
Parallel Computing

INF5620 lecture: Parallel computing – p. 1

What will we learn today?

• Introduction to parallel computing
• Finding parallelism
• Parallel programming

INF5620 lecture: Parallel computing – p. 2

Introduction to parallel computing

Introduction to parallel computing – p. 3

Background (1)

• Increasingly sophisticated mathematical models
• Increasingly higher resolution ∆x, ∆y, ∆z, ∆t

• Increasingly longer computation time
• Increasingly larger memory requirement

Introduction to parallel computing – p. 4

Background (2)

Traditional serial computing (single processor) has limits

• Physical size of transistors
• Memory size and speed
• Instruction level parallelism is limited
• Power usage, heat problem

Moore’s law will not continue forever

Introduction to parallel computing – p. 5

Background (3)

Parallel computers are now everywhere!
• CPUs have more than one core per chip
• One laptop may have several multicore chips
• There are also accelerator-based parallel architectures

— e.g. GPGPU and Intel Xeon Phi coprocessor
• Clusters of different kinds

Introduction to parallel computing – p. 6

What is parallel computing?

Parallel computing: simultaneous use of multiple
processing units to solve one computational problem

Plot obtained from https://computing.llnl.gov/tutorials/parallel comp/

Introduction to parallel computing – p. 7

Why parallel computing?

• Saving computation time
• Solving larger and more challenging problems

• access to more memory
• Providing concurrency
• Saving cost

Introduction to parallel computing – p. 8

Example of Indian Ocean

• 1km×1km resolution overall: about 40×106 mesh
points

• 200m×200m resolution overall: 109 mesh points
Introduction to parallel computing – p. 9

Example of Indian Ocean (cont’d)

Suppose we solve a 2D shallow-water wave equation

∂2u
∂t2

= ∇ · (gH(x,y)∇u)

over the Indian Ocean, using finite differences

• Four 2D arrays are needed: uℓ+1
i, j , uℓ

i, j, uℓ−1
i, j , Hi, j

• Using double-precision (each value needs 8 bytes)
• 40×106 mesh points→ 4×40×106×8= 1.28 GB

memory needed
• 109 mesh points→ 32 GB memory needed→ too

large for a regular computer
• Parallel computing necessary also because of the

amount of floating-point operations
Introduction to parallel computing – p. 10

Today’s most powerful computer

• Tianhe-2: a cluster of multi-core CPUs and
coprocessors

• Total number of cores: 3,120,000
• Theoretical peak performance: 54.902 petaFLOPS

(54.902×1015 floating-point operations per second)
• Linpack benchmark: 33.863 petaFLOPS

Introduction to parallel computing – p. 11

Top 5 supercomputers (June 2013)

Rank Name Location Peak Linpack
1 Tianhe-2 NUDT, China 54.902 33.863
2 Titan Oak Ridge 27.113 17.590
3 Sequoia Lawrence Livermore 20.132 17.173
4 K computer RIKEN, Japan 11.280 10.510
5 Mira Argonne 10.066 8.587

Introduction to parallel computing – p. 12

Top500 list (June 2013)

http://www.top500.org

Introduction to parallel computing – p. 13

Flynn’s taxonomy

Classification of computer architectures:

• SISD (single instruction, single data) – serial
computers

• SIMD (single instruction, multiple data) – array
computers, vector computers, GPUs

• MISD (mulitple instruction, single data) – systolic array
(very rare)

• MIMD (mulitple instruction, multiple data) –
mainstream parallel computers

Introduction to parallel computing – p. 14

Classification of parallel computers

From the memory perspective:

• Shared-memory systems
• A single global address space
• SMP – (symmetric multiprocessing)
• NUMA – (non-uniform memory access)
• Multi-core processor – CMP (chip multi-processing)

• Distributed-memory systems
• Each node has its own physical memory
• Massively parallel systems
• Different types of clusters

• Hybrid distributed-shared memory systems

Introduction to parallel computing – p. 15

Shared memory

• Advantage: user-friendly
• Disadvantage: poor scalability

Plot obtained from https://computing.llnl.gov/tutorials/parallel comp/
Introduction to parallel computing – p. 16

Distributed memory

• Advantages: data locality (no interference),
cost-effective

• Disadvantages: explicit communication, explicit
decomposition of data or tasks

Plot obtained from https://computing.llnl.gov/tutorials/parallel comp/

Introduction to parallel computing – p. 17

Hybrid distributed-shared memory

Plot obtained from https://computing.llnl.gov/tutorials/parallel comp/

Introduction to parallel computing – p. 18

Finding parallelism

Finding parallelism – p. 19

Introduction

• Parallelism: Some work of a computational problem
can be divided into a number of simultaneously
computable pieces

• Applicability of parallel computing depends on the
existence of parallelism
• No parallelism→ no use of parallel computers

• Parallelism can exist in different forms

Finding parallelism – p. 20

Example 1

The axpy operation involves two vectors:

y = αx+y

• Computing yi can be done totally independently of y j

• The entries of y can be computed simultaneously
• Suppose the length of y is n, we can employ n workers,

each computing a single entry
• Embarrassingly parallel

Finding parallelism – p. 21

Example 2

Dot-product between two vectors:

d = x ·y := x1y1+ x2y2+ . . .+ xnyn.

Can we also employ n workers to do the computational
work?

• At a first glance, parallelism is not obvious
• However, if we temporally introduce an assistant vector

d, such that di = xiyi, then each worker can
independently compute one entry of d

Finding parallelism – p. 22

Example 2 (cont’d)

But what about the remaining computational work?

d = 0, d← d +di for i = 1,2, . . . ,n

• Now, the n workers need to collaborate!
• Let each even-ID worker k give its computed dk value

to worker k−1, who does dk−1+dk

• Then, all the even-ID workers retire and let the
remaining workers repeat the above step, until there is
only one worker left

• The solely surviving worker has the correctly computed
value of d

Finding parallelism – p. 23

Parallel reduction

• Parallel reduction: Using n workers to carry out similar
computations such as

d = 0, d← d +di for i = 1,2, . . . ,n

• ⌈log2 n⌉ stages are needed
• During each stage, two and two workers

collaborate
• It is seemingly much faster than the original serial

operation, which has n stages
• However, collaboration means additional time

usage—overhead

Finding parallelism – p. 24

Example 2 revisited

What if we employ m workers, where m < n?
• Each worker is responsible for several entries of d
• First, each worker independently does a local

summation over its assigned entries of d
• Then, the m workers carry out a parallel reduction
• Very important that the workers are assigned with

(roughly) the same number of entries of d—load
balance
• Even if n is not a multiple of m, a fair work division

makes the heaviest and lightest loaded workers
only differ by one entry

Finding parallelism – p. 25

Example 3

Matrix-vector multiply
y = Ax

where A is a n×n matrix, and yi =
∑n

j=1 Ai jx j

• Suppose n workers are employed
• Division of work with respect to the rows of A

• Each worker computes one entry of y
• Each worker makes use of the entire x vector

• Division of work with respect to the columns of A
• Each worker uses only one entry of x
• However, parallel reduction is needed to compute

each entry of y

• Actually, we can employ as many as n2 workers
Finding parallelism – p. 26

Example 4

1D standard wave equation

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6

∂2u
∂t2

= γ2∂2u
∂x2

, x ∈ (0,1), t > 0,

u(0, t) =UL,

u(1, t) =UR,

u(x,0) = f (x),

∂
∂t

u(x,0) = 0.
Finding parallelism – p. 27

Example 4 (cont’d)

Finite difference discretization (with n interior mesh points):

u0
i = f (xi), i = 0, . . . ,n+1,

u−1
i = u0

i +
1
2

C2(u0
i+1−2u0

i +u0
i−1), i = 1, . . . ,n

uk+1
i = 2uk

i −uk−1
i +C2(uk

i+1−2uk
i +uk

i−1),

i = 1, . . . ,n, k ≥ 0,

uk+1
0 =UL, k ≥ 0,

uk+1
n+1 =UR, k ≥ 0.

C = γ∆t/∆x

Finding parallelism – p. 28

Example 4 (cont’d)

Each worker responsible for a sub-interval of the domain

• The spatial domain is divided

• Each worker only updates the values of uk+1 on its
assigned mesh points

• Coordination is needed: A worker cannot go to the
next time level, unless both its left and right neighbors
have finished the current time level

Finding parallelism – p. 29

Example 5

Finite differences for 2D wave equation
• An explicit numerical scheme (point-wise update):

uk+1
i, j = S(uk

i, j±1,u
k
i±1, j,u

k
i, j,u

k−1
i, j ,xi, j, tk)

• Can compute all new uk+1
i, j values simultaneously

• Each worker is responsible for a rectangular region
• Before moving onto a new time level, workers need

coordination

Finding parallelism – p. 30

Example 5 (cont’d)

Example of work division

5

4

3

2

1

0

Finding parallelism – p. 31

Example 6

Floyd’s algorithm: finding the shortest paths
• Starting point: a graph of vertices and weighted edges

• Each edge is of a direction and has a length
• if there’s path from vertex i to j, there may not be

path from vertex j to i
• path length from vertex i to j may be different than

path length from vertex j to i

• Objective: finding the shortest path between every pair
of vertices (i→ j)

Finding parallelism – p. 32

Example 6 (cont’d)

Input: n — number of vertices
a — adjacency matrix

Output: Transformed a that contains the shortest path
lengths

for k← 0 to n−1
for i← 0 to n−1

for j ← 0 to n−1
a[i, j]← min(a[i, j], a[i,k]+a[k, j])

endfor
endfor

endfor

Finding parallelism – p. 33

Example 6 (cont’d)

• Inside the k’th iteration

for (i=0; i<n; i++)
for (j=0; j<n, j++)
a[i][j] = MIN(a[i][j], a[i][k]+a[k][j]);

• Can all the entries in a be updated concurrently?
• Yes, because the k’th column and the k’th row will not

change during the k’th iteration!
• Note that
a[i][k]=MIN(a[i][k],a[i][k]+a[k][k])
will be the same as a[i][k]

• Note that
a[k][j]=MIN(a[k][j],a[k][k]+a[k][j])
will be the same as a[k][j]

Finding parallelism – p. 34

Remarks so far

• For different computational problems, parallelism may
exist in different forms

• For a same computational problem, parallelism may
exist on different levels

• Finding parallelism (as much as possible) may not be
straightforward

• However, once parallelism is identified, parallel
computing becomes possible
• Also need to understand the required collaboration

between workers
• Parallel programming is the next big step

Finding parallelism – p. 35

Parallel programming

Parallel programming – p. 36

Parallel programming models

• Threads model
• Easy to program (such as OpenMP)
• Difficult to scale to many CPUs (NUMA, cache

coherence)
• Message-passing model

• Many programming details (MPI or PVM)
• Better user control (data & work decomposition)
• Larger systems and better performance

• Stream-based programming (for using GPUs)
• Hybrid parallel programming

Parallel programming – p. 37

OpenMP programming

OpenMP is a portable API for programming shared-memory
computers

• Existence of multiple threads
• Use of compiler directives
• Fork-join model

Plot obtained from https://computing.llnl.gov/tutorials/openMP/
Parallel programming – p. 38

OpenMP example

Dot-product between two vectors x and y:

d = x ·y := x1y1+ x2y2+ . . .+ xnyn.

d = 0.0;

#pragma omp parallel for \
default(shared) private(i) schedule(static,chunk) reduction(+:d)

for (i=0; i < n; i++)
d = d + (x[i] * y[i]);

Parallel programming – p. 39

MPI programming

MPI (message passing interface) is a library standard

• Implementation(s) of MPI available on almost every
major parallel platform

• Portability, good performance & functionality
• Each process has its local memory
• Explicit message passing enables information

exchange and collaboration between processes

More info: http://www-unix.mcs.anl.gov/mpi/

Parallel programming – p. 40

MPI example

Dot-product between two vectors: d =
∑n

i=1 xiyi

MPI_Comm_size (MPI_COMM_WORLD, &num_procs);
MPI_Comm_rank (MPI_COMM_WORLD, &my_rank);

my_start = n*my_rank/num_procs;
my_stop = n*(my_rank+1)/num_procs;

my_d = 0.;
for (i=my_start; i<my_stop; i++)
my_d = my_d + (x[i] * y[i]);

MPI_Allreduce (&my_d, &d, 1, MPI_DOUBLE,
MPI_SUM, MPI_COMM_WORLD);

In this example, we’ve assumed that both x and y are duplicated on all MPI processes

Parallel programming – p. 41

Data decomposition

• If an MPI process only uses a subset of the entire data
structure, data decomposition should be done
• Otherwise, data duplication will be a killing factor

• Very often, neighboring MPI processes have some
overlap in their “data footprints”
• Need to distinguish the computational

responsibility from data footprint
• Ghost points (halo points) are usually part of the

local data structure of an MPI process

Parallel programming – p. 42

Solving 1D wave equation; revisited

∂2u
∂t2

= γ2∂2u
∂x2

0< x < 1

• Uniform mesh in x-direction: n+2 points, ∆x = 1
n+1

• x0 is left boundary point, xn+1 is right boundary point
• x1,x2, . . . ,xn are interior points

• Notation: uℓ
i ≈ u(i∆x, ℓ∆t)

• ∂2u
∂t2 ≈

1
∆t2

(

uℓ+1
i −2uℓ

i +uℓ−1
i

)

• ∂2u
∂x2 ≈

1
∆x2

(

uℓ
i−1−2uℓ

i +uℓ
i+1

)

• Overall numerical scheme:

uℓ+1
i =2uℓ

i−uℓ−1
i +γ2 ∆t2

∆x2

(

uℓ
i−1−2uℓ

i +uℓ
i+1

)

i=1,2, . . . ,n
Parallel programming – p. 43

Revisit continues (1)

Serial implementation
• Three 1D arrays are needed:

• uℓ+1: double *up=(double*)malloc((n+2)*sizeof(double));

• uℓ: double *u=(double*)malloc((n+2)*sizeof(double));

• uℓ−1: double *um=(double*)malloc((n+2)*sizeof(double));

• A while-loop for doing the time steps
• At each time step, a for-loop for updating the interior

points

Parallel programming – p. 44

Revisit continues (2)

Main time loop:
while (t<T){

t += dt;

for (i=1; i<=n; i++)

up[i] = 2*u[i]-um[i]+C*(u[i-1]-2*u[i]+u[i+1]);

up[0] = value_of_left_BC(t); // enforcing left BC

up[n+1] = value_of_rigt_BC(t); // enforcing right BC

/* preparation for next time step: shuffle the three arrays */

tmp = um;

um = u;

u = up;

up = tmp;

}

Parallel programming – p. 45

MPI for 1D wave equation

MPI parallelization starts with work division
• The global domain is decomposed into P subdomains

• Actually, the n interior points are divided, due to the
chosen Dirichlet boundary conditions

• In case of Neumann boundary conditions, the n+2
points are to be divided

Parallel programming – p. 46

MPI for 1D wave equation (cont’d)

• Each subdomain has n/P interior points, plus two
“ghost points”

int n_local = n/P; // assume that n is divisible by P

double *up_local=(double*)malloc((n_local+2)*sizeof(double));

double *u_local=(double*)malloc((n_local+2)*sizeof(double));

double *um_local=(double*)malloc((n_local+2)*sizeof(double));

• If there is a neighbor subdomain to the side, the
value of the ghost point is to be provided

• Otherwise, the ghost point is actually a physical
boundary point

Parallel programming – p. 47

MPI for 1D wave equation (cont’d)

Parallel implementation using MPI
• First, up local[i] is computed on each interior point
i=1,2,...,n local

• If there’s neighbor on the left,
• send up local[1] to the left neighbor
• receive up local[0] from the left neighbor

• If there’s neighbor on the left,
• send up local[n local] to the right neighbor
• receive up local[n local+1] from the right

neighbor

Parallel programming – p. 48

MPI for 1D wave equation (cont’d)

Overlapping communication with computation
• up local[1] is computed first
• Initiate communication with the left neighbor using
MPI Isend and MPI Irecv

• up local[M local] is then computed
• Initiate communication with the right neighbor using
MPI Isend and MPI Irecv

• Afterward, main local computation over indices
i=2,3,...,n local-1

• Finally, finish communication with left neighbor using
MPI Wait

• Finally, finish communication with right neighbor using
MPI Wait

Parallel programming – p. 49

What about 2D wave equation?

• In 2D, each subdomain is a rectangle
• One layer of ghost points around
• Each MPI process has (at most) four neighbors

• Four outgoing messages
• Four incoming messages

• Each pair of neighbors exchange a 1D array in
between

Parallel programming – p. 50

Recap of parallelization

• Identify the parts of a serial code that have
concurrency

• Be aware of inhibitors to parallelism (e.g. data
dependency)

• When using OpenMP
• insert directives to create parallel regions

• When using MPI
• decide an explicit decomposition of tasks and/or

data
• insert MPI calls

Parallel programming requires a new way of thinking

Parallel programming – p. 51

Some useful concepts

• Cost model of sending a message tC(L) = τ+βL

• Speed-up

S(P) =
T (1)
T (P)

• Parallel efficiency

η(P) =
S(P)

P

• Factors of parallel inefficiency
• communication, synchronization
• load imbalance
• additional calculations due to parallelization
• non-parallelizable sections

Parallel programming – p. 52

Amdahl’s law

The upper limit of speedup

T (1)
T (P)

≤
T (1)

(fs +
fp

P)T (1)
=

1

fs +
1− fs

P

<
1
fs

• fs – fraction of code that is serial (not parallelizable)
• fp – fraction of code parallelizable: fp = 1− fs

Parallel programming – p. 53

Gustafson–Barsis’s law

Things are normally not so bad as Amdahl’s law says

• Normalize the parallel execution time to be 1
• Scaled speed-up

Ss(P) =
fs +P fp

fs + fp
= fs +P(1− fs) = P+(1−P) fs

• fs has a different meaning than Amdahl’s law
• fs normally decreases as the problem size grows
• Encouraging to solve larger problems with larger P

Parallel programming – p. 54

Granularity

Granularity is a qualitative measure of the ratio of
computation over communication

• Fine-grain parallelism
• small amounts of computation between

communication
• load imbalance may be a less important issue

• Coarse-grain parallelism
• large amounts of computation between

communication
• high ratio of computation over communication

Objective: Design coarse-grain parallel algorithms, if
possible

Parallel programming – p. 55

Final remarks

Final remarks – p. 56

Recap of parallelization

• Identify the parts of a serial code that have
concurrency

• Be aware of inhibitors to parallelism (e.g. data
dependency)

• When using OpenMP
• insert directives to create parallel regions

• When using MPI
• decide an explicit decomposition of tasks and/or

data
• insert MPI calls

Parallel programming requires a new way of thinking

Final remarks – p. 57

Summary

• We’re already at the age of parallel computing
• Parallel computing relies on parallel hardware
• Parallel computing needs parallel software
• So parallel programming is very important

• new way of thinking
• identification of parallelism
• design of parallel algorithm
• implementation can be a challenge

Final remarks – p. 58

	What will we learn today?
	Background (1)
	Background (2)
	Background (3)
	What is parallel computing?
	Why parallel computing?
	Example of Indian Ocean
	Example of Indian Ocean (cont'd)
	Today's most powerful computer
	Top 5 supercomputers (June 2013)
	Top500 list (June 2013)
	Flynn's taxonomy
	Classification of parallel computers
	Shared memory
	Distributed memory
	Hybrid distributed-shared memory
	Introduction
	Example 1
	Example 2
	Example 2 (cont'd)
	Parallel reduction
	Example 2 revisited
	Example 3
	Example 4
	Example 4 (cont'd)
	Example 4 (cont'd)
	Example 5
	Example 5 (cont'd)
	Example 6
	Example 6 (cont'd)
	Example 6 (cont'd)
	Remarks so far
	Parallel programming models
	OpenMP programming
	OpenMP example
	MPI programming
	MPI example
	Data decomposition
	Solving 1D wave equation; revisited
	Revisit continues (1)
	Revisit continues (2)
	MPI for 1D wave equation
	MPI for 1D wave equation (cont'd)
	MPI for 1D wave equation (cont'd)
	MPI for 1D wave equation (cont'd)
	What about 2D wave equation?
	Recap of parallelization
	Some useful concepts
	Amdahl's law
	Gustafson--Barsis's law
	Granularity
	Recap of parallelization
	Summary

