
Parallel Computing

Xing Cai

September 24, 2013

1 Introduction

Parallel computing can be understood as solving a computational problem through collaborative use of

multiple resources that belong to a parallel computer system. Here, a parallel system can be anything

between a single multiprocessor machine and an internet-connected cluster that is made up of hybrid

compute nodes. There are two main motivations for adopting parallel computations. The first motivation

is about reducing the computational time, because employing more computational units for solving a same

problem usually results in lower wall-time usage. The second—and perhaps more important—motivation

is the wish of obtaining more details, which can arise from higher temporal and spatial resolutions, more

advanced mathematical and numerical models, and more realizations, etc. In this latter situation, parallel

computing enables us to handle a larger amount of computation under the same amount of wall-time. Very

often, it also gives us access to more computer memory, which is essential for many large computational

problems.

The most important issues for understanding parallel computing are finding parallelism, implementing

parallel code, and evaluating the performance. These will be briefly explained in the following text, with

simple supporting examples.

2 Identifying parallelism

Parallelism roughly means that some work of a computational problem can be divided into a number of

simultaneously computable pieces. The applicability of parallel computing to a computational problem

relies on the existence of inherent parallelism in some form. Otherwise, a parallel computer will not help

at all.

Let us take for example the standard axpy operation, which updates a vector y by adding it to another

vector x as follows:

y← αx+y,

where α is a scalar constant. If we look at the entries of the y vector: y1,y2, . . . ,yn, we notice that

computing yi is totally independent of y j, thus making each entry of y a simultaneously computable

piece. For instance, we can employ n workers, each calculating a single entry of y.

The above example is extremely simple, because the n pieces of computation are completely inde-

pendent of each other. Such a computational problem is often termed embarrassingly parallel. For other

1



problems, however, parallelism may be in disguise. This can be exemplified by the dot product between

two vectors x and y:

d = x ·y :=
n

∑
i=1

xiyi = x1y1 + x2y2 + . . .+ xnyn.

At a first glance, parallelism is not obvious within a dot product. However, if an intermediate vector d

is introduced, such that di = xiyi, then parallelism immediately becomes evident because the n entries of

the d vector can be computed simultaneously. Nevertheless, the remaining computational task:

d = 0, d← d +di for i = 1,2, . . . ,n

requires collaboration and coordination among n workers to extract parallelism. The idea is as follows.

First, each worker with an odd-number ID adds its value with the value from the neighboring worker

with an ID of one higher. Thereafter, all the even-numbered workers retire and the remaining workers

repeat the same process until there is only one worker left. The solely surviving worker possesses the

desired final value of d. Actually, this is how a parallel reduction operation is typically implemented. We

can also see that the parallelized summation has ⌈log2 n⌉ stages, each involving simultaneous additions

between two and two workers. Although it may seem that the parallel version should be dramatically

faster than the original serial version of summation, which has n stages, we have to remember that each

stage in the parallel counterpart requires data transfer between two and two workers, causing so-called

communication overhead.

What is more intriguing is that parallelism can exist on different levels. Let us revisit the example of

summing up the d vector, but assume now that the number of workers, m, is smaller than the vector length

n. In such a case, each worker becomes responsible for several entries of the d vector, and here are several

issues that require our attention:

1. The n entries of the d vector should be divided among the m workers as evenly as possible. This is

called load balancing. For this particular example, even when n is not a multiple of m, a fair work

division makes the heaviest and lightest loaded workers only differ by one entry.

2. Suppose each worker prefers a contiguous segment of d, then worker k, 1 ≤ k ≤ m, should be

responsible for entry indices from ((k− 1) ∗ n)/m+ 1 until (k ∗ n)/m. Here, we let / denote the

conventional integer division in computer science.

3. The local summations by the m workers over their assigned entries can be done simultaneously, and

each worker stores its local summation result in a temporary scalar value ds
k.

4. Finally, the m local summation results ds
k, 1 ≤ k ≤ m, can be added up using a parallel reduction

operation as described above.

The above examples are only meant for illustration. Parallelism in practical computational problems

exist in many more different forms. An incomplete list of frequently encountered types of paralleliz-

able computations involve dense linear-algebra operations, sparse linear-algebra operations, explicit and

implicit computations associated with regular meshes, implicit computations associated with irregular

meshes, fast Fourier transforms, and many-body computations.

3 Parallelization

Finding parallelism in a computational problem is only the start. A formal approach to designing parallel

algorithms is Foster’s Methodology [2, 7], which is a four-step process. The first step is partitioning,

2



which cuts up the concurrent computational work and/or the accompanying data into as many small

pieces as possible. The second step of Foster’s Methodology is about finding out what data should be

exchanged between which pieces. The third step is about agglomerating the many small pieces into a

few larger tasks, to obtain an appropriate level of granularity with respect to the hardware resources on a

target parallel computer. The last step of Foster’s Methodology is about mapping the tasks to the actual

hardware resources, so that load balance is achieved and that the resulting data communication cost is low.

A rule-of-the-thumb regarding communication is that two consecutive data transfers, between the same

sender and receiver, are more costly than one merged data transfer. This is because each data transfer

typically incurs a constant start-up cost, termed latency, which is independent of the amount of data to be

transferred.

To make a parallel algorithm run efficiently on a parallel computer, the underlying hardware architec-

ture has to be considered. Although parallel hardware architectures can be categorized in many ways, the

most widely adopted consideration is about whether the compute units of a parallel system share the same

memory address space. If yes, the parallel system is termed shared memory, whereas the other scenario

is called distributed memory. It should be mentioned that many parallel systems nowadays have a hybrid

design with respect to the memory organization, having a distributed-memory layout on the top level,

whereas each compute node is itself a small shared-memory system.

Luckily, the styles of parallel programming are less diverse than the different parallel architectures

produced by different hardware vendors. The MPI programming standard [6, 3] is currently the most

widely used. Although designed for distributed memory, MPI programming can also be applied on

shared-memory systems. An MPI program operates a number of MPI processes, each with its own

private memory. Computational data should be decomposed and distributed among the processes, and

duplication of (global) data should be avoided. Necessary data transfers are enabled in MPI by invoking

specific MPI functions at appropriate places of a parallel program. Data, which are called messages in

MPI terminology, can either be passed from one sender process to a receiver process, or be exchanged col-

lectively among a group of processes. Parallel reduction operations are namely implemented as collective

communications in MPI.

OpenMP [1] is a main alternative programming standard to MPI. The advantage of OpenMP is its

simplicity and minimally-intrusive programming style, whereas the performance of an OpenMP program

is most often inferior to that of an equivalent MPI implementation. Moreover, OpenMP programs can

only work on shared-memory systems.

With the advent of GPUs as main accelerators for CPUs, two new programming standards have

emerged as well. The CUDA [4] hardware abstraction and programming language extension are tied to

the hardware vendor NVIDIA, whereas the OpenCL framework [5] targets heterogeneous platforms that

consist of both GPUs and CPUs and possibly other processors. In comparison with MPI/OpenMP pro-

gramming, there are considerably more details involved with both CUDA and OpenCL. The programmer

is responsible for host-device data transfers, mapping computational work to the numerous computational

units—threads—of a GPU, plus implementing the computations to be executed by each thread. In order

to use modern GPU-enhanced clusters, MPI programming is typically combined with CUDA or OpenCL.

4 Performance of parallel programs

It is common to check the quality of parallel programs by looking at their scalability, which is further

divided as strong and weak scalability. The former investigates speedup, i.e., how quickly the wall-time

3



usage can be reduced when more compute units are used to solve a fixed-size computational problem.

The latter focuses on whether the wall-time usage remains as constant when the problem size increases

linearly proportional to the number of compute units used.

The blame for not achieving good scalability has traditionally been put too much on the non-parallelizable

fraction of a computational problem, giving rise to the famous laws of Amdahl and Gustafson-Barsis.

However, for large enough computational problems, the amount of inherently serial work is often negli-

gible. The obstacle to perfect scalability thus lies with different forms of parallelization overhead.

In addition to the already mentioned overhead due to data transfers, there are other types of overhead

that can be associated with parallel computations:

• Parallel algorithms may incur extra calculations that are not relevant for the original serial computa-

tional problems. Data decomposition, such as finding out the index range of a decomposed segment

of a vector, typically requires such extra calculations.

• Synchronization is often needed between computational tasks. A simple example can be found in

the parallel reduction operation, where all pairs of workers have to complete, before proceeding to

the next stage.

• Sometimes, in order to avoid data transfers, duplicated computations may be adopted between

neighbors.

• In case of load imbalance, either because the target computational problem is impossible to be

decomposed evenly, or because an ideal decomposition is too costly to compute, some hardware

units may from time to time stay idle while waiting for the others.

It should be mentioned that there are also factors that may be scalability friendly. First, many parallel

systems have the capability of carrying out communications at the same time of computations. This gives

the possibility of hiding the communication overhead. However, to enable communication-computation

overlap can be a challenging programming task. Second, it sometimes happens that by using many nodes

of a distributed-memory system, the subproblem per node falls beneath a certain threshold size, thus

suddenly giving rise to a much better utilization of the local caches.

References

[1] Barbara Chapman, Gabriele Jost, and Ruud van der Pas. Using OpenMP: Portable Shared Memory

Parallel Programming. MIT Press, 2007.

[2] Ian Foster. Designing and Building Parallel Programs. Addison-Wesley, 1995.

[3] William Gropp, Ewing Lusk, and Anthony Skjellum. Using MPI. MIT Press, 2nd edition, 1999.

[4] David B. Kirk and Wen-mei W. Hwu. Programming Massively Parallel Processors: A Hands-on

Approach. Morgan Kaufmann, 2010.

[5] Aaftab Munshi, Benedict Gaster, Timothy G. Mattson, James Fung, and Dan Ginsburg. OpenCL

Programming Guide. Addison-Wesley, 2011.

[6] Peter S. Pacheco. Parallel Programming With MPI. Morgan Kaufmann, 1997.

[7] Michael J. Quinn. Parallel Programming in C with MPI and OpenMP. McGrawHill, 2003.

4


