$$
\begin{align*}
u'(t) &= -au(t), \quad t \in (0,T]\\ 
u(0)  &= I
\end{align*}
$$
 
Solution by \( \theta \)-scheme:
 
$$
\begin{equation*}
u^{n+1} = \frac{1 - (1-\theta) a\Delta t}{1 + \theta a\Delta t}u^n
\end{equation*}
$$
 
\( \theta =0 \): Forward Euler, \( \theta =1 \): Backward Euler, \( \theta =1/2 \): Crank-Nicolson (midpoint method)
from numpy import *
from matplotlib.pyplot import *
A = 1
a = 2
T = 4
dt = 0.2
N = int(round(T/dt))
y = zeros(N+1)
t = linspace(0, T, N+1)
theta = 1
y[0] = A
for n in range(0, N):
    y[n+1] = (1 - (1-theta)*a*dt)/(1 + theta*dt*a)*y[n]
y_e = A*exp(-a*t) - y
error = y_e - y
E = sqrt(dt*sum(error**2))
print 'Norm of the error: %.3E' % E
plot(t, y, 'r--o')
t_e = linspace(0, T, 1001)
y_e = A*exp(-a*t_e)
plot(t_e, y_e, 'b-')
legend(['numerical, theta=%g' % theta, 'exact'])
xlabel('t')
ylabel('y')
show()
y and corresponds to \( u \) in the mathematical description,
   the variable A corresponds to the mathematical parameter \( I \),
   N in the program is called \( N_t \) in the mathematics.
from numpy import *
from matplotlib.pyplot import *
I = 1
a = 2
T = 4
dt = 0.2
Nt = int(round(T/dt))     # no of time intervals
u = zeros(Nt+1)           # array of u[n] values
t = linspace(0, T, Nt+1)  # time mesh
theta = 1                 # Backward Euler method
u[0] = I                  # assign initial condition
for n in range(0, Nt):    # n=0,1,...,Nt-1
    u[n+1] = (1 - (1-theta)*a*dt)/(1 + theta*dt*a)*u[n]
# Compute norm of the error
u_e = I*exp(-a*t) - u     # exact u at the mesh points
error = u_e - u
E = sqrt(dt*sum(error**2))
print 'Norm of the error: %.3E' % E
# Compare numerical (u) and exact solution (u_e) in a plot
plot(t, u, 'r--o')
t_e = linspace(0, T, 1001)       # very fine mesh for u_e
u_e = I*exp(-a*t_e)
plot(t_e, u_e, 'b-')
legend(['numerical, theta=%g' % theta, 'exact'])
xlabel('t')
ylabel('u')
show()

def solver(I, a, T, dt, theta):
    """Solve u'=-a*u, u(0)=I, for t in (0,T] with steps of dt."""
    dt = float(dt)               # avoid integer division
    Nt = int(round(T/dt))        # no of time intervals
    T = Nt*dt                    # adjust T to fit time step dt
    u = np.zeros(Nt+1)           # array of u[n] values
    t = np.linspace(0, T, Nt+1)  # time mesh
    u[0] = I                  # assign initial condition
    for n in range(0, Nt):    # n=0,1,...,Nt-1
        u[n+1] = (1 - (1-theta)*a*dt)/(1 + theta*dt*a)*u[n]
    return u, t
Call:
u, t = solver(I=1, a=2, T=4, dt=0.2, theta=0.5)
When implementing a particular functionality in a computer program, make sure this functionality and its variations are implemented in just one piece of code. That is, if you need to revise the implementation, there should be one and only one place to edit. It follows that you should never duplicate code (don't repeat yourself!), and code snippets that are similar should be factored into one piece (function) and parameterized (by function arguments).
from decay import solver
# Solve a decay problem
u, t = solver(I=1, a=2, T=4, dt=0.2, theta=0.5)
or prefix function names by the module name:
import decay
# Solve a decay problem
u, t = decay.solver(I=1, a=2, T=4, dt=0.2, theta=0.5)
.py must be a valid Python variable name.The test block is normally placed at the end of a module file:
if __name__ == '__main__':
    # Statements
If the file is imported, the if test fails and no main program is run, otherwise, the file works as a program
decay.py for our example 
from numpy import *
from matplotlib.pyplot import *
def solver(I, a, T, dt, theta):
    ...
def u_exact(t, I, a):
    return I*exp(-a*t)
def experiment_compare_numerical_and_exact():
    I = 1;  a = 2;  T = 4;  dt = 0.4;  theta = 1
    u, t = solver(I, a, T, dt, theta)
    t_e = linspace(0, T, 1001)       # very fine mesh for u_e
    u_e = u_exact(t_e, I, a)
    plot(t,   u,   'r--o')           # dashed red line with circles
    plot(t_e, u_e, 'b-')             # blue line for u_e
    legend(['numerical, theta=%g' % theta, 'exact'])
    xlabel('t')
    ylabel('u')
    plotfile = 'tmp'
    savefig(plotfile + '.png');  savefig(plotfile + '.pdf')
    error = u_exact(t, I, a) - u
    E = sqrt(dt*sum(error**2))
    print 'Error norm:', E
if __name__ == '__main__':
    experiment_compare_numerical_and_exact()
Complete file: decay.py
decay.py for our example w/prefix 
import numpy as np
import matplotlib.pyplot as plt
def solver(I, a, T, dt, theta):
    ...
def u_exact(t, I, a):
    return I*np.exp(-a*t)
def experiment_compare_numerical_and_exact():
    I = 1;  a = 2;  T = 4;  dt = 0.4;  theta = 1
    u, t = solver(I, a, T, dt, theta)
    t_e = np.linspace(0, T, 1001)       # very fine mesh for u_e
    u_e = u_exact(t_e, I, a)
    plt.plot(t,   u,   'r--o')       # dashed red line with circles
    plt.plot(t_e, u_e, 'b-')         # blue line for u_e
    plt.legend(['numerical, theta=%g' % theta, 'exact'])
    plt.xlabel('t')
    plt.ylabel('u')
    plotfile = 'tmp'
    plt.savefig(plotfile + '.png');  plt.savefig(plotfile + '.pdf')
    error = u_exact(t, I, a) - u
    E = np.sqrt(dt*np.sum(error**2))
    print 'Error norm:', E
if __name__ == '__main__':
    experiment_compare_numerical_and_exact()

Think of edits in the flat program that are required to produce this plot (!)
def experiment_compare_schemes():
    """Compare theta=0,1,0.5 in the same plot."""
    I = 1;  a = 2;  T = 4;  dt = 0.4
    legends = []
    for theta in [0, 1, 0.5]:
        u, t = solver(I, a, T, dt, theta)
        plt.plot(t, u, '--o')
        legends.append('theta=%g' % theta)
    t_e = np.linspace(0, T, 1001)        # very fine mesh for u_e
    u_e = u_exact(t_e, I, a)
    plt.plot(t_e, u_e, 'b-')
    legends.append('exact')
    plt.legend(legends, loc='upper right')
    plotfile = 'tmp'
    plt.savefig(plotfile + '.png');  plt.savefig(plotfile + '.pdf')
import logging
# Define a default logger that does nothing
logging.getLogger('decay').addHandler(logging.NullHandler())
def solver_with_logging(I, a, T, dt, theta):
    """Solve u'=-a*u, u(0)=I, for t in (0,T] with steps of dt."""
    dt = float(dt)               # avoid integer division
    Nt = int(round(T/dt))        # no of time intervals
    T = Nt*dt                    # adjust T to fit time step dt
    u = np.zeros(Nt+1)           # array of u[n] values
    t = np.linspace(0, T, Nt+1)  # time mesh
    logging.debug('solver: dt=%g, Nt=%g, T=%g' % (dt, Nt, T))
    u[0] = I                  # assign initial condition
    for n in range(0, Nt):    # n=0,1,...,Nt-1
        u[n+1] = (1 - (1-theta)*a*dt)/(1 + theta*dt*a)*u[n]
        logging.info('u[%d]=%g' % (n, u[n]))
        logging.debug('1 - (1-theta)*a*dt: %g, %s' %
                      (1-(1-theta)*a*dt,
                       str(type(1-(1-theta)*a*dt))[7:-2]))
        logging.debug('1 + theta*dt*a: %g, %s' %
                      (1 + theta*dt*a,
                       str(type(1 + theta*dt*a))[7:-2]))
    return u, t
def configure_basic_logger():
    logging.basicConfig(
        filename='decay.log', filemode='w', level=logging.DEBUG,
        format='%(asctime)s - %(levelname)s - %(message)s',
        datefmt='%Y.%m.%d %I:%M:%S %p')
MATLAB-style names (linspace, plot):
from numpy import *
from matplotlib.pyplot import *
Python community convention is to prefix with module name
(np.linspace, plt.plot):
import numpy as np
import matplotlib.pyplot as plt
pydoc in the terminal
def solver(I, a, T, dt, theta):
    """
    Solve :math:`u'=-au` with :math:`u(0)=I` for :math:`t \in (0,T]`
    with steps of `dt` and the method implied by `theta`.
    Parameters
    ----------
    I: float
        Initial condition.
    a: float
        Parameter in the differential equation.
    T: float
        Total simulation time.
    theta: float, int
        Parameter in the numerical scheme. 0 gives
        Forward Euler, 1 Backward Euler, and 0.5
        the centered Crank-Nicolson scheme.
    Returns
    -------
    `u`: array
        Solution array.
    `t`: array
        Array with time points corresponding to `u`.
    Examples
    --------
    Solve :math:`u' = -\\frac{1}{2}u, u(0)=1.5`
    with the Crank-Nicolson method:
    >>> u, t = solver(I=1.5, a=0.5, T=9, theta=0.5)
    >>> import matplotlib.pyplot as plt
    >>> plt.plot(t, u)
    >>> plt.show()
    """

Most programming languages has a logging object for this purpose:
import logging
import logging
logging.basicConfig(
    filename='myprog.log', filemode='w', level=logging.WARNING,
    format='%(asctime)s - %(levelname)s - %(message)s',
    datefmt='%m/%d/%Y %I:%M:%S %p')
logging.info('Here is some general info.')
logging.warning('Here is a warning.')
logging.debug('Here is some debugging info.')
logging.critical('Dividing by zero!')
logging.error('Encountered an error.')
Output in myprog.log:
09/26/2015 09:25:10 AM - INFO - Here is some general info.
09/26/2015 09:25:10 AM - WARNING - Here is a warning.
09/26/2015 09:25:10 AM - CRITICAL - Dividing by zero!
09/26/2015 09:25:10 AM - ERROR - Encountered an error.
Levels: critical, error, warning, info, debug
level=logging.CRITICAL: print critical messageslevel=logging.ERROR: print critical and error messageslevel=logging.WARNING: print critical, error, and warning messageslevel=logging.INFO: print critical, error, warning, and info messageslevel=logging.DEBUG: print critical, error, warning, info, and debug messages
import logging
# Define a default logger that does nothing
logging.getLogger('decay').addHandler(logging.NullHandler())
def solver_with_logging(I, a, T, dt, theta):
    """Solve u'=-a*u, u(0)=I, for t in (0,T] with steps of dt."""
    dt = float(dt)               # avoid integer division
    Nt = int(round(T/dt))        # no of time intervals
    T = Nt*dt                    # adjust T to fit time step dt
    u = np.zeros(Nt+1)           # array of u[n] values
    t = np.linspace(0, T, Nt+1)  # time mesh
    logging.debug('solver: dt=%g, Nt=%g, T=%g' % (dt, Nt, T))
    u[0] = I                  # assign initial condition
    for n in range(0, Nt):    # n=0,1,...,Nt-1
        u[n+1] = (1 - (1-theta)*a*dt)/(1 + theta*dt*a)*u[n]
        logging.info('u[%d]=%g' % (n, u[n]))
        logging.debug('1 - (1-theta)*a*dt: %g, %s' %
                      (1-(1-theta)*a*dt,
                       str(type(1-(1-theta)*a*dt))[7:-2]))
        logging.debug('1 + theta*dt*a: %g, %s' %
                      (1 + theta*dt*a,
                       str(type(1 + theta*dt*a))[7:-2]))
    return u, t
def configure_basic_logger():
    logging.basicConfig(
        filename='decay.log', filemode='w', level=logging.DEBUG,
        format='%(asctime)s - %(levelname)s - %(message)s',
        datefmt='%Y.%m.%d %I:%M:%S %p')
One terminal window (1M steps!):
>>> import decay
>>> u, t = decay.solver_with_logging(I=1, a=0.5, T=10, \ 
           dt=0.5, theta=0.5)
Another terminal window:
Terminal> tail -f decay.log
2015.09.26 05:37:41 AM - INFO - u[0]=1
2015.09.26 05:37:41 AM - INFO - u[1]=0.777778
2015.09.26 05:37:41 AM - INFO - u[2]=0.604938
2015.09.26 05:37:41 AM - INFO - u[3]=0.470508
2015.09.26 05:37:41 AM - INFO - u[4]=0.36595
2015.09.26 05:37:41 AM - INFO - u[5]=0.284628
Or if level=logging.DEBUG:
Terminal> tail -f decay.log
2015.09.26 05:40:01 AM - DEBUG - solver: dt=0.5, Nt=20, T=10
2015.09.26 05:40:01 AM - INFO - u[0]=1
2015.09.26 05:40:01 AM - DEBUG - 1 - (1-theta)*a*dt: 0.875, float
2015.09.26 05:40:01 AM - DEBUG - 1 + theta*dt*a: 1.125, float
2015.09.26 05:40:01 AM - INFO - u[1]=0.777778
2015.09.26 05:40:01 AM - DEBUG - 1 - (1-theta)*a*dt: 0.875, float
2015.09.26 05:40:01 AM - DEBUG - 1 + theta*dt*a: 1.125, float
sys.argvsys.argv[0] is the programsys.argv[1:] holds the command-line arguments--option value pairs on the command line (with default values)
Terminal> python myprog.py 1.5 2 0.5 0.8 0.4
Terminal> python myprog.py --I 1.5 --a 2 --dt 0.8 0.4
Required input:
Give these on the command line in correct sequence
Terminal> python decay_cml.py 1.5 0.5 4 CN 0.1 0.2 0.05
def define_command_line_options():
    import argparse
    parser = argparse.ArgumentParser()
    parser.add_argument(
        '--I', '--initial_condition', type=float,
        default=1.0, help='initial condition, u(0)',
        metavar='I')
    parser.add_argument(
        '--a', type=float, default=1.0,
        help='coefficient in ODE', metavar='a')
    parser.add_argument(
        '--T', '--stop_time', type=float,
        default=1.0, help='end time of simulation',
        metavar='T')
    parser.add_argument(
        '--scheme', type=str, default='CN',
        help='FE, BE, or CN')
    parser.add_argument(
        '--dt', '--time_step_values', type=float,
        default=[1.0], help='time step values',
        metavar='dt', nargs='+', dest='dt_values')
    return parser
Note:
sys.argv[i] is always a stringfloat for computations[expression for e in somelist]Set option-value pairs on the command line if the default value is not suitable:
Terminal> python decay_argparse.py --I 1.5 --a 2 --dt 0.8 0.4
Code:
def read_command_line_argparse():
    parser = define_command_line_options()
    args = parser.parse_args()
    scheme2theta = {'BE': 1, 'CN': 0.5, 'FE': 0}
    data = (args.I, args.a, args.T, scheme2theta[args.scheme],
            args.dt_values)
    return data
(metavar is the symbol used in help output)

Normally very much programming required - and much competence on graphical user interfaces.
Here: use a tool to automatically create it in a few minutes (!)
The forthcoming material aims at those with particular interest in equipping their programs with a GUI - others can safely skip it.
main function carries out simulations and plotting for a
   series of \( \Delta t \) valuesparampool functionality
def main_GUI(I=1.0, a=.2, T=4.0,
             dt_values=[1.25, 0.75, 0.5, 0.1],
             theta_values=[0, 0.5, 1]):
    # Build HTML code for web page. Arrange plots in columns
    # corresponding to the theta values, with dt down the rows
    theta2name = {0: 'FE', 1: 'BE', 0.5: 'CN'}
    html_text = '<table>\n'
    for dt in dt_values:
        html_text += '<tr>\n'
        for theta in theta_values:
            E, html = compute4web(I, a, T, dt, theta)
            html_text += """
<td>
<center><b>%s, dt=%g, error: %.3E</b></center><br>
%s
</td>
""" % (theta2name[theta], dt, E, html)
        html_text += '</tr>\n'
    html_text += '</table>\n'
    return html_text
Make a file decay_GUI_generate.py:
from parampool.generator.flask import generate
from decay import main_GUI
generate(main_GUI,
         filename_controller='decay_GUI_controller.py',
         filename_template='decay_GUI_view.py',
         filename_model='decay_GUI_model.py')
Running decay_GUI_generate.py results in
decay_GUI_model.py defines HTML widgets to be used to set
    input data in the web interface,templates/decay_GUI_views.py defines the layout of the web page,decay_GUI_controller.py runs the web application.
Good news: we only need to run decay_GUI_controller.py
and there is no need to look into any of these files!
Start the GUI
Terminal> python decay_GUI_controller.py
Open a web browser at 127.0.0.1:5000

Doc strings can be equipped with interactive Python sessions for demonstrating usage and automatic testing of functions.
def solver(I, a, T, dt, theta):
    """
    Solve u'=-a*u, u(0)=I, for t in (0,T] with steps of dt.
    >>> u, t = solver(I=0.8, a=1.2, T=2, dt=0.5, theta=0.5)
    >>> for t_n, u_n in zip(t, u):
    ...     print 't=%.1f, u=%.14f' % (t_n, u_n)
    t=0.0, u=0.80000000000000
    t=0.5, u=0.43076923076923
    t=1.0, u=0.23195266272189
    t=1.5, u=0.12489758761948
    t=2.0, u=0.06725254717972
    """
    ...
Automatic check that the code reproduces the doctest output:
Terminal> python -m doctest decay.py
Limit the number of digits in the output in doctests! Otherwise, round-off errors on a different machine may ruin the test.
test_.assert functions from the nose.tools module.test*.py.
Very simple module mymod (in file mymod.py):
def double(n):
    return 2*n
Write test function in mymod.py:
def double(n):
    return 2*n
def test_double():
    n = 4
    expected = 2*4
    computed = double(n)
    assert expected == computed
Running one of
Terminal> nosetests -s -v mymod
Terminal> py.test   -s -v mymod
makes the framework run all test_*() functions in mymod.py.
Write the test in a separate file, say test_mymod.py:
import mymod
def test_double():
    n = 4
    expected = 2*4
    computed = double(n)
    assert expected == computed
Running one of
Terminal> nosetests -s -v
Terminal> py.test   -s -v
makes the frameworks run all test_*() functions in all files
test*.py in the current directory and in all subdirectories (pytest)
or just those with names tests or *_tests (nose)
Start with test functions in the source code file. When the file contains many tests, or when you have many source code files, move tests to separate files.
Use exact discrete solution of the \( \theta \) scheme as test:
 
$$ u^n = I\left(
\frac{1 - (1-\theta) a\Delta t}{1 + \theta a \Delta t}
\right)^n$$
 
def u_discrete_exact(n, I, a, theta, dt):
    """Return exact discrete solution of the numerical schemes."""
    dt = float(dt)  # avoid integer division
    A = (1 - (1-theta)*a*dt)/(1 + theta*dt*a)
    return I*A**n
def test_u_discrete_exact():
    """Check that solver reproduces the exact discr. sol."""
    theta = 0.8; a = 2; I = 0.1; dt = 0.8
    Nt = int(8/dt)  # no of steps
    u, t = solver(I=I, a=a, T=Nt*dt, dt=dt, theta=theta)
    # Evaluate exact discrete solution on the mesh
    u_de = np.array([u_discrete_exact(n, I, a, theta, dt)
                     for n in range(Nt+1)])
    # Find largest deviation
    diff = np.abs(u_de - u).max()
    tol = 1E-14
    success = diff < tol
    assert success
If \( a \), \( \Delta t \), and \( \theta \) are integers, the formula for \( u^{n+1} \) in the solver function may lead to 0 because of unintended integer division.
def test_potential_integer_division():
    """Choose variables that can trigger integer division."""
    theta = 1; a = 1; I = 1; dt = 2
    Nt = 4
    u, t = solver(I=I, a=a, T=Nt*dt, dt=dt, theta=theta)
    u_de = np.array([u_discrete_exact(n, I, a, theta, dt)
                     for n in range(Nt+1)])
    diff = np.abs(u_de - u).max()
    assert diff < 1E-14
Installation of a single module file decay.py:
from distutils.core import setup
setup(name='decay',
      version='0.1',
      py_modules=['decay'],
      scripts=['decay.py'],
      )
Installation:
Terminal> sudo python setup.py install
(Many variants!)
__init__.py file
setup.py:
from distutils.core import setup
import os
setup(name='decay',
      version='0.1',
      author='Hans Petter Langtangen',
      author_email='hpl@simula.no',
      url='https://github.com/hplgit/decay-package/',
      packages=['decay'],
      scripts=[os.path.join('decay', 'decay.py')]
     )
__init__.py file can be empty 
Empty __init__.py:
import decay
u, t = decay.decay.solver(...)
Do this in __init__.py to avoid decay.decay.solver:
from decay import *
Can now write
import decay
u, t = decay.solver(...)
# or
from decay import solver
u, t = solver(...)
The Git work cycle:
git pull                # before starting a new session
# edit files
git add mynewfile       # remember to add new files!
git commit -am 'Short description of what I did'
git push origin master  # before end of day or a break
See what others have done in the project:
git fetch origin         # instead of git pull
git diff origin/master   # what are the changes?
git merge origin/master  # update my files
Develop new features in a separate branch:
git branch newstuff
git checkout newstuff
# edit files
git commit -am 'Changed ...'
git push origin newstuff
When newstuff is tested and matured, merge back in master:
git checkout master
git merge newstuff
from numpy import exp
class Problem(object):
    def __init__(self, I=1, a=1, T=10):
        self.T, self.I, self.a = I, float(a), T
    def u_exact(self, t):
        I, a = self.I, self.a
        return I*exp(-a*t)
class Solver(object):
    def __init__(self, problem, dt=0.1, theta=0.5):
        self.problem = problem
        self.dt, self.theta = float(dt), theta
    def solve(self):
        self.u, self.t = solver(
            self.problem.I, self.problem.a, self.problem.T,
            self.dt, self.theta)
    def error(self):
        """Return norm of error at the mesh points."""
        u_e = self.problem.u_exact(self.t)
        e = u_e - self.u
        E = np.sqrt(self.dt*np.sum(e**2))
        return E
class Problem(object):
    def __init__(self, I=1, a=1, T=10):
        self.T, self.I, self.a = I, float(a), T
    def define_command_line_options(self, parser=None):
        """Return updated (parser) or new ArgumentParser object."""
        if parser is None:
            import argparse
            parser = argparse.ArgumentParser()
        parser.add_argument(
            '--I', '--initial_condition', type=float,
            default=1.0, help='initial condition, u(0)',
            metavar='I')
        parser.add_argument(
            '--a', type=float, default=1.0,
            help='coefficient in ODE', metavar='a')
        parser.add_argument(
            '--T', '--stop_time', type=float,
            default=1.0, help='end time of simulation',
            metavar='T')
        return parser
    def init_from_command_line(self, args):
        """Load attributes from ArgumentParser into instance."""
        self.I, self.a, self.T = args.I, args.a, args.T
class Solver(object):
    def __init__(self, problem, dt=0.1, theta=0.5):
        self.problem = problem
        self.dt, self.theta = float(dt), theta
    def define_command_line_options(self, parser):
        """Return updated (parser) or new ArgumentParser object."""
        parser.add_argument(
            '--scheme', type=str, default='CN',
            help='FE, BE, or CN')
        parser.add_argument(
            '--dt', '--time_step_values', type=float,
            default=[1.0], help='time step values',
            metavar='dt', nargs='+', dest='dt_values')
        return parser
    def init_from_command_line(self, args):
        """Load attributes from ArgumentParser into instance."""
        self.dt, self.theta = args.dt, args.theta
def experiment_classes():
    problem = Problem()
    solver = Solver(problem)
    # Read input from the command line
    parser = problem.define_command_line_options()
    parser = solver. define_command_line_options(parser)
    args = parser.parse_args()
    problem.init_from_command_line(args)
    solver. init_from_command_line(args)
    # Solve and plot
    solver.solve()
    import matplotlib.pyplot as plt
    t_e = np.linspace(0, T, 1001)    # very fine mesh for u_e
    u_e = problem.u_exact(t_e)
    plt.plot(t,   u,   'r--o')       # dashed red line with circles
    plt.plot(t_e, u_e, 'b-')         # blue line for u_e
    plt.legend(['numerical, theta=%g' % theta, 'exact'])
    plt.xlabel('t')
    plt.ylabel('u')
    plt.show()
Goals:
Problem:
 
$$
\begin{equation}
u'(t) = -au(t),\quad u(0)=I,\ 0 < t \leq T,
\tag{1}
\end{equation}
$$
 
Solution method (\( \theta \)-rule):
 
$$
u^{n+1} = \frac{1 - (1-\theta) a\Delta t}{1 + \theta a\Delta t}u^n,
\quad u^0=I\tp
$$
 
For fixed \( I \), \( a \), and \( T \), we run the three schemes for various values of \( \Delta t \), and present in a report the following results:
Terminal> python model.py --I 1.5 --a 0.25 --T 6 --dt 1.25 0.75 0.5
0.0   1.25:    5.998E-01
0.0   0.75:    1.926E-01
0.0   0.50:    1.123E-01
0.0   0.10:    1.558E-02
0.5   1.25:    6.231E-02
0.5   0.75:    1.543E-02
0.5   0.50:    7.237E-03
0.5   0.10:    2.469E-04
1.0   1.25:    1.766E-01
1.0   0.75:    8.579E-02
1.0   0.50:    6.884E-02
1.0   0.10:    1.411E-02
+ a set of plot files of numerial vs exact solution
Must write a script exper1.py to automate running model.py
and generating these results
Terminal> python exper1.py 0.5 0.25 0.1 0.05
(\( \Delta t \) values on the comand line)
Let your scientific investigations be automated by scripts!
model.py program with appropriate inputComplete script: exper1.py
subprocess Command to be run:
python model.py --I 1.2 --a 0.2 --T 8 -dt 1.25 0.75 0.5 0.1
Constructed in Python:
# Given I, a, T, and a list dt_values
cmd = 'python model.py --I %g --a %g --T %g' % (I, a, T)
dt_values_str = ' '.join([str(v) for v in dt_values])
cmd += ' --dt %s' % dt_values_str
Run under the operating system:
from subprocess import Popen, PIPE, STDOUT
p = Popen(cmd, shell=True, stdout=PIPE, stderr=STDOUT)
output, dummy = p.communicate()
failure = p.returncode
if failure:
    print 'Command failed:', cmd; sys.exit(1)
The output if the previous command run by subprocess is in a string
output:
errors = {'dt': dt_values, 1: [], 0: [], 0.5: []}
for line in output.splitlines():
    words = line.split()
    if words[0] in ('0.0', '0.5', '1.0'):  # line with E?
        # typical line: 0.0   1.25:    7.463E+00
        theta = float(words[0])
        E = float(words[2])
        errors[theta].append(E)
PNG:
Terminal> montage -background white -geometry 100% -tile 2x \ 
          f1.png f2.png f3.png f4.png f.png
Terminal> convert -trim f.png f.png
Terminal> convert f.png -transparent white f.png
PDF:
Terminal> pdftk f1.pdf f2.pdf f3.pdf f4.pdf output tmp.pdf
Terminal> pdfnup --nup 2x2 --outfile tmp.pdf tmp.pdf
Terminal> pdfcrop tmp.pdf f.pdf
Terminal> rm -f tmp.pdf
Easy to build these commands in Python and execute them with subprocess
or os.system: os.system(cmd)