0) — At B5(0)/(0) ~ 49.99
I(At) = 1(0) + At 85(0)/(0) — At vI(0) ~ 1.002
R(At) = R(0) + At vI(0) ~ 0.0008333
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The computation involves just simple arithmetics

@ Set At = 6 minutes
@ Set 8 =0.0013, » = 0.8333
e Set 5(0) =50, /(0)=1, R(0)=0

S(At) = 5(0) — At B5(0)/(0) ~ 49.99
I(At) = 1(0) + At 85(0)/(0) — At vI(0) ~ 1.002
R(At) = R(0) + At vI(0) ~ 0.0008333

e In reality, S, I, R are integers and events are discrete (meet,
get sick)

@ In the model, we work with real numbers and continuous
events

@ Reasonable approximation in a not too small population



And we can continue...

S(2At) = S(At) — At SS(At)I(At) ~ 49.87
1(2At) = I(At) + At BS(At)I(At) — Atvl(At) ~ 1.011
R(2At) = R(At) + AtvI(At) ~ 0.00167

Repeat...
S(3At) = S(2At) — At 5S(2At)I(2A¢t) ~ 49.98

I(3At) = I(2At) + At BS(2A¢t)I(2At) — At vI(2At) ~ 1.017
R(3At) = R(2At) + AtvI(2At) ~ 0.0025



And we can continue...

S(2At) = S(At) — At SS(At)I(At) ~ 49.87
1(2At) = I(At) + At BS(At)I(At) — Atvl(At) ~ 1.011
R(2At) = R(At) + AtvI(At) ~ 0.00167
Repeat...
S(3At) = S(2At) — At 5S(2At)I(2A¢t) ~ 49.98

I(3At) = I(2At) + At BS(2A¢t)I(2At) — At vI(2At) ~ 1.017
R(3At) = R(2At) + AtvI(2At) ~ 0.0025

But this is getting boring! Let's ask a computer to do the work!



First, some handy notation

S" = S(nAt), I"=I(nAt), R"=R(nAt)

gntl _ S((n+1)At), [l _ I((n+1)At), RN _ R((n+1)At)

The equations can now be written more compactly (and computer
friendly):

Sn+1 —sn_ AtﬁS”l” (4)
I"™ =" £ AtBS™I" — Atvl” (5)
R™ = R" + Atul” (6)



With variables, arrays, and a loop we can program

Suppose we want to compute until t = NAt, i.e., for
n=0,1,...,N —1. We can store S, 51,52, ... SN in an array
(or list).

Python (Matlab):

linspace(0, N*dt, N+1) # all time points
zeros (N+1)
zeros (N+1)
zeros (N+1)

T H Wt

for n in range(N):
S[n+1] S[n] - dt*betaxS[n]*I[n]
I[n+1] I[n] + dtsbeta*S[n]+*I[n] - dt*nux*I[n]
R[n+1] R[n] + dt*nux*I[n]



Here is the complete program

beta = 0.0013

nu =0.8333

dt = 0.1 # 6 min (time measured in hours)
D = 30 # simulate for D days

N = int(D*24/dt) # corresponding no of hours

from numpy import zeros, linspace
t = linspace(0, Nxdt, N+1)

S = zeros(N+1)
I = zeros(N+1)
R = zeros(N+1)

for n in range(N):
S[n+1] = S[n] - dt*beta*S[n]*I[n]
I[n+1] I[n] + dt*beta*S[n]+*I[n] - dt*nux*I[n]
R[n+1] R[n] + dt*nu*I[n]

# Plot the graphs

from matplotlib.pyplot import *

plot(t, S, ’k-?, t, I, ’b-’, t, R, ’r-?)
legend([’S’, ’I’, ’R’], loc=’lower right’)
xlabel(’hours’)

show ()



We have predicted a disease!

60
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How much math and programming did we use?

@ Plain arithmetics
@ The concept of a graph (i.e., discrete function in time)
@ Units

o Greek letters

<

o Variable

@ Array
@ Loop

o Plotting

A\




Detour: The standard mathematical approach

We had from intuition established

S(t+ At) = S(t) — At 5S(t)I(t)
I(t+ At) = I(t) + At BS(t)I(t) — At vi(t)
R(t + At) = R(t) + Atvl(t)

The mathematician will now make differential equations. Divide by
At and rearrange:

S(t+ At) — S(t)

A = —BS(1)I(¢)
I(t+ At) —I(t)
At = BtS(t)I(t) — vi(t)

R(t + At) — R(t)
At

=vR(t)



A derivative arises as At — 0

In any calculus book, the derivative of S at t is defined as

S(t) = t"L“O S(t+ AAti - 5(t)

If we let At — 0, we get derivatives on the left-hand side:

S'(t) = —BS(1)I(¢)
I'(t) = BtS(t)I(t) — vi(t)
R'(t) = vR(t)

This is a 3x3 system of differential equations for the functions S(t),
I(t), R(t). For a unique solution, we need S(0), /(0), R(0).



Bad news: we cannot solve these equations!

Time to ask a numerical methods expert:

Replace the derivative with a finite difference, e.g.,

- S(t+ At) — S(t)

S'(t) A

which is accurate for small At.

This brings us back to the first model, which we can solve on a
computer!



Parameter estimation is needed for predictive modeling

@ Any small At will do

@ One can reason about v and say that 1/v is the mean recovery
time for the disease (e.g., 1 week for a flu)

@ [ must in some way be measured, but we don't know what it
means...

So, what if we don't know (37

@ Can still learn about the dynamics of diseases
@ Can find the sensitivity to and influence of /3

@ Can apply parameter estimation procedures to fit 8 to data




Let us extend the model: no life-long immunity

After some time, people in the R category lose the immunity. In a
small time At this gives a leakage At~yR to the S category. (1/v
is the mean time for immunity.)

mom

ST = S" _ AtBS"I" + AtyR" (7)
I =" 1 At BS"I" — Atvl” (8)
R™! = R" + AtvR" — AtyR" (9)

No complications in the computational model!



The effect of loss of immunity

1/v =50 days. 3 reduced by 2 and 4 (left and right, resp.):
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What is the effect of vaccination?

A fraction p of the S category, per time unit, is vaccinated with
success. Then in time At, pAtS will move to a vaccinated
category, V. This does not affect the | and R categories.

R

v

Sl = §" _ At BS"I" + AtyR" — pAtS” (10)
vt — v 4 pALS” (11)
I =" AL BS"IT — Atvl” (12)
R™ = R" + AtvR" — At~R" (13)



Many possibilities for adjusting the model...

The effect of vaccination decreases over time, so we may move
people back to the S S category (term proportlonal to AtV).

I

v

v




Effect of adding vaccination
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What is the effect of an intensive vaccination campaign?

10 times more intense vaccination for 10 days, 6 days after
outbreak:

(9 [ 0005, 6<t<15
P\t = 0, otherwise

Implementation: Let p” be an array as V". Set p” = 0.05 for
n=6-24/0.1,...,15-24/0.1 (days - 24/At, 24 is hours per day).

p(t)




Effect of vaccination campaign

40
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0 500 1000 1500 2000 2500 3000 3500 4000
hours

Note:

@ Mathematicians would be scared by the cusps on the curves...

@ Could now let the computer run a lot of cases and find the
optimal vaccination period



We can experiment with other campaigns

Wearing masks lowers g:
/817 0 <t< 57
t) =
a(e) { fa<pP1, t=5

Very easy to implement. (Used to be
complicated in differential equation models...)




And now for something similar: zombification!

Zombification: The disease that turns you into a zombie.



Zombie modeling is almost the same as SIR modeling

Categories

© S: susceptible humans who can become zombies
@ |: infected humans, being bitten by zombies
© Z: zombies

@ R: removed individuals, either conquered zombies or dead
humans

Mathematical quantities: S(t), /(t), Z(t), R(t)

Zombie movie: The Night of the Living Dead, Geoerge A. Romero,
1968



Dynamics of the zombie SIZR model
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Dynamics of the zombie SIZR model

@ Susceptibles are infected by zombies: —At8S57 in time At
(cf. the At BSI term in the SIR model).
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@ Nobody from R can turn into Z (important - otherwise
zombies win).



Dynamics of the zombie SIZR model
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@ Susceptibles are infected by zombies: —At8S57 in time At
(cf. the At BSI term in the SIR model).

@ Susceptibles die naturally or get killed and then enter the
removed category. The no of deaths in time At is AtdsS.

© We also allow new humans to enter the area with zombies
(necessary in a war on zombies): At¥ during a time At.

Q Some infected turn into zombies (Z): Atpl, while others die
(R): 9, Atl.

@ Nobody from R can turn into Z (important - otherwise
zombies win).

O Killed zombies go to R: AtaSZ.



The four equations in the SIZR model for zombification

Sl = S" L AtY — At3S"Z — At§sS”
" =" L AtBS"Z" — At pl" — At 51"
ZMl = 7" 4 Atpl" — AtaS"Z"

R = R™" + AtdsS" + At ;1" + AtaS"Z"

Interpretation of parameters:

@ X: no of new humans brought into the zombified area per unit time.

@ [: the probability that a theoretically possible human-zombie pair
actually meets physically, during a unit time interval, with the result that
the human is infected.

@ Js: the probability that a susceptible human is killed or dies, in a unit
time interval.

@ §;: the probability that an infected human is killed or dies, in a unit time

interval.

@ p: the probability that an infected human is turned into a zombie, during
a unit time interval.

@ «: the probability that, during a unit time interval, a theoretically



Simulate a zombie moviel

Three fundamental phases
© The initial phase (4 h)
@ The hysteric phase (24 h)
© The counter attack phase (5 h)
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Simulate a zombie moviel

Three fundamental phases
@ The initial phase (4 h)
@ The hysteric phase (24 h)
© The counter attack phase (5 h)

How do we do this? As p in the vaccination campaign - the
parameters take on different constant values in different time
intervals.

H. P. Langtangen, K.-A. Mardal and P. Rgtnes: Escaping the
Zombie Threat by Mathematics, in A. Whelan et al.: Zombies in
the Academy - Living Death in Higher Education, University of
Chicago Press, 2013



Effective war on zombies

Introduce attacks on zombies at selected times To, T1,..., Tm.

Model: Replace a by

agp + w(t),

where g is constant and w(t) is a series of Gaussian functions
(peaks) in time:

0= (5(57))

Must experiment with values of a (strength), o (duration is 60),
point of attacks ( T;) - with proper values humans beat the zombies!




@ A complex spreading of diseases can be modeled by intuitive,
simple accounting of movement between categories

@ Such models are knowns as compartment models

@ Result: difference equations that are easy to simulate on a
computer

@ (Can let At — 0 and get differential equations)

e Easy to add new effects (vaccination, campaigns,
zombification)

All these slides and associated programs are available

Site: https://github.com/hplgit/disease-modeling. Just do
git clone https://github.com/hplgit/disease-modeling.git
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