
Second compulsory project: 2D wave

equation

INF5620

2013

• Deadline: Oct 15

• We recommend to work in groups of two (or three if the amount of work
is suitably extended). It is possible to work alone too.

• Make a directory oblig2 in the top directory of your INF5620 repo on
GitHub or Bitbucket to hold the various files of the project. Include a
README file with a short overview of the different files and the full names
of the students who did the project.

• Make reusable, flexible code.

• Write a short report summarizing the main results. LATEX is probably the
preferred format, but there are several other options1 too.

• Note that the last part of this compulsory exericse allows different groups
to go in different directions (visualization, high-performance computing,
more advanced numerics).

1 Mathematical problem
The project addresses the two-dimensional, standard, linear wave equation, with
damping,

∂2u

∂t2
+ b

∂u

∂t
=

∂

∂x

(
q(x, y)

∂u

∂x

)
+

∂

∂y

(
q(x, y)

∂u

∂y

)
+ f(x, y, t), (1)

with boundary condition
∂u

∂n
= 0, (2)

in a rectangular spatial domain Ω = [0, Lx]× [0, Ly]. The initial conditions are

u(x, y, 0) = I(x, y), (3)

ut(x, y, 0) = V (x, y). (4)

1http://hplgit.github.io/teamods/writing reports/index.html

1

http://hplgit.github.io/teamods/writing_reports/index.html

2 Discretization

Derive the discrete set of equations to be implemented in a program:

• the general scheme for computing un+1
i,j at interior spatial mesh points,

• the modified scheme for the first step,

• the modified scheme at boundary points (first step and subsequent steps),
unless you use the interior scheme also at the boundary with extra ghost
cells.

3 Truncation error

Compute the truncation error of the scheme at an arbitrary interior mesh point.
(It easier to start with q = const and then generalize to variable q).

4 Implementation

Implement the numerical scheme in a program. You may use wave2D_u0.py2

as a starting point (this program solves the 2D wave equation with constant
wave velocity and u = 0 on the boundary). You will need to include both scalar
(pointwise) computation of the scheme for debugging and reference as well as a
vectorized version for speed.

5 Verification: constant solution

Construct a test case with constant solution (not 0 or 1). Make a corresponding
nose test.

Invent five types of possible bugs in the implementation of the mathematical
formulas. See how many of them that lead to a wrong non-constant solution.

6 Verification: cubic solution

Assume an exact solution on the form ue(x, y, t) = X(x)Y (y)T (t) where X, Y ,
and T are polynomials of degree three or less. Construct X and Y such that the
normal derivative vanishes at the four boundaries. Fit a corresponding source
term f(x, y, t) in the wave equation.

It would be great if this exact solution also were an exact solution of the
discrete equations when q is constant and b = 0, which is often the case with lower-
order polynomials because the truncation errors involve higher-order derivatives.
The exact cubic solution fits the discrete equations at all inner mesh points,
but not on the boundary. Add a term in the boundary equation for testing
such that the exact solution also fulfills the boundary equation. Implement a
corresponding nose test.

2https://github.com/hplgit/INF5620/blob/gh-pages/src/wave/wave2D u0/wave2D u0.py

2

https://github.com/hplgit/INF5620/blob/gh-pages/src/wave/wave2D_u0/wave2D_u0.py

Hint. We outline some ideas in 1D. For constant q and b = 0 we have the
scheme [DtDtu − qDxDx = f]ni at inner points. Because [DxDxx

3]i = 6xi,
[DxDxx

2]i = 2, [DxDxx]i = 0 all are exact, the suggested u also fits the discrete
equation. On the boundary we get a modified scheme, which in operator notation
can be written as

[DtDtu = qDxDxu+ q
2

∆x
D2xu+ f]ni , i = 0,

and

[DtDtu = qDxDx − q
2

∆x
D2xu+ f]ni , i = Nx .

We have the results [D2xx
3]i = 3x2

i + ∆x2, and [D2xx
2]i = 2xi, [D2xx]i = 1.

Consider now [DtDtu = qDxDxu − q 2
∆xD2xu + f]ni . Inserting u = X(x)T (t)

requires the same f as for the PDE, but with an additional term T (t)2q∆x
because of the D2x operator acting on a cubic polynomial in x.

This test requires the f that fits the PDE to be modified on the boundary. A
possible implementation is to modify the array of f values at the boundary mesh
points directly, or perform tests on the coordinates if a pointwise evaluation of f
is requested:

def f(x, y, t):
if isinstance(x, np.ndarray) and isinstance(y, np.ndarray):

Array evaluation
f_a = # evaluate the f that fits the PDE
Modify boundary values
f_a[0,:] = ... # x=0
f_a[-1,:] = ... # x=Lx
f_a[:,0] = ... # y=0
f_a[:,-1] = ... # x=Ly

else:
Assume pointwise evaluation
tol = 1E-14 # tolerance for float comparison
f_v = ... # evaluate the f that fits the PDE
Modify boundary values
if abs(x) < tol:

f_v = ... # x=0
if abs(x-Lx) < tol:

f_v = ... # x=Lx
if abs(y) < tol:

f_v = ... # y=0
if abs(y-Ly) < tol:

f_v = ... # y=Ly

7 Exact 1D plug-wave solution in 2D

The program wave1D_dn_vc.py3 has a pulse function for simulating the propa-
gation of a plug wave, where I(x) is constant in some region of the domain and
zero elsewhere. With unit Courant number, the plug is split into two identical
waves, moving in opposite direction, exactly one cell per time step. The discrete
solution is then equal to the exact solution.

3https://github.com/hplgit/INF5620/blob/gh-pages/src/wave/wave1D/wave1D dn vc.py

3

https://github.com/hplgit/INF5620/blob/gh-pages/src/wave/wave1D/wave1D_dn_vc.py

Set b = 0 and q to a constant. Test the 2D program using a one-dimensional
plug wave in x direction with c∆t/∆x = 1 (the plug is constant in y direction
and hence compatible with the ∂/∂y = 0 boundary condition). Also propagate a
one-dimensional plug wave in the y direction with c∆t/∆y = 1. Both test cases
are essentially 1D test cases, and the results should as in the 1D case. Implement
a corresponding nose test.

8 Verification: standing, undamped waves

With no damping and constant wave velocity, our wave equation problem without
any source term admits a standing wave solution:

ue(x, y, t) = A cos(kxx) cos(kyy) cos(ωt), kx =
mxπ

Lx
, ky =

myπ

Ly
, (5)

for arbitrary amplitude A, arbitrary integers mx and my, and a suitable choice
of ω. This solution can be used to test the convergence rate of the numerical
method.

Use the truncation error analysis to set up a model for the error in terms of
the discretization parameters. Note that the truncation error is not the true error
eni,j = ue(xi, yj , tn)− uni,j , but we assume that eni,j depends on the discretization
parameters in the same way. We also assume that a norm of eni,j , e.g.,

E = ||eni,j ||`∞ = max
i

max
j

max
t
|eni,j |,

also depends on the discretization parameters in the same way. Introduce a
common discretization parameter h such that ∆t, ∆x, and ∆y are proportional
to h. Show that E = Ch2 for some C is the expected behavior of the error.
Perform experiments with decreasing h, compute E, and verify that E/h2 is
approximately constant.

9 Verification: standing, damped waves

Try to find an analytical solution of damped waves using an ansatz of the type

ue(x, y, t) = (A cos(ωt) +B sin(ωt)) e−ct cos(kxx) cos(kyymyyπ/Ly), kx =
mxπ

Lx
, ky =

myπ

Ly
.

(6)
That is, find A, B, ω, and c such that (6) solves the PDE with constant q, no
source term, and initial condition ut(x, y, 0) = 0 (as for the undamped standing
waves). Make a corresponding convergence test.

Hint. The algebra can quickly be quite involved. Getting an overview of the
algebra in a 1D version of this problem might be helpful. Start with relating A
and B through the initial conditions (u = A cos kxx cos kyy and ut = 0 as implied
by (5)) and eliminate B. After having inserted u in the PDE, two equations for
ω and c arise from factoring the sine and cosine terms in time. One equation can

4

be solved for ω =
√
k2
xq + k2

yq − c2, while the other can be solved for c = b/2 by

inserting the found ω expression.

10 Verification: manufactured solution

Choose some q(x, y) 6= 0 and find f(x, y, t) such that (wave:app:exer:standing:waves:damped)
is a solution to the general 2D wave equation problem with damping and variable
wave velocity. Find corresponding I and V , and make a convergence test that
recovers the expected convergence rate. Make a corresponding nose test.

Hint. You may explore sympy for automating the analytical work:

>>> from sympy import *
>>> x = Symbol(’x’)
>>> q=x**2
>>> u=sin(x)
>>> r = diff(q*diff(u, x), x) # Derivative: (q*u_x)_x
>>> simplify(r)
x*(-x*sin(x) + 2*cos(x))

11 Investigate a physical problem
The purpose of this part is to explore what happens to a wave that enters a
medium with different wave velocity. A particular physical interpretation can
be wave propagation of a tsunami over a subsea hill. The unknown u(x, y, t) is
then the elevation of the ocean surface, and the boundary condition ∂u/∂n = 0
means that the waves are perfectly reflected, because of a steep hill at the shore,
or the condition expresses symmetry in the solution. The wave velocity is in this
case given by q = gH(x, y), where g is the acceleration of gravity and H(x, y) is
the stillwater depth.

It can be wise to do Problem 214, because a 1D program corresponding to
the present 2D problem allows much faster experimentation with parameters
and effects.

The initial surface is taken as a smooth Gaussian function

I(x; I0, Ia, Im, Is) = I0 + Ia exp

(
−
(
x− Im
Is

)2
)
, (7)

with Im = 0 reflecting the location of the peak of I(x) and Is being a measure
of the width of the function I(x) (Is is

√
2 times the standard deviation of the

familiar normal distribution curve).
Three different bottom shapes can be investigated. A 2D Gaussian hill can

be modeled by

B(x;B0, Ba, Bmx, Bmy, Bs, b) = B0+Ba exp

(
−
(
x−Bmx

Bs

)2

−
(
y −Bmy

bBs

)2
)
,

(8)

4../pub/sphinx wave/. part0010 main wave.html#problem-21-earthquake-generated-tsunami-over-a-subsea-hill

5

../pub/sphinx_wave/._part0010_main_wave.html#problem-21-earthquake-generated-tsunami-over-a-subsea-hill

where b is a scaling parameter: b = 1 gives a circular Gaussian function with
circular contour lines, while b 6= 1 gives an elliptic shape with elliptic contour
lines.

A less smooth hill is modeled by the ”cosine hat” function

B(x;B0, Ba, Bmx, Bmy, Bs) = B0+Ba cos

(
π
x−Bmx

2Bs

)
cos

(
π
y −Bmy

2Bs

)
, (9)

when 0 ≤
√
x2 + y2 ≤ Bs and B = B0 outside this circle.

A more dramatic hill shape is a box:

B(x;B0, Ba, Bm, Bs, b) = B0 +Ba (10)

for x and y inside a rectangle

Bmx −Bs ≤ x ≤ Bmx +Bs, Bmy − bBs ≤ y ≤ Bmy + bBs,

and B = B0 outside this rectangle. The b parameter controls the rectangular
shape of the cross section of the box.

Note that the initial condition and the listed bottom shapes are symmetric
around the line y = Bmy. We therefore expect the surface elevation also to
be symmetric with respect to this line. This means that we can halve the
computational domain by working with [0, Lx] × [0, Bmy]. Along the upper
boundary, y = Bmy, we must impose the symmetry condition ∂η/∂n = 0. Such
a symmetry condition (−ηx = 0) is also needed at the x = 0 boundary because
the initial condition has a symmetry here. At the lower boundary y = 0 we also
set a Neumann condition (which becomes −ηy = 0). The wave motion is to be
simulated until the wave hits the reflecting boundaries where ∂η/∂n = ηx = 0.

Investigate how different hill shapes, different sizes of the water gap above
the hill, and different resolutions ∆x = ∆y = h and ∆t influence the numerical
quality of the solution. One anticipates that the less smooth hill shapes will
introduce more numerical noise. Presenting the results as movies of the surface
elevation is effective.

12 Additional tasks
The groups can select between one or more of the following tasks.

12.1 Harmonic averaging

Harmonic means are often used if the coefficient q is non-smooth or discontinuous.
Investigate if harmonic averaging of q works better than the arithmetic averging
for the box-shaped subsea hill. The effect might not be big unless the water
gap at the top of the hill is small. It can be wise to test the effect of harmonic
averaging in 1D first.

Remark. With a small gap between the obstruction and the free surface, and
with abrupt changes in the bottom shape, the model PDE does not necessarily
describe the wave motion in an accurate or qualitatively correct way.

6

12.2 Visualization

Create some fancy 3D visualization of the water waves and the subsea hill. Try
to make the hill transparent. Suitable tools are

• Mayavi5

• Paraview6

• OpenDX7

• Matplotlib8

12.3 Open outlet boundary: 1D condition

Implement an open boundary condition at x = Lx, ut+
√
qux = 0, as suggested in

Problem 209. This condition is only correct in 1D, but might work satisfactorily
in 2D if the wave is approximately one-dimensional when it hits the boundary.
See how well this condition works in letting the tsunami pass out of the domain.
The distance from the subsea hill (which disturbes the wave) and the outlet
boundary x = Lx is an important parameter.

12.4 Open outlet boundary: absorbing layer

Instead of using a condition ut +
√
qux = 0, which is exact only for plane waves

propagating in x direction, one can add an artificial domain [Lx, Lx + δ]× [0, Ly]
where waves are sufficiently damped and absorbed. The goal of an open boundary
condition is to avoid waves being reflected back into the domain. Turn on the
damping parameter b in [Lx, Lx + δ]× [0, Ly], and test if it is wise to vary b, say
in a linear or exponential fashion to have a smooth transition from b = 0 in the
physical domain and to some significant (efficient) b value towards the artificial
boundary x = Lx + δ.

12.5 Compiled loops

Extend the program with compiled loops using one or more of the following
techniques:

• Cython code

• Fortran code interfaced via f2py

• C code interfaced via Cython or f2py

• C/C++ code interfaced via scipy.weave

• C/C++ code interfaced via Instant10

5http://code.enthought.com/projects/mayavi/
6http://www.paraview.org/
7http://www.opendx.org/
8http://matplotlib.org/
9../pub/sphinx wave/. part0010 main wave.html#problem-20-implement-open-boundary-conditions

10https://launchpad.net/instant

7

http://code.enthought.com/projects/mayavi/
http://www.paraview.org/
http://www.opendx.org/
http://matplotlib.org/
../pub/sphinx_wave/._part0010_main_wave.html#problem-20-implement-open-boundary-conditions
https://launchpad.net/instant

Note that Instant comes with FEniCS (sudo apt-get install fenics on
Ubuntu will install Instant) and it is described in the FEniCS book11.

12.6 Parallel computing

Make a parallel version of the program using different approaches:

• Automatic OpenMP code in migrated Cython loops using cython.parallel12

• OpenMP in migrated C or Fortran loops

• MPI in migrated C or Fortran loops

• mpi4py MPI programming from Python (distribute vectorized code)

• Automatic parallelization of vectorized NumPy code via NumbaPro13 (a
license can be made available)

11https://launchpad.net/fenics-book
12http://docs.cython.org/src/userguide/parallelism.html
13http://docs.continuum.io/numbapro/

8

https://launchpad.net/fenics-book
http://docs.cython.org/src/userguide/parallelism.html
http://docs.continuum.io/numbapro/

	Mathematical problem
	Discretization
	Truncation error
	Implementation
	Verification: constant solution
	Verification: cubic solution
	Exact 1D plug-wave solution in 2D
	Verification: standing, undamped waves
	Verification: standing, damped waves
	Verification: manufactured solution
	Investigate a physical problem
	Additional tasks
	Harmonic averaging
	Visualization
	Open outlet boundary: 1D condition
	Open outlet boundary: absorbing layer
	Compiled loops
	Parallel computing

