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We shall model a very complex phenomenon by simple
math....

Assumptions:
We consider a perfectly mixed population in a confined area
No spatial transport, just temporal evolution
We do not consider individuals, just a grand mix of them
(cf. statistical mechanics vs thermodynamics)

We consider very simple models, but these can be extended to full models that
are used world-wide by health authorities. Typical diseases modeled are flu,
measles, swine flu, HIV, ...

All these slides and associated programs are available from
https://github.com/hplgit/disease-modeling.

https://github.com/hplgit/disease-modeling
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We keep track of 3 categories in the SIR model

S: susceptibles - who can get the disease
I: infected - who have developed the disease and infect
susceptibles
R: recovered - who have recovered and become immune

Mathematical quantities:

S(t), I (t), R(t): no of people in each category

Goal:
Find and solve equations for S(t), I (t), R(t)



The traditional modeling approach is very mathematical -
our idea is to model, program and experiment

Numerous books on mathematical biology treat the SIR model
Quick modeling step (max 2 pages)
Nonlinear differential equation model
Cannot solve the equations, so focus is on discussing stability
(eigenvalues), qualitative properties, etc.
Very few extensions of the model to real-life situations



Dynamics in a time interval ∆t: ∆t βSI people move from
S to I

S-I interaction:
In a mix of S and I people, there are SI possible pairs
A certain fraction ∆t β of SI meet in a (small) time interval
∆t, with the result that the infected “successfully” infects the
susceptible
The loss ∆t βSI in the S catogory is a corresponding gain in
the I category

Remark
It is reasonable that the fraction depends on ∆t (twice as many infected in
2∆t as in ∆t). β is some unknown parameter we must measure, supposed to
not depend on ∆t, but maybe time t. β lumps a lot of biological and
sociological effects into one number.
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For practical calculations, we must express the S-I
interaction with symbols

Loss in S(t) from time t to t + ∆t:

S(t + ∆t) = S(t)−∆t βS(t)I (t)

Gain in I (t):

I (t + ∆t) = I (t) + ∆t βS(t)I (t)



Modeling the interaction between R and I

R-I interaction:
After some days, the infected has recovered and moves to the
R category
A simple model: in a small time ∆t (say 1 day), a fraction
∆t ν of the infected are removed (ν must be measured)

We must subtract this fraction in the balance equation for I :

I (t + ∆t) = I (t) + ∆t βS(t)I (t)−∆t νI (t)

The loss ∆t νI is a gain in R :

R(t + ∆t) = R(t) + ∆t νI (t)



We have three equations for S , I , and R

S(t + ∆t) = S(t)−∆t βS(t)I (t) (1)
I (t + ∆t) = I (t) + ∆t βS(t)I (t)−∆tνI (t) (2)
R(t + ∆t) = R(t) + ∆t νI (t) (3)

Before we can compute with these, we must

know β and ν
know S(0) (many), I (0) (few), R(0) (0?)
choose ∆t



The computation involves just simple arithmetics

Set ∆t = 6 minutes
Set β = 0.0013, ν = 0.8333
Set S(0) = 50, I (0) = 1, R(0) = 0

S(∆t) = S(0)−∆t βS(0)I (0) ≈ 49.99
I (∆t) = I (0) + ∆t βS(0)I (0)−∆t νI (0) ≈ 1.002
R(∆t) = R(0) + ∆t νI (0) ≈ 0.0008333

In reality, S , I , R are integers and events are discrete (meet,
get sick)
In the model, we work with real numbers and continuous
events
Reasonable approximation in a not too small population
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And we can continue...

S(2∆t) = S(∆t)−∆t βS(∆t)I (∆t) ≈ 49.87
I (2∆t) = I (∆t) + ∆t βS(∆t)I (∆t)−∆t νI (∆t) ≈ 1.011
R(2∆t) = R(∆t) + ∆t νI (∆t) ≈ 0.00167

Repeat...

S(3∆t) = S(2∆t)−∆t βS(2∆t)I (2∆t) ≈ 49.98
I (3∆t) = I (2∆t) + ∆t βS(2∆t)I (2∆t)−∆t νI (2∆t) ≈ 1.017
R(3∆t) = R(2∆t) + ∆t νI (2∆t) ≈ 0.0025

But this is getting boring! Let’s ask a computer to do the work!
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First, some handy notation

Sn = S(n∆t), I n = I (n∆t), Rn = R(n∆t)

Sn+1 = S((n+1)∆t), I n+1 = I ((n+1)∆t), Rn+1 = R((n+1)∆t)

The equations can now be written more compactly (and computer
friendly):

Sn+1 = Sn −∆t βSnI n (4)

I n+1 = I n + ∆t βSnI n −∆t νI n (5)

Rn+1 = Rn + ∆t νI n (6)



With variables, arrays, and a loop we can program

Suppose we want to compute until t = N∆t, i.e., for
n = 0, 1, . . . ,N − 1. We can store S0, S1, S2, . . . , SN in an array
(or list).

Python (Matlab):

t = linspace(0, N*dt, N+1) # all time points
S = zeros(N+1)
I = zeros(N+1)
R = zeros(N+1)

for n in range(N):
S[n+1] = S[n] - dt*beta*S[n]*I[n]
I[n+1] = I[n] + dt*beta*S[n]*I[n] - dt*nu*I[n]
R[n+1] = R[n] + dt*nu*I[n]



Here is the complete program

beta = 0.0013
nu =0.8333
dt = 0.1 # 6 min (time measured in hours)
D = 30 # simulate for D days
N = int(D*24/dt) # corresponding no of hours

from numpy import zeros, linspace
t = linspace(0, N*dt, N+1)
S = zeros(N+1)
I = zeros(N+1)
R = zeros(N+1)

for n in range(N):
S[n+1] = S[n] - dt*beta*S[n]*I[n]
I[n+1] = I[n] + dt*beta*S[n]*I[n] - dt*nu*I[n]
R[n+1] = R[n] + dt*nu*I[n]

# Plot the graphs
from matplotlib.pyplot import *
plot(t, S, ’k-’, t, I, ’b-’, t, R, ’r-’)
legend([’S’, ’I’, ’R’], loc=’lower right’)
xlabel(’hours’)
show()



We have predicted a disease!
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How much math and programming did we use?

Math:
Plain arithmetics
The concept of a graph (i.e., discrete function in time)
Units
Greek letters

Programming:
Variable
Array
Loop
Plotting



Detour: The standard mathematical approach
We had from intuition established

S(t + ∆t) = S(t)−∆t βS(t)I (t)

I (t + ∆t) = I (t) + ∆t βS(t)I (t)−∆t νI (t)

R(t + ∆t) = R(t) + ∆t νI (t)

The mathematician will now make differential equations. Divide by
∆t and rearrange:

S(t + ∆t)− S(t)

∆t
= −βS(t)I (t)

I (t + ∆t)− I (t)

∆t
= βtS(t)I (t)− νI (t)

R(t + ∆t)− R(t)

∆t
= νR(t)



A derivative arises as ∆t → 0

In any calculus book, the derivative of S at t is defined as

S ′(t) = lim
t→0

S(t + ∆t)− S(t)

∆t

If we let ∆t → 0, we get derivatives on the left-hand side:

S ′(t) = −βS(t)I (t)

I ′(t) = βtS(t)I (t)− νI (t)

R ′(t) = νR(t)

This is a 3x3 system of differential equations for the functions S(t),
I (t), R(t). For a unique solution, we need S(0), I (0), R(0).



Bad news: we cannot solve these equations!

Time to ask a numerical methods expert:
Replace the derivative with a finite difference, e.g.,

S ′(t) ≈ S(t + ∆t)− S(t)

∆t
which is accurate for small ∆t.

This brings us back to the first model, which we can solve on a
computer!



Parameter estimation is needed for predictive modeling

Any small ∆t will do
One can reason about ν and say that 1/ν is the mean recovery
time for the disease (e.g., 1 week for a flu)
β must in some way be measured, but we don’t know what it
means...

So, what if we don’t know β?
Can still learn about the dynamics of diseases
Can find the sensitivity to and influence of β
Can apply parameter estimation procedures to fit β to data



Let us extend the model: no life-long immunity

Assumption
After some time, people in the R category lose the immunity. In a
small time ∆t this gives a leakage ∆t γR to the S category. (1/γ
is the mean time for immunity.)

Sn+1 = Sn −∆t βSnI n + ∆t γRn (7)

I n+1 = I n + ∆t βSnI n −∆t νI n (8)

Rn+1 = Rn + ∆t νRn −∆t γRn (9)

No complications in the computational model!



The effect of loss of immunity

1/γ = 50 days. β reduced by 2 and 4 (left and right, resp.):
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What is the effect of vaccination?

Assumptions
A fraction p of the S category, per time unit, is vaccinated with
success. Then in time ∆t, p∆tS will move to a vaccinated
category, V. This does not affect the I and R categories.

Sn+1 = Sn −∆t βSnI n + ∆t γRn − p∆tSn (10)

V n+1 = V n + p∆tSn (11)

I n+1 = I n + ∆t βSnI n −∆t νI n (12)

Rn+1 = Rn + ∆t νRn −∆t γRn (13)



Many possibilities for adjusting the model...

The effect of vaccination decreases over time, so we may move
people back to the S category (term proportional to ∆tV ).



Effect of adding vaccination
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What is the effect of an intensive vaccination campaign?

10 times more intense vaccination for 10 days, 6 days after
outbreak:

p(t) =

{
0.005, 6 ≤ t ≤ 15,
0, otherwise

Implementation: Let pn be an array as V n. Set pn = 0.05 for
n = 6 · 24/0.1, . . . , 15 · 24/0.1 (days · 24/∆t, 24 is hours per day).
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Effect of vaccination campaign
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Note:

Mathematicians would be scared by the cusps on the curves...
Could now let the computer run a lot of cases and find the
optimal vaccination period



We can experiment with other campaigns

Wearing masks lowers β:

β(t) =

{
β1, 0 ≤ t < 5,
β2 < β1, t ≥ 5

Very easy to implement. (Used to be
complicated in differential equation models...)



And now for something similar: zombification!

Zombification: The disease that turns you into a zombie.



Zombie modeling is almost the same as SIR modeling

Categories
1 S: susceptible humans who can become zombies
2 I: infected humans, being bitten by zombies
3 Z: zombies
4 R: removed individuals, either conquered zombies or dead

humans

Mathematical quantities: S(t), I (t), Z (t), R(t)

Zombie movie: The Night of the Living Dead, Geoerge A. Romero,
1968



Dynamics of the zombie SIZR model

1 Susceptibles are infected by zombies: −∆tβSZ in time ∆t
(cf. the ∆t βSI term in the SIR model).

2 Susceptibles die naturally or get killed and then enter the
removed category. The no of deaths in time ∆t is ∆tδSS .

3 We also allow new humans to enter the area with zombies
(necessary in a war on zombies): ∆tΣ during a time ∆t.

4 Some infected turn into zombies (Z): ∆tρI , while others die
(R): δI ∆tI .

5 Nobody from R can turn into Z (important - otherwise
zombies win).

6 Killed zombies go to R: ∆tαSZ .
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The four equations in the SIZR model for zombification

Sn+1 = Sn + ∆t Σ−∆t βSnZ −∆t δSSn

I n+1 = I n + ∆t βSnZn −∆t ρI n −∆t δI I n

Zn+1 = Zn + ∆t ρI n −∆t αSnZn

Rn+1 = Rn + ∆t δSSn + ∆t δI I n + ∆t αSnZn

Interpretation of parameters:

Σ: no of new humans brought into the zombified area per unit time.

β: the probability that a theoretically possible human-zombie pair
actually meets physically, during a unit time interval, with the result that
the human is infected.

δS : the probability that a susceptible human is killed or dies, in a unit
time interval.

δI : the probability that an infected human is killed or dies, in a unit time
interval.

ρ: the probability that an infected human is turned into a zombie, during
a unit time interval.

α: the probability that, during a unit time interval, a theoretically
possible human-zombie pair fights and the human kills the zombie.



Simulate a zombie movie!

Three fundamental phases
1 The initial phase (4 h)
2 The hysteric phase (24 h)
3 The counter attack phase (5 h)

How do we do this? As p in the vaccination campaign - the
parameters take on different constant values in different time
intervals.

H. P. Langtangen, K.-A. Mardal and P. Røtnes: Escaping the
Zombie Threat by Mathematics, in A. Whelan et al.: Zombies in
the Academy - Living Death in Higher Education, University of
Chicago Press, 2013
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Effective war on zombies

Introduce attacks on zombies at selected times T0,T1, . . . ,Tm.

Model: Replace α by

α0 + ω(t),

where α0 is constant and ω(t) is a series of Gaussian functions
(peaks) in time:

ω(t) = a
m∑

i=0

exp
(
−1
2

(
t − Ti

σ

))

Must experiment with values of a (strength), σ (duration is 6σ),
point of attacks (Ti ) - with proper values humans beat the zombies!



Summary

A complex spreading of diseases can be modeled by intuitive,
simple accounting of movement between categories
Such models are knowns as compartment models
Result: difference equations that are easy to simulate on a
computer
(Can let ∆t → 0 and get differential equations)
Easy to add new effects (vaccination, campaigns,
zombification)

All these slides and associated programs are available
Site: https://github.com/hplgit/disease-modeling. Just do
git clone https://github.com/hplgit/disease-modeling.git

https://github.com/hplgit/disease-modeling

