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A very wide range of physical processes lead to wave motion, where signals
re propagated through a medium in space and time, normally with little or
o permanent movement of the medium itself. The shape of the signals may
ndergo changes as they travel through matter, but usually not so much that
1e signals cannot be recognized at some later point in space and time. Many
rpes of wave motion can be described by the equation uy = V - (¢?Vu) + f,
hich we will solve in the forthcoming text by finite difference methods.

Simulation of waves on a string

/e begin our study of wave equations by simulating one-dimensional waves on
string, say on a guitar or violin string. Let the string in the deformed state
sincide with the interval [0, L] on the z axis, and let u(x,t) be the displacement
t time ¢ in the y direction of a point initially at . The displacement function
is governed by the mathematical model

P*u 0%

72 = a2 z € (0,L), te (0,T) (1)
u(z,0) = I(x), x €0, L] (2)

0
au(w,()) =0, z € 0,L] (3)
u(0,t) =0, te (0,7 (4)
w(L,t) =0, te (0,7 (5)

he constant ¢ and the function I(x) must be prescribed.

Equation (1) is known as the one-dimensional wave equation. Since this PDE
»ntains a second-order derivative in time, we need two initial conditions, here
') specifying the initial shape of the string, I(z), and (3) reflecting that the
iitial velocity of the string is zero. In addition, PDEs need boundary conditions,
ere (4) and (5), specifying that the string is fixed at the ends, i.e., that the
isplacement wu is zero.

The solution u(x,t) varies in space and time and describes waves that are
1oving with velocity ¢ to the left and right.

Sometimes we will use a more compact notation for the partial derivatives to
we space:

ou 0%u
U = —, Uy = —>, 6
e T o (©)
nd similar expressions for derivatives with respect to other variables. Then the
ave equation can be written compactly as uy = 2tgy.
The PDE problem (1)-(5) will now be discretized in space and time by a
nite difference method.

1.1 Discretizing the domain

The temporal domain [0, 7] is represented by a finite number of mesh |

0:t0<t1<t2<"'<tNt71<tNt:T.

Similarly, the spatial domain [0, L] is replaced by a set of mesh points

0=2¢0 <1 <x2<---<xNz_1<xNZ:L.

One may view the mesh as two-dimensional in the x,t plane, consisting ¢
(Tiytn), with i =0,...,Ny and n =0,..., N;.

Uniform meshes. For uniformly distributed mesh points we can in
the constant mesh spacings At and Az. We have that

i =1iAx, i=0,...,N,, t;=nAt, n=0,...,N;.

We also have that Az = x; —x;_1, 1 = 1,...,N,, and At = t, — t,
1,..., N;. Figure 1 displays a mesh in the z,t plane with N; =5, N, =
constant mesh spacings.

1.2 The discrete solution

The solution u(z,t) is sought at the mesh points. We introduce tl
function v}, which approximates the exact solution at the mesh point
fori=0,...,N, and n=0,..., N;. Using the finite difference method,
develop algebraic equations for computing the mesh function. The c
Figure 1 illustrate neighboring mesh points where values of ]’ are co
through an algebraic equation. In this particular case, ud, u2, u3, u3, an
connected in an algebraic equation associated with the center point (2,
term stencil is often used about the algebraic equation at a mesh point,
geometry of a typical stencil is illustrated in Figure 1. One also often 1
the algebraic equations as discrete equations, (finite) difference equatic
finite difference scheme.

1.3 Fulfilling the equation at the mesh points

For a numerical solution by the finite difference method, we relax the c
that (1) holds at all points in the space-time domain (0,L) x (0,T
requirement that the PDE is fulfilled at the interior mesh points:

2 2
Titn) = A ——u(xi, ty),

e 927
fori =1,...,N,—landn=1,...,N; — 1. For n = 0 we have th
conditions v = I(z) and u; = 0, and at the boundaries i = 0, N, we I
boundary condition u = 0.
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Figure 1: Mesh in space and time for a 1D wave equation.

.4 Replacing derivatives by finite differences

he second-order derivatives can be replaced by central differences. The most
idely used difference approximation of the second-order derivative is

2 n+1l _ n ﬁ—l
Ol ) & MR
ot? At?

; is convenient to introduce the finite difference operator notation

n+1 n n—1
U, —2ul + u,
DDl = = G G .
[D¢Dyul; N

similar approximation of the second-order derivative in the = direction reads

32

da?

ui g — 2u 4wl n
u(xhtn) ~ = Ax2 = = [D:cDacu]z .

Jgebraic version of the PDE. We can now replace the derivatives in (10)
nd get
uptt —oul 2 Ui — 2ui + iy
At? N Az? ’

¢ written more compactly using the operator notation:

(11)

[DiDyu = 2D, D,]7. (12)

Algebraic version of the initial conditions. We also need to rep
derivative in the initial condition (3) by a finite difference approxima
centered difference of the type

1 1

u; — U,
ar i7tn ~ L
Ay v

seems appropriate. In operator notation the initial condition is written

= [DQtu}&

[Dyu]l! =0, n=0.
Writing out this equation and ordering the terms give
uf "t =ult, i=0,...,N,, n=0.

The other initial condition can be computed by

u = I(x;), i=0,...,N,.

1.5 Formulating a recursive algorithm

We assume that u]' and u?fl are already computed for i =0,..., N,. 1
unknown quantity in (11) is therefore « ™, which we can solve for:

i

n+1 __ n—1 n 2 n n n
ul Tt = —ul T+ 2u) 4+ CF (ufy g — 2u) ),

where we have introduced the parameter

C= cﬁ,
Ax
known as the (dimensionless) Courant number. We see that the discrete
of the PDE features only one parameter, C', which is therefore the key pa
that governs the quality of the numerical solution. Both the primary ;
parameter ¢ and the numerical parameters Az and At are lumped tog
C.

Given that u?il and u} are computed for ¢ =0,..., N, we find nes
at the next time level by applying the formula (14) fori = 1,..., N, —1.
illustrates the points that are used to compute u3. For the boundary
1 =0 and i = N,, we apply the boundary conditions U?H =0.

A problem with (14) arises when n = 0 since the formula for u} invol
which is an undefined quantity outside the time mesh (and the time ¢
However, we can use the initial condition (13) in combination with (1-
n = 0 to arrive at a special formula for u}:

1
up = ud — 502 (ufy —2u} +ufy) .
Figure 2 illustrates how (16) connects four instead of five points: u3, u9,

0
Uus.

We can now summarize the computational algorithm:
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Figure 2: Modified stencil for the first time step.

1. Compute u) = I(z;) for i =0,..., N,

2. Compute u} by (16) and set u} = 0 for the boundary points i = 0 and
i=N,, forn=1,2,...,N —1,

3. For each time level n =1,2,...,N; — 1

(a) apply (14) to find u ™" for i =1,..., N, — 1
(b) set u?* = 0 for the boundary points i = 0, i = N,.

i
he algorithm essentially consists of moving a finite difference stencil through
[l the mesh points, which is illustrated by an animation in a web page! or a
1ovie file?.

.6 Sketch of an implementation

1 a Python implementation of this algorithm, we use the array elements u[i]
) store u;’H, u_1[i] to store ul, and u_2[i] to store u?fl. Our naming
onvention is use u for the unknown new spatial field to be computed, u_1 as
1e solution at one time step back in time, u_2 as the solution two time steps
ack in time and so forth.

The algorithm only needs to access the three most recent time levels, so we

eed only three arrays for u?"'l, uy, and u?_l, i =20,...,N,. Storing all the

Ihttp://tinyurl.com/k3sdbuv/pub/mov-wave/wave1D PDE Dirichlet_stencil_gpl/index.html
2http://tinyurl.com/k3sdbuv/pub/mov-wave/wavelD_PDE Dirichlet_stencil_gpl/movie.ogg

solutions in a two-dimensional array of size (N, + 1) x (N¢+ 1) would be
in this simple one-dimensional PDE problem, but is normally out of the «
in three-dimensional (3D) and large two-dimensional (2D) problems. \
therefore in all our programs for solving PDEs have the unknown in me
as few time levels as possible.

The following Python snippet realizes the steps in the computatior
rithm.

# Given mesh points as arrays x and t (x[i], t[nl)

dx = x[1] - x[0]

dt = t[1] - t[0]

C = cxdt/dx # Courant number

Nt = len(t)-1

C2 = C*x2 # Help variable in the scheme

# Set initial condition u(x,0) = I(x)
for i in range(0, Nx+1):
u_1[i] = I(x[iD

# Apply special formula for first step, incorporating du/dt=0
for i in range(1l, Nx):

ulil = u_1[i] - 0.5*Cxx2(u_1[i+1] - 2*u_1[i] + u_1[i-1])
ul0] = 0; ulNx] =0 # Enforce boundary conditions

# Switch variables before next step
u_2[:], u_1[:] = u_1, u

for n in range(1l, Nt):
# Update all inner mesh points at time t[n+1]
for i in range(1l, Nx):
uli] = 2u_1[i] - u_2[i] - \
Ckx2(u_1[i+1] - 2*u_1[i] + u_1[i-1])

# Insert boundary conditions
ul0] = 0; ulNx] =0

# Switch variables before next step
u2[:], u1f:] =u.l, u

2 Verification

Before implementing the algorithm, it is convenient to add a source terr
PDE (1) since it gives us more freedom in finding test problems for ver:
In particular, the source term allows us to use manufactured solutions for :
testing, where we simply choose some function as solution, fit the corres
source term, and define boundary and initial conditions consistent v
chosen solution. Such solutions will seldom fulfill the initial condition (:
need to generalize this condition to u, = V(z).

10



.1 A slightly generalized model problem

/e now address the following extended initial-boundary value problem for
ne-dimensional wave phenomena:

Uy = gy + f(z,1), x € (0,L), te (0,7T] (17)
u(x,0) = I(z), z€[0,L] (18)
ug(z,0) = V(x), x €0, L] (19)
u(0,) =0, t>0 (20)
u(L,t) =0, t>0 (21)

Sampling the PDE at (z;,t,) and using the same finite difference approxima-
ons as above, yields

[DiDyu = 2D, D, + f]1'. (22)
n+1

/riting this out and solving for the unknown u; ™" results in

uf“ = fu;%l +2ul + CQ(U?_H —2ul +ul )+ Atzfi" . (23)

The equation for the first time step must be rederived. The discretization of
1e initial condition u; = V(x) at ¢ = 0 becomes

[Dyu =V = uj'=uj —2AtV;,

hich, when inserted in (23) for n = 0, gives the special formula

1 1
up = ud — AtV; + 502 (ufy = 2ud +ul ) + EAthi" . (24)

P =

.2 Using an analytical solution of physical significance

lany wave problems feature sinusoidal oscillations in time and space. For
cample, the original PDE problem (1)-(5) allows a solution

ue(x,y,t)) = Asin (%x) cos (%ct) . (25)

his we fulfills the PDE with f = 0, boundary conditions u¢(0,t) = uc(L,0) = 0,
s well as initial conditions I(z) = Asin (Tz) and V = 0.

It is common to use such exact solutions of physical interest to verify imple-
tlentations. However, the numerical solution «}' will only be an approximation
) ue (x4, t,). We no have knowledge of the precise size of the error in this approx-
nation, and therefore we can never know if discrepancies between the computed
» and wue(z;, t,,) are caused by mathematical approximations or programming
crors. In particular, if a plot of the computed solution «]* and the exact one
'5) looks similar, many are attempted to claim that the implementation works,
ut there can still be serious programming errors although color plots look nice.

11

The only way to use exact physical solutions like (25) for serious and t
verification is to run a series of finer and finer meshes, measure the int
error in each mesh, and from this information estimate the convergence
these rates are very close to 2, we have strong evidence that the implem:
works.

2.3 Manufactured solution

One problem with the exact solution (25) is that it requires a simpli
(V. =0, f =0) of the implemented problem (17)-(21). An advantage «
a manufactured solution is that we can test all terms in the PDE |
The idea of this approach is to set up some chosen solution and fit the
term, boundary conditions, and initial conditions to be compatible v
chosen solution. Given that our boundary conditions in the implementa
u(0,t) = u(L,t) = 0, we must choose a solution that fulfills these cor
One example is

ue(x,t) = (L — x)sint.
Inserted in the PDE wuy = g, + f we get

—z(L —z)sint = —2sint+ f = f=(2—x(L—x))sint.

The initial conditions become

u(z,0) =I(x) =0,

ut(x,0) =V(x) = (2 — (L — x)) cost.

To verify the code, we run a series of refined meshes and comg
convergence rates. In more detail, we keep At/Az constant for eac
implying that C' is also constant throughout the experiments. A ¢
discretization parameter h = At is introduced. For a given C' (and c), £
We choose an initial time cell size hg and run experiments with decre
hi = 27%hg, i = 1,2,...,m. Halving the cell size in each experimen
necessary, but common. For each experiment we must record a scalar 1
of the error. As will be shown later, it is expected that such error meas
proportional to h%. A standard choice of error measure is the £2 or £>°
the error mesh function e}

N

N 2
]2 = (AtA:cZ Z(eW) el = ue(z, ty) — Ul
n=0 ¢=0

|lei*]le= = max |ej,|.
@n

In Python, one can compute Zi(e?“)2 at each time step and accumu
value in some sum variable, say e2_sum. At the final time step one

12



grt (dt*dx*e2_sum). For the ¢ norm one must compare the maximum error
t a time level (e.max()) with the global maximum over the time domain:
_max = max(e_max, e.max()).

An alternative error measure is to use a spatial norm at one time step only,
g., the end time T

N, 2
llei*lle = (AwZ(e?)2> y € = ue(Ti, tn) — ug, (28)
i=0

g = ‘. 29
lefle= = max. i (29)
Let E; be the error measure in experiment (mesh) number ¢ and let h; be the
srresponding discretization parameter (h). We expect an error model E; = Chl,
ere with 7 = 0. To estimate r, we can compare two consecutive experiments
nd compute

_ 111 Ei+1 /E‘Z
In hi+1 /hz ’
/e should observe that r; approaches 2 as i increases.
The next section describes a method of manufactured solutions where do not

eed to compute error measures and check that they converge as expected as
1e mesh is refined.

T i:O,...,m—l.

.4 Constructing an exact solution of the discrete equa-
tions

or verification purposes we shall use a solution that is quadratic in space and
near in time. More specifically, our choice of the manufactured solution is

vo(2,1) = (L — 2)(1 + %t), (30)
hich by insertion in the PDE leads to f(x,t) = 2(1 + t)c?. This ue fulfills
1e boundary conditions and is compatible with I(z) = (L — z) and V(z) =
x(L — x).

A key feature of the chosen ue is that it is also an exact solution of the
iscrete equations. To realize this very important result, we first establish the
ssults

2, — 22 +¢2

[D: D) = INE = (n+ 1) =P+ (n-1)° =2, (31)
n tng1 =2ttt (n4+1) —n+(n—1))At

ence,

1 1
[DtDtue]? = IZ(L — fz)[DtDt(l + Et)]n = xl(L — Iz)i[DtDtﬂn = 0,

13

and

(DeDatel? = (14 5t)[DeDalal — a*)) = (14 L) [LDe Doz — D

1
=214 =t,).
(1+ )

Now, fI'=2(1+ %tn)c2 and we get

[D:Diue — 2Dy Dyue — fI7F =0 — c2(—1)2(1 + %tn +2(1+ %tn)g :

Moreover, ue(z;,0) = I(z;), Oue/0t = V(z;) at t = 0, and wue(.
ue(xn,,0) = 0. Also the modified scheme for the first time step is ful:
ue(Ti, ).

Therefore, the exact solution ue(x,t) = (L —x)(1+¢/2) of the PDE
is also an exact solution of the discrete problem. We can use this result
that the computed u}* vales from an implementation equals ue(2;,
machine precision, regardless of the mesh spacings Ax and At! Neve
there might be stability restrictions on Az and At, so the test can only
for a mesh that is compatible with the stability criterion (which in the
case is C' < 1, to be derived later).

Notice.

A product of quadratic or linear expressions in the various indepe:
variables, as shown above, will often fulfill both the continuous and di;
PDE problem and can therefore be very useful solutions for ver:
implementations. However, for 1D wave equations of the type u; =
we shall see that there is always another much more powerful w
generating exact solutions (just set C' = 1).

3 Implementation

This section present the complete computational algorithm, its implement
Python code, animation of the solution, and verification of the impleme

A real implementation of the basic computational algorithm from Sect
and 1.6 can be encapsulated in a function, taking all the input data
problem as arguments. The physical input data consists of ¢, I(z), V(z)
L, and T. The numerical input is the mesh parameters At and A
possibility is to specify N, and the Courant number C' = cAt/Az. The
convenient to prescribe instead of At when performing numerical invest
because the numerical accuracy depends directly on C'.

The solution at all spatial points at a new time level is stored in ¢
u (of length N, 4+ 1). We need to decide what do to with this soluti
visualize the curve, analyze the values, or write the array to file for I:
The decision what to do is left to the user in a suppled function

14



lef user_action(u, x, t, n):

here u is the solution at the spatial points x at time t [n].

.1 Making a solver function
first attempt at a solver function is listed below.
irom numpy import *

ief solver(I, V, f, ¢, L, Nx, C, T, user_action=None):
"""Solve u_tt=c"2*u_xx + f on (0,L)x(0,T]."""

x = linspace(0, L, Nx+1) # Mesh points in space

dx = x[1] - x[0]

dt = Cxdx/c

Nt = int(round(T/dt))

t = linspace(0, Ntxdt, Nt+1) # Mesh points in time

C2 = C*x2 # Help variable in the scheme

if f is None or f == :
f = lambda x, t: O
if V is None or V ==

V = lambda x: O
u = zeros(Nx+1) # Solution array at new time level
u_1 = zeros(Nx+1) # Solution at 1 time level back
u_2 = zeros(Nx+1) # Solution at 2 time levels back

import time; tO = time.clock() # for measuring CPU time

# Load initial condition into u_1
for i in range(O,Nx+1):
u_1[i] = I(x[i])

if user_action is not None:
user_action(u_1, x, t, 0)

# Special formula for first time step
n=20
for i in range(1l, Nx):
ulil = u_1[i] + de*V(x[il) + \
0.6%xC2x(u_1[i-1] - 2*u_1[i] + u_1[i+1]) + \
0.5xdt**2+f (x[i], t[nl)
ul0] = 0; ul[Nx] =0

if user_action is not None:
user_action(u, x, t, 1)

# Switch variables before next step
u_2[:], u_1[:] = u_1, u

for n in range(1l, Nt):
# Update all inner points at time t[n+1]
for i in range(1l, Nx):
uli] = - w_2[i] + 2*%u_1[i] + \
C2#(u_1[i-1] - 2%u_1[i] + u_1[i+1]) + \
dt**2xf (x[1], t[nl)

# Insert boundary conditions

ul0] = 0; ulNx] =0
if user_action is not None:
if user_action(u, x, t, n+1):
break

# Switch variables before next step
u2[:], u_1[:] =u_.l, u

cpu_time = t0 - time.clock()
return u, x, t, cpu_time

3.2 Verification: exact quadratic solution

We use the test problem derived in Section 2.1 for verification. Here is a
realizing this verification as a nose test:

import nose.tools as nt

def test_quadratic():

"""Check that u(x,t)=x(L-x)(1+t/2) is exactly reproduced."""
def exact_solution(x, t):
return x*(L-x)*(1 + 0.5%t)

def I(x):

return exact_solution(x, 0)
def V(x):

return 0.5%exact_solution(x, 0)
def f(x, t):

return 2*x(1 + 0.5%t)*c*x*2
L=2.5
c=1.5
Nx = 3 # Very coarse mesh
C=0.75
T = 18

u, x, t, cpu = solver(I, V, f, ¢, L, Nx, C, T)
u_e = exact_solution(x, t[-1])

diff = abs(u - u_e).max()
nt.assert_almost_equal(diff, 0, places=14)

3.3 Visualization: animating the solution
Now that we have verified the implementation it is time to do a real comj

where we also display the evolution of the waves on the screen.

Visualization via SciTools. The following viz function defines a use:
callback function for plotting the solution at each time level:
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ief viz(I, V, f, ¢, L, Nx, C, T, umin, umax, animate=True):
"""Run solver and visualize u at each time level."""
import scitools.std as plt
import time, glob, os

def plot_u(u, x, t, n):
"""user_action function for solver."""
plt.plot(x, u, ’r-’,
xlabel=’"x’, ylabel=’u’,
axis=[0, L, umin, umax],
title=’t=}f’ % t[n], show=True)
# Let the initial condition stay on the screen for 2
# seconds, else insert a pause of 0.2 s between each plot
time.sleep(2) if t[n] == 0 else time.sleep(0.2)
plt.savefig(’frame_%04d.png’ % n) # for movie making

# Clean up old movie frames
for filename in glob.glob(’frame_x*.png’):
os.remove (filename)

user_action = plot_u if animate else None
u, x, t, cpu = solver(I, V, f, ¢, L, Nx, C, T, user_action)

# Make movie files
fps = 4 # Frames per second
plt.movie(’frame_x.png’, encoder=’html’, fps=fps,
output_file=’movie.html’)
codec2ext = dict(flv="flv’, 1libx64=’mp4’, libvpx=’webm’,
libtheora=’ogg’)
filespec = ’frame_}%04d.png’
movie_program = ’avconv’ # or ’ffmpeg’
for codec in codec2ext:
ext = codec2ext[codec]
cmd = ’%(movie_program)s -r %(fps)d -i %(filespec)s ’\
’-vcodec %(codec)s movie.%(ext)s’ % vars()
os.system(cmd)

function inside another function, like plot_u in the above code segment, has
zcess to and remembers all the local variables in the surrounding code inside
1e viz function (!). This is known in computer science as a closure and is
ary convenient to program with. For example, the plt and time modules
efined outside plot_u are accessible for plot_u when the function is called (as
ser_action) in the solver function. Some may think, however, that a class
istead of a closure is a cleaner and easier-to-understand implementation of the

ser action function, see Section 8.

Taking movie files. Several hardcopies of the animation are made from the
rame_x.png files. The first movie, made by the SciTools function plt.movie
-eates a movie.html file with a movie player for displaying the frame_x*.png

les. This movie player can be generated from the command line too

sarminal> scitools movie encoder=html output_file=movie.html \
fps=4 frame_x*.png

We also use the avconv (or ffmpeg) programs to make movie files in
formats: Flash, MP4, Webm, and Ogg. A typical avconv (or ffmpeg) cc
for creating a movie file in Ogg format with 4 frames per second built
collection of plot files with names generated by frame_%04d.png, look

Terminal> avconv -r 4 -i frame_%04d.png -vcodec libtheora movie.og

The different formats require different video encoders (-vcodec) to be i
Flash applies £1v, WebM applies libvpx, and MP4 applies 1ibx64. Pla
vlc, mplayer, gxine, and totem can be used to play these movie files.

Note that padding the frame counter with zeros in the frame_x*.g
as specified by the %04d format, is essential so that the wildcard r
frame_x*.png expands to the correct set of files.

Skipping frames for animation speed. Sometimes the time step
and T is large, leading to an inconveniently large number of plot files an
animation on the screen. The solution to such a problem is to decide or
number of frames in the animation, num_frames, and plot the solution
every every frame. The total number of time levels (i.e., maximum

number of frames) is the length of t, t.size, and if we want num_fra
need to plot every t.size/num_frames frame:

every = int(t.size/float (num_frames))
if n % every == 0 or n == t.size-1:
st.plot(x, u, ’r-’, ...)

The initial condition (n=0) is natural to include, and as n % every =
very seldom be true for the very final frame, we also ensure that n ==
and hence the final frame is included.

A simple choice of numbers may illustrate the formulas: say we I
frames in total (t.size) and we allow only 60 frames to be plotted. 1
need to plot every 801/60 frame, which with integer division yields 13 a
Using the mod function, n % every, this operation is zero every time r
divided by 13 without a remainder. That is, the if test is true when 1
0,13,26,39,...,780,801. The associated code is included in the plot_u:
in the file wave1D_u0_sv.py>.

Visualization via Matplotlib. The previous code based on the plot i
from scitools.std can be run with Matplotlib as the visualization I
but if one desires to program directly with Matplotlib, quite different
needed. Matplotlib’s interactive mode must be turned on:

17
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import matplotlib.pyplot as plt
>1t.ion() # interactive mode on

he most commonly used animation technique with Matplotlib is to update the
ata in the plot at each time level:

t Make a first plot
lines = plt.plot(t, w)
t call plt.axis, plt.xlabel, plt.ylabel, etc. as desired

t At later time levels

lines[0] .set_ydata(u)
>1t.legend (’t=%g’ % t[nl)
>lt.draw() # make updated plot
)1t.savefig(...)

An alternative is to rebuild the plot at every time level:

>1t.clf () # delete any previous curve(s)
lt.axis([...]1)

>1t.plot(t, u)

t plt.xlabel, plt.legend and other decoratiomns
)1t .draw()

>1t.savefig(...)

[any prefer to work with figure and axis objects as in MATLAB:

*ig = plt.figure()

Yig.clf ()

ix = fig.gca()

ix.axis(...)

ix.plot(t, u)

t ax.set_xlabel, ax.legend and other decorations
>1t.draw()

‘ig.savefig(...)

.4 Running a case

he first demo of our 1D wave equation solver concerns vibrations of a string
1at is initially deformed to a triangular shape, like when picking a guitar string:

az/xg, T < g,

I(z) = { a(L —x)/(L —x0), otherwise (33)
/e choose L = 75 cm, o = 0.8L, a = 5 mm, N, = 50, and a time frequency
= 440 Hz. The relation between the wave speed ¢ and v is ¢ = v\, where
is the wavelength, taken as 2L because the longest wave on the string form
alf a wavelength. There is no external force, so f = 0, and the string is at rest
iitially so that V' = 0. A function setting these physical parameters and calling
iz for this case goes as follows:
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def guitar(C):
""'Triangular wave (pulled guitar string)."""

L=0.75

x0 = 0.8%L
a = 0.005
freq = 440

wavelength = 2xL

c = freg*wavelength

omega = 2¥pixfreq
num_periods = 1

T = 2xpi/omega*num_periods
Nx = 50

def I(x):
return a*x/x0 if x < x0 else a/(L-x0)*(L-x)

umin = -1.2%a; umax = -umin
cpu = viz(I, 0, 0, ¢, L, Nx, C, T, umin, umax, animate=True)

The associated program has the name wave1D_u0_s.py*. Run the prog
watch the movie of the vibrating string®.

3.5 The benefits of scaling

The previous example demonstrated that quite some work is needed wit
lishing relevant physical parameters for a case. By scaling the mathe
problem we can often reduce the need to estimate physical parameters «
cally. A scaling consists of introducing new independent and dependent v
with the aim that the absolute value of these vary between 0 and 1:
% g, o U
z=7, =7t u=_.
Replacing old by new variables in the PDE, using f = 0, and dropping t
results in the scaled equation usy = ug,. This equation has no physical pa
M.

If we have a program implemented for the physical wave equati
dimensions, we can obtain the dimensionless, scaled version by settin
The initial condition corresponds to (183), but with setting a =1, L =
xo € [0,1]. This means that we only need to decide on the z( value as a
of unity, because the scaled problem corresponds to setting all other par
to unity! In the code we can just set a=c=L=1, x0=0.8, and there is no
calculate with wavelengths and frequencies to estimate c.

The only non-trivial parameter to estimate in the scaled problem is
end time of the simulation, or more precisely, how it relates to periods in
solutions in time, since we often want to express the end time as a
number of periods. Suppose as u behaves as sin(wt) in time in variab
dimension. The corresponding period is P = 2w /w. The frequency w is re
the wavelength A of the waves through the relations w = kc and k = 27/,

4http://tinyurl.com/jvzzcfn/wave/wave1D_u0_s.py
Shttp://tinyurl.com/k3sdbuv/pub/mov-wave/guitar_ CO.8/index.html
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=2m¢/X and P = \/c. It remains to estimate . With u(z,t) = F(z)sinwt
e find from uy = c?ugy, that c2F” + w?F = 0, and the boundary conditions
emand F(0) = F(L) = 0. The solution is F(z) = sin(axn/L), which has
avelength A = 27 /(w/L) = 2L. One period is therefore given by P = 2L/c.
he dimensionless period is P = Pc/L = 2.

Vectorization

he computational algorithm for solving the wave equation visits one mesh
oint at a time and evaluates a formula for the new value u}™' at that point.
echnically, this is implemented by a loop over array elements in a program.
uch loops may run slowly in Python (and similar interpreted languages such as
,and MATLAB). One technique for speeding up loops is to perform operations
n entire arrays instead of working with one element at a time. This is referred
y as vectorization, vector computing, or array computing. Operations on whole
crays are possible if the computations involving each element is independent of
ach other and therefore can, at least in principle, be performed simultaneously.
ectorization not only speeds up the code on serial computers, but it also makes
easy to exploit parallel computing.

.1 Operations on slices of arrays

fficient computing with numpy arrays demands that we avoid loops and compute
ith entire arrays at once (or at least large portions of them). Consider this
alculation of differences d; = u;+1 — u;:

1 = u.size
‘or i in range(0, n-1):
d[i] = uli+1] - u[i]

1l the differences here are independent of each other. The computation of d can
1erefore alternatively be done by subtracting the array (ug,u1,...,u,—1) from
1e array where the elements are shifted one index upwards: (ui,ug,...,u,),
e Figure 3. The former subset of the array can be expressed by u[0:n-1],
[0:-1], or just u[:-1], meaning from index O up to, but not including, the
st element (-1). The latter subset is obtained by u[1:n] or u[1:], meaning
om index 1 and the rest of the array. The computation of d can now be done
ithout an explicit Python loop:

1=nultl:] - ul:-1]
¢ with explicit limits if desired:
1 =ull:n] - ul0:n-1]

wdices with a colon, going from an index to (but not including) another index
re called slices. With numpy arrays, the computations are still done by loops,
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but in efficient, compiled, highly optimized code in C or Fortran. Suc
operations can also easily be distributed among many processors on
computers. We say that the scalar code above, working on an element (;
at a time, has been replaced by an equivalent vectorized code. The pr
vectorizing code is called vectorization.

0 1 2 3 4

0 1 2 3 4

Figure 3: Illustration of subtracting two slices of two arrays.

Test the understanding.
Newcomers to vectorization are encouraged to choose a small array 1
with five elements, and simulate with pen and paper both the loop vt
and the vectorized version.

Finite difference schemes basically contains differences between array ¢
with shifted indices. Consider the updating formula

for i in range(1l, n-1):
u2[i] = uli-1] - 2*ul[i] + uli+1]

The vectorization consists of replacing the loop by arithmetics on slices ¢
of length n-2:

u2
u2

ul:-2] - 2*%ul1:-1] + ul2:]
ul0:n-2] - 2*ul[1:n-1] + u[2:n] # alternative

Note that u2 here gets length n-2. If u2 is already an array of length n
want to use the formula to update all the ”inner” elements of u2, as
when solving a 1D wave equation, we can write

u2([1:-1]
u2[1:n-1]

ul:-2] - 2*%u[1:-1] + ul2:]
ul0:n-2] - 2%ul[1:n-1] + u[2:n] # alternative

Pen and paper calculations with a small array will demonstrate what is
going on. The expression on the right-hand side are done in the followir
involving temporary arrays with intermediate results, since we can on
with two arrays at a time in arithmetic expressions:
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sempl = 2*u[1:-1]

cemp2 = ul[0:-2] - templ
semp3 = temp2 + ul[2:]
12[1:-1] = temp3

We can extend the previous example to a formula with an additional term
»mputed by calling a function:

lef £(x):
return x**2 + 1
‘or i in range(l, n-1):
u2[i] = uli-1] - 2*uli] + uli+1] + £(x[i])

ssuming u2, u, and x all have length n, the vectorized version becomes

12[1:-1] = ul:-2] - 2*uf[1:-1] + u[2:] + f(x[1:-1])

.2 Finite difference schemes expressed as slices

/e now have the necessary tools to vectorize the algorithm for the wave equation.

here are three loops: one for the initial condition, one for the first time step,
nd finally the loop that is repeated for all subsequent time levels. Since only
1e latter is repeated a potentially large number of times, we limit the efforts of
sctorizing the code to this loop:

‘or i in range(l, Nx):
ulil = 2*%u_1[i] - uw_2[i] + \
C2x(u_1[i-1] - 2*u_1[i] + u_1[i+1])

he vectorized version becomes

1[1:-1] = = u_2[1:-1] + 2%u_1[1:-1] + \
C2x(u_1[:-2] - 2*%u_1[1:-1] + u_1[2:])

1[1:Nx] = 2*u_1[1:Nx]- u_2[1:Nx] + \
C2*(u_1[0:Nx-1] - 2%u_1[1:Nx] + u_1[2:Nx+1])

The program wavelD_uO_sv.py® contains a new version of the function
olver where both the scalar and the vectorized loops are included (the argument
ersion is set to scalar or vectorized, respectively).

Shttp://tinyurl.com/jvzzctn/wave/wavelD u0_sv.py
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4.3 Verification

We may reuse the quadratic solution ue(z, t) = x(L —z)(1+ 4t) for verify
the vectorized code. A nose test can now test both the scalar and the ve
version. Moreover, we may use a user_action function that comp:
computed and exact solution at each time level and performs a test:

def test_quadratic():
Check the scalar and vectorized versions work for
a quadratic u(x,t)=x(L-x)(1+t/2) that is exactly reproduced.
# The following function must work for x as array or scalar
exact_solution = lambda x, t: x*(L - x)*(1 + 0.5%t)

I = lambda x: exact_solution(x, 0)

V = lambda x: 0.5%exact_solution(x, 0)

# f is a scalar (zeros_like(x) works for scalar x too)
f = lambda x, t: zeros_like(x) + 2*c*x*x2x(1 + 0.5%t)
L=2.5

c=1.5

Nx = 3 # Very coarse mesh

c=1

T = 18 # Long time integration

def assert_no_error(u, x, t, n):
u_e = exact_solution(x, t[n])
diff = abs(u - u_e).max()
nt.assert_almost_equal(diff, 0, places=13)

solver(I, V, £, ¢, L, Nx, C, T,
user_action=assert_no_error, version=’scalar’)

solver(I, V, f, ¢, L, Nx, C, T,
user_action=assert_no_error, version=’vectorized’)

Lambda functions.

The code segment above demonstrates how to achieve very compact
with the use of lambda functions for the various input parameters
require a Python function. In essence,

f = lambda x, t: L*(x-t)**x2
is equivalent to

def f(x, t):
return L(x-t)**2

Note that lambda functions can just contain a single expression ai
statements.

One advantage with lambda functions is that they can be used di
in calls:
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solver (I=lambda x: sin(pi*x/L), V=0, £=0, ...)

.4 Efficiency measurements

unning the wavelD_uO_sv.py code with the previous string vibration ex-
mple for N, = 50,100, 200,400, 800, and measuring the CPU time (see the
un_efficiency_experiments function), shows that the vectorized code runs
1bstantially faster: the scalar code uses approximately a factor N, /5 more
me!

v Exercises

xercise 1: Simulate a standing wave

he purpose of this exercise is to simulate standing waves on [0, L] and illustrate
1e error in the simulation. Standing waves arise from an initial condition

u(z,0) = Asin (%mx) ,

here m is an integer and A is a freely chosen amplitude. The corresponding
xact solution can be computed and reads

ue(x,t) = Asin (%mm) cos (%mct) .
) Explain that for a function sin kx cos wt the wave length in space is A = 27 /k

nd the period in time is P = 27 /w. Use these expressions to find the wave
mgth in space and period in time of ue above.

) Import the solver function wavelD_uO_s.py into a new file where the viz
mction is reimplemented such that it plots either the numerical and the exact
>lution, or the error.

) Make animations where you illustrate how the error e}’ = ue(z;,tn) — ul
evelops and increases in time. Also make animations of u and ue simultaneously.

[int 1. Quite long time simulations are needed in order to display significant
iscrepancies between the numerical and exact solution.

[int 2. A possible set of parametersis L =12, m=9,¢c=2, A=1, N, = 80,
"= 0.8. The error mesh function e” can be simulated for 10 periods, while
)-30 periods are needed to show significant differences between the curves for
1e numerical and exact solution.

Filename: wave_standing.py.

25

Remarks. The important parameters for numerical quality are C ai
where C' = cAt/Az is the Courant number and % is defined above
proportional to how many mesh points we have per wave length in sp
Section 10.4 for explanation).

Exercise 2: Add storage of solution in a user action fui

Extend the plot_u function in the file wave1D_uO_s. py to also store the s
u in a list. To this end, declare all_u as an empty list in the viz f
outside plot_u, and perform an append operation inside the plot_u f
Note that a function, like plot_u, inside another function, like viz, ren
all local variables in viz function, including all_u, even when plot_u
(as user_action) in the solver function. Test both all_u.append!
all_u.append(u.copy()). Why does one of these constructions fail
the solution correctly? Let the viz function return the all_u list conver
two-dimensional numpy array. Filename: wavelD_uO_s_store.py.

Exercise 3: Use a class for the user action function

Redo Exercise 2 using a class for the user action function. That is, defin
Action where the all_u list is an attribute, and implement the user acti
tion as a method (the special method __call__ is a natural choice). T
versions avoids that the user action function depends on parameters defi
side the function (such as all_u in Exercise 2). Filename: wave1D_u0_

Exercise 4: Compare several Courant numbers in one

The goal of this exercise is to make movies where several curves, corres
to different Courant numbers, are visualized. Import the solver functi
the wavelD_uO_s movie in a new file wave_compare.py. Reimplement
function such that it can take a list of C values as argument and create
with solutions corresponding to the given C values. The plot_u functi
be changed to store the solution in an array (see Exercise 2 or 3 for
solver must be computed for each value of the Courant number, anc
one must run through each time step and plot all the spatial solution ¢
one figure and store it in a file.

The challenge in such a visualization is to ensure that the curves in
corresponds to the same time point. The easiest remedy is to keep the t
space resolution constant and change the wave velocity ¢ to change the
number. Filename: wave_numerics_comparison.py.

Project 5: Calculus with 1D mesh functions

This project explores integration and differentiation of mesh functior
with scalar and vectorized implementations. We are given a mesh functi
a spatial one-dimensional mesh z; = iAx, i = 0,..., N, over the inter
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) Define the discrete derivative of f; by using centered differences at internal
1esh points and one-sided differences at the end points. Implement a scalar
arsion of the computation in a Python function and supply a nose test for the
near case f(z) = 4x — 2.5 where the discrete derivative should be exact.

) Vectorize the implementation of the discrete derivative. Extend the nose
st to check the validity of the implementation.

) To compute the discrete integral F; of f;, we assume that the mesh function
; varies linearly between the mesh points. Let f(x) be such a linear interpolant
f fi. We then have

F, = Axl f(z)dz.

he exact integral of a piecewise linear function f(x) is given by the Trapezoidal
1le. S how that if F; is already computed, we can find F;;; from

1
Figo=F+ §(fz + fis1)Az.

[ake a function for a scalar implementation of the discrete integral as a mesh
inction. That is, the function should return F; for ¢ =0,..., N,. For a nose
st one can use the fact that the above defined discrete integral of a linear
mnction (say f(z) = 4z — 2.5) is exact.

) Vectorize the implementation of the discrete integral. Extend the nose test
» check the validity of the implementation.

[int. Interpret the recursive formula for Fj;; as a sum. Make an array with
ach element of the sum and use the ”cumsum” (numpy . cumsum) operation to
mpute the accumulative sum: numpy.cumsum([1,3,5]) is [1,4,9].

) Create a class MeshCalculus that can integrate and differentiate mesh
inctions. The class can just define some methods that call the previously
nplemented Python functions. Here is an example on the usage:

import numpy as np
salc = MeshCalculus(vectorized=True)

¢ = np.linspace(0, 1, 11) # mesh
= np.exp(x) # mesh function
if = calc.differentiate(f, x) # discrete derivative
? = calc.integrate(f, x) # discrete anti-derivative

Filename: mesh_calculus_1D.py.
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6 Generalization: reflecting boundaries

The boundary condition ©v = 0 makes u change sign at the boundar
the condition u, = 0 perfectly reflects the wave, see a web page” or
file® for demonstration. Our next task is to explain how to implen
boundary condition w, = 0, which is more complicated to express nun
and also to implement than a given value of u. We shall present two 1
for implementing u, = 0 in a finite difference scheme, one based on de
modified stencil at the boundary, and another one based on extending t
with ghost cells and ghost points.

6.1 Neumann boundary condition

When a wave hits a boundary and is to be reflected back, one app
condition

ou

The derivative §/0n is in the outward normal direction from a general b
For a 1D domain [0, L], we have that

0 0 0 0

%aazL_%7 %wzo__%.

Boundary condition terminology.

Boundary conditions that specify the value of du/dn, or shorter u,
known as Neumann® conditions, while Dirichlet conditions® refer to
fications of u. When the values are zero (Ou/dn = 0 or u = 0) we ;
about homogeneous Neumann or Dirichlet conditions.

%http://en.wikipedia.org/wiki/Neumann boundary_condition
Yhttp://en.wikipedia.org/wiki/Dirichlet_conditions

6.2 Discretization of derivatives at the boundary

How can we incorporate the condition (34) in the finite difference schem
we have used central differences in all the other approximations to der
in the scheme, it is tempting to implement (34) at z = 0 and ¢t = ¢,
difference

n n
u_; — Uy
2Ax

The problem is that u™; is not a u value that is being computed since t.
is outside the mesh. However, if we combine (35) with the scheme for i

=0.

"http://tinyurl.com/k3sdbuv/pub/mov-wave/demo_BC_gaussian/index.html
8http://tinyurl.com/k3sdbuv/pub/mov-wave/demo BC_gaussian/movie.flv
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uftt = T 2ul + O (ufyy — 2ul +ul ), (36)

e can eliminate the fictitious value u™ ;. We see that u™; = u} from (35), which

wn be used in (36) to arrive at a modified scheme for the boundary point ugy*':

ul Tt = T 4 2ul 4207 (ufyy —u}), i=0. (37)

igure 4 visualizes this equation for computing ug in terms of u2, u}, and u3.

Stencil at boundary point

N

index n
\J

A A A
(7
0O
O

U

o

index i
Figure 4: Modified stencil at a boundary with a Neumann condition.
Similarly, (34) applied at = L is discretized by a central difference

n n

=0. 38
2Ax (38)
ombined with the scheme for i = N, we get a modified scheme for the boundary
Alue it
uZH—l — —u?_l + 2ul + 202 (u;Ll - u:l) , 1=DN,. (39)

The modification of the scheme at the boundary is also required for the
secial formula for the first time step. How the stencil moves through the mesh
nd is modified at the boundary can be illustrated by an animation in a web
age® or a movie file'°.

9mttp://tinyurl.com/k3sdbuv/pub/mov-wave/wavelD_PDE Neumann_stencil_gpl/index.html
Ohttp://tinyurl.com/k3sdbuv/pub/mov-wave/wave1D_PDE_Neumann_stencil_gpl/movie.ogg
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6.3 Implementation of Neumann conditions

The implementation of the special formulas for the boundary points car
from using the general formula for the interior points also at the bou
but replacing uj'_; by uj,; when computing u?“ for i = 0 and uj,; by
i = N,. This is achieved by just replacing the index ¢ — 1 by ¢ + 1 for ¢
i+ 1byi—1for i = N,. In a program, we introduce variables to hold t
of the offset indices: iml for i-1 and ip1 for i+1. It is now just a mz
defining im1 and ip1 properly for the internal points and the boundar:

The coding for the latter reads

1=
ipl = i+l

iml = ipl # i-1 -> i+l

ulil = u_1[i] + C2*(u_1[im1] - 2%u_1[i] + u_1[ip1])

nmno

i =
iml i-1

ip1 iml # i+1 -> i-1

ulil = u_1[i] + C2*(u_1[im1] - 2%u_1[i] + u_1[ip1l)

nmn=
e

We can in fact create one loop over both the internal and boundar:
and use only one updating formula:

for i in range(0, Nx+1):
ipl = i+l if i < Nx else i-1
iml = i-1 if i > 0 else i+l
ulil = u_1[i] + C2*(u_1[im1] - 2%u_1[i] + u_1[ip1l)

The program wavel1D_dn0.py'! contains a complete implementatio
1D wave equation with boundary conditions u, =0 at x =0 and x = 1

6.4 Index set notation

We shall introduce a special notation for index sets, consisting of wr
i € I, instead of i = 0,..., N,. Obviously, Z, must be the set Z, = {0, .
but it is often advantageous to have a symbol for this set rather than sp
all its elements. This saves writing and makes specification of algoritk
implementation of computer code easier.

The first index in the set will be denoted ZU and the last Z; 1. Somet
need to count from the second element in the set, and the notation Z;
used. Correspondingly, Z,” means {0,..., N, — 1}. All the indices corres
to inner grid points are Z% = {1,..., N, — 1}. For the time domain w
natural to explicitly use 0 as the first index, so we will usually write n
to rather than n = Z?. We also avoid notation like zz-1 and will instea
i=T;L

The Python code associated with index sets applies the following cons

Uhttp://tinyurl.com/jvzzcfn/wave/wavelD dn0.py
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Notation  Python

T Ix

IE Ix[0]
7! Ix[-1]
I Ix[:-1]
Zr Ix[1:]
Ti Ix[1:-1]

n important feature of the index set notation is that it keeps our formulas
nd code independent of how we count mesh points. For example, the notation
€Zl,ori= Ig remains the same whether Z, is defined as above or as starting
t 1, ie., Z, ={1,...,Q}. Similarly, we can in the code define Ix=range (Nx+1)

r Ix=range(1,Q), and expressions like Ix[0] and Ix[1:-1] remain correct.

me application where the index set notation is convenient is conversion of code
om a language where arrays has base index 0 (e.g., Python and C) to languages
here the base index is 1 (e.g., MATLAB and Fortran). Another important
pplication is implementation of Neumann conditions via ghost points (see next
sction).

For the current problem setting in the z, ¢ plane, we work with the index sets

II:{O,...,NI}, It:{O,...,Nt}, (40)
efined in Python as

range (0, Nx+1)
range (0, Nt+1)

[x
[t

A finite difference scheme can with the index set notation be specified as

n+l __ n—1 n 2 n n n . i 0
ul Tt = —ul T 2u] 4 CF (ufy — 2] +ui_1), i€, nely,

w =0, =10

x?

u =0, i=T;' nelj

n €1,

nd implemented by code like

‘or n in It[1:-1]:
for i in Ix[1:-1]:

uli] = - u_2[i] + 2*%u_1[i] + \
C2x(u_1[i-1] - 2%u_1[i] + u_1[i+1])
i = Ix[0]; wuli]l =0
i = Ix[-1]; uli]l = 0
N
Notice.

The program wavelD_dn.py® applies the index set notation and solves the
1D wave equation uy = c?ug, + f(z,t) with quite general boundary and
initial conditions:

e x=0: u=Uy(t) oru, =0
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e x =L u=Ug(t) oru, =0
o t=0: u=1I(z)
o t=0: Ut:I(fﬂ)

The program combines Dirichlet and Neumann conditions, scalar an
torized implementation of schemes, and the index notation into one
of code. A lot of test examples are also included in the program:

e A rectangular plug profile as initial condition (easy to use a
example as the rectangle should jump one cell per time step
C =1, without any numerical errors).

e A Gaussian function as initial condition.

A triangular profile as initial condition, which resembles the t;
initial shape of a guitar string.

A sinusoidal variation of © at x = 0 and either u = 0 or u, =
z=0L.

e An exact analytical solution u(z,t) = cos(mmt/L) sin(3mnrz/L),
can be used for convergence rate tests.

%http://tinyurl.com/jvzzcfn/wave/wavelD_dn.py

6.5 Alternative implementation via ghost cells

Idea. Instead of modifying the scheme at the boundary, we can introdu
points outside the domain such that the fictitious values u™; and u}
defined in the mesh. Adding the intervals [-Axz, 0] and [L, L+ Az], often
to as ghost cells, to the mesh gives us all the needed mesh points, corres
toi=—1,0,...,N,, N, + 1. The extra points ¢ = —1 and i = N, + 1 ar
as ghost points, and values at these points, u”; and uy, ,,, are calle
values.
The important idea is to ensure that we always have

u?y =uf and uly 41 =uN, 1,
because then the application of the standard scheme at a boundary poi

or i = N, will be correct and guarantee that the solution is compatible -
boundary condition u, = 0.

Implementation. The u array now needs extra elements correspor
the ghost cells and points. Two new point values are needed:
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1 = zeros(Nx+3)

he arrays u_1 and u_2 must be defined accordingly.

Unfortunately, a major indexing problem arises with ghost cells. The reason
that Python indices must start at 0 and u[-1] will always mean the last
ement in u. This fact gives, apparently, a mismatch between the mathematical

wdices i = —1,0,..., N, + 1 and the Python indices running over u: 0, ..,Nx+2.

me remedy is to change the mathematical notation of the scheme, as in

n+1l __ .
wT =, di=1,...,Ny+1,

ieaning that the ghost points correspond to i = 0 and ¢ = N, + 1. A better
>lution is to use the ideas of Section 6.4: we hide the specific index value in
n index set and operate with inner and boundary points using the index set
otation.

To this end, we define u with proper length and Ix to be the corresponding
idices for the real physical points:

1 = zeros (Nx+3)
[x = range(1l, u.shape[0]-1)

hat is, the boundary points have indices Ix[0] and Ix[-1] (as before). We
rst update the solution at all physical mesh points (i.e., interior points in the
1esh extended with ghost cells):

‘for i in Ix:
uli] = - w_2[i] + 2*%u_1[i] + \
C2x(u_1[i-1] - 2*u_1[i] + u_1[i+1])

; remains to update the ghost points. For a boundary condition u, = 0, the
host value must equal to the value at the associated inner mesh point. Computer
»de makes this statement precise:

L = Ix[0] # x=0 boundary
1[i-1] = uli+1]
L= Ix[-1] # x=L boundary

1[i+1] = uli-1]

The physical solution to be plotted is now in u[1:-1], so this slice is the
uantity to be returned from a solver function. A complete implementation
ppears in the program wavelD_dn0O_ghost .py12.

Warning.
We have to be careful with how the spatial and temporal mesh points are
stored. Say we let x be the physical mesh points,

2http://tinyurl.com/jvzzcfn/wave/wavelD/wavelD_dnO_ghost .py
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x = linspace(0, L, Nx+1)
”?Standard coding” of the initial condition,

for i in Ix:
u_1[i] = I(x[i])

becomes wrong, since u_1 and x have different lengths and the in
corresponds to two different mesh points. In fact, x[i] correspon
ul[1+i]. A correct implementation is

for i in Ix:
u_1[i] = I(x[i-Ix[0]1])

Similarly, a source term usually coded as £ (x[i], t[n]) is incorrect
defined to be the physical points.

An alternative remedy is to let x also cover the ghost points sucl
uli] is the value at x[i]. This is the recommended approach.

The ghost cell is only added to the boundary where we have a N
condition. Suppose we have a Dirichlet condition at * = L and a homo
Neumann condition at £ = 0. The relevant implementation then beconr

u = zeros (Nx+2)
Ix = range(0, u.shape[0]-1)

for i in Ix[:-1]:
uli] = - uw_2[i] + 2*%u_1[i] + \
C2*(u_1[i-1] - 2*u_1[i] + uw_1[i+1]) + \
dt2#f (x[i], t[nl)

i = Ix[-1]
uli] = U_O # set Dirichlet value
i = Ix[0]

uli+1] = uli-1] # update ghost value

The physical solution to be plotted is now in u[1:].

7 Generalization: variable wave velocity

Our next generalization of the 1D wave equation (1) or (17) is to allc
variable wave velocity ¢: ¢ = ¢(z), usually motivated by wave motion in a
composed of different physical media with different properties for proy
waves and hence different wave velocities c¢. Figure

7.1 The model PDE with a variable coefficient

Instead of working with the squared quantity c?(z) we shall for no
convenience introduce g(z) = c?(x). A 1D wave equation with variak
velocity often takes the form
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Nx=80, t=0.375000 Nx=80, t=1.250000
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igure 5: Left: wave entering another medium; right: transmitted and reflected
ave .

2u u
= e (1050 ) + S, (a)

his equation sampled at a mesh point (x;,t,) reads

0? 0 0
gstntn) = o (e g ulwn ) + St

here the only new term is

a% (q(:ci)%u(:ci,tn)) -

.2 Discretizing the variable coefficient

% (q(w)gZ)]n

i

he principal idea is to first discretize the outer derivative. Define

nd use a centered derivative around x = z; for the derivative of ¢:

ae]" N Pip 1 — b1 _ n
oo, =i -

hen discretize

[ou]™ ul  —ul
Girt =aiy1 |5 ~ quM = lgDzuliy s
2 >0z, 2 Ax i+a
- - 2
imilarly,
[Ou]" ull —ul
) =q. i ~qg 1—2 = (gD, ul™ ;.
(z)zf% qué or i1 q;—1 Ax [q z ]z—%
- - 2

35

These intermediate results are now combined to
0 ou\1" 1
o (1058)] = g (s (e =)~y (a2 )
K3
With operator notation we can write the discretization as

{8% (q(x)gZ)r ~ [DaqDyul}

K3

Remark.

Many are tempted to use the chain rule on the term % (q(z)%)7 bu

is not a good idea when discretizing such a term.

7.3 Computing the coefficient between mesh points

If ¢ is a known function of z, we can easily evaluate ¢, , 1 simply as g(z,
Tyl =1+ %Am. However, in many cases ¢, and hence g, is only kno
discrete function, often at the mesh points x;. Evaluating g between tv
points x; and x;11 can then be done by averaging in three ways:

1 _ . .
Gt 5 (¢ + gi+1) = [T, (arithmetic mean)
11 \"
Gip1~2 (— + ) , (harmonic mean)
2 4G Qi+
1/2 .
qit1 = (qigiv1) / ; (geometric mean)

The arithmetic mean in (44) is by far the most commonly used ax
technique.

With the operator notation from (44) we can specify the discretiz
the complete variable-coefficient wave equation in a compact way:

[DtDtu = D,q"Dyu + f]? :

From this notation we immediately see what kind of differences that eack
approximated with. The notation g” also specifies that the variable coefl
approximated by an arithmetic mean, the definition being [qm]H% = (q;i+
With the notation [D,gD,u]?, we specify that ¢ is evaluated direct
function, between the mesh points: ¢(z;_1) and q(z;,1).

Before any implementation, it remains to solve (47) with respect to

u;”'l =~ 4 2ul+

Az\? (1 n 1 N
AL 5(%‘ + qiv1)(uiyy —ug) — 5(%‘ +qi—1)(uj’ —uiq,

AL f
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.4 How a variable coefficient affects the stability

he stability criterion derived in Section 10.3 reads At < Az/c. If ¢ = ¢(x),
1e criterion will depend on the spatial location. We must therefore choose a
t that is small enough such that no mesh cell has Az/c(z) > At. That is, we
st use the largest ¢ value in the criterion:
A
At<p—=0 (49)
maxgeo,r] €(z)
he parameter [ is included as a safety factor: in some problems with a
gnificantly varying c it turns out that one must choose § < 1 to have stable
slutions (8 = 0.9 may act as an all-round value).

.5 Neumann condition and a variable coefficient

'onsider a Neumann condition du/dx = 0 at x = L = N, Az, discretized as
Uiy — Uy
2Ax

it i = N,. Using the scheme (48) at the end point i = N, with v}, | = u} ;
ssults in

— n — n
=0 whq =uq,

uftt =~ 2ul

At (Qi+§(ui71 —ui) = ¢y (uf — uz?l)) +

A 2

— a2+ (57 ey o)~ AR 6D
n—1 n Az 2 n n 2 rn

~—up A+ 2u) At 2q¢i(ui_q —ui') + At f]". (52)

‘ere we used the approximation

dg ’q
iy tq-1=q+ <dx>iA:E+ (a: iA:E2+---+

dq d2q 2
ql‘(dxlﬁ“(dﬁ)i“ e

An alternative derivation may apply the arithmetic mean of ¢ in (48), leading
) the term
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1
(@i + §(qz'+1 +qi-1))(wig —ui').

Since 3(gi41 + ¢i—1) = ¢; + O(Az?), we end up with 2¢; (uf_; — u?) for
as we did above.

A common technique in implementations of du/dz = 0 boundary co
is to assume dq/dx = 0 as well. This implies ¢;41 = ¢;—1 and g;11/2 = ¢
i = N,. The implications for the scheme are

uf“ = —u?fl + 2ul+

Az\? . . o
(E) (Qi+%(ui71 —ul) — qz‘fé(ui _ Uz;l)) n

AL f1

A 2
= —ul ! 2ul + <A—f) 2q; 1 (uiy —uf) + A2 fr

7.6 Implementation of variable coefficients

The implementation of the scheme with a variable wave velocity may
that c is available as an array c[i] at the spatial mesh points. The fc
loop is a straightforward implementation of the scheme (48):

for i in range(1l, Nx):
ulil = - uw_2[i] + 2*u_1[i] + \
C2x(0.5%(q[i] + qli+1])*(u_1[i+1] - uw_1[i]) - \
0.5%(q[i] + q[i-11)*(u_1[i] - u_1[i-11)) + \
dt2*f (x[i], t[n])

The coefficient C2 is now defined as (dt/dx)**2 and not as the squared
number since the wave velocity is variable and appears inside the parer

With Neumann conditions u, = 0 at the boundary, we need to ¢
this scheme with the discrete version of the boundary condition, as sl
Section 7.5. Nevertheless, it would be convenient to reuse the formula
interior points and just modify the indices ip1=i+1 and iml=i-1 as w
Section 6.3. Assuming dg/dxz = 0 at the boundaries, we can implen
scheme at the boundary with the following code.

i=0

ipl = i+l

iml = ipl

uli] = - w_2[i] + 2*u_1[i] + \

C2x(0.5%(q[i] + qlip1l)*(u_1[ip1] - u_1[i]) -\
0.5%(qli] + qlim1])*(u_1[i] - w_1[im1])) + \
dt2*f (x[1], t[nl)

With ghost cells we can just reuse the formula for the interior poi
at the boundary, provided that the ghost values of both u and ¢ are ¢
updated to ensure u, = 0 and ¢, = 0.
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A vectorized version of the scheme with a variable coefficient at internal
oints in the mesh becomes

1[1:-1] = - u_2[1:-1] + 2%u_1[1:-1] + \
C2%(0.5%(q[1:-1] + q[2:1)*(u_1[2:] - u_1[1:-1]) -
0.5%(ql1:-1] + ql:-2D)*(u_1[1:-1] - u_1[:-2])) + \
dt2*f (x[1:-1], t[nl)

.7 A more general model PDE with variable coefficients

ometimes a wave PDE has a variable coefficient also in front of the time-
erivative term:

o) 5 = o (52 + 0, (56)

T

natural scheme is

/e realize that the ¢ coefficient poses no particular difficulty because the only
sue o' enters the formula above (when written out). There is hence no need for
ny averaging of g. Often, g will be moved to the right-hand side, also without
ny difficulty:

[D:Dyu = 0 1D, G Dyu + . (58)

.8 Generalization: damping

laves die out by two mechanisms. In 2D and 3D the energy of the wave spreads
ut in space, and energy conservation then requires the amplitude to decrease.
his effect is not present in 1D. Damping is another cause of amplitude reduction.
or example, the vibrations of a string die out because of damping due to air
ssistance and non-elastic effects in the string.

The simplest way of including damping is to add a first-order derivative to
1e equation (in the same way as friction forces enter a vibrating mechanical
/stem):

2u U 2u
T b= 2T (), (59)
here b > 0 is a prescribed damping coefficient.

A typical discretization of (59) in terms of centered differences reads

[DyDyu + bDoyu = ¢ Dy Dyu + 7. (60)

n+1

/riting out the equation and solving for the unknown u; ™" gives the scheme
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1 1
w = (L SbAY) TH(GhAE = 1)uf ™ 4+ 20 +C% (i) — 20 + il y) +

for i € T and n > 1. New equations must be derived for u}, and for b
points in case of Neumann conditions.

The damping is very small in many wave phenomena and then only
for very long time simulations. This makes the standard wave equation
damping relevant for a lot of applications.

8 Building a general 1D wave equation sol

The program wave1D_dn_vc.py'? is a fairly general code for 1D wave prog
problems that targets the following initial-boundary value problem

up = (A(@)ug), + f(2,1), x€(0,L), te (0,1
u(z,0) = I(z), z€[0,L]
ue(x,0) =V (1), x € [0, L]
u(0,t) = Up(t) or ug(0,t) =0, te (0,7
w(L,t) = UL(t) or uy(L,t) =0, te (0,7

The solver function is a natural extension of the simplest solver |
in the initial wavelD_uO_s.py program, extended with Neumann b«
conditions (u, = 0), a possibly time-varying boundary condition on ¢
UL(t)), and a variable wave velocity. The different code segments ne
make these extensions are shown and commented upon in the precedin

The vectorization is only applied inside the time loop, not for th
condition or the first time steps, since this initial work is negligible for Ic
simulations in 1D problems.

The following sections explain various more advanced programming tec
applied in the general 1D wave equation solver.

8.1 User action function as a class

A useful feature in the wavelD_dn_vc.py program is the specificatios
user_action function as a class. Although the plot_u function in
function of previous wavelD#.py programs remembers the local variable
viz function, it is a cleaner solution to store the needed variables togetl
the function, which is exactly what a class offers.

A class for flexible plotting, cleaning up files, and making a movie
function viz and plot_u did can be coded as follows:

Bhttp://tinyurl.com/jvzzcfn/wave/wavelD dn_vc.py
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:lass PlotSolution:
nnn
Class for the user_action function in solver.
Visualizes the solution only.
nnn

def __init__(self,

casename=’tmp’, # Prefix in filenames
umin=-1, umax=1, # Fixed range of y axis
pause_between_frames=None, # Movie speed
backend="matplotlib’, # or ’gnuplot’
screen_movie=True, # Show movie on screen?
title=’"’, # Extra message in title
every_frame=1): # Show every_frame frame

self.casename = casename

self .yaxis = [umin, umax]

self.pause = pause_between_frames

module = ’scitools.easyviz.’ + backend + ’_’°
exec(’import %s as plt’ % module)

self.plt = plt

self.screen_movie = screen_movie

self.title = title

self.every_frame = every_frame

# Clean up old movie frames
for filename in glob(’frame_x.png’):
os.remove (filename)

def __call__(self, u, x, t, n):
if n % self.every_frame != 0:
return
title = ’t=)f’ % t[n]
if self.title:
title = self.title + ’ ’ + title
self.plt.plot(x, u, ’r-’,
xlabel=’"x’, ylabel=’u’,
axis=[x[0], x[-1],
self .yaxis[0], self.yaxis[1]],
title=title,
show=self.screen_movie)
# pause
if t[n] == 0:
time.sleep(2) # let initial condition stay 2 s
else:
if self.pause is None:
pause = 0.2 if u.size < 100 else O
time.sleep(pause)

self .plt.savefig(’Ys_frame_%04d.png’ % (self.casename, n))

nderstanding this class requires quite some familiarity with Python in general
nd class programming in particular.

The constructor shows how we can flexibly import the plotting engine as
ypically) scitools.easyviz.gnuplot_ or scitools.easyviz.matplotlib_
1ote the trailing underscore). With the screen_movie parameter we can
1ppress displaying each movie frame on the screen. Alternatively, for slow
1ovies associated with fine meshes, one can set every_frame to, e.g., 10, causing
very 10 frames to be shown.
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8.2 Pulse propagation in two media

The function pulse in wavelD_dn_vc.py demonstrates wave motion in
neous media where ¢ varies. One can specify an interval where the wave
is decreased by a factor slowness_factor (or increased by making thi
less than one). Four types of initial conditions are available: a rect
pulse (plug), a Gaussian function (gaussian), a ”cosine hat” consistin
period of the cosine function (cosinehat), and half a period of a ”cos
(half-cosinehat). These peak-shaped initial conditions can be place
middle (loc=’center’) or at the left end (loc=’1left’) of the doma
pulse function is a flexible tool for playing around with various wave
and location of a medium with a different wave velocity:

def pulse(C=1, Nx=200, animate=True, version=’vectorized’, T=2,

loc=’center’, pulse_tp=’gaussian’, slowness_factor=2,
medium=[0.7, 0.9], every_frame=1, sigma=0.05):
nnn
Various peaked-shaped initial conditions on [0,1].
Wave velocity is decreased by the slowness_factor inside
medium. The loc parameter can be ’center’ or ’left’,
depending on where the initial pulse is to be located.
The sigma parameter governs the width of the pulse.
nnn
# Use scaled parameters: L=1 for domain length, c_0=1
# for wave velocity outside the domain.

L=1.0

c_.0=1.0

if loc == ’center’:
xc = L/2

elif loc == ’left’:
xc =0

if pulse_tp in (’gaussian’,’Gaussian’):

def I(x):
return exp(-0.5*%((x-xc)/sigma)**2)
elif pulse_tp == ’plug’:
def I(x):
return 0 if abs(x-xc) > sigma else 1
elif pulse_tp == ’cosinehat’:
def I(x):
# One period of a cosine
w=2

a = wxsigma
return 0.5%(1 + cos(pi*(x-xc)/a)) \
if Xc - a <= x <= xc + a else 0

elif pulse_tp == ’half-cosinehat’:
def I(x):
# Half a period of a cosine
w=24
a = wxsigma
42

__call__ method makes PlotSolution instances behave like fu
so we can just pass an instance, say p, as the user_action argumen
solver function, and any call to user_action will be a call to p.__ca



return cos(pi*(x-xc)/a) \
if xc - 0.5%a <= x <= xc + 0.5*a else O
else:
raise ValueError(’Wrong pulse_tp="%s"’ % pulse_tp)

def c(x):
return c_0/slowness_factor \
if medium[0] <= x <= medium[1] else c_0

umin=-0.5; umax=1.5%*I(xc)
casename = ’%s_NxVs_sfhs’ % \
(pulse_tp, Nx, slowness_factor)
action = PlotMediumAndSolution(
medium, casename=casename, umin=umin, umax=umax,
every_frame=every_frame, screen_movie=animate)

solver(I=I, V=None, f=None, c=c, U_O=None, U_L=None,
L=L, Nx=Nx, C=C, T=T,
user_action=action, version=version,
dt_safety_factor=1)

he PlotMediumAndSolution class used here is a subclass of PlotSolution
here the medium with reduced c value, as specified by the medium interval, is
isualized in the plots.

The reader is encouraged to play around with the pulse function:

>>> import wavelD_dn_vc as w
>>> w.pulse(loc=’left’, pulse_tp=’cosinehat’, Nx=50, every_frame=10)

o easily kill the graphics by Ctrl-C and restart a new simulation it might be
asier to run the above two statements from the command line with

srminal> python -c ’import wavelD_dn_vc as w; w.pulse(...)’

) Exercises

xercise 6: Find the analytical solution to a damped wave
quation

'onsider the wave equation with damping (59). The goal is to find an exact
>lution to a wave problem with damping. A starting point is the standing wave
slution from Exercise 1. It becomes necessary to include a damping term e~¢
nd also have both a sine and cosine component in time:

e (x,t) = e Pt sinkx (A coswt + Bsinwt) .

ind k from the boundary conditions u(0,t) = u(L,t) = 0. Then use the PDE
» find constraints on 3, w, A, and B. Set up a complete initial-boundary value
roblem and its solution. Filename: damped_waves.pdf.
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Problem 7: Explore symmetry boundary conditions

Consider the simple ”plug” wave where Q = [-L, L] and

[ 1, ze[-9,4],
I(x) _{ 0, otherwise

for some number 0 < § < L. The other initial condition is us(z,0) = 0 &
is no source term f. The boundary conditions can be set to u = 0. The
to this problem is symmetric around « = 0. This means that we can ¢
the wave process in only the half of the domain [0, L].

a) Argue why the symmetry boundary condition is u, = 0 at x = 0.
Hint. Symmetry of a function about x = x¢ means that f(zo+h) = f

b) Perform simulations of the complete wave problem from on [—L, L]
after, utilize the symmetry of the solution and run a simulation in ha
domain [0, L], using a boundary condition at = 0. Compare the two s
and make sure that they are the same.

c) Prove the symmetry property of the solution by setting up the c
initial-boundary value problem and showing that if u(z,t) is a solutic
also u(—x,t) is a solution.

Filename: wavelD_symmetric.

Exercise 8: Send pulse waves through a layered med

Use the pulse function in wavelD_dn_vc.py to investigate sending
located with its peak at x = 0, through the medium to the right wher
another medium for = € [0.7,0.9] where the wave velocity is decreas
factor sy. Report what happens with a Gaussian pulse, a ”cosine hat
half a ”cosine hat” pulse, and a plug pulse for resolutions N, = 40, 80, 1
sy = 2,4. Use C' =1 in the medium outside [0.7,0.9]. Simulate unti
Filename: pulselD.py.

Exercise 9: Compare discretizations of a Neumann
tion

We have a 1D wave equation with variable wave velocity: u; = (qt
Neumann condition u, at = 0, L can be discretized as shown in (52) &

The aim of this exercise is to examine the rate of the numerical err:
using different ways of discretizing the Neumann condition. As test 1
g=1+ (z — L/2)* can be used, with f(z,t) adapted such that the solu
a simple form, say u(z,t) = cos(rz/L) cos(wt) for some w = \/qm/L.

44



) Perform numerical experiments and find the convergence rate of the error
sing the approximation and (55).

) Switch to g(x) = cos(mwz/L), which is symmetric at © = 0, L, and check the
»nvergence rate of the scheme (55). Now, ¢;_; /2 is a 2nd-order approximation to
S Gim1/2 = G +0.25¢7 Ax? + - - -, because ¢, = 0 for i = N, (a similar argument
an be applied to the case i = 0).

) A third discretization can be based on a simple and convenient, but less
ccurate, one-sided difference: u; —u;—1 = 0 at ¢ = N, and u;41 —u; = 0 at
= 0. Derive the resulting scheme in detail and implement it. Run experiments
» establish the rate of convergence.

) A fourth technique is to view the scheme as

o (laDeltyy — faDeal? ) + 11,

nd place the boundary at z; +1 i = N,, instead of exactly at the physical

[DtDt’U/]:l =

oundary. With this idea, we can just set [quu]Z_ 1= 0. Derive the complete
heme using this technique. The implementation of the boundary condition at
— Ax/2 is O(Az?) accurate, but the interesting question is what impact the
1ovement of the boundary has on the convergence rate (compute the errors as
sual over the entire mesh).

0 Analysis of the difference equations

0.1 Properties of the solution of the wave equation

he wave equation

Pu ,0%u
gu_ 20t
ot? 0x?

as solutions of the form

u(z,t) = gr(x — ct) + gr.(x + ct), (67)

r any functions ggr and gr, sufficiently smooth to be differentiated twice. The
ssult follows from inserting (67) in the wave equation. A function of the form
r(x — ct) represents a signal moving to the right in time with constant velocity

This feature can be explained as follows. At time ¢ = 0 the signal looks
ke gr(z). Introducing a moving x axis with coordinates £ = x — ct, we see
1e function gr(§) is 7at rest” in the ¢ coordinate system, and the shape is
lways the same. Say the gr(§) function has a peak at & = 0. This peak is
cated at « = ct, which means that it moves with the velocity dz/dt = ¢ in
1e x coordinate system. Similarly, gr,(z + ct) is a function initially with shape
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gr(x) that moves in the negative x direction with constant velocity ¢ (ir
& = x + ct, look at the point £ = 0, z = —ct, which has velocity dx/dt -
With the particular initial conditions

gu(x, 0) =0,

u(x,0) = I(x), o

we get, with u as in (67),

gr(z) +gr(x) = I(z), —cgp(x) +cgp(x) =0,

which have the solution gr = g1, = I/2, and consequently

1 1
u(z,t) = 5[(3: —ct) + 5[(3: +ct).

The interpretation of (68) is that the initial shape of w is split into tw
each with the same shape as I but half of the initial amplitude. One
traveling to the left and the other one to the right.

The solution has two important physical features: constant amplituc
left and right wave, and constant velocity of these two waves. It turns «
the numerical solution will also preserve the constant amplitude, but the
depends on the mesh parameters At and Ax.

The solution (68) will be influenced by boundary conditions when t.
%I(m —ct) and %I(az + ct) hit the boundaries and get, e.g., reflected b:
the domain. However, when I(z) is nonzero only in a small part in the n
the spatial domain [0, L], which means that the boundaries are placed f
from the initial disturbance of u, the solution (68) is very clearly obser
simulation.

A useful representation of solutions of wave equations is a linear com’
of sine and/or cosine waves. Such a sum of waves is a solution if the g
PDE is linear and each sine or cosine wave fulfills the equation. To ease a1
calculations by hand we shall work with complex exponential functions
of real-valued sine or cosine functions. The real part of complex exp
will typically be taken as the physical relevant quantity (whenever a j
relevant quantity is strictly needed). The idea now is to build I(z) of «

wave components e?¢%:
I(z) = E brett® .
keK

Here, k is the frequency of a component, K is some set of all the discrete
needed to approximate I(x) well, and by, are constants that must be det
We will very seldom need to compute the by coefficients: most of the in
look for and the understanding of the numerical methods we want to e
come from investigating how the PDE and the scheme treat a single cor
et wave.

Letting the number of k values in K tend to infinity makes the s
converge to I(x), and this sum is known as a Fourier series represent

I(z). Looking at (68), we see that the solution u(z,t), when I(z) is rep:
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5in (69), is also built of basic complex exponential wave components of the
rm e#(@Eet) aecording to

1 . 1 )
— 5 Z bkezk(xfct) + 5 Z bkezk(erct) ) (70)

keK keK

. is common to introduce the frequency in time w = k¢ and assume that u(z,t)

a sum of basic wave components written as e’**~“¢. (Observe that inserting
1ch a wave component in the governing PDE reveals that w? = k?c?, or w =+ kc,
flecting the two solutions: one (+kc) traveling to the right and the other (—kc)
-aveling to the left.)

0.2 More precise definition of Fourier representations

he quick intuitive introduction above to representing a function by a sum of
ne and cosine waves suffices as background for the forthcoming material on
nalyzing a single wave component. However, to understand all details of how
ifferent wave components sum up to the analytical and numerical solution, a
1ore precise mathematical treatment is helpful and therefore summarized below.

It is well known that periodic functions can be represented by Fourier series.

generalization of the Fourier series idea to non-periodic functions defined on
1e real line is the Fourier transform:

I(z) = / = Ak, (71)
A(k) = /Oo I(x)e ke dy . (72)

he function A(k) reflects the weight of each wave component e*** in an infinite
1m of such wave components. That is, A(k) reflects the frequency content in
1e function I(x). Fourier transforms are particularly fundamental for analyzing
nd understanding time-varying signals.

The solution of the linear 1D wave PDE can be expressed as
& .
u(x,t) :/ A(k)ez(kmf‘“(k)t)dx.

In a finite difference method, we represent u by a mesh function uy, where n
>unts temporal mesh points and ¢ counts the spatial ones (the usual counter
v spatial points, i, is here already used as imaginary unit). Similarly, I(x)

approximated by the mesh function I, ¢ = 0,..., N,. On a mesh, it does
ot make sense to work with wave components ¢*** for very large k, because
1e shortest possible sine or cosine wave that can be represented on a mesh
ith spacing Az is the wave with wavelength 2Axz (the sine/cosine signal
mmps up and down between each mesh point). The corresponding k value is
= 27/(2Ax) = w/Ax, known as the Nyquist frequency. Within the range of
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relevant frequencies (0, m/Az] one defines the discrete Fourier transform’
N, + 1 discrete frequencies:

N,

kj/(Ne P —
(I Nz Z Z27T i/ +1>7 1_07"'7]\]:27
k

Ny
Z e~ 1mha/(NetD) | — 0, N, + 1.

The Ay, values is the discrete Fourier transform of the I, values, and tl
are the inverse discrete Fourier transform of the A; values.

The discrete Fourier transform is efficiently computed by the Fast
transform algorithm. For a real function I(x) the relevant Python «
computing and plotting the discrete Fourier transform appears in the ¢
below.

import numpy as np
from numpy import sin

def I(x):
return sin(2*pi*x) + 0.5%sin(4*pi*x) + 0.1xsin(6*pi*x)

esh

10; Nx = 100
np.linspace(0, L, Nx+1)
= L/float (Nx)

=

#
L
X
d.

# Discrete Fourier transform
A = np.fft.rfft(I(x))
A_amplitude = np.abs(A)

# Compute the corresponding frequencies
freqs = np.linspace(0, pi/dx, A_amplitude.size)

import matplotlib.pyplot as plt
plt.plot(freqs, A_amplitude)
plt.show()

10.3 Stability
The scheme

[D:Dyu = c2DmDmu]g
for the wave equation u; = c?u,, allows basic wave components

u'g _ ei(kzq —@ty)

Mhttp://en.wikipedia.org/wiki/Discrete_Fourier_transform
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3 solution, but it turns out that the frequency in time, @, is not equal to the
cact w = ke. The idea now is to study how the scheme treats an arbitrary wave
ymponent with a given k. We ask two key questions:

e How accurate is @ compared to w?

e Does the amplitude of such a wave component preserve its (unit) amplitude,
as it should, or does it get amplified or damped in time (due to a complex
w)?

he following analysis will answer these questions. Note the need for using ¢ as
»unter for the mesh point in 2 direction since i is already used as the imaginary
nit (in this analysis).

'reliminary results. A key result needed in the investigations is the finite
ifference approximation of a second-order derivative acting on a complex wave
>mponent:

. 4 wAtY\
wt _ 2 1 At
[D¢De™* ™ = — R sin (2 > evnat,
y just changing symbols (w — k, t = z, n — q) it follows that
X 4 kAz\
ks .2 kqAx
[DzDzez x]q == _A"E2 S (T) 81 e .

fumerical wave propagation. Inserting a basic wave component uy =
(kzq=&tn) in (75) results in the need to evaluate two expressions:

[DtDteikxefiCJt]Z, — [DtDtefi&)t}neikqAx

4 oA - _
= _@ sin2 (th) e—zwnAtequAz (76)
[Dmeeikace—i&;t]g, _ [Dmeeikz]qe—iamAt
4 A . -
= _A 3 SiIl2 <l€27$> equAwe—anAt ] (77)
i

hen the complete scheme,

[DtDtezkmefuut — CQDxDxezkxefzwt]'g

rads to the following equation for the unknown numerical frequency & (after
ividing by —e?*®e=10t);

4L (AAt\ 5, 4, (kA
AtQ Sin B =C A,{EQ S B y
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WYAN kA
Sin2 (WT) = C2 Sin2 (Tw> 5

where

cAt
C=Axr

is the Courant number. Taking the square root of (78) yields

. [ WAL . [ kAx
sin (2 ) = (C'sin (2 ) ,

Since the exact w is real it is reasonable to look for a real solution @
The right-hand side of (80) must then be in [—1,1] because the sine {
on the left-hand side has values in [—1, 1] for real @. The sine functior
right-hand side can attain the value 1 when

kAx T
With m = 1 we have kAz = 7, which means that the wavelength A
becomes 2Ax. This is the absolutely shortest wavelength that can be rep:
on the mesh: the wave jumps up and down between each mesh point.
values of |m| are irrelevant since these correspond to k values whose w.
too short to be represented on a mesh with spacing Az. For the shortest
wave in the mesh, sin (kAz/2) = 1, and we must require

c<1.

Consider a right-hand side in (80) of magnitude larger than unif
solution @ of (80) must then be a complex number & = @, + i@; bece
sine function is larger than unity for a complex argument. One can sh
for any w; there will also be a corresponding solution with —w;. The cor
with w; > 0 gives an amplification factor e¥i! that grows exponentially
We cannot allow this and must therefore require C' < 1 as a stability cr

Remark.

For smoother wave components with longer wave lengths per lengt
(81) can in theory be relaxed. However, small round-off errors are a
present in a numerical solution and these vary arbitrarily from mesh
to mesh point and can be viewed as unavoidable noise with wavel
2Ax. As explained, C' > 1 will for this very small noise lead to expon
growth of the shortest possible wave component in the mesh. This
will therefore grow with time and destroy the whole solution.
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0.4 Numerical dispersion relation

quation (80) can be solved with respect to @:

~ 2 - . kAJ?
o= Esm <Csm (T)) . (82)

he relation between the numerical frequency @ and the other parameters k, c,
x, and At is called a numerical dispersion relation. Correspondingly, w = kc is
1e analytical dispersion relation.

The special case C' =1 deserves attention since then the right-hand side of
12) reduces to

2 kAx 1 wAz  w
At 2 At ¢ C

hat is, @ = w and the numerical solution is exact at all mesh points regardless of
x and At! This implies that the numerical solution method is also an analytical
>lution method, at least for computing u at discrete points (the numerical
1ethod says nothing about the variation of u between the mesh points, and
mnploying the common linear interpolation for extending the discrete solution
ives a curve that deviates from the exact one).

For a closer examination of the error in the numerical dispersion relation
hen C' < 1, we can study @ — w, @/w, or the similar error measures in wave
slocity: ¢ — ¢ and é/c, where ¢ = w/k and ¢ = ©/k. It appears that the most
mvenient expression to work with is ¢/e:

= Cipshfl (Csinp),

oo

ith p = kAz/2 as a non-dimensional measure of the spatial frequency. In
ssence, p tells how many spatial mesh points we have per wave length in space
f the wave component with frequency k (the wave length is 27/k). That is, p
»flects how well the spatial variation of the wave component is resolved in the
iesh. Wave components with wave length less than 2Ax (27/k < 2Ax) are not
isible in the mesh, so it does not make sense to have p > 7 /2.

We may introduce the function r(C,p) = é/c for further investigation of
umerical errors in the wave velocity:

1
r(C,p) = C—sin_1 (Csinp), Ce(0,1], pe (0,7/2]. (83)
p
his function is very well suited for plotting since it combines several parameters
1 the problem into a dependence on two non-dimensional numbers, C' and p.

Defining

lef r(C, p):
return 2/(C*p)*asin(Cxsin(p))
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Numerical divided by exact wave velocity
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Figure 6: The fractional error in the wave velocity for different Courant 1

we can plot 7(C,p) as a function of p for various values of C, see Figure
that the shortest waves have the most erroneous velocity, and that sho
move more slowly than they should.

With sympy we can also easily make a Taylor series expansion in
cretization parameter p:

>>> C, p = symbols(’C p’)

>>> rs = r(C, p).series(p, 0, 7)

>>> print rs

1 - p*x2/6 + p**4/120 - p**6/5040 + Cx*2%p**2/6 -
Cx*2*p**x4/12 + 13*Cx*2%p**6/720 + 3*Ckx4xpx*4/40 -
Cx*4*p**6/16 + H*Cx*6*xp**x6/112 + 0(p**7)

>>> # Factorize each term and drop the remainder 0(...) term
>>> rs_factored = [factor(term) for term in rs.lseries(p)]
>>> rs_factored = sum(rs_factored)

>>> print rs_factored

p**6%x(C - 1)*(C + 1)*(225*C**4 - 90*Cx*2 + 1)/5040 +
p**4x(C - 1)*(C + 1)*(3%xC - 1)*(3*C + 1)/120 +

p*x*2%(C - 1)*(C + 1)/6 + 1

We see that C' = 1 makes all the terms in rs_factored vanish, except
one. Since we already know that the numerical solution is exact for C :
remaining terms in the Taylor series expansion will also contain factors «
and cancel for C' = 1.
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From the rs_factored expression above we also see that the leading order
rms in the error of this series expansion are

1 (k:Aac

2
k2
6 T) (02 - 1) = ﬂ (C2At2 - A$2) 5 (84)

ointing to an error O(At?, Az?), which is compatible with the errors in the
ifference approximations (D;D; and D, D,).

0.5 Extending the analysis to 2D and 3D

he typical analytical solution of a 2D wave equation

Ut = CQ(umm + uyy)7

a wave traveling in the direction of k = k¢ + k,Jj, where ¢ and j are unit
sctors in the z and y directions, respectively. Such a wave can be expressed by

uw(z,y,t) = g(kyz + kyy — ket)

v some twice differentiable function g, or with w = ke, k = |k|:

u(z,y,t) = g(kzz + kyy — wt).

/e can in particular build a solution by adding complex Fourier components of
1e form

exp (i(kyz + kyy — wt)) .
A discrete 2D wave equation can be written as
[D¢Dyu = ¢*(DyDyu + DyDyu)]7 .. (85)
his equation admits a Fourier component

ug . = exp (i(kzqAx + kyrAy — @nAt)), (86)

s solution. Letting the operators DDy, D, D, and D, D, act on uy . from (86)
-ansforms (85) to

4,2@At_24,2kIAac o 4 5 (kyAy
A Sin <2)—c Az S 5 +c A—y28m 5 . (87)

DAt
sin? <w2> = CZsin® p, + C2 sin’ py, (88)
here we have eliminated the factor 4 and introduced the symbols
AAL? 2AL? k. Ax kyAy

Az2’ YAy
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For a real-valued @ the right-hand side must be less than or equal to
absolute value, requiring in general that
Ci+Cr <.

This gives the stability criterion, more commonly expressed directl
inequality for the time step:

1/ 1 1\ 2
At< =4 =
t_c<A:r2+Ay2>

A similar, straightforward analysis for the 3D case leads to

At < ! ! + ! + ! o
~ e \AzZ  Ay? A2
In the case of a variable coefficient c2 = ¢2(x), we must use the worst-ca
¢ =, /maxc?(x)
e

in the stability criteria. Often, especially in the variable wave velocity c:
wise to introduce a safety factor 8 € (0, 1] too:

—-1/2
1 1 1 1
At<B=|——5+——5+—
- BE (Am2 * Ay? * A22>
The exact numerical dispersion relations in 2D and 3D becomes, for «
c7

&

2 1
= A sin ! ((Cg sin® pg + C; sing) 2) ,

&

2 1
= sin~! ((C’g sin® pg + C3 sin? +C7 sin?) 2 ) .

We can visualize the numerical dispersion error in 2D much like we di
To this end, we need to reduce the number of parameters in @. The dire
the wave is parameterized by the polar angle 6, which means that

ky = ksin®, ky, = Fkcosf.

A simplification is to set Az = Ay = h. Then C, = C, = cAt/h, which
C. Also,

1 1
Pe = 5khcos€, Dy = §k‘hsin9.
The numerical frequency w is now a function of three parameters:

e ( reflecting the number cells a wave is displaced during a time st

54



e kh reflecting the number of cells per wave length in space

e 0 expressing the direction of the wave

/e want to visualize the error in the numerical frequency. To avoid having At
3 a free parameter in @, we work with é/¢, because the fraction 2/At is then
*written as

2 21
keAt — 2keAth/h ~ Ckh’

nd

oI

1 1 :
_ -1 o200 a2 .
= G e (C’ (sm (2kh cosf) + sin (2kh sin 0)) > .

/e want to visualize this quantity as a function of kh and 6 for some values of
" < 1. It is instructive to make color contour plots of 1 —¢/c in polar coordinates
ith 0 as the angular coordinate and kh as the radial coordinate.

The stability criterion (89) becomes C' < Cax = 1/v/2 in the present 2D
ase with the C' defined above. Let us plot 1 — é/c in polar coordinates for
"max;, 0.9Chax, 0.5Chax, 0.2Cax. The program below does the somewhat tricky
ork in Matplotlib, and the result appears in Figure 7. From the figure we
early see that the maximum C' value gives the best results, and that waves
hose propagation direction makes an angle of 45 degrees with an axis are the
10st accurate.

lef dispersion_relation_2D(kh, theta, C):
arg = Cxsqrt(sin(0.5%kh*cos(theta))**2 +
sin(0.5*kh*sin(theta))**2)
c_frac = 2./(Cxkh)*arcsin(arg)

return c_frac

‘rom numpy import exp, sin, cos, linspace, \
pi, meshgrid, arcsin, sqrt

: = kh = linspace(0.001, pi, 101)

cheta = linspace(0, 2*pi, 51)

:, theta = meshgrid(r, theta)

t Make 2x2 filled contour plots for 4 values of C
import matplotlib.pyplot as plt
J_max = 1/sqrt(2)
> = [[C_max, 0.9*%C_max], [0.5*C_max, 0.2*C_max]]
iix, axes = plt.subplots(2, 2, subplot_kw=dict(polar=True))
lor row in range(2):
for column in range(2):
error = 1 - dispersion_relation_2D(
kh, theta, C[row] [column])
print error.min(), error.max()
cax = axes[row] [column] .contourf (
theta, r, error, 50, vmin=0, vmax=0.36)
axes [row] [column] .set_xticks([])
axes [row] [column] .set_yticks([])
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# Add colorbar to the last plot

cbar = plt.colorbar(cax)
cbar.ax.set_ylabel(’error in wave velocity’)
plt.savefig(’disprel2D.png’)
plt.savefig(’disprel2D.pdf’)

plt.show()

Figure 7: Error in numerical dispersion in 2D.

11 Finite difference methods for 2D and 3D
equations

A natural next step is to consider extensions of the methods for varic
ants of the one-dimensional wave equation to two-dimensional (2D) an
dimensional (3D) versions of the wave equation.

11.1 Multi-dimensional wave equations

The general wave equation in d space dimensions, with constant wave ve
can be written in the compact form

&u 22 d
— =cVuforx e QCR? te (0,7].

In a 2D problem (d = 2),
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%u  0%u
2, — - -
Viu = 922 + o2

hile in three space dimensions (d = 3),
o o
T oz 9y? 9227

Many applications involve variable coefficients, and the general wave equation
1 d dimensions is in this case written as

Vi

g@:v-(qw)JrffomchRd, t € (0,71, (97)

hich in 2D becomes
%u 0 ou 0 ou
oGt = 5 (oG ) + o (aten 5o ) + Tt (99)

o save some writing and space we may use the index notation, where subscript
x, y, or z means differentiation with respect to that coordinate. For example,

2u
ot?

2 (10022) =

he 3D versions of the two model PDEs, with and without variable coefficients,
an with now with the aid of the index notation for differentiation be stated as

= Utt,

Ut = C2 (uzz + Uyy + Uzz) + f7 (99)
Qutt = (qux)m + (quz)z + (quz)z + f . (100)

At each point of the boundary 92 of 2 we need one boundary condition
wolving the unknown u. The boundary conditions are of three principal types:

1. w is prescribed (u = 0 or a known time variation for an incoming wave),
2. Ou/On = n - Vu prescribed (zero for reflecting boundaries),

3. an open boundary condition (also called radiation condition) is specified to

let waves travel undisturbed out of the domain, see Exercise 7?7 for details.

1 the listed wave equations with second-order derivatives in time need two
iitial conditions:

1. u=1,
2. ut:V.

o7

11.2 Mesh

We introduce a mesh in time and in space. The mesh in time consists
points

t0:0<t1<"'<tNt,

often with a constant spacing At =t,41 —t,, n €, .

Finite difference methods are easy to implement on simple rectangle-
shaped domains. More complicated shapes of the domain require subst
more advanced techniques and implementational efforts. On a recta
box-shaped domain mesh points are introduced separately in the variot
directions:

x9 <1 < --- <xp, in z direction,
Yo < y1 < --- < yn, in y direction,

290 < 71 < --- < zy, in z direction.

We can write a general mesh point as (x;,y;, 2k, tn), With i € I, j € Z,
and n € Z;.

It is a very common choice to use constant mesh spacings: Ax = z;
i €T, Ay=yjt1—vyj, J €L, and Az = 241 — 2, k € Z7. With equ
spacings one often introduces h = Az = Ay = Az.

The unknown u at mesh point (z;,y;, 2k, ts) is denoted by ;.
problems we just skip the z coordinate (by assuming no variation
direction: 0/0z = 0) and write u';.

11.3 Discretization

Two- and three-dimensional wave equations are easily discretized by ass
building blocks for discretization of 1D wave equations, because th
dimensional versions just contain terms of the same type that occurs ir

Discretizing the PDEs. Equation (99) can be discretized as

[D:Dyu = *(DyDyu+ DyDyu+ D,D,u) + Tk -

A 2D version might be instructive to write out in detail:

[DyDyu = ¢*(DyDyu+ DyDyu) + flii ks

which becomes

,J i,J

At? Az? Ay?

n+1 _ n n—1 n o n n n o n n
Uig T2t p iy T 2Ui 2 Uit 2ug; + g,
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ssuming as usual that all values at the time levels n and n — 1 are known, we

an solve for the only unknown u"j'l The result can be compactly written as
n+1l __ n n—1 2 2 n
ul T =2u; + ol + A Dy Dy + Dy Dyulit (102)

As in the 1D case, we need to develop a special formula for ullj where we

n+1

id when n = 0, with the discretization of the

>mbine the general scheme for u'
iitial condition:

[Doru = V]?yj = u;jl = ullj —2AtV; ;.

he result becomes, in compact form,

1
ul Tt =l — 24V + 502At2[DzDzu + DyDyul?, . (103)

The PDE (100) with variable coefficients is discretized term by term using
1e corresponding elements from the 1D case:

[«QDtDtu = (DIQIDIU + quyDyu + quZDzu) + f]?,j,k . (104)

/hen written out and solved for the unknown u} ;rk, one gets the scheme

n+l __
U e = U o+ 2uf kT
1 1

1
= Axg( (G + i1 gk) Uiy e — Ui ) —
i,7,

1 n n
5(%’717]‘,16 + Gigr) (U — uig )+

1 1 1
" i A$2( (e + Gigrrd) (U1 e = G ) =
0.5,
1
§(Qz‘,j—1,k + Qi) (Ul =l )+
1 1 § )
" ok AxZ( (9ig.k + Gigkr1) (Uilg ppn — Wig )=
0.3,

1 n n
3 @igin—1 + @) (Wi = Ui 1))+

2
t o AEf

Also here we need to develop a special formula for u} j.k by combining the
heme for n = 0 with the discrete initial condition, which is just a matter of
iserting u;- k = ullj x — 2AtV; ;1 in the scheme and solving for ulljk
[andling boundary conditions where is © known. The schemes listed
bove are valid for the internal points in the mesh. After updating these, we
eed to visit all the mesh points at the boundaries and set the prescribed u
alue.
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Discretizing the Neumann condition. The condition du/on =0
plemented in 1D by discretizing it with a Do, u centered difference, and tk
eliminating the fictitious u point outside the mesh by using the general
at the boundary point. Alternatively, one can introduce ghost cells and
a ghost value to for use in the Neumann condition. Exactly the same it
reused in multi dimensions.
Consider du/On = 0 at a boundary y = 0. The normal direction is

—y direction, so

Ou  Ou

on Oy’
and we set

n Uiy~ Ui
[—Dgyu = OL‘-’O = W =0.
From this it follows that uy_; = u;. The discretized PDE at the b

point (4,0) reads

n+1 n n n n n n
upg ' = 2ufy +upy 2 M0 ~ 2uig +ui 1o L 2uio +ui
At? Az? Agy?
We can then just insert u}, for u?’_; in this equation and then solve

boundary value u%ﬁl as done in 1D.

From these calculations, we see a pattern: the general scheme ap
the boundary j = 0 too if we just replace j — 1 by j7 + 1. Such a pa
particularly useful for implementations. The details follow from the e»
1D case in Section 6.3.

The alternative approach to eliminating fictitious values outside the
to have uj'_; available as a ghost value. The mesh is extended with o
line (2D) or plane (3D) of ghost cells at a Neumann boundary. In the
example it means that we need a line ghost cells below the y axis. Tt

values must be updated according to u”ﬁ = u?lﬂ

12 Implementation

We shall now describe in detail various Python implementations for s
standard 2D, linear wave equation with constant wave velocity and u = |
boundary. The wave equation is to be solved in the space-time domain €2
where Q = (0, Lg) x (0, L) is a rectangular spatial domain. More preci:
complete initial-boundary value problem is defined by

wp = 2 (Ugg + Uyy) + f2,9,1), (z,y) € Q, t € (0,T),
u(x7y:0) = I(x7y)7 (‘rv ) €
Ut(iﬂ,y,O) = V(:an)’ (Z‘, ) €
u=0, (z,y) € 09, t € (0, ]
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here 02 is the boundary of €2, in this case the four sides of the rectangle
LL} X [O’Llj} r=0,r=1L;,y=0,andy=L
The PDE is discretized as

[D¢Dyu = cz(DmDmu + DyDyu) + f]?]7

hich leads to an explicit updating formula to be implemented in a program:

wh =~ 20+
2 2
Cac(u?-kl,j zg+u7 1])+C ( z]+1 u;n,]+u )+At zn]ﬂ

(109)

or all interior mesh points i € Z! and j € I;, and for n € Z,;”. The constants
'+ and Cy are defined as

At At
Cx = CE, CL[ CAiy .
At the boundary we simply set u"+1 =0fort=0,7=0,...,Ny; 7 = Ny,

=0,...,Ny; 5 =0,7=0,. Nm;and]—NyJ—O N Fortheﬁrst
ep, n = 0, (110) is combined with the discretization of the initial condition
t =V, [Dau = V} to obtain a special formula for u ; at the interior mesh
oints:

u' =l + AtV j+

703( z+1] 2ug,j+u?—l.g)+ 02( ’I]+1 2 +uz] 1)+ At2 7,79
(110)

The algorithm is very similar to the one in 1D:

1. Set initial condition uf ; = I(x;,y;)

2. Compute u; ; from (110)

3. Set uzlj = 0 for the boundaries i = 0, N, 7 =0, N,

4. Forn=1,2,..., Ny
(a) Find u?;l from (110) for all internal mesh points, i € Z., j € Z}
(b) Set u?jl = 0 for the boundaries ¢ = 0, N, j =0, N,

2.1 Scalar computations

he solver function for a 2D case with constant wave velocity and v = 0 as
oundary condition follows the setup from the similar function for the 1D case
1 wavelD_uO_s.py, but there are a few necessary extensions. The code is in
1e program wave2D_u0. py15

Shttp://tinyurl.com/jvzzcfn/wave/wave2D_u0/wave2D_u0.py
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Domain and mesh. The spatial domain is now [0, L] x [0, L,], spec
the arguments Lx and Ly. Similarly, the number of mesh points in the
directions, N, and N,, become the arguments Nx and Ny. In multi-dim
problems it makes less sense to specify a Courant number as the wave
is a vector and the mesh spacings may differ in the various spatial di
We therefore give At explicitly. The signature of the solver function i

def solver(I, V, f, ¢, Lx, Ly, Nx, Ny, dt, T,
user_action=None, version=’scalar’):

Key parameters used in the calculations are created as

x = linspace(0, Lx, Nx+1) # mesh points in x dir
y = linspace(0, Ly, Ny+1) # mesh points in y dir
dx = x[1] - x[0]

dy = y[11 - y[o]

Nt = int(round(T/float(dt)))

t = linspace(0, N*xdt, N+1) # mesh points in time
Cx2 = (c*dt/dx)**2; Cy2 = (c*xdt/dy)**2 # help variables

dt2 = dt*x*2

Solution arrays. We store u:‘jl, ui's, and u?;l in three two-dimu
arrays,

u = zeros((Nx+1,Ny+1)) # solution array

u_l = zeros((Nx+1,Ny+1)) # solution at t-dt

u_2 = zeros((Nx+1,Ny+1)) # solution at t-2*dt

where uz;rl corresponds to uli,jl, ui; tou_1 [i,j], and ufj_l tou_2

Index sets. It is also convenient to introduce the index sets (cf. Sect

Ix = range(0, u.shape[0])
Iy = range(0, u.shape[1])
It = range(0, t.shape[0])

Computing the solution. Inserting the initial condition I in u_1 and
a callback to the user in terms of the user_action function is a straight
generalization of the 1D code from Section 1.6:

for i in Ix:
for j in Iy
u_1[i, J] = I(x[i], y[iD

if user_action is not None:
user_action(u_1, x, xv, y, yv, t, 0)
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he user_action function has additional arguments compared to the 1D case.

he arguments xv and yv fact will be commented upon in Section 12.2.
The key finite difference formula (102) for updating the solution at a time
wel is implemented in a separate function as

lef advance_scalar(u, u_1l, u_2, f, x, y, t, n, Cx2, Cy2, dt,
V=None, stepl=False):
Ix = range(0, u.shape[0]); Iy = range(O, u.shape[1])
dt2 = dt**2
if stepil:
Cx2 = 0.5%Cx2; Cy2 = 0.5%Cy2; dt2 = 0.5%dt2
D1 =1; D2=20
else:
D1 =2; D2=1
for i in Ix[1:-1]:
for j in Iy[1:-1]:
u_xx = u_1[i-1,3j] - 2xu_1[i,j] + u_1[i+1,]]
u_yy = u_1[i,j-1] - 2*xu_1[i,j] + u_1[i,j+1]
uli,jl = Dixu_1[i,j] - D2*u_2[i,j] + \
Cx2*u_xx + Cy2+u_yy + dt2*f(x[il, y[jl, t[n])
if stepil:
uli,jl += dexV(x[il, y[jD
# Boundary condition u=0
j = Iylo]
for i in Ix: uli,jl =0
j = Iy[-1]
for i in Ix: uli,j]
i = 1x[0]
for j in Iy: uli,j]
i = Ix[-1]
for j in Iy: uli,j]
return u

0

0

0

he stepl variable has been introduced to allow the formula to be reused for
rst step u}yj:

1 = advance_scalar(u, u_1, u_2, £, x, y, t,
n, Cx2, Cy2, dt, V, stepi=True)

elow, we will make many alternative implementations of the advance_scalar
mction to speed up the code since most of the CPU time in simulations is spent
1 this function.

2.2 Vectorized computations

he scalar code above turns out to be extremely slow for large 2D meshes, and
robably useless in 3D beyond debugging of small test cases. Vectorization is

rerefore a must for multi-dimensional finite difference computations in Python.

or example, with a mesh consisting of 30 x 30 cells, vectorization brings down
1e CPU time by a factor of 70 (!).

In the vectorized case we must be able to evaluate user-given functions like
(x,y) and f(z,y,t), provided as Python functions I(x,y) and f(x,y,t), for
1e entire mesh in one array operation. Having the one-dimensional coordinate
crays x and y is not sufficient: these must be extended to vectorized versions,
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from numpy import newaxis
xv = x[:,newaxis]
yv = ylnewaxis,:]

# or
xv = x.reshape((x.size, 1))
yv = y.reshape((1, y.size))

This is a standard required technique when evaluating functions over a 2
say sin(xv)*cos(xv), which then gives a result with shape (Nx+1,Ny+

With the xv and yv arrays for vectorized computing, setting th
condition is just a matter of

u_1l:,:]1 = I(xv, yv)

One could also have written u_1 = I(xv, yv) and let u_1 point to a nev
but vectorized operations often makes use of direct insertion in the origir
through u_1[:,:] because sometimes not all of the array is to be filled
a function evaluation. This is the case with the computational scheme f

def advance_vectorized(u, u_1, u_2, f_a, Cx2, Cy2, dt,
V=None, stepl=False):
dt2 = dt*x*2
if stepl:
Cx2 = 0.5%Cx2; Cy2 = 0.5%Cy2; dt2 = 0.5%dt2
D1 =1; D2 =0

else:
D1 =2; D2=1
u_xx = u_1[: 2,1 -1] - 2*u_1[1:-1,1:-1] + u_1[2:,1:-1]
u_yy = u_1[1:-1,:-2] - 2%u_1[1:-1,1:-1] + u_1[1: —1,2 ]
ull1:-1,1:-1] = Dl*u 1[1:-1,1:-1] - D2*u_2[1:-1,1:-1] + \
Cx2*u_xx + Cy2*u_yy + dt2*f_a[l:-1,1:-1]
if stepil:

ull:-1,1:-1] += dt*V[1:-1, 1:-1]
# Boundary condition u=0
j=0
ul:,j1 =0
j = u.shape[1]-1
ul:,j1 =0
i=0
uli,:] =0
i = u.shape[0]-1
uli,:] =0
return u

Array slices in 2D are more complicated to understand than thos
but the logic from 1D applies to each dimension separately. For exampl]
doing wj'; —wj' 4 ; fori € T}, we just keep j constant and make a slic
first index: u_1[1:,j] - u_1[:-1,j], exactly as in 1D. The 1: slice ¢
all the indices 7 = 1,2,..., N, (up to the last valid index), while : -1 spec
relevant indices for the second term: 0,1,..., N, — 1 (up to, but not ir
the last index).

In the above code segment, the situation is slightly more complicated,
each displaced slice in one direction is accompanied by a 1:-1 slice in t!
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irection. The reason is that we only work with the internal points for the index
1at is kept constant in a difference.

The boundary conditions along the four sides makes use of a slice consisting
f all indices along a boundary:

il: ,01 =0
1[:,Ny]l =0
1[0 ,:] =0
1[Nx,:] = 0

The f function is in the above vectorized update of u first computed as an
cray over all mesh points:

f_a = f(xv, yv, t[nl)

/e could, alternatively, used the call £ (xv, yv, t[n])[1:-1,1:-1] in the last
rm of the update statement, but other implementations in compiled languages
enefit from having f available in an array rather than calling our Python
mction f (x,y,t) for every point.

Also in the advance_vectorized function we have introduced a boolean
tepl to reuse the formula for the first time step in the same way as we did
ith advance_scalar. We refer to the solver function in wave2D_u0.py for
1e details on how the overall algorithm is implemented.

The callback function now has the arguments u, x, xv, y, yv, t, n.
he inclusion of xv and yv makes it easy to, e.g., compute an exact 2D so-
ition in the callback function and compute errors, through an expression like

- exact_solution(xv, yv, t[n]).

2.3 Verification

‘esting a quadratic solution. The 1D solution from Section 2.4 can be
>neralized to multi-dimensions and provides a test case where the exact solution
lso fulfills the discrete equations such that we know (to machine precision)
hat numbers the solver function should produce. In 2D we use the following
sneralization of (30):

el y,0) = (L — 2)y(Ly ~ y)(1+ 30). (1)

his solution fulfills the PDE problem if I(z,y) = ue(x,y,0), V = %ue(:c, y,0),
nd f = 2¢%(1+ $t)(y(Ly — y) + 2(Ly — x)). To show that ue also solves the
iscrete equations, we start with the general results [D;D;1]" = 0, [D:Dst]™ = 0,
nd [D;D4t?] = 2, and use these to compute

1 1
Dy Dyueli; = [y(Ly — y)(1+ §t)DacDmx(Lx — o)) =y (Ly —y;) (1 + §tn)2’

similar calculation must be carried out for the [Dy,Dyue]7; and [DyDyuel};
rms. One must also show that the quadratic solution fits the special formula
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for u} ;. The details are left as Exercise 10. The test_quadratic fun
the wave2D_u0.py'® program implements this verification as a nose tes

13 Migrating loops to Cython

Although vectorization can bring down the CPU time dramatically compa
scalar code, there is still some factor 5-10 to win in these types of applica
implementing the finite difference scheme in compiled code, typically in
C, or C++. This can quite easily be done by adding a little extra cod
program. Cython is an extension of Python that offers the easiest way
our Python loops in the scalar code down to machine code and the effic
C.

Cython can be viewed as an extended Python language where varia
declared with types and where functions are marked to be implement
Migrating Python code to Cython is done by copying the desired code s
to functions (or classes) and placing them in one or more separate fi
extension .pyx.

13.1 Declaring variables and annotating the code

Our starting point is the plain advance_scalar function for a scalar i

tation of the updating algorithm for new values uZ;Ll:
def advance_scalar(u, u_1, u_2, f, x, y, t, n, Cx2, Cy2, dt,
V=None, stepl=False):
Ix = range(0, u.shape[0]); Iy = range(0, u.shape[1])
dt2 = dt*x*2
if stepil:
Cx2 = 0.5%Cx2; Cy2 = 0.5%Cy2; dt2
D1 =1; D2 =0
else:
D1 =2; D2=1
for i in Ix[1:-1]:
for j in Iy[1:-1]:
u_xx = u_1[i-1,3j] - 2*u_1[i,j] + u_1[i+1,]]
u_yy = u_1[i,j-1] - 2*u_1[i,j] + u_1[i,j+1]
uli,jl = Dixu_1[i,j] - D2*xu_2[i,j]1 + \
Cx2*u_xx + Cy2*u_yy + dt2*f(x[i], y[jl, t[n]
if stepil:
uli,jl += dexV(x[il, y[jD
# Boundary condition u=0
j = Iylo]
for i in Ix: uli,jl =0
j = Iy[-1]
for i in Ix: uli,j]
i = 1x[0]
for j in Iy: uli,j]
i = Ix[-1]
for j in Iy: uli,j]
return u

0.5%dt2

0

0

0

6nttp: //tinyurl. com/jvzzcfn/wave/wave2D u0/wave2D u0.py
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We simply take a copy of this function and put it in a file wave2D_u0_loop_cy . pyx.

he relevant Cython implementation arises from declaring variables with types
nd adding some important annotations to speed up array computing in Cython.
et us first list the complete code in the .pyx file:

import numpy as np

cimport numpy as np

cimport cython

ctypedef np.float64_t DT # data type

Qcython.boundscheck(False) # turn off array bounds check
@cython.wraparound(False) # turn off negative indices (u[-1,-1])
cpdef advance(

np.ndarray [DT, ndim=2, mode=’c’] u,

np.ndarray [DT, ndim=2, mode=’c’] u_1,

np.ndarray [DT, ndim=2, mode=’c’] u_2,

np.ndarray [DT, ndim=2, mode=’c’] f,

double Cx2, double Cy2, double dt2):

cdef
cdef
cdef
cdef
cdef
cdef

int Ix_start = 0

int Iy_start = 0

int Ix_end = u.shape[0]-1
int Iy_end = u.shape[1]-1
int i, j

double u_xx, u_yy

for i in range(Ix_start+1, Ix_end):

for j in range(Iy_start+1, Iy_end):

u_xx = u_1[i-1,3j] - 2*%u_1[i,j] + u_1[i+1,j]
u_yy = u_1[i,j-11 - 2%u_1[i,3] + u_1[4,j+1]
uli,jl = 2%xu_1[i,j]1 - u_2[1,j] + \
Cx2xu_xx + Cy2*u_yy + dt2xf[i,j]

# Boundary condition u=0

i =
for
j =
for
i =
for
i =
for

Iy_start

i in range(Ix_start, Ix_end+1): uli,j]l = 0
Iy_end

i in range(Ix_start, Ix_end+1): uli,j]l = 0
Ix_start

j in range(Iy_start, Iy_end+1): uli,jl = 0
Iy_end

j in range(Iy_start, Iy_end+1): uli,j]l = 0

return u

This example may act as a recipe on how to transform array-intensive code
ith loops into Cython.

1. Variables are declared with types: for example, double v in the argument
list instead of just v, and cdef double v for a variable v in the body of
the function. A Python float object is declared as double for translation
to C by Cython, while an int object is declared by int.

2. Arrays need a comprehensive type declaration involving

e the type np.ndarray,
e the data type of the elements, here 64-bit floats, abbreviated as DT

through ctypedef np.float64_t DT (instead of DT we could use the
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full name of the data type: np.float64_t, which is a Cython
type),
e the dimensions of the array, here ndim=2 and ndim=1,

e specification of contiguous memory for the array (mode=’c’)

3. Functions declared with cpdef are translated to C but also accessil
Python.

4. In addition to the standard numpy import we also need a special
import of numpy: cimport numpy as np, to appear after the s
import.

5. By default, array indices are checked to be within their legal lin
speed up the code one should turn off this feature for a specific 1
by placing @cython.boundscheck(False) above the function hes

6. Also by default, array indices can be negative (counting from the e
this feature has a performance penalty and is therefore here turne
writing @cython.wraparound(False) right above the function he

7. The use of index sets Ix and Iy in the scalar code cannot be
fully translated to C. One reason is that constructions like I3
involve negative indices, and these are now turned off. Anot
son is that Cython loops must take the form for i in xr
for i in range for being translated into efficient C loops. We ha
fore introduced Ix_start as Ix[0] and Ix_end as Ix[-1] to L
start and end of the values of index . Similar variables are introd
the j index. A loop for i in Ix is with these new variables wr
for i in range(Ix_start, Ix_end+1).

Array declaration syntax in Cython.

We have used the syntax np.ndarray[DT, ndim=2, mode=’c’] to d
numpy arrays in Cython. There is a simpler, alternative syntax, empl
typed memory views?®, where the declaration looks like double |
However, the full support for this functionality is not yet ready, and i
text we use the full array declaration syntax.

%http://docs.cython.org/src/userguide/memoryviews.html

13.2 Visual inspection of the C translation

Cython can visually explain how successfully it can translate a code from
to C. The command

Terminal> cython -a wave2D_uO_loop_cy.pyx
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roduces an HTML file wave2D_u0_loop_cy.html, which can be loaded into a

eb browser to illustrate which lines of the code that have been translated to C.

igure 8 shows the illustrated code. Yellow lines indicate the lines that Cython
id not manage to translate to efficient C code and that remain in Python. For
1e present code we see that Cython is able to translate all the loops with array
»mputing to C, which is our primary goal.

output: wavezD u0 loop cv.c

1: import numpy as np

2: cimport nunpy as np

3: cimport cython

4: ctypedef np.floatsd_t DT # data type
s:

&

7

@cython.boundscheck (False) # turn off array bounds check

@cython wraparound (False)  # turn off negative indices (ul-1,-11)
8: cpdef advance (
] np.ndarray[DT, ndim=2, mode='c'
10; np.ndarray[DT, ndin=2, m

120 np.ndarray[OT. ndin-2, m X
13:  double Cx2. double Cy2, double dt2):

15: cdef int Ix_start = 0

16: cdef int Iy start = 0

17 cdef int Ixend = u.shape[0]-1
18 cdef int Iylend = u.shape(1]-1
19 cdef int i,

20 cdef double u_xx, uyy

2 for i in range(Ix_start+l, Ix_end)

) for j in range(Iy_start+l, Iy_end)
2 uoxc = u 1L g1 - 2410 + ullis, ]
= wyy = wLld,j-10 - 201031 + w4l
26 ulij] = 2401051 - u_2[i,3] + \

27 x2u_xx + Cy2hu_yy + dt2+f 1. ]]
2 # Boundary condition u=0

2 j = Iy_start

S for i In range(Ix_start, Ix_end+1): uli.jl =
3 j = TIy_end

2 for i in range(Ix_start, Ix_end+1): uli.jl =

i = Ix_start
el for j in range(Iy_start, Iy_endsl): uli.jl =
35: i=TIy_end

36:  for j in range(Iy_start, Iy endsl): uli.jl =
37 return u

Figure 8: Visual illustration of Cython’s ability to translate Python to C.

You can also inspect the generated C code directly, as it appears in the file
ave2D_u0_loop_cy.c. Nevertheless, understanding this C code requires some
uniliarity with writing Python extension modules in C by hand. Deep down in
1e file we can see in detail how the compute-intensive statements are translated
»me complex C code that is quite different from what we a human would write
it least if a direct correspondence to the mathematics was in mind).

3.3 Building the extension module

ython code must be translated to C, compiled, and linked to form what is known
1 the Python world as a C' extension module. This is usually done by making a
etup.py script, which is the standard way of building and installing Python
ftware. For an extension module arising from Cython code, the following
etup.py script is all we need to build and install the module:

irom distutils.core import setup
‘rom distutils.extension import Extension
‘rom Cython.Distutils import build_ext

symodule = ’wave2D_u0_loop_cy’

setup (
name=cymodule
ext_modules=[Extension(cymodule, [cymodule + ’.pyx’],)],
cmdclass={’build_ext’: build_ext},

)
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We run the script by

Terminal> python setup.py build_ext --inplace

The --inplace option makes the extension module available in the
directory as the file wave2D_uO_loop_cy.so. This file acts as a normal
module that can be imported and inspected:

>>> import wave2D_uO_loop_cy
>>> dir(wave2D_u0O_loop_cy)
[’__builtins__’, ’__doc__’, ’__file__’, ’__name__’,

== 9 ==

’__package__’, ’__test__’, ’advance’, ’np’]

The important output from the dir function is our Cython function ¢
(the module also features the imported numpy module under the name ng
as many standard Python objects with double underscores in their nan

The setup.py file makes use of the distutils package in Pytl
Cython’s extension of this package. These tools know how Python was
the computer and will use compatible compiler(s) and options when |
other code in Cython, C, or C++. Quite some experience with buildi
program systems is needed to do the build process manually, so using a s¢
script is strongly recommended.

-
Simplified build of a Cython module.
When there is no need to link the C code with special libraries, C:
offers a shortcut for generating and importing the extension module:

import pyximport; pyximport.install()

This makes the setup.py script redundant. However, in the wave2D_1
code we do not use pyximport and require an explicit build process ¢
and many other modules.

N

13.4 Calling the Cython function from Python

The wave2D_u0_loop_cy module contains our advance function, which
may call from the Python program for the wave equation:

import wave2D_uO_loop_cy
advance = wave2D_uO_loop_cy.advance

for n in It[1:-1: # time loop

f_al:,:] = £(xv, yv, t[n]) # precompute, size as u
u = advance(u, u_1, u_2, f_a, x, y, t, Cx2, Cy2, dt2)
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fficiency. For a mesh consisting of 120 x 120 cells, the scalar Python code
:quire 1370 CPU time units, the vectorized version requires 5.5, while the
ython version requires only 1! For a smaller mesh with 60 x 60 cells Cython is
oout 1000 times faster than the scalar Python code, and the vectorized version
about 6 times slower than the Cython version.

4 Migrating loops to Fortran

1stead of relying on Cython’s (excellent) ability to translate Python to C, we
an invoke a compiled language directly and write the loops ourselves. Let us
;art with Fortran 77, because this is a language with more convenient array
andling than C (or plain C++). Or more precisely, we can with ease program
ith the same multi-dimensional indices in the Fortran code as in the numpy
rrays in the Python code, while in C these arrays are one-dimensional and
:quires us to reduce multi-dimensional indices to a single index.

4.1 The Fortran subroutine

/e write a Fortran subroutine advance in a file wave2D_u0_loop_£77.f17 for
nplementing the updating formula (110) and setting the solution to zero at the
oundaries:

subroutine advance(u, u_1, u_2, f, Cx2, Cy2, dt2, Nx, Ny)
integer Nx, Ny
real*8 u(0:Nx,0:Ny), u_1(0:Nx,0:Ny), u_2(0:Nx,0:Ny)
real*8 £(0:Nx, 0:Ny), Cx2, Cy2, dt2
integer i, j

Cf2py intent(in, out) u

C Scheme at interior points
do j =1, Ny-1
do i =1, Nx-1
u(i,j) = 2+¥u_1(i,j) - v 2(i,j) +
Cx2*(u_1(i-1,3) - 2*u_1(i,j) + u_1(i+1,j
Cy2x(u_1(i,j-1) - 2%u_1(i,j) + u_1(i,j+1
dt2*f (i, j)
end do
end do

)+
)+

R

C Boundary conditions

j=0

do i = 0, Nx
u(i,j) =0

end do

j=Ny

do i = 0, Nx
u(i,j) =0

end do

i=0

do j =0, Ny
u(i,j) =0

Thttp://tinyurl.com/jvzzcfn/wave/wave2D u0/wave2D u0_loop £77.f
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end do

i = Nx

do j = 0, Ny
u(i,j) =0

end do

return

end

This code is plain Fortran 77, except for the special C£2py comment lin:
here specifies that u is both an input argument and an object to be r
from the advance routine. Or more precisely, Fortran is not able return
from a function, but we need a wrapper code in C for the Fortran subro
enable calling it from Python, and in this wrapper code one can return
calling Python code.

-
Remark.

It is not strictly necessary to return u to the calling Python code
the advance function will modify the elements of u, but the convent:
Python is to get all output from a function as returned values. That i
right way of calling the above Fortran subroutine from Python is

u = advance(u, u_1, u_2, f, Cx2, Cy2, dt2)

The less encouraged style, which works and resembles the way the Fc
subroutine is called from Fortran, reads

advance(u, u_1, u_2, f, Cx2, Cy2, dt2)

14.2 Building the Fortran module with f2py

The nice feature of writing loops in Fortran is that the tool £2py can w
little work produce a C extension module such that we can call the
version of advance from Python. The necessary commands to run are

Terminal> f2py -m wave2D_uO_loop_£77 -h wave2D_uO_loop_£f77.pyf \
--overwrite-signature wave2D_uO_loop_£77.f

Terminal> f2py -c wave2D_uO_loop_£77.pyf --build-dir build_£77 \
-DF2PY_REPORT_ON_ARRAY_COPY=1 wave2D_uO_loop_£f77.f

The first command asks £2py to interpret the Fortran code and make a Fo
specification of the extension module in the file wave2D_u0_loop_£77.p
second command makes £2py generate all necessary wrapper code, com
Fortran file and the wrapper code, and finally build the module. The build
takes place in the specified subdirectory build_£77 so that files can be ir
if something goes wrong. The option ~-DF2PY_REPORT_ON_ARRAY_COPY=
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2py write a message for every array that is copied in the communication between
ortran and Python, which is very useful for avoiding unnecessary array copying
ee below). The name of the module file is wave2D_u0_loop_£77.so, and this
le can be imported and inspected as any other Python module:

»>> import wave2D_uO_loop_£77
>>> dir(wave2D_u0_loop_£77)
[’__doc__’, ’__file__’, ’__name__’, ’__package__’,
’__version__’, ’advance’]
»>> print wave2D_uO_loop_£77.__doc__
fhis module ’wave2D_uO_loop_f77’ is auto-generated with f2py....
‘unctions:

u = advance(u,u_1,u_2,f,cx2,cy2,dt2,

nx=(shape (u,0)-1) ,ny=(shape(u,1)-1))

Examine the doc strings!

Printing the doc strings of the module and its functions is extremely impor-
tant after having created a module with £2py, because £2py makes Python
interfaces to the Fortran functions that are different from how the functions
are declared in the Fortran code (!). The rationale for this behavior is that
£2py creates Pythonic interfaces such that Fortran routines can be called
in the same way as one calls Python functions. Output data from Python
functions is always returned to the calling code, but this is technically im-
possible in Fortran. Also, arrays in Python are passed to Python functions
without their dimensions because that information is packed with the array
data in the array objects, but this is not possible in Fortran. Therefore,
f2py removes array dimensions from the argument list, and £2py makes it
possible to return objects back to Python.

J

Let us follow the advice of examining the doc strings and take a close look
t the documentation £2py has generated for our Fortran advance subroutine:

>>> print wave2D_uO_loop_£77.advance.__doc__
fhis module ’wave2D_u0O_loop_f77’ is auto-generated with f2py
‘unctions:
u = advance(u,u_1,u_2,f,cx2,cy2,dt2,
nx=(shape(u,0)-1) ,ny=(shape(u,1)-1))

idvance - Function signature:
u = advance(u,u_1,u_2,f,cx2,cy2,dt2, [nx,ny])

lequired arguments:
u : input rank-2 array(’d’) with bounds (nx + 1,ny + 1)
u_l : input rank-2 array(’d’) with bounds (nx + 1,ny + 1)
u_2 : input rank-2 array(’d’) with bounds (nx + 1,ny + 1)
f : input rank-2 array(’d’) with bounds (nx + 1,ny + 1)
cx2 : input float
cy2 : input float
dt2 : input float

Jptional arguments:
nx := (shape(u,0)-1) input int
ny := (shape(u,1)-1) input int

teturn objects:
u : rank-2 array(’d’) with bounds (nx + 1,ny + 1)
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Here we see that the nx and ny parameters declared in Fortran are «
arguments that can be omitted when calling advance from Python.

We strongly recommend to print out the documentation of every
function to be called from Python and make sure the call syntax is ex
listed in the documentation.

14.3 How to avoid array copying

Multi-dimensional arrays are stored as a stream of numbers in memc
a two-dimensional array consisting of rows and columns there are tv
of creating such a stream: row-magjor ordering, which means that r
stored consecutively in memory, or column-major ordering, which means
columns are stored one after each other. All programming languages i1
from C, including Python, apply the row-major ordering, but Fortr
column-major storage. Thinking of a two-dimensional array in Python o
matrix, it means that Fortran works with the transposed matrix.

Fortunately, £2py creates extra code so that accessing u(i,j) in the
subroutine corresponds to the element u[i, j] in the underlying numg
(without the extra code, u(i,j) in Fortran would access ulj,i] in th
array). Technically, £2py takes a copy of our numpy array and reorders 1
before sending the array to Fortran. Such copying can be costly. For Z
simulations on a 60 x 60 grid the overhead of copying is a factor of £
means that almost the whole performance gain of Fortran over vectorize
code is lost!

To avoid having £2py to copy arrays with C storage to the corres;
Fortran storage, we declare the arrays with Fortran storage:

order = ’Fortran’ if version == ’f77’ else ’C’

u = zeros((Nx+1,Ny+1), order=order) # solution array
u_l = zeros((Nx+1,Ny+1), order=order) # solution at t-dt
u_2 = zeros((Nx+1,Ny+1), order=order) # solution at t-2x*dt

In the compile and build step of using f£2py, it is recommended to
extra option for making £2py report on array copying:

Terminal> f2py -c wave2D_uO_loop_£77.pyf --build-dir build_£f77 \
-DF2PY_REPORT_ON_ARRAY_COPY=1 wave2D_uO_loop_£77.f

It can sometimes be a challenge to track down which array that «
copying. There are two principal reasons for copying array data: either t
does not have Fortran storage or the element types do not match those
in the Fortran code. The latter cause is usually effectively eliminated 1
real*8 data in the Fortran code and float64 (the default float type ir
in the arrays on the Python side. The former reason is more common
check whether an array before a Fortran call has the right storage one c
the result of isfortran(a), which is True if the array a has Fortran st
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Let us look at an example where we face problems with array storage. A
rpical problem in the wave2D_u0.py code is to set

*_a = f(xv, yv, t[nl)

efore the call to the Fortran advance routine. This computation creates a new
cray with C storage. An undesired copy of f_a will be produced when sending
_a to a Fortran routine. There are two remedies, either direct insertion of data
1 an array with Fortran storage,

i_a = zeros((Nx+1, Ny+1), order=’Fortran’)
%;é[:,:] = f(xv, yv, tlnl)
r remaking the f(xv, yv, t[n]) array,

i_a = asarray(f(xv, yv, t[n]), order=’Fortran’)

he former remedy is most efficient if the asarray operation is to be performed
large number of times.

fficiency. The efficiency of this Fortran code is very similar to the Cython
yde. There is usually nothing more to gain, from a computational efficiency

oint of view, by implementing the complete Python program in Fortran or C.

hat will just be a lot more code for all administering work that is needed in
sientific software, especially if we extend our sample program wave2D_u0.py to
andle a real scientific problem. Then only a small portion will consist of loops
ith intensive array calculations. These can be migrated to Cython or Fortran
3 explained, while the rest of the programming can be more conveniently done
1 Python.

5 Migrating loops to C via Cython

he computationally intensive loops can alternatively be implemented in C
dde. Just as Fortran calls for care regarding the storage of two-dimensional
rrays, working with two-dimensional arrays in C is a bit tricky. The reason is
1at numpy arrays are viewed as one-dimensional arrays when transferred to C,
hile C programmers will think of u, u_1, and u_2 as two dimensional arrays
nd index them like u[i] [j]. The C code must declare u as double* u and
-anslate an index pair [1] [j] to a corresponding single index when u is viewed
5 one-dimensional. This translation requires knowledge of how the numbers in
are stored in memory.

5.1 Translating index pairs to single indices

wo-dimensional numpy arrays with the default C storage are stored row by row.

1 general, multi-dimensional arrays with C storage are stored such that the last
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index has the fastest variation, then the next last index, and so on, en
with the slowest variation in the first index. For a two-dimensional u ¢
as zeros ((Nx+1,Ny+1)) in Python, the individual elements are store:
following order:

ul[0,0], ul0,1], ul0,2], ..., ul[O,Nyl, ul1,0], ul1,1], ...,
ul1l,Ny], ul[2,0], ..., u[Nx,0], ulNx,1], ..., u[Nx, Nyl

Viewing u as one-dimensional, the index pair (z, j) translates to (N,
So, where a C programmer would naturally write an index u[i] [j], thei
must read uli*(Ny+1) + j]. This is tedious to write, so it can be h
define a C macro,

#define idx(i,j) (L)*(Ny+1) + j

so that we can write ulidx(i,j)], which reads much better and is €
debug.

Be careful with macro definitions.

Macros just perform simple text substitutions: idx(hello,world)
panded to (hello)*(Ny+1) + world. The parenthesis in (i) are ess
- using the natural mathematical formula i*(Ny+1) + j in the macr
nition, idx(i-1,j) would expand to i-1*x(Ny+1) + j, which is the 3
formula. Macros are handy, but requires careful use. In C++,
functions are safer and replace the need for macros.

15.2 The complete C code
The C version of our function advance can be coded as follows.
#define idx(i,j) (i)*(Ny+1) +j

void advance(double* u, double* u_1, double* u_2, doublex* f,
double Cx2, double Cy2, double dt2,
int Nx, int Ny)

int i, j;
/* Scheme at interior points */
for (i=1; i<=Nx-1; i++) {
for (j=1; j<=Ny-1; j++) {
ulidx(i,j)] = 2*u_1[idx(i,j)] - u_2[idx(i,j)] +
Cx2*(u_1[idx(i-1,3j)] - 2%u_1[idx(i,j)] + u_1[idx(i+1,j)]
Cy2* (u_1[idx(i,j-1)]1 - 2%u_1[idx(i,j)] + u_1[idx(i,j+1)]
dt2+f [idx(i,3)]1;
}
}
}

/* Boundary conditions */

j = 0; for (i=0; i<=Nx; i++) ulidx(i,j)] = 0;
j = Ny; for (i=0; i<=Nx; i++) ulidx(i,j)] = 0;
i =0; for (j=0; j<=Ny; j++) ulidx(i,j)] = 0;
i = Nx; for (j=0; j<=Ny; j++) ulidx(i,j)] = 0;
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5.3 The Cython interface file

11 the code above appears in a file wave2D_u0_loop_c.c'®. We need to compile
1is file together with C wrapper code such that advance can be called from
ython. Cython can be used to generate appropriate wrapper code. The relevant
'ython code for interfacing C is placed in a file with extension .pyx. Here this
le, called wave2D_u0_loop_c_cy.pyx'?, looks like

import numpy as np
cimport numpy as np
cimport cython

cdef extern from "wave2D_uO_loop_c.h":
void advance(double* u, double* u_1, doublex u_2, doublex f,
double Cx2, double Cy2, double dt2,
int Nx, int Ny)

@cython.boundscheck(False)
@cython.wraparound (False)
def advance_cwrap(
np.ndarray[double, ndim=2, mode=’c’] u
np.ndarray[double, ndim=2, mode=’c’] u
np.ndarray[double, ndim=2, mode=’c’] u
np.ndarray[double, ndim=2, mode=’c’] f
double Cx2, double Cy2, double dt2):
advance (&u[0,0], &u_1[0,0], &u_2[0,0], &f[0,0],
Cx2, Cy2, dt2,
u.shape[0]-1, u.shape[1]-1)
return u

>

_1!
2)

>

/e first declare the C functions to be interfaced. These must also appear in a C
eader file, wave2D_u0_loop_c.h?’,

extern void advance(double* u, double* u_1, doublex* u_2, doublex f,
double Cx2, double Cy2, double dt2,
int Nx, int Ny);

he next step is to write a Cython function with Python objects as arguments.

he name advance is already used for the C function so the function to be called
om Python is named advance_cwrap. The contents of this function is simply
call to the advance version in C. To this end, the right information from the
ython objects must be passed on as arguments to advance. Arrays are sent
ith their C pointers to the first element, obtained in Cython as &u[0,0] (the
takes the address of a C variable). The Nx and Ny arguments in advance are
asily obtained from the shape of the numpy array u. Finally, u must be returned
1ich that we can set u = advance(...) in Python.

5.4 Building the extension module

; remains to build the extension module. An appropriate setup.py file is

8http://tinyurl.com/jvzzcfn/wave//wave2D_u0/wave2D_u0_loop_c.c
http://tinyurl.com/jvzzcfn/wave/wave2D_u0/wave2D_u0_loop_c_cy.pyx
2Ohttp://tinyurl.com/jvzzcEn/wave/wave2D u0/wave2D u0_loop_c.h

7

from distutils.core import setup
from distutils.extension import Extension
from Cython.Distutils import build_ext

sources = [’wave2D_u0O_loop_c.c’, ’wave2D_uO_loop_c_cy.pyx’]
module = ’wave2D_uO_loop_c_cy’
setup (

name=module,
ext_modules=[Extension(module, sources,
libraries=[], # C libs to link with

)1,
cmdclass={’build_ext’: build_ext},
)

All we need to specify is the .c file(s) and the .pyx interface file. Cyth
tomatically run to generate the necessary wrapper code. Files are then c
and linked to an extension module residing in the file wave2D_u0_loop_c
Here is a session with running setup.py and examining the resulting m
Python

Terminal> python setup.py build_ext --inplace
Terminal> python
>>> import wave2D_uO_loop_c_cy as m

>>> dir(m)
[’__builtins__’, ’__doc__’, ’__file__’, ’__name__’, ’__package__’,
’__test__’, ’advance_cwrap’, ’np’]

The call to the C version of advance can go like this in Python:

import wave2D_uO_loop_c_cy
advance = wave2D_uO_loop_c_cy.advance_cwrap

f;é[:,:] = f(xv, yv, tln])
u = advance(u, u_1, u_2, f_a, Cx2, Cy2, dt2)

Efficiency. In this example, the C and Fortran code runs at the sam
and there are no significant differences in the efficiency of the wrapper co
overhead implied by the wrapper code is negligible as long as we do n
with very small meshes and consequently little numerical work in the ¢
function.

16 Migrating loops to C via f2py

An alternative to using Cython for interfacing C code is to apply £2py
code is the same, just the details of specifying how it is to be called from
differ. The £2py tool requires the call specification to be a Fortran 90
defined in a .pyf file. This file was automatically generated when we in
a Fortran subroutine. With a C function we need to write this module o
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¢ we can use a trick and let £2py generate it for us. The trick consists in writing
1e signature of the C function with Fortran syntax and place it in a Fortran
le, here wave2D_u0O_loop_c_f2py_signature.f:

subroutine advance(u, u_1, u_2, f, Cx2, Cy2, dt2, Nx, Ny)
Cf2py intent(c) advance
integer Nx, Ny, N
real*8 u(0:Nx,0:Ny), u_1(0:Nx,0:Ny), u_2(0:Nx,0:Ny)
real*8 £(0:Nx, 0:Ny), Cx2, Cy2, dt2
Cf2py intent(in, out) u
Cf2py intent(c) u, u_1l, u_2, f, Cx2, Cy2, dt2, Nx, Ny
return
end

'ote that we need a special £2py instruction, through a C£2py comment line, for
slling that all the function arguments are C variables. We also need to specify
1at the function is actually in C: intent(c) advance.

Since f2py is just concerned with the function signature and not the complete
ontents of the function body, it can easily generate the Fortran 90 module
secification based solely on the signature above:

srminal> f2py -m wave2D_uO_loop_c_f2py \
-h wave2D_uO_loop_c_£f2py.pyf --overwrite-signature \
wave2D_uO_loop_c_f2py_signature.f

he compile and build step is as for the Fortran code, except that we list C files
istead of Fortran files:

arminal> f2py -c wave2D_uO_loop_c_f2py.pyf \
--build-dir tmp_build_c \
-DF2PY_REPORT_ON_ARRAY_COPY=1 wave2D_u0_loop_c.c

s when interfacing Fortran code with £2py, we need to print out the doc string
» see the exact call syntax from the Python side. This doc string is identical
r the C and Fortran versions of advance.

6.1 Migrating loops to C++ via f2py

++ is a much more versatile language than C or Fortran and has over the last
vo decades become very popular for numerical computing. Many will therefore
refer to migrate compute-intensive Python code to C++. This is, in principle,
1sy: just write the desired C4++ code and use some tool for interfacing it
om Python. A tool like SWIG?! can interpret the C++ code and generate
iterfaces for a wide range of languages, including Python, Perl, Ruby, and Java.
owever, SWIG is a comprehensive tool with a correspondingly steep learning

2nttp: //swig.org/

79

curve. Alternative tools, such as Boost Python??, SIP?3, and Shibok«
similarly comprehensive. Simpler tools include PyBindGen??,

A technically much easier way of interfacing C++ code is to d
possibility to use C++ classes directly from Python, but instead m:
interface to the C++ code. The C interface can be handled by f2py a
in the example with pure C code. Such a solution means that classes in
and C++ cannot be mixed and that only primitive data types like n
strings, and arrays can be transferred between Python and C++. Actus
is often a very good solution because it forces the C+4 code to work ¢
data, which usually gives faster code than if fancy data structures witl
are used. The arrays coming from Python, and looking like plain C/C+A
can be efficiently wrapped in more user-friendly C++ array classes in t
code, if desired.

17 Using classes to implement a simulator

e Introduce classes Mesh, Function, Problem, Solver, Visualizer

18 Exercises

Exercise 10: Check that a solution fulfills the discrete :

Carry out all mathematical details to show that (111) is indeed a sol
the discrete model for a 2D wave equation with u = 0 on the bounda
must check the boundary conditions, the initial conditions, the general
equation at a time level and the special version of this equation for the fi
level. Filename: check_quadratic_solution.pdf.

Project 11: Calculus with 2D /3D mesh functions

The goal of this project is to redo Project 5 with 2D and 3D mesh ft
(fij and i jk)-

Differentiation. The differentiation results in a discrete gradient f
which in the 2D case can be represented by a three-dimensional array df |
where d represents the direction of the derivative and i and j are mes
counters in 2D (the 3D counterpart is df [d,i,j,k]).

22nttp://www.boost . org/doc/1libs/1.51_0/1ibs/python/doc/index . html
23nttp://riverbankcomputing.co.uk/software/sip/intro
24nttp://qt-project.org/wiki/Category:LanguageBindings: : PySide: : Shiboker
25http://code.google.com/p/pybindgen/
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ategration. The integral of a 2D mesh function f; ; is defined as

Yj Zq
Fi, = / / f(,y)dady,
Yo xo

here f(z,y) is a function that takes on the values of the discrete mesh function

i,; at the mesh points, but can also be evaluated in between the mesh points.

he particular variation between mesh points can be taken as bilinear, but this
not important as we will use a product Trapezoidal rule to approximate the
itegral over a cell in the mesh and then we only need to evaluate f(z,y) at the
iesh points.
Suppose F; ; is computed. The calculation of Fj; ; is then

Tit1 Yj
Fip,,=F; +/ f(z,y)dydx
@ Yo

Yj

~Az [ f(ziy,y)dy

Yo
1 Yj Yi
~ Axi < J(zi,y)dy +/ f(@ita, y)dy)
Yo Yo

he integrals in the y direction can be approximated by a Trapezoidal rule. A
milar idea can be used to compute F; ;1. Thereafter, ;1 j4+1 can be computed
y adding the integral over the final corner cell to Fjq ; + Fj j41 — F; ;. Carry

ut the details of these computations and extend the ideas to 3D. Filename:

esh_calculus_3D.py.

xercise 12: Implement Neumann conditions in 2D

lodify the wave2D_u0.py?® program, which solves the 2D wave equation u; =
"(Ugy + Uyy) with constant wave velocity ¢ and v = 0 on the boundary, to
ave Neumann boundary conditions: du/dn = 0. Include both scalar code (for
ebugging and reference) and vectorized code (for speed).

To test the code, use u = 1.2 as solution (I(z,y) =1.2, V. =f =0, and ¢
rbitrary), which should be exactly reproduced with any mesh as long as the
;ability criterion is satisfied. Another test is to use the plug-shaped pulse in the
ulse function from Section 8 and the wave1D_dn_vc.py?’ program. This pulse

exactly propagated in 1D if ¢At/Az = 1. Check that also the 2D program
an propagate this pulse exactly in x direction (cAt/Ax =1, Ay arbitrary) and
direction (cAt/Ay =1, Az arbitrary). Filename: wave2D_dn.py.

xercise 13: Test the efficiency of compiled loops in 3D

xtend the wave2D_u0.py code and the Cython, Fortran, and C versions to 3D.

et up an efficiency experiment to determine the relative efficiency of pure scalar

26nttp: //tinyurl.com/ jvzzcfn/wave/wave2D_u0/wave2D_u0.py
2"http://tinyurl.com/jvzzcfn/wave/wavelD_dn_vc.py
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Python code, vectorized code, Cython-compiled loops, Fortran-compile
and C-compiled loops. Normalize the CPU time for each mesh by the
version. Filename: wave3D_u0.py.

19 Applications of wave equations

This section presents a range of wave equation models for different )
phenomena. Although many wave motion problems in physics can be mo
the standard linear wave equation, or a similar formulation with a systen
order equations, there are some exceptions. Perhaps the most important
waves: these are modeled by the Laplace equation with time-dependent b
conditions at the water surface (long water waves, however, can be appro
by a standard wave equation, see Section 19.7). Quantum mechanice
constitute another example where the waves are governed by the Schi
equation and not a standard wave equation. Many wave phenomena a
to take nonlinear effects into account when the wave amplitude is sig
Shock waves in the air is a primary example.

The derivations in the following are very brief. Those with a firm bac
in continuum mechanics will probably have enough information to fil
details, while other readers will hopefully get some impression of the phy
approximations involved when establishing wave equation models.

19.1 Waves on a string

Figure 9 shows a model we may use to derive the equation for waves on
The string is modeled as a set of discrete point masses (at mesh poin
elastic strings in between. The strings are at a high constant tension
let the mass at mesh point x; be m;. The displacement of this mass pc
direction is denoted by w;(t).

The motion of mass m; is governed by Newton’s second law of moti
position of the mass at time ¢ is ;4 + u;(t)7, where ¢ and j are unit ve
the z and y direction, respectively. The acceleration is then ] (¢)j. Tw
are acting on the mass as indicated in Figure 9. The force T'~ acting tov
point x;_; can be decomposed as

T~ = —Tsin¢i — T cos ¢j,

where ¢ is the angle between the force and the line z = z;. Let Au; = u
and let As; = \/Au? + (z; — ®i—1)? be the distance from mass m;_1

m;. It is seen that cos ¢ = Au;/As; and sing = (x; — x;—1)/As or A:
we introduce a constant mesh spacing Ax = x; — x;_1. The force can
written

AsiziTASiJ '

The force T acting toward ;11 can be calculated in a similar way:

T =-T
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igure 9: Discrete string model with point masses connected by elastic strings.

T =T T
ASi+1 v ASi+1

‘ewton’s second law becomes

mou(t)j =TT +T",

hich gives the component equations

Az Ax
T =T
As; Asiyr’
Ay Ay
miul(t) =T Yit1 _ T Y

- Asi+1 Asl '
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g

(112)

(113)

A basic reasonable assumption for a string is small displacements
small displacement gradients Au;/Az. For small ¢ = Au;/Axz we have

1
As; = \/Au? + Az? = Ax/1+ ¢g? + Az(1+ 592 +0(gh) = Ax

Equation (112) is then simply the identity 7' = T', while (113) can be w
Aui+1 TAul

Az Az’
which upon division by Az and introducing the density ¢; = m;/Ax be

mauy (1) =T

1
Qiu;/(t) = Tm (ui+1 — 2u; + ui,l) .

We can now choose to approximate ] by a finite difference in time and
discretized wave equation,

1 n+l — 2u™ —unil) =T

inp (u; iU (Wi — 2ui +ui-1) -

1
Azx?
On the other hand, we may go to the continuum limit Az — 0 and repl:
by u(z,t), 0; by o(z), and recognize that the right-hand side of (114) apy
0?u/0z* as Az — 0. We end up with the continuous model for way
string:

2 2
P g
ot? Ox?
Note that the density ¢ may change along the string, while the tensio
constant. With variable wave velocity ¢(z) = 1/T/o(x) we can write t
equation in the more standard form

0%u 0%u
ot2 Ox?’
Because of the way o enters the equations, the variable wave velocity ¢
appear inside the derivatives as in many other versions of the wave e
However, most strings of interest have constant o.
The end point of a string are fixed so that the displacement wu is ze
boundary conditions are therefore v = 0.

=c*(v)

Damping. Air resistance and non-elastic effects in the string will co
to reduce the amplitudes of the waves so that the motion dies out aft
time. This damping effect can be modeled by a term bu; on the left-hanc
the equation
u  Ou 0%u
— +b—=T—.
%%z "ot " oa?

The parameter b must normally be determined from physical experime:
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xternal forcing. It is easy to include an external force acting on the string.
ay we have a vertical force f;j acting on mass m;. This force affects the
artical component of Newton’s law and gives rise to an extra term f(z,t)
n the right-hand side of (116). In the model (117) we would add a term

(z,t) = f(z,y)/o0(z).

Todeling the tension via springs. We assumed, in the derivation above,
1at the tension in the string, T, was constant. It is easy to check this assumption
y modeling the string segments between the masses as standard springs, where
1e force (tension T') is proportional to the elongation of the spring segment.
et k be the spring constant, and set T; = kA/ for the tension in the spring
sgment between x;_1 and x;, where A/ is the elongation of this segment from
1e tension-free state. A basic feature of a string is that it has high tension in
1e equilibrium position u = 0. Let the string segment have an elongation Afg
1 the equilibrium position. After deformation of the string, the elongation is
L= Aly+ As;: T, = k(Aly + As;) = k(Aly + Ax). This shows that T; is
idependent of 4. Moreover, the extra approximate elongation Az is very small
>mpared to Aly, so we may well set T; = T = kAly. This means that the
nsion is completely dominated by the initial tension determined by the tuning
f the string. The additional deformations of the spring during the vibrations
o not introduce significant changes in the tension.

9.2 Waves on a membrane

9.3 Elastic waves in a rod

onsider an elastic rod subject to a hammer impact at the end. This experiment
ill give rise to an elastic deformation pulse that travels through the rod. A
1athematical model for longitudinal waves along an elastic rod starts with the
aneral equation for deformations and stresses in an elastic medium,

ouy =V-o+of, (119)

here o is the density, u the displacement field, o the stress tensor, and f body
rrces. The latter has normally no impact on elastic waves.

For stationary deformation of an elastic rod, one has that o,, = Fu,, with
[l other stress components being zero. Moreover, w = u(xz)i. The parameter E
known as Young’s modulus. Assuming that this simple stress and deformation
eld, which is exact in the stationary case, is a good approximation in the
-ansient case with wave motion, (119) simplifies to

Pu 0 ou
—=—|E— ). 120
ot T oz < 81’) (120)
The associated boundary conditions are u or o,, = Eu, known, typically
= 0 for a clamped end and o, = 0 for a free end.
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19.4 The acoustic model for seismic waves

Seismic waves are used to infer properties of subsurface geological str
The physical model is a heterogeneous elastic medium where sound is pro
by small elastic vibrations. The general mathematical model for deforms
an elastic medium is based on Newton’s second law,

ouy =V -o+of,

and a constitutive law relating o to u, often Hooke’s generalized law,

2
a:Kv-uI+G(Vu+(Vu)T—§v-uI).

Here, u is the displacement field, o is the stress tensor, I is the identity t
is the medium’s density, f are body forces (such as gravity), K is the m
bulk modulus and G is the shear modulus. All these quantities may
space, while u and o will also show significant variation in time duri
motion.

The acoustic approximation to elastic waves arises from a basic asst
that the second term in Hooke’s law, representing the deformations t!
rise to shear stresses, can be neglected. This assumption can be interp
approximating the geological medium by a fluid. Neglecting also the boc
f, (121) becomes

ouy = V(KV -u)

Introducing p as a pressure via

p=-KV-u,

and dividing (123) by o, we get

1
Ut = fpr
14

Taking the divergence of this equation, using V - u = —p/K from (12¢
the acoustic approximation to elastic waves:

1
P = KV - (EVP) .

This is a standard, linear wave equation with variable coefficients. It is «
to add a source term s(z,y, z,t) to model the generation of sound wave

1
pre = KV - (ng) +s.

A common additional approximation of (127) is based on using tl
rule on the right-hand side,
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1 K 1 K
KV - <7Vp> = V% +KV <7> -Vp~ —V?p,
0 0 0 0
nder the assumption that the relative spatial gradient Vo1
his approximation results in the simplified equation

K
P = 3V2p +s. (128)

The acoustic approximations to seismic waves are used for sound waves in
1e ground, and the Earth’s surface is then a boundary where p equals the
tmospheric pressure pg such that the boundary condition becomes p = pyg.

.nisotropy. Quite often in geological materials, the effective wave velocity
= /K /o is different in different spatial directions because geological layers are

»mpacted such that the properties in the horizontal and vertical direction differ.

/ith z as the vertical coordinate, we can introduce a vertical wave velocity c,
nd a horizontal wave velocity ¢, and generalize (128) to

Pt = Cgpzz + C%(prr +pyy) + S. (129)

9.5 Sound waves in liquids and gases

ound waves arise from pressure and density variations in fluids. The starting
oint of modeling sound waves is the basic equations for a compressible fluid
here we omit viscous (frictional) forces, body forces (gravity, for instance), and
smperature effects:

0t + V- (ou) =0, (130)
ous + ou - Vu = —Vp, (131)
o= o(p). (132)

hese equations are often referred to as the Euler equations for the motion of a
uid. The parameters involved are the density o, the velocity w, and the pressure
. Equation (131) reflects mass balance, (130) is Newton’s second law for a fluid,
ith frictional and body forces omitted, and (132) is a constitutive law relating
ensity to pressure by thermodynamics considerations. A typical model for (132)
the so-called isentropic relation?®, valid for adiabatic processes where there is

o heat transfer:
1/~
0= 00 (ﬁ) : (133)
Po

28nttp://en.wikipedia.org/wiki/Isentropic_process
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= —p 2Vpis small.

Here, pg and g are references values for p and ¢ when the fluid is at res
is the ratio of specific heat at constant pressure and constant volume (
for air).

The key approximation in a mathematical model for sound waves is tc
that these waves are small perturbations to the density, pressure, and
We therefore write

p=po+D,
0= 00+ 0,
u=1u,

where we have decomposed the fields in a constant equilibrium valus
sponding to u = 0, and a small perturbation marked with a hat sym
inserting these decompositions in (130) and (131), neglecting all produc
of small perturbations and/or their derivatives, and dropping the hat ¢
one gets the following linearized PDE system for the small perturba
density, pressure, and velocity:

Ot + QOV U= 0:
oot = —Vp.

Now we can eliminate g; by differentiating the relation o(p),

B 1 (p>1/"/_1 1 B 00 <p>1/’7—1
Ot =00_ | — —Ppt=_—_——\ — Pt -
Y \Po Po YPo \ Po

/v

The product term p'/7='p; can be linearized as py "~ p;, resulting in

00
0t = —DPt-
YPo

We then get

Pt +vpoV - u =0,
1
90

U =

Vp, .
Taking the divergence of (137) and differentiating (136) with respect
gives the possibility to easily eliminate V - u; and arrive at a standarc
wave equation for p:

Pt = CzV?P»
where ¢ = y/vpo/ 00 is the speed of sound in the fluid.
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9.6 Spherical waves

pherically symmetric three-dimensional waves propagate in the radial direction
only so that u = u(r,t). The fully three-dimensional wave equation

0%u 9

1en reduces to the spherically symmetric wave equation

— === r)r

otz r20r ot
me can easily show that the function v(r,t) = ru(r,t) fulfills a standard wave
juation in Cartesian coordinates if ¢ is constant. To this end, insert v = v/r in

10 (4, 50u
= (F0r )

4200 | L0 de
" dr Or 06r2 drv

he two terms in the parenthesis can be combined to

0 [ ,0v
r—|ct=— ),
or or
hich is recognized as the variable-coefficient Laplace operator in one Cartesian

»ordinate. The spherically symmetric wave equation in terms of v(r,¢) now
ecomes

Pu 10 (2( ) 28”) + f(r,t), r€(0,R), t>0. (139)

» obtain

v 9 [, Ov 1dc?
—=—\c(r)— | ———v+rf(r,t), r€(0,R), t>0. 140
ot? 8r( ()81' r dr +rf(r?) 0, ) (140)

1 the case of constant wave velocity ¢, this equation reduces to the wave equation
1 a single Cartesian coordinate called r:

0% ,0%

— =c"— +rf(r,t), re€(0,R), t>0. 141

=L (), re(0R) (141)
hat is, any program for solving the one-dimensional wave equation in a Cartesian
>ordinate system can be used to solve (141), provided the source term is
wltiplied by the coordinate, and that we divide the Cartesian mesh solution by
to get the spherically symmetric solution. Moreover, if » = 0 is included in the
omain, spherical symmetry demands that Ou/dr = 0 at r = 0, which means

1at
ou 1 ov
w:ﬂGm‘OZQT:“
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implying v(0,t) = 0 as a necessary condition. For practical applicati
exclude r = 0 from the domain and assume that some boundary conc
assigned at r = ¢, for some € > 0.

19.7 The linear shallow water equations

The next example considers water waves whose wavelengths are much lag
the depth and whose wave amplitudes are small. This class of waves
generated by catastrophic geophysical events, such as earthquakes at
bottom, landslides moving into water, or underwater slides (or a comt
as earthquakes frequently release avalanches of masses). For example, ¢
earthquake will normally have an extension of many kilometers but lift tl
only a few meters. The wave length will have a size dictated by the ear
area, which is much lager than the water depth, and compared to tt
length, an amplitude of a few meters is very small. The water is essentiall
film, and mathematically we can average the problem in the vertical d
and approximate the 3D wave phenomenon by 2D PDEs. Instead of a
water domain in three space dimensions, we get a horizontal 2D domain
unknown function for the surface elevation and the water depth as a
coefficient in the PDEs.

Let n(z,y,t) be the elevation of the water surface, H(z,y) the wate
corresponding to a flat surface (n = 0), u(x, y,t) and v(x, y, t) the depth-¢
horizontal velocities of the water. Mass and momentum balance of tk
volume give rise to the PDEs involving these quantities:

ne = —(Hu)y — (Hv),
Ut = —gNz,

UVt = —gNy,

where ¢ is the acceleration of gravity. Equation (142) corresponds
balance while the other two are derived from momentum balance (N
second law).

The initial conditions associated with (142)-(144) are 7, u, and v pr
at t = 0. A common condition is to have some water elevation n = I(x
assume that the surface is at rest: u = v = 0. A subsea earthquake
means a sufficiently rapid motion of the bottom and the water volum
that the bottom deformation is mirrored at the water surface as an in
I(x,y) and that u = v =0.

Boundary conditions may be n prescribed for incoming, known w
zero normal velocity at reflecting boundaries (steep mountains, for in
ung +vny = 0, where (ng, ny) is the outward unit normal to the boundar
sophisticated boundary conditions are needed when waves run up at tt
and at open boundaries where we want the waves to leave the compu
domain undisturbed.
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Equations (142), (143), and (144) can be transformed to a standard, linear
ave equation. First, multiply (143) and (144) by H, differentiate (143)) with
spect to x and (144) with respect to y. Second, differentiate (142) with
sspect to ¢ and use that (Hu)z: = (Huy), and (Hv)y = (Hve)y when H is
idependent of ¢. Third, eliminate (Hu,), and (Huv;), with the aid of the other
vo differentiated equations. These manipulations results in a standard, linear
ave equation for #:

Nt = (9HN2)o + (gHny)y =V - (gHVn). (145)

In the case we have an initial non-flat water surface at rest, the initial
»nditions become n = I(x,y) and n: = 0. The latter follows from (142) if
= v =0, or simply from the fact that the vertical velocity of the surface is 7,
hich is zero for a surface at rest.

The system (142)-(144) can be extended to handle a time-varying bottom
ypography, which is relevant for modeling long waves generated by underwater
ides. In such cases the water depth function H is also a function of ¢, due to
1e moving slide, and one must add a time-derivative term H; to the left-hand
de of (142). A moving bottom is best described by introducing z = Hy as the
ill-water level, z = B(z,y, t) as the time- and space-varying bottom topography,
» that H = Hy — B(x,y,t). In the elimination of u and v one may assume that
1e dependence of H on ¢ can be neglected in the terms (Hu),; and (Hv)y. We
1en end up with a source term in (145), because of the moving (accelerating)
ottom:

e =V - (gHVn) + By . (146)

The reduction of (146) to 1D, for long waves in a straight channel, or for
pproximately plane waves in the ocean, is trivial by assuming no change in y
irection (8/9y = 0):

ne = (9HnNz)z + B - (147)

Vind drag on the surface. Surface waves are influenced by the drag of the
ind, and if the wind velocity some meters above the surface is (U, V'), the wind
rag gives contributions Cy+/U? 4+ V2U and CyvU? + V2V to (143) and (144),
sspectively, on the right-hand sides.

jottom drag. The waves will experience a drag from the bottom, often
»ughly modeled by a term similar to the wind drag: Cgvu? + v2u on the
ght-hand side of (143) and Cpvu? 4+ v2v on the right-hand side of (144). Note
1at in this case the PDEs (143) and (144) become nonlinear and the elimination
fu and v to arrive at a 2nd-order wave equation for n is not possible anymore.
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Effect of the Earth’s rotation. Long geophysical waves will often be
by the rotation of the Earth because of the Coriolis force. This force g
to a term fv on the right-hand side of (143) and — fu on the right-he
of (144). Also in this case one cannot eliminate v and v to work with
equation for 1. The Coriolis parameter is f = 2{2sin ¢, where (2 is the
velocity of the earth and ¢ is the latitude.

19.8 Waves in blood vessels

The flow of blood in our bodies is basically fluid flow in a network ¢
Unlike rigid pipes, the walls in the blood vessels are elastic and will
their diameter when the pressure rises. The elastic forces will then push
back and accelerate the fluid. This interaction between the flow of blood
deformation of the vessel wall results in waves traveling along our blooc

A model for one-dimensional waves along blood vessels can be deriv
averaging the fluid flow over the cross section of the blood vessels. Le
coordinate along the blood vessel and assume that all cross sections are
though with different radius R(z,t). The main quantities to comput
cross section area A(x,t), the averaged pressure P(x,t), and the total
flux Q(z,t). The area of this cross section is

R(z,t)
Az, t) = 271'/ rdr,
0

Let v, (z,t) be the velocity of blood averaged over the cross section at
The volume flux, being the total volume of blood passing a cross sec
time unit, becomes

Q(z,t) = Az, t)vy(x, 1)

Mass balance and Newton’s second law lead to the PDEs

04 09
ot Oz

00 ~+20 (QP\ A0P 0O

o TT29 (= 290 9 D) L

8t+7+18x(A oo - DLy

where v is a parameter related to the velocity profile, g is the density ¢
and p is the dynamic viscosity of blood.

We have three unknowns A, @, and P, and two equations (150) an
A third equation is needed to relate the flow to the deformations of the
common form for this equation is

or 109
ot C oxr

where C is the compliance of the wall, given by the constitutive relatio

0,

04 04

C*aip+§7
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hich require a relationship between A and P. One common model is to view

1e vessel wall, locally, as a thin elastic tube subject to an internal pressure.

his gives the relation

P="P+

Tl VA= V),

here Py and Ag are corresponding reference values when the wall is not deformed,

is the thickness of the wall, and F and v are Young’s modulus and Poisson’s
iwtio of the elastic material in the wall. The derivative becomes

C:g—ﬁ 2(1_” A°f+2( }’:E)AO) (P—Py). (154)

nother (nonlinear) deformation model of the wall, which has a better fit with
xperiments, is

P = P(] exp (B(A/A() — 1)),
here g is some parameter to be estimated. This law leads to

94 A
=55~ b (155)

teduction to standard wave equation. It is not uncommon to neglect the
iscous term on the right-hand side of (151) and also the quadratic term with Q2
n the left-hand side. The reduced equations (151) and (152) form a first-order
near wave equation system:

oP  0Q

- 1
ot Ox’ (156)
oQ AOP
bt R 1
ot 0 Ox (157)

hese can be combined into standard 1D wave equation PDE by differentiating
1e first equation with respect ¢ and the second with respect to z,

0 opP 0 (AOP
ot <008t> ax(gax)
hich can be approximated by

9°Q  ,5%Q A
W = C @, Cc = ‘9707 (158)

here the A and C in the expression for ¢ are taken as constant reference values.
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19.9 Electromagnetic waves

Light and radio waves are governed by standard wave equations arisi
Maxwell’s general equations. When there are no charges and no curren
a vacuum, Maxwell’s equations take the form

V.E=0,
V-B=0,
0B
E--2°
V x ETR
oF
VXB—MO€OE>

where €y = 8.854187817620 - 10712 (F/m) is the permittivity of free spe
known as the electric constant, and po = 1.2566370614 - 10~¢ (H/m
permeability of free space, also known as the magnetic constant. Taking
of the two last equations and using the identity

V x(VxE)=V(V-E)—-V?E=-V?E when V- E =0,

immediately gives the wave equation governing the electric and magnet

0E _ 0
a2 ¢ ar2’
OPE  ,0°E
g5 _ 29=
ot? Ox2’

with ¢ = 1/,/uo€o as the velocity of light. Each component of E and B
wave equation and can hence be solved independently.

20 Exercises

Exercise 14: Simulate waves on a non-homogeneous :

Simulate waves on a string that consists of two materials with different
The tension in the string is constant, but the density has a jump at the n
the string. Experiment with different sizes of the jump and produce ani
that visualize the effect of the jump on the wave motion.

Hint. According to Section 19.1, the density enters the mathematical r

oin puys = Tug,, where T is the string tension. Modify, e.g., the wave1D_1

code to incorporate the tension and two density values. Make a mesh 1

rho with density values at each spatial mesh point. A value for the tens

be 150 N. Corresponding density values can be computed from the wave

estimations in the guitar function in the wavelD_uO_sv.py file.
Filename: wavelD_uO_sv_discont.py.
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xercise 15: Simulate damped waves on a string

ormulate a mathematical model for damped waves on a string. Use data from
ection 3.4, and tune the damping parameter so that the string is very close
> the rest state after 15 s. Make a movie of the wave motion. Filename:
avelD_uO_sv_damping.py.

xercise 16: Simulate elastic waves in a rod

hammer hits the end of an elastic rod. The exercise is to simulate the resulting
ave motion using the model (120) from Section 19.3. Let the rod have length
and let the boundary x = L be stress free so that o,, = 0, implying that
u/0x = 0. The left end = = 0 is subject to a strong stress pulse (the hammer),
10deled as

[0S, 0<t<t,,
Tz (t) = { 0, t>ts
he corresponding condition on u becomes u, = S/E for t < t; and zero

fterwards (recall that o,, = Fu,). This is a non-homogeneous Neumann
»mdition, and you will need to approximate this condition and combine it with
1e scheme (the ideas and manipulations follow closely the handling of a non-zero
iitial condition u; = V' in wave PDEs or the corresponding second-order ODEs
v vibrations). Filename: wave_rod.py.

xercise 17: Simulate spherical waves

nplement a model for spherically symmetric waves using the method described
1 Section 19.6. The boundary condition at » = 0 must be du/0r = 0, while the
»ndition at r = R can either be u = 0 or a radiation condition as described in
roblem 20. The u = 0 condition is sufficient if R is so large that the amplitude
f the spherical wave has become insignificant. Make movie(s) of the case where
1e source term is located around r = 0 and sends out pulses

Flrt) = Qexp (—%)Sinwt7 sinwt > 0
' 0, sinwt < 0

ere, () and w are constants to be chosen.

[int. Use the program wavelD_uO_sv.py as a starting point. Let solver
»mpute the v function and then set u = v/r. However, u = v/r for r = 0
:quires special treatment. One possibility is to compute u[1:]1 = v[1:]1/r[1:]
nd then set u[0]=ul1]. The latter makes it evident that du/dr = 0 in a plot.

Filename: wavelD_spherical.py.
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Exercise 18: Explain why numerical noise occurs

The experiments performed in Exercise 8 shows considerable numeric
in the form of non-physical waves, especially for s; = 4 and the plh
or the half a ”cosinehat” pulse. The noise is much less visible for a G
pulse. Run the case with the plug and half a ”cosinehat” pulses for
C =0.9,0.25, and N, = 40,80,160. Use the numerical dispersion rel:
explain the observations. Filename: pulselD_analysis.pdf.

Exercise 19: Investigate harmonic averaging in a 1D :

Harmonic means are often used if the wave velocity is non-smooth or
tinuous. Will harmonic averaging of the wave velocity give less nt
noise for the case sy = 4 in Exercise 87 Filenames: pulselD_harmon
pulselD_harmonic.py.

Problem 20: Implement open boundary conditions

To enable a wave to leave the computational domain and travel undi
through the boundary z = L, one can in a one-dimensional problem im;
following condition, called a radiation condition or open boundary cona

ou Ju
ot Cox
The parameter c is the wave velocity.
Show that (161) accepts a solution v = gr(z — ct), but not u = gr,
This means that (161) will allow any right-going wave gr(x — ct) to pass
the boundary.
A corresponding open boundary condition for a left-going wave throug

=0.

is
ou o
ot ¢ Oz

The condition (161) can be discretized by centered differences at the
end point ¢ = N,, corresponding to © = zp:

=0.

[Dasu + cDopu = 0]}y .

Eliminate the fictitious value uf; ,, by using the discrete equation at t
point. The equation for the first step, u}, is in principal affected, but
then use the condition uy, = 0 since the wave has not yet reached t
boundary.

A corresponding open boundary condition for a left-going wave throug

is

on_on_,
ot ‘ox
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nplement a solver that incorporates the conditions (163) and (164). Start with
»me peak-shaped Gaussian function in the middle of the domain as I(x) and
emonstrate that waves travel undisturbed out of the domain at x = L and

= 0. Make a nose test for checking that the surface is flat after a certain time.

temark. The condition (161) works perfectly in 1D when ¢ is known. In 2D
nd 3D, however, the condition reads us + cyu, + cyuy = 0, where ¢, and ¢,
re the wave speeds in the z and y directions. Estimating these components
.e., the direction of the wave) is often challenging. Other methods are normally
sed in 2D and 3D to let waves move out of a computational domain. Filename:
avelD_open_BC.py.

'roblem 21: Earthquake-generated tsunami over a subsea
ill

subsea earthquake leads to an immediate lift of the water surface, see Figure 10.

he lifted water surface splits into two tsunamis, one traveling to the right and
ne to the left, as depicted in Figure 11. Since tsunamis are normally very long
aves, compared to the depth, with a small amplitude, compared to the wave
mngth, the wave equation model described in Section 19.7 is relevant:

nee = (9H ()12 ),
here g is the acceleration of gravity, and H(x) is the still water depth.

Figure 10: Sketch of initial water surface due to a subsea earthquake.

To simulate the right-going tsunami, we can impose a symmetry boundary
t 2 = 0: In Oz = 0. We then simulate the wave motion in [0, L]. Unless the
cean ends at = L, the waves should travel undisturbed through the boundary
= L. A radiation condition as explained in Problem 20 can be used for this
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Figure 11: An initial surface elevation is split into two waves.

purpose. Alternatively, one can just stop the simulations before the w
the boundary at z = L. In that case it does not matter what kind of b
condition we use at = L. Imposing 7 = 0 and stopping the simulatio
[n*] > €, i= N, — 1, is a possibility (e is a small parameter).

The shape of the initial surface can be taken as a Gaussian functior

_I.\?
I(z; 1o, Lo, Im, Is) = Io + o exp <_ (I I m) >,
S

with I, = 0 reflecting the location of the peak of I(z) and I, being a 1
of the width of the function I(z) (I is v/2 times the standard deviatio
familiar normal distribution curve).

Now we extend the problem with a hill at the sea bottom, see Figure
wave speed ¢ = \/gH(z) = \/g(Ho — B(z)) will then be reduced in the
water above the hill.

One possible form of the hill is a Gaussian function,

—Bn\?>
B(.’E;BO,Ba,Bm,Bs) = BO + Ba exp <_ <x > >7

but many other shapes are also possible, e.g., a ”cosine hat” where

_Bm
B(x;BO,Ba,Bm,BS) :BO+BQCOS (TrmZB ),

when x € [B,, — B, B, + Bs] while B = By outside this interval.
Also an abrupt construction may be tried:

B(:U, B07 Ba: Bm: BS) = BO + Ba7
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igure 12: Sketch of an earthquake-generated tsunami passing over a subsea
ill.

v & € [By, — Bs, By, + Bs| while B = By outside this interval.

The wavelD_dn_vc.py?? program can be used as starting point for the
nplementation. Visualize both the bottom topography and the water surface
evation in the same plot. Allow for a flexible choice of bottom shape: (166),
67), (168), or B(x) = By (flat).

The purpose of this problem is to explore the quality of the numerical solution
P for different shapes of the bottom obstruction. The ”cosine hat” and the box-
1aped hills have abrupt changes in the derivative of H(z) and are more likely to
snerate numerical noise than the smooth Gaussian shape of the hill. Investigate
this is true. Filenames: tsunamiiD_hill.py, tsunamilD_hill.pdf.

'roblem 22: Earthquake-generated tsunami over a 3D hill

his problem extends Problem 21 to a three-dimensional wave phenomenon,
overned by the 2D PDE (145). We assume that the earthquake arise from a
wlt along the line # = 0 in the xy-plane so that the initial lift of the surface
an be taken as I(x) in Problem 21. That is, a plane wave is propagating to the
ght, but will experience bending because of the bottom.

The bottom shape is now a function of z and y. An ”elliptic” Gaussian
inction in two dimensions, with its peak at (Bp,z, Bimy), generalizes (166):

2 2
(; Bo, Ba, By, By, Bs,b) = Bo+Ba exp | — 2= Bz )" _ (Y= By
b 9 9 €T J7 Sy BS st b
(169)

29nttp://tinyurl.com/jvzzcfn/wave/wave1D/wavelD_dn_vc.py
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where b is a scaling parameter: b = 1 gives a circular Gaussian functi
circular contour lines, while b # 1 gives an elliptic shape with elliptic
lines.

The ”cosine hat” (167) can also be generalized to

B(.CE, 307 Bu: B’mm: B’my7 Bs) = BO + Ba Ccos <7TQBS> Ccos (TFQB

when 0 < y/22 + y2 < B, and B = By outside this circle.
A box-shaped obstacle means that

B(J;; BOv Bav Bma st b) = BO + B,
for x and y inside a rectangle
By — Bs <z < By + B, Bmy_stgySBmy'i'sta

and B = By outside this rectangle. The b parameter controls the rect
shape of the cross section of the box.

Note that the initial condition and the listed bottom shapes are sy1
around the line y = B,,,. We therefore expect the surface elevation
be symmetric with respect to this line. This means that we can h:
computational domain by working with [0, L] x [0, Byy]. Along th
boundary, y = By, we must impose the symmetry condition dn/0n =
a symmetry condition (—n, = 0) is also needed at the x = 0 boundary
the initial condition has a symmetry here. At the lower boundary y = 0
set a Neumann condition (which becomes —n, = 0). The wave motion
simulated until the wave hits the reflecting boundaries where 9n/0n =
(one can also set 7 = 0 - the particular condition does not matter as lon
simulation is stopped before the wave is influenced by the boundary co

Visualize the surface elevation. Investigate how different hill sha
ferent sizes of the water gap above the hill, and different resolution
Ay = h and At influence the numerical quality of the solution. Fil
tsunami2D_hill.py, tsunami2D_hill.pdf.

Problem 23: Investigate Matplotlib for visualization

Play with native Matplotlib code for visualizing 2D solutions of the wave ¢
with variable wave velocity. See if there are effective ways to visualize 1
solution and the wave velocity. Filename: tsunami2D_hill_mpl.py.

Problem 24: Investigate visualization packages

Create some fancy 3D visualization of the water waves and the subse
Problem 22. Try to make the hill transparent. Possible visualization tc
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o Mayavi®?

e Paraview3!

e OpenDX?32

ilename: tsunami2D_hill_viz.py.

'roblem 25: Implement loops in compiled languages

xtend the program from Problem 22 such that the loops over mesh points, inside
1e time loop, are implemented in compiled languages. Consider implementations
1 Cython, Fortran via £2py, C via Cython, C via £2py, C/C++ via Instant,
ad C/C++ via scipy.weave. Perform efficiency experiments to investigate the
slative performance of the various implementations. It is often advantageous
> normalize CPU times by the fastest method on a given mesh. Filename:
sunami2D_hill_compiled.py.

xercise 26: Simulate seismic waves in 2D

he goal of this exercise is to simulate seismic waves using the PDE model
29) in a 2D zz domain with geological layers. Introduce m horizontal layers
f thickness h;, i = 0,...,m — 1. Inside layer number ¢ we have a vertical wave
slocity c.; and a horizontal wave velocity cp, ;. Make a program for simulating
1ch 2D waves. Test it on a case with 3 layers where

Cz,0 =Cz1 =Cz2, Cho=Ch2, Ch1<Chpo-

et s be a localized point source at the middle of the Earth’s surface (the
pper boundary) and investigate how the resulting wave travels through the
iedium. The source can be a localized Gaussian peak that oscillates in time
r some time interval. Place the boundaries far enough from the expanding
ave so that the boundary conditions do not disturb the wave. Then the type
f boundary condition does not matter, except that we physically need to have
= po, where pq is the atmospheric pressure, at the upper boundary. Filename:
eismic2D.py.

'roject 27: Model 3D acoustic waves in a room
he equation for sound waves in air is derived in Section 19.5 and reads
P = C2v2p7

here p(z,y, z,t) is the pressure and ¢ is the speed of sound, taken as 340 m/s.
owever, sound is absorbed in the air due to relaxation of molecules in the gas.

30nttp://code.enthought.com/projects/mayavi/
3lnttp://www.paraview.org/
32nttp: //www.opendx.org/
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A model for simple relaxation, valid for gases consisting only of one
molecules, is a term c27,V2p, in the PDE, where 7, is the relaxation tinr
generate sound from, e.g., a loudspeaker in the room, this sound sour
also be added to the governing equation.

The PDE with the mentioned type of damping and source then bec

pit = EVP + AV, + f,

where f(z,y, z,t) is the source term.

The walls can absorb some sound. A possible model is to have a 7wz
(thicker than the physical wall) outside the room where ¢ is changed st
some of the wave energy is reflected and some is absorbed in the we
absorption of energy can be taken care of by adding a damping term by
equation:

pit +bpy = VP + P,V + f

Typically, b = 0 in the room and b > 0 in the wall. A discontinuity i
will give rise to reflections. It can be wise to use a constant ¢ in the
control reflections because of the discontinuity between c in the air an
wall, while b is gradually increased as we go into the wall to avoid ref
because of rapid changes in b. At the outer boundary of the wall the c
p = 0or dp/On = 0 can be imposed. The waves should anyway be appros
dampened to p = 0 this far out in the wall layer.

There are two strategies for discretizing the V2p; term: using :
difference between times n + 1 and n — 1 (if the equation is sampled at
or use a one-sided difference based on levels n and n — 1. The latter
advantage of not leading to any equation system, while the former is secor
accurate as the scheme for the simple wave equation p:t = c2V2p. To ¢
equation system, go for the one-sided difference such that the overall
becomes explicit and only of first order in time.

Develop a 3D solver for the specified PDE and introduce a wall layer.
solver with the method of manufactured solutions. Make some demons
where the wall reflects and absorbs the waves (reflection because of disco
in b and absorption because of growing b). Experiment with the impac
Ts parameter. Filename: acoustics.py.

Project 28: Solve a 1D transport equation
We shall study the wave equation

ur+cu, =0, xe(0,L], t e (0,T],

with initial condition

u(z,0) = I(z), =z €]l0,L],

and one periodic boundary condition
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w(0,t) = u(L,t). (176)

his boundary condition means that what goes out of the domain at x = L
omes in at © = 0. Roughly speaking, we need only one boundary condition
ecause of the spatial derivative is of first order only.

'hysical interpretation. The parameter ¢ can be constant or variable, ¢ =
‘). The equation (174) arises in transport problems where a quantity u, which
»uld be temperature or concentration of some contaminant, is transported with
1e velocity ¢ of a fluid. In addition to the transport imposed by ”travelling
ith the fluid”, v may also be transported by diffusion (such as heat conduction
¢ Fickian diffusion), but we have in the model u; + cu, assumed that diffusion
fects are negligible, which they often are.

A widely used numerical scheme for (174) applies a forward difference in
me and a backward difference in space when ¢ > 0:

[Dfu+cDyu=0]". (177)

or ¢ < 0 we use a forward difference in space: [cDfu]?.

We shall hereafter assume that = ¢(z) > 0.

To compute (182) we need to integrate 1/c¢ to obtain C' and then compute
1e inverse of C'.

The inverse function computation can be easily done if we first think discretely.

ay we have some function y = g(z) and seeks its inverse. Plotting (x;,y;),
here y; = g(x;) for some mesh points z;, displays g as a function of z. The

werse function is simply x as a function of g, i.e., the curve with points (y;, z;).
/e can therefore quickly compute points at the curve of the inverse function.

me way of extending these points to a continuous function is to assume a linear
ariation (known as linear interpolation) between the points (which actually
1eans to draw straight lines between the points, exactly as done by a plotting
rogram).

The function wrap2callable in scitools.std can take a set of points and
sturn a continuous function that corresponds to linear variation between the
oints. The computation of the inverse of a function g on [0, L] can then be
one by

lef inverse(g, domain, resolution=101):
x = linspace(domain[0], domain[L], resolution)
y = gx)
from scitools.std import wrap2callable
g_inverse = wrap2callable((y, x))
return g_inverse

To compute C(z) we need to integrate 1/¢, which can be done by a Trapezoidal
1le. Suppose we have computed C(z;) and need to compute C(z;4+1). Using
1e Trapezoidal rule with m subintervals over the integration domain [z;, z;11]

ves
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where h = (2,41 — x;)/m is the length of the subintervals used for the
over [z;,x;+1]. We observe that (178) is a difference equation which we ¢
by repeatedly applying (178) for i = 0,1,..., N, — 1 if a mesh zo,z, ...
prescribed. Note that C'(0) = 0.

a) Show that under the assumption of a = const,

u(x,t) = I(x — ct)

fulfills the PDE as well as the initial and boundary condition (providec
I(L)).

b) Set up a computational algorithm and implement it in a function.
a is constant and positive.

c) Test implementation by using the remarkable property that the m
solution is exact at the mesh points if At = ¢~ 'Ax.

d) Make a movie comparing the numerical and exact solution for the fi
two choices of initial conditions:

I(z) = {sin (ﬂ%)rn

where n is an integer, typically n = 5, and

(wL/2)2) _

I(z) = exp (f s

Choose At = ¢ 'Az,0.9¢ Az, 0.5¢ Az,

e) The performance of the suggested numerical scheme can be inve:
by analyzing the numerical dispersion relation. Analytically, we have f
Fourier component

U(JZ’, t) _ ei(kan—wt)7

is a solution of the PDE if w = kc. This is the analytical dispersion rel
complete solution of the PDE can be built by adding up such Fourier com
with different amplitudes, where the initial condition I determines the am
The solution u is then represented by a Fourier series.

A similar discrete Fourier component at (x,,t,) is
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u}q] _ ez(kpAsznAt) ,

here in general @ is a function of k, At, and Az, and differs from the exact
= kec.

Insert the discrete Fourier component in the numerical scheme and derive an
xpression for w, i.e., the discrete dispersion relation. Show in particular that
the At/(cAx) = 1, the discrete solution coincides with the exact solution at
1e mesh points, regardless of the mesh resolution (!). Show that if the stability
»ndition

At
— <1
cAzr —

1e discrete Fourier component cannot grow (i.e., @ is real).

)

) Write a test for your implementation where you try to use information from
1e numerical dispersion relation.

) Set up a computational algorithm for the variable coefficient case and

nplement it in a function. Make a test that the function works for constant a.

) It can be shown that for an observer moving with velocity ¢(z), u is constant.

his can be used to derive an exact solution when a varies with x. Show first
1at

u(z,t) = f(C(x) —t), (182)
here

Cl(m) = @a

a solution of (174) for any differentiable function f.

olution. Let { = C(z) —t. We have that

u = f'(§)(-1),
hile 1
uz = f(§)C(z) = f’(ﬁ)@,
nplying that au, = f/(§). Then we have u; + cu, = —f'(§) + f'(§) = 0.

Use the initial condition to show that an exact solution is

u(a,t) = I(CTH(C(x) - 1)),
ith C~' being the inverse function of C' = [ ¢'dz. Since C(z) is an integral
)I (1/¢)dz, C(x) is monotonically increasing and there exists hence an inverse
mction C~1 with values in [0, L].
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Solution. In general we have u(z,t) = f(C(z) —t) and the solution i
form with f(&) = I(C~1(€)). Moreover, at t = 0 we have I(C~1(C(z)))
which is the required initial condition.

j) Implement a function for computing C(z;) and one for computing C~
any z. Use these two functions for computing the exact solution I(C~1(C
End up with a function u_exact_variable_c(x, n, c, I) that ret

value of I(C~1(C(z) — t,)).

k) Make movies showing a comparison of the numerical and exact s
for the two initial conditions (180) and (28). Choose At = Az/maxq,f, ¢
the velocity of the medium as

1. ¢(z) =1+ esin(kmz/L), e < 1,
2. ¢(z) =1+ I(x), where I is given by (180) or (28).
The PDE u; + cu,, = 0 expresses that the initial condition I(z) is tran

with velocity ¢(z).
Filename: adveci1D.py.

Problem 29: General analytical solution of a 1D da
wave equation

We consider an initial-boundary value problem for the damped wave ec

gt + bur = gy, xz € (0,L), t € (0,T]
u(0,t) =0,
u(L,t) =0,
u(z,0) = I(z),
ug(z,0) = V(z)

Here, b > 0 and c¢ are given constants. The aim is to derive a general ar
solution of this problem. Familiarity with the method of separation of v
for solving PDEs will be assumed.

a) Seek a solution on the form u(z,t) = X (z)T(t). Insert this solutio
PDE and show that it leads to two differential equations for X and T*:

T"+bT" 4+ XT =0, AX"+AX=0,

with X(0) = X (L) = 0 as boundary conditions, and A as a constar
determined.
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) Show that X (z) is on the form

Xn(x)=Cpsinkzx, k= T n=12,...

here C), is an arbitrary constant.

) Under the assumption that (b/2)? < k2, show that T'(t) is on the form

1
T (t) = e~ 2% (a, coswt + by sinwt), w=1/k2 — ZbQ’ n=12...

he complete solution is then

o0
u(z,t) = Z sin kze 2% (A, coswt + By sinwt),

n=1

here the constants A, and B,, must be computed from the initial conditions.

) Derive a formula for A, from u(z,0) = I(z) and developing I(x) as a sine
ourier series on [0, L].

) Derive a formula for B, from u;(x,0) = V(z) and developing V (x) as a sine
ourier series on [0, L].

) Calculate A, and B,, from vibrations of a string where V' (z) = 0 and

_ ax/x B r < X,
Iw) = { o(L— 5 /(L — o), otherwise (183)

) Implement the series for u(x,t) in a function u_series(x, t, tol=1E-10),
here tol is a tolerance for truncating the series. Simply sum the terms until
1| and |bp| both are less than tol.

) What will change in the derivation of the analytical solution if we have
2(0,t) = uy(L,t) = 0 as boundary conditions? And how will you solve the
roblem with u(0,¢) = 0 and u,(L,t) = 07

Filename: damped_wavelD.pdf.

'roblem 30: General analytical solution of a 2D damped
rave equation

arry out Problem 29 in the 2D case: uy + buy = ¢2(Ugy + Uyy), where (x,y) €
),L;) % (0,L,). Assume a solution on the form u(z,y,t) = X(z)Y (y)T'(t).
Filename: damped_wave2D.pdf.
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