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What will we learn today?

• Introduction to parallel computing
• Finding parallelism
• Parallel programming
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Introduction to parallel computing
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Background (1)

• Increasingly sophisticated mathematical models
• Increasingly higher resolution ∆x, ∆y, ∆z, ∆t

• Increasingly longer computation time
• Increasingly larger memory requirement
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Background (2)

Traditional serial computing (single processor) has limits

• Physical size of transistors
• Memory size and speed
• Instruction level parallelism is limited
• Power usage, heat problem

Moore’s law will not continue forever
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Background (3)

Parallel computers are now everywhere!
• CPUs have more than one core per chip
• One laptop may have several multicore chips
• There are also accelerator-based parallel architectures

— e.g. GPGPU and Intel Xeon Phi coprocessor
• Clusters of different kinds
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What is parallel computing?

Parallel computing: simultaneous use of multiple
processing units to solve one computational problem

Plot obtained from https://computing.llnl.gov/tutorials/parallel comp/
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Why parallel computing?

• Saving computation time
• Solving larger and more challenging problems

• access to more memory
• Providing concurrency
• Saving cost

Introduction to parallel computing – p. 8



Example of Indian Ocean

• 1km×1km resolution overall: about 40×106 mesh
points

• 200m×200m resolution overall: 109 mesh points
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Example of Indian Ocean (cont’d)

Suppose we solve a 2D shallow-water wave equation

∂2u
∂t2

= ∇ · (gH(x,y)∇u)

over the Indian Ocean, using finite differences

• Four 2D arrays are needed: uℓ+1
i, j , uℓ

i, j, uℓ−1
i, j , Hi, j

• Using double-precision (each value needs 8 bytes)
• 40×106 mesh points→ 4×40×106×8= 1.28 GB

memory needed
• 109 mesh points→ 32 GB memory needed→ too

large for a regular computer
• Parallel computing necessary also because of the

amount of floating-point operations
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Today’s most powerful computer

• Tianhe-2: a cluster of multi-core CPUs and
coprocessors

• Total number of cores: 3,120,000
• Theoretical peak performance: 54.902 petaFLOPS

(54.902×1015 floating-point operations per second)
• Linpack benchmark: 33.863 petaFLOPS
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Top 5 supercomputers (June 2013)

Rank Name Location Peak Linpack
1 Tianhe-2 NUDT, China 54.902 33.863
2 Titan Oak Ridge 27.113 17.590
3 Sequoia Lawrence Livermore 20.132 17.173
4 K computer RIKEN, Japan 11.280 10.510
5 Mira Argonne 10.066 8.587
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Top500 list (June 2013)

http://www.top500.org
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Flynn’s taxonomy

Classification of computer architectures:

• SISD (single instruction, single data) – serial
computers

• SIMD (single instruction, multiple data) – array
computers, vector computers, GPUs

• MISD (mulitple instruction, single data) – systolic array
(very rare)

• MIMD (mulitple instruction, multiple data) –
mainstream parallel computers
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Classification of parallel computers

From the memory perspective:

• Shared-memory systems
• A single global address space
• SMP – (symmetric multiprocessing)
• NUMA – (non-uniform memory access)
• Multi-core processor – CMP (chip multi-processing)

• Distributed-memory systems
• Each node has its own physical memory
• Massively parallel systems
• Different types of clusters

• Hybrid distributed-shared memory systems
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Shared memory

• Advantage: user-friendly
• Disadvantage: poor scalability

Plot obtained from https://computing.llnl.gov/tutorials/parallel comp/
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Distributed memory

• Advantages: data locality (no interference),
cost-effective

• Disadvantages: explicit communication, explicit
decomposition of data or tasks

Plot obtained from https://computing.llnl.gov/tutorials/parallel comp/
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Hybrid distributed-shared memory

Plot obtained from https://computing.llnl.gov/tutorials/parallel comp/
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Finding parallelism
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Introduction

• Parallelism: Some work of a computational problem
can be divided into a number of simultaneously
computable pieces

• Applicability of parallel computing depends on the
existence of parallelism
• No parallelism→ no use of parallel computers

• Parallelism can exist in different forms
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Example 1

The axpy operation involves two vectors:

y = αx+y

• Computing yi can be done totally independently of y j

• The entries of y can be computed simultaneously
• Suppose the length of y is n, we can employ n workers,

each computing a single entry
• Embarrassingly parallel
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Example 2

Dot-product between two vectors:

d = x ·y := x1y1+ x2y2+ . . .+ xnyn.

Can we also employ n workers to do the computational
work?

• At a first glance, parallelism is not obvious
• However, if we temporally introduce an assistant vector

d, such that di = xiyi, then each worker can
independently compute one entry of d
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Example 2 (cont’d)

But what about the remaining computational work?

d = 0, d← d +di for i = 1,2, . . . ,n

• Now, the n workers need to collaborate!
• Let each even-ID worker k give its computed dk value

to worker k−1, who does dk−1+dk

• Then, all the even-ID workers retire and let the
remaining workers repeat the above step, until there is
only one worker left

• The solely surviving worker has the correctly computed
value of d
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Parallel reduction

• Parallel reduction: Using n workers to carry out similar
computations such as

d = 0, d← d +di for i = 1,2, . . . ,n

• ⌈log2 n⌉ stages are needed
• During each stage, two and two workers

collaborate
• It is seemingly much faster than the original serial

operation, which has n stages
• However, collaboration means additional time

usage—overhead
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Example 2 revisited

What if we employ m workers, where m < n?
• Each worker is responsible for several entries of d
• First, each worker independently does a local

summation over its assigned entries of d
• Then, the m workers carry out a parallel reduction
• Very important that the workers are assigned with

(roughly) the same number of entries of d—load
balance
• Even if n is not a multiple of m, a fair work division

makes the heaviest and lightest loaded workers
only differ by one entry
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Example 3

Matrix-vector multiply
y = Ax

where A is a n×n matrix, and yi =
∑n

j=1 Ai jx j

• Suppose n workers are employed
• Division of work with respect to the rows of A

• Each worker computes one entry of y
• Each worker makes use of the entire x vector

• Division of work with respect to the columns of A
• Each worker uses only one entry of x
• However, parallel reduction is needed to compute

each entry of y

• Actually, we can employ as many as n2 workers
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Example 4

1D standard wave equation
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∂2u
∂t2

= γ2∂2u
∂x2

, x ∈ (0,1), t > 0,

u(0, t) =UL,

u(1, t) =UR,

u(x,0) = f (x),

∂
∂t

u(x,0) = 0.
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Example 4 (cont’d)

Finite difference discretization (with n interior mesh points):

u0
i = f (xi), i = 0, . . . ,n+1,

u−1
i = u0

i +
1
2

C2(u0
i+1−2u0

i +u0
i−1), i = 1, . . . ,n

uk+1
i = 2uk

i −uk−1
i +C2(uk

i+1−2uk
i +uk

i−1),

i = 1, . . . ,n, k ≥ 0,

uk+1
0 =UL, k ≥ 0,

uk+1
n+1 =UR, k ≥ 0.

C = γ∆t/∆x
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Example 4 (cont’d)

Each worker responsible for a sub-interval of the domain

• The spatial domain is divided

• Each worker only updates the values of uk+1 on its
assigned mesh points

• Coordination is needed: A worker cannot go to the
next time level, unless both its left and right neighbors
have finished the current time level

Finding parallelism – p. 29



Example 5

Finite differences for 2D wave equation
• An explicit numerical scheme (point-wise update):

uk+1
i, j = S(uk

i, j±1,u
k
i±1, j,u

k
i, j,u

k−1
i, j ,xi, j, tk)

• Can compute all new uk+1
i, j values simultaneously

• Each worker is responsible for a rectangular region
• Before moving onto a new time level, workers need

coordination
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Example 5 (cont’d)

Example of work division

5

4

3

2

1

0

Finding parallelism – p. 31



Example 6

Floyd’s algorithm: finding the shortest paths
• Starting point: a graph of vertices and weighted edges

• Each edge is of a direction and has a length
• if there’s path from vertex i to j, there may not be

path from vertex j to i
• path length from vertex i to j may be different than

path length from vertex j to i

• Objective: finding the shortest path between every pair
of vertices (i→ j)
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Example 6 (cont’d)

Input: n — number of vertices
a — adjacency matrix

Output: Transformed a that contains the shortest path
lengths

for k← 0 to n−1
for i← 0 to n−1

for j ← 0 to n−1
a[i, j]← min(a[i, j], a[i,k]+a[k, j])

endfor
endfor

endfor
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Example 6 (cont’d)

• Inside the k’th iteration

for (i=0; i<n; i++)
for (j=0; j<n, j++)
a[i][j] = MIN(a[i][j], a[i][k]+a[k][j]);

• Can all the entries in a be updated concurrently?
• Yes, because the k’th column and the k’th row will not

change during the k’th iteration!
• Note that
a[i][k]=MIN(a[i][k],a[i][k]+a[k][k])
will be the same as a[i][k]

• Note that
a[k][j]=MIN(a[k][j],a[k][k]+a[k][j])
will be the same as a[k][j]
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Remarks so far

• For different computational problems, parallelism may
exist in different forms

• For a same computational problem, parallelism may
exist on different levels

• Finding parallelism (as much as possible) may not be
straightforward

• However, once parallelism is identified, parallel
computing becomes possible
• Also need to understand the required collaboration

between workers
• Parallel programming is the next big step
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Parallel programming
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Parallel programming models

• Threads model
• Easy to program (such as OpenMP)
• Difficult to scale to many CPUs (NUMA, cache

coherence)
• Message-passing model

• Many programming details (MPI or PVM)
• Better user control (data & work decomposition)
• Larger systems and better performance

• Stream-based programming (for using GPUs)
• Hybrid parallel programming
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OpenMP programming

OpenMP is a portable API for programming shared-memory
computers

• Existence of multiple threads
• Use of compiler directives
• Fork-join model

Plot obtained from https://computing.llnl.gov/tutorials/openMP/
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OpenMP example

Dot-product between two vectors x and y:

d = x ·y := x1y1+ x2y2+ . . .+ xnyn.

d = 0.0;

#pragma omp parallel for \
default(shared) private(i) schedule(static,chunk) reduction(+:d)

for (i=0; i < n; i++)
d = d + (x[i] * y[i]);
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MPI programming

MPI (message passing interface) is a library standard

• Implementation(s) of MPI available on almost every
major parallel platform

• Portability, good performance & functionality
• Each process has its local memory
• Explicit message passing enables information

exchange and collaboration between processes

More info: http://www-unix.mcs.anl.gov/mpi/
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MPI example

Dot-product between two vectors: d =
∑n

i=1 xiyi

MPI_Comm_size (MPI_COMM_WORLD, &num_procs);
MPI_Comm_rank (MPI_COMM_WORLD, &my_rank);

my_start = n*my_rank/num_procs;
my_stop = n*(my_rank+1)/num_procs;

my_d = 0.;
for (i=my_start; i<my_stop; i++)
my_d = my_d + (x[i] * y[i]);

MPI_Allreduce (&my_d, &d, 1, MPI_DOUBLE,
MPI_SUM, MPI_COMM_WORLD);

In this example, we’ve assumed that both x and y are duplicated on all MPI processes
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Data decomposition

• If an MPI process only uses a subset of the entire data
structure, data decomposition should be done
• Otherwise, data duplication will be a killing factor

• Very often, neighboring MPI processes have some
overlap in their “data footprints”
• Need to distinguish the computational

responsibility from data footprint
• Ghost points (halo points) are usually part of the

local data structure of an MPI process
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Solving 1D wave equation; revisited

∂2u
∂t2

= γ2∂2u
∂x2

0< x < 1

• Uniform mesh in x-direction: n+2 points, ∆x = 1
n+1

• x0 is left boundary point, xn+1 is right boundary point
• x1,x2, . . . ,xn are interior points

• Notation: uℓ
i ≈ u(i∆x, ℓ∆t)

• ∂2u
∂t2 ≈

1
∆t2

(

uℓ+1
i −2uℓ

i +uℓ−1
i

)

• ∂2u
∂x2 ≈

1
∆x2

(

uℓ
i−1−2uℓ

i +uℓ
i+1

)

• Overall numerical scheme:

uℓ+1
i =2uℓ

i−uℓ−1
i +γ2 ∆t2

∆x2

(

uℓ
i−1−2uℓ

i +uℓ
i+1

)

i=1,2, . . . ,n
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Revisit continues (1)

Serial implementation
• Three 1D arrays are needed:

• uℓ+1: double *up=(double*)malloc((n+2)*sizeof(double));

• uℓ: double *u=(double*)malloc((n+2)*sizeof(double));

• uℓ−1: double *um=(double*)malloc((n+2)*sizeof(double));

• A while-loop for doing the time steps
• At each time step, a for-loop for updating the interior

points
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Revisit continues (2)

Main time loop:
while (t<T){

t += dt;

for (i=1; i<=n; i++)

up[i] = 2*u[i]-um[i]+C*(u[i-1]-2*u[i]+u[i+1]);

up[0] = value_of_left_BC(t); // enforcing left BC

up[n+1] = value_of_rigt_BC(t); // enforcing right BC

/* preparation for next time step: shuffle the three arrays */

tmp = um;

um = u;

u = up;

up = tmp;

}
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MPI for 1D wave equation

MPI parallelization starts with work division
• The global domain is decomposed into P subdomains

• Actually, the n interior points are divided, due to the
chosen Dirichlet boundary conditions

• In case of Neumann boundary conditions, the n+2
points are to be divided
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MPI for 1D wave equation (cont’d)

• Each subdomain has n/P interior points, plus two
“ghost points”

int n_local = n/P; // assume that n is divisible by P

double *up_local=(double*)malloc((n_local+2)*sizeof(double));

double *u_local=(double*)malloc((n_local+2)*sizeof(double));

double *um_local=(double*)malloc((n_local+2)*sizeof(double));

• If there is a neighbor subdomain to the side, the
value of the ghost point is to be provided

• Otherwise, the ghost point is actually a physical
boundary point
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MPI for 1D wave equation (cont’d)

Parallel implementation using MPI
• First, up local[i] is computed on each interior point
i=1,2,...,n local

• If there’s neighbor on the left,
• send up local[1] to the left neighbor
• receive up local[0] from the left neighbor

• If there’s neighbor on the left,
• send up local[n local] to the right neighbor
• receive up local[n local+1] from the right

neighbor
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MPI for 1D wave equation (cont’d)

Overlapping communication with computation
• up local[1] is computed first
• Initiate communication with the left neighbor using
MPI Isend and MPI Irecv

• up local[M local] is then computed
• Initiate communication with the right neighbor using
MPI Isend and MPI Irecv

• Afterward, main local computation over indices
i=2,3,...,n local-1

• Finally, finish communication with left neighbor using
MPI Wait

• Finally, finish communication with right neighbor using
MPI Wait
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What about 2D wave equation?

• In 2D, each subdomain is a rectangle
• One layer of ghost points around
• Each MPI process has (at most) four neighbors

• Four outgoing messages
• Four incoming messages

• Each pair of neighbors exchange a 1D array in
between
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Recap of parallelization

• Identify the parts of a serial code that have
concurrency

• Be aware of inhibitors to parallelism (e.g. data
dependency)

• When using OpenMP
• insert directives to create parallel regions

• When using MPI
• decide an explicit decomposition of tasks and/or

data
• insert MPI calls

Parallel programming requires a new way of thinking
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Some useful concepts

• Cost model of sending a message tC(L) = τ+βL

• Speed-up

S(P) =
T (1)
T (P)

• Parallel efficiency

η(P) =
S(P)

P

• Factors of parallel inefficiency
• communication, synchronization
• load imbalance
• additional calculations due to parallelization
• non-parallelizable sections
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Amdahl’s law

The upper limit of speedup

T (1)
T (P)

≤
T (1)

( fs +
fp

P )T (1)
=

1

fs +
1− fs

P

<
1
fs

• fs – fraction of code that is serial (not parallelizable)
• fp – fraction of code parallelizable: fp = 1− fs
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Gustafson–Barsis’s law

Things are normally not so bad as Amdahl’s law says

• Normalize the parallel execution time to be 1
• Scaled speed-up

Ss(P) =
fs +P fp

fs + fp
= fs +P(1− fs) = P+(1−P) fs

• fs has a different meaning than Amdahl’s law
• fs normally decreases as the problem size grows
• Encouraging to solve larger problems with larger P
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Granularity

Granularity is a qualitative measure of the ratio of
computation over communication

• Fine-grain parallelism
• small amounts of computation between

communication
• load imbalance may be a less important issue

• Coarse-grain parallelism
• large amounts of computation between

communication
• high ratio of computation over communication

Objective: Design coarse-grain parallel algorithms, if
possible
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Final remarks
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Recap of parallelization

• Identify the parts of a serial code that have
concurrency

• Be aware of inhibitors to parallelism (e.g. data
dependency)

• When using OpenMP
• insert directives to create parallel regions

• When using MPI
• decide an explicit decomposition of tasks and/or

data
• insert MPI calls

Parallel programming requires a new way of thinking
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Summary

• We’re already at the age of parallel computing
• Parallel computing relies on parallel hardware
• Parallel computing needs parallel software
• So parallel programming is very important

• new way of thinking
• identification of parallelism
• design of parallel algorithm
• implementation can be a challenge
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