Finite difference methods for wave

 motion
Hans Petter Langtangen ${ }^{1,2}$

${ }^{1}$ Center for Biomedical Computing, Simula Research Laboratory ${ }^{2}$ Department of Informatics, University of Oslo

Dec 12, 2013

This is still a preliminary version.

Jontents

Simulation of waves on a string 5
1.1 Discretizing the domain 6
1.2 The discrete solution 6
1.3 Fulfilling the equation at the mesh points 6
1.4 Replacing derivatives by finite differences 7
1.5 Formulating a recursive algorithm 8
1.6 Sketch of an implementation 9
Verification 10
2.1 A slightly generalized model problem 11
2.2 Using an analytical solution of physical significance 11
2.3 Manufactured solution 12
2.4 Constructing an exact solution of the discrete equations 13
Implementation 14
3.1 Making a solver function 15
3.2 Verification: exact quadratic solution 16
3.3 Visualization: animating the solution 16
3.4 Running a case 19
3.5 The benefits of scaling 20
Vectorization 21
4.1 Operations on slices of arrays 21
4.2 Finite difference schemes expressed as slices 23
4.3 Verification 24
4.4 Efficiency measurements 25

5 Exercises
6 Generalization: reflecting boundaries
6.1 Neumann boundary condition
6.2 Discretization of derivatives at the boundary
6.3 Implementation of Neumann conditions
6.4 Index set notation
6.5 Alternative implementation via ghost cells

7 Generalization: variable wave velocity
7.1 The model PDE with a variable coefficient
7.2 Discretizing the variable coefficient
7.3 Computing the coefficient between mesh points
7.4 How a variable coefficient affects the stability
7.5 Neumann condition and a variable coefficient
7.6 Implementation of variable coefficients
7.8 Generalization: damping

8 Building a general 1D wave equation solver
8.1 User action function as a class .
8.2 Pulse propagation in two media

9 Exercises
10 Analysis of the difference equations
10.1 Properties of the solution of the wave equation
10.2 More precise definition of Fourier representations
10.3 Stability
10.4 Numerical dispersion relation
10.5 Extending the analysis to 2D and 3D

11 Finite difference methods for 2D and 3D wave equations
11.1 Multi-dimensional wave equations .
11.2 Mesh
11.3 Discretization

12 Implementation
12.1 Scalar computations
12.2 Vectorized computations
12.3 Verification

13 Migrating loops to Cython

13.1 Declaring variables and annotating the code
13.2 Visual inspection of the C translation
13.3 Building the extension module
13.4 Calling the Cython function from Python
4 Migrating loops to Fortran 71
14.1 The Fortran subroutine 71
14.2 Building the Fortran module with f2py 72
14.3 How to avoid array copying 74
5 Migrating loops to C via Cython 75
15.1 Translating index pairs to single indices 75
15.2 The complete C code 76
15.3 The Cython interface file 77
15.4 Building the extension module 77
6 Migrating loops to C via f2py 78
16.1 Migrating loops to C++ via f2py 79
7 Using classes to implement a simulator 80
8 Exercises 80
9 Applications of wave equations 82
19.1 Waves on a string 82
19.2 Waves on a membrane 85
19.3 Elastic waves in a rod 85
19.4 The acoustic model for seismic waves 86
19.5 Sound waves in liquids and gases 87
19.6 Spherical waves 89
19.7 The linear shallow water equations 90
19.8 Waves in blood vessels 92
19.9 Electromagnetic waves 94
0 Exercises 94

List of Exercises, Problems, and Projects

Exercise 1 Simulate a standing wave
Exercise 2 Add storage of solution in a user action function ..
Exercise 3 Use a class for the user action function
Exercise 4 Compare several Courant numbers in one movie
Project $\quad 5$ Calculus with 1D mesh functions
Exercise 6 Find the analytical solution to a damped wave ...
Problem $\quad 7 \quad$ Explore symmetry boundary conditions
Exercise 8 Send pulse waves through a layered medium
Exercise 9 Compare discretizations of a Neumann condition ...
Exercise 10 Check that a solution fulfills the discrete ...
Project 11 Calculus with 2D/3D mesh functions
Exercise 12 Implement Neumann conditions in 2D
Exercise 13 Test the efficiency of compiled loops in 3D
Exercise 14 Simulate waves on a non-homogeneous string
Exercise $15 \quad$ Simulate damped waves on a string
Exercise 16 Simulate elastic waves in a rod
Exercise 17 Simulate spherical waves
Exercise 18 Explain why numerical noise occurs
Exercise 19 Investigate harmonic averaging in a 1D model
Problem 20 Implement open boundary conditions
Problem 21 Earthquake-generated tsunami over a subsea ...
Problem 22 Earthquake-generated tsunami over a 3D hill
Problem 23 Investigate Matplotlib for visualization
Problem 24 Investigate visualization packages
Problem 25 Implement loops in compiled languages
Exercise 26 Simulate seismic waves in 2D
Project 27 Model 3D acoustic waves in a room
Project 28 Solve a 1D transport equation
Problem 29 General analytical solution of a 1D damped ...
Problem 30 General analytical solution of a 2D damped ..

A very wide range of physical processes lead to wave motion, where signals re propagated through a medium in space and time, normally with little or o permanent movement of the medium itself. The shape of the signals may ndergo changes as they travel through matter, but usually not so much that re signals cannot be recognized at some later point in space and time. Many rpes of wave motion can be described by the equation $u_{t t}=\nabla \cdot\left(c^{2} \nabla u\right)+f$, hich we will solve in the forthcoming text by finite difference methods.

Simulation of waves on a string

re begin our study of wave equations by simulating one-dimensional waves on string, say on a guitar or violin string. Let the string in the deformed state sincide with the interval $[0, L]$ on the x axis, and let $u(x, t)$ be the displacement t time t in the y direction of a point initially at x. The displacement function is governed by the mathematical model

$$
\begin{align*}
\frac{\partial^{2} u}{\partial t^{2}} & =c^{2} \frac{\partial^{2} u}{\partial x^{2}}, & x \in(0, L), & t \in(0, T] \tag{1}\\
u(x, 0) & =I(x), & & x \in[0, L] \tag{2}\\
\frac{\partial}{\partial t} u(x, 0) & =0, & & x \in[0, L] \\
u(0, t) & =0, & & t \in(0, T] \tag{3}\\
u(L, t) & =0, & & t \in(0, T] \tag{4}
\end{align*}
$$

he constant c and the function $I(x)$ must be prescribed.
Equation (1) is known as the one-dimensional wave equation. Since this PDE ontains a second-order derivative in time, we need two initial conditions, here !) specifying the initial shape of the string, $I(x)$, and (3) reflecting that the itial velocity of the string is zero. In addition, PDEs need boundary conditions, ere (4) and (5), specifying that the string is fixed at the ends, i.e., that the isplacement u is zero.
The solution $u(x, t)$ varies in space and time and describes waves that are oving with velocity c to the left and right.
Sometimes we will use a more compact notation for the partial derivatives to ive space:

$$
\begin{equation*}
u_{t}=\frac{\partial u}{\partial t}, \quad u_{t t}=\frac{\partial^{2} u}{\partial t^{2}}, \tag{6}
\end{equation*}
$$

nd similar expressions for derivatives with respect to other variables. Then the ave equation can be written compactly as $u_{t t}=c^{2} u_{x x}$.
The PDE problem (1)-(5) will now be discretized in space and time by a nite difference method.

1.1 Discretizing the domain

The temporal domain $[0, T]$ is represented by a finite number of mesh F

$$
0=t_{0}<t_{1}<t_{2}<\cdots<t_{N_{t}-1}<t_{N_{t}}=T .
$$

Similarly, the spatial domain $[0, L]$ is replaced by a set of mesh points

$$
0=x_{0}<x_{1}<x_{2}<\cdots<x_{N_{x}-1}<x_{N_{x}}=L
$$

One may view the mesh as two-dimensional in the x, t plane, consisting c $\left(x_{i}, t_{n}\right)$, with $i=0, \ldots, N_{x}$ and $n=0, \ldots, N_{t}$.

Uniform meshes. For uniformly distributed mesh points we can in the constant mesh spacings Δt and Δx. We have that

$$
x_{i}=i \Delta x, i=0, \ldots, N_{x}, \quad t_{i}=n \Delta t, n=0, \ldots, N_{t} .
$$

We also have that $\Delta x=x_{i}-x_{i-1}, i=1, \ldots, N_{x}$, and $\Delta t=t_{n}-t_{n}$ $1, \ldots, N_{t}$. Figure 1 displays a mesh in the x, t plane with $N_{t}=5, N_{x}=$ constant mesh spacings.

1.2 The discrete solution

The solution $u(x, t)$ is sought at the mesh points. We introduce tr function u_{i}^{n}, which approximates the exact solution at the mesh point for $i=0, \ldots, N_{x}$ and $n=0, \ldots, N_{t}$. Using the finite difference method, develop algebraic equations for computing the mesh function. The c : Figure 1 illustrate neighboring mesh points where values of u_{i}^{n} are co through an algebraic equation. In this particular case, $u_{2}^{1}, u_{1}^{2}, u_{2}^{2}, u_{3}^{2}$, an connected in an algebraic equation associated with the center point (2, term stencil is often used about the algebraic equation at a mesh point, geometry of a typical stencil is illustrated in Figure 1. One also often 1 the algebraic equations as discrete equations, (finite) difference equatic finite difference scheme.

1.3 Fulfilling the equation at the mesh points

For a numerical solution by the finite difference method, we relax the cc that (1) holds at all points in the space-time domain $(0, L) \times(0, T$. requirement that the PDE is fulfilled at the interior mesh points:

$$
\frac{\partial^{2}}{\partial t^{2}} u\left(x_{i}, t_{n}\right)=c^{2} \frac{\partial^{2}}{\partial x^{2}} u\left(x_{i}, t_{n}\right),
$$

for $i=1, \ldots, N_{x}-1$ and $n=1, \ldots, N_{t}-1$. For $n=0$ we have th conditions $u=I(x)$ and $u_{t}=0$, and at the boundaries $i=0, N_{x}$ we r. boundary condition $u=0$.

Figure 1: Mesh in space and time for a 1D wave equation.

. 4 Replacing derivatives by finite differences

he second-order derivatives can be replaced by central differences. The most idely used difference approximation of the second-order derivative is

$$
\frac{\partial^{2}}{\partial t^{2}} u\left(x_{i}, t_{n}\right) \approx \frac{u_{i}^{n+1}-2 u_{i}^{n}+u_{i}^{n-1}}{\Delta t^{2}}
$$

is convenient to introduce the finite difference operator notation

$$
\left[D_{t} D_{t} u\right]_{i}^{n}=\frac{u_{i}^{n+1}-2 u_{i}^{n}+u_{i}^{n-1}}{\Delta t^{2}}
$$

similar approximation of the second-order derivative in the x direction reads

$$
\frac{\partial^{2}}{\partial x^{2}} u\left(x_{i}, t_{n}\right) \approx \frac{u_{i+1}^{n}-2 u_{i}^{n}+u_{i-1}^{n}}{\Delta x^{2}}=\left[D_{x} D_{x} u\right]_{i}^{n}
$$

lgebraic version of the PDE. We can now replace the derivatives in (10) nd get

$$
\begin{equation*}
\frac{u_{i}^{n+1}-2 u_{i}^{n}+u_{i}^{n-1}}{\Delta t^{2}}=c^{2} \frac{u_{i+1}^{n}-2 u_{i}^{n}+u_{i-1}^{n}}{\Delta x^{2}} \tag{11}
\end{equation*}
$$

r written more compactly using the operator notation:

$$
\begin{equation*}
\left[D_{t} D_{t} u=c^{2} D_{x} D_{x}\right]_{i}^{n} \tag{12}
\end{equation*}
$$

Algebraic version of the initial conditions. We also need to rep derivative in the initial condition (3) by a finite difference approxima centered difference of the type

$$
\frac{\partial}{\partial t} u\left(x_{i}, t_{n}\right) \approx \frac{u_{i}^{1}-u_{i}^{-1}}{2 \Delta t}=\left[D_{2 t} u\right]_{i}^{0}
$$

seems appropriate. In operator notation the initial condition is written

$$
\left[D_{2 t} u\right]_{i}^{n}=0, \quad n=0
$$

Writing out this equation and ordering the terms give

$$
u_{i}^{n-1}=u_{i}^{n+1}, \quad i=0, \ldots, N_{x}, n=0
$$

The other initial condition can be computed by

$$
u_{i}^{0}=I\left(x_{i}\right), \quad i=0, \ldots, N_{x}
$$

1.5 Formulating a recursive algorithm

We assume that u_{i}^{n} and u_{i}^{n-1} are already computed for $i=0, \ldots, N_{x}$. I unknown quantity in (11) is therefore u_{i}^{n+1}, which we can solve for:

$$
u_{i}^{n+1}=-u_{i}^{n-1}+2 u_{i}^{n}+C^{2}\left(u_{i+1}^{n}-2 u_{i}^{n}+u_{i-1}^{n}\right)
$$

where we have introduced the parameter

$$
C=c \frac{\Delta t}{\Delta x}
$$

known as the (dimensionless) Courant number. We see that the discrete of the PDE features only one parameter, C, which is therefore the key pa that governs the quality of the numerical solution. Both the primary] parameter c and the numerical parameters Δx and Δt are lumped tog C.

Given that u_{i}^{n-1} and u_{i}^{n} are computed for $i=0, \ldots, N_{x}$, we find ner at the next time level by applying the formula (14) for $i=1, \ldots, N_{x}-1$. illustrates the points that are used to compute u_{2}^{3}. For the boundary $i=0$ and $i=N_{x}$, we apply the boundary conditions $u_{i}^{n+1}=0$.

A problem with (14) arises when $n=0$ since the formula for u_{i}^{1} invol which is an undefined quantity outside the time mesh (and the time \dot{c} However, we can use the initial condition (13) in combination with (1. $n=0$ to arrive at a special formula for u_{i}^{1} :

$$
u_{i}^{1}=u_{i}^{0}-\frac{1}{2} C^{2}\left(u_{i+1}^{n}-2 u_{i}^{n}+u_{i-1}^{n}\right) .
$$

Figure 2 illustrates how (16) connects four instead of five points: u_{2}^{1}, u_{1}^{0}, u_{3}^{0}.

We can now summarize the computational algorithm:

Figure 2: Modified stencil for the first time step.

1. Compute $u_{i}^{0}=I\left(x_{i}\right)$ for $i=0, \ldots, N_{x}$
2. Compute u_{i}^{1} by (16) and set $u_{i}^{1}=0$ for the boundary points $i=0$ and $i=N_{x}$, for $n=1,2, \ldots, N-1$,
3. For each time level $n=1,2, \ldots, N_{t}-1$
(a) apply (14) to find u_{i}^{n+1} for $i=1, \ldots, N_{x}-1$
(b) set $u_{i}^{n+1}=0$ for the boundary points $i=0, i=N_{x}$.
he algorithm essentially consists of moving a finite difference stencil through ll the mesh points, which is illustrated by an animation in a web page ${ }^{1}$ or a ıovie file ${ }^{2}$.

. 6 Sketch of an implementation

1 a Python implementation of this algorithm, we use the array elements u [i] , store u_{i}^{n+1}, u_1[i] to store u_{i}^{n}, and $u_{-} 2[i]$ to store u_{i}^{n-1}. Our naming onvention is use u for the unknown new spatial field to be computed, $\mathrm{u}_{-} 1$ as re solution at one time step back in time, $u_{2} 2$ as the solution two time steps ack in time and so forth.
The algorithm only needs to access the three most recent time levels, so we eed only three arrays for u_{i}^{n+1}, u_{i}^{n}, and $u_{i}^{n-1}, i=0, \ldots, N_{x}$. Storing all the

[^0]solutions in a two-dimensional array of size $\left(N_{x}+1\right) \times\left(N_{t}+1\right)$ would be in this simple one-dimensional PDE problem, but is normally out of the , in three-dimensional (3D) and large two-dimensional (2D) problems. I therefore in all our programs for solving PDEs have the unknown in me as few time levels as possible.

The following Python snippet realizes the steps in the computation rithm.
\# Given mesh points as arrays x and $t(x[i], t[n])$
$d x=x[1]-x[0]$
$d t=t[1]-t[0]$
$\mathrm{C}=\mathrm{c} * \mathrm{dt} / \mathrm{dx}$
\# Courant number
$\mathrm{Nt}=\operatorname{len}(\mathrm{t})-$
\# Help variable in the scheme
\# Set initial condition $u(x, 0)=I(x)$
for i in range ($0, \mathrm{Nx}+1$):
$u_{-1}[i]=I(x[i])$
\# Apply special formula for first step, incorporating du/dt=0 for i in range($1, \mathrm{Nx}$):
$u[i]=u_{-1} 1[i]-0.5 * C * * 2\left(u_{-} 1[i+1]-2 * u_{n} 1[i]+u_{-1}[i-1]\right)$
$u[0]=0 ; \quad u[N x]=0 \quad \#$ Enforce boundary conditions
$\mathrm{u}[0]=0 ; \mathrm{u}[\mathrm{Nx}]=0 \quad$ \# Enforce boundary conditions
\# Switch variables before next step
$u_{-} 2[:], u_{-}[:]=u_{-} 1, u$
for n in range (1, Nt):
\# Update all inner mesh points at time $t[n+1]$
for i in range ($1, \mathrm{Nx}$):
$u[i]=2 u_{-} 1[i]-u_{-} 2[i]-1$

$$
\begin{aligned}
& 2 u_{1} 1[i]-u_{-} 2[i]-\ \\
& C * * 2\left(u_{-} 1[i+1]-2 * u_{-} 1[i]+u_{-} 1[i-1]\right)
\end{aligned}
$$

\# Insert boundary conditions
$\mathrm{u}[0]=0 ; \mathrm{u}[\mathrm{Nx}]=0$
\# Switch variables before next step
u_2[:], u_1[:] = u_1, u

2 Verification

Before implementing the algorithm, it is convenient to add a source terr PDE (1) since it gives us more freedom in finding test problems for veri In particular, the source term allows us to use manufactured solutions for : testing, where we simply choose some function as solution, fit the corres source term, and define boundary and initial conditions consistent v chosen solution. Such solutions will seldom fulfill the initial condition (: need to generalize this condition to $u_{t}=V(x)$.

. 1 A slightly generalized model problem

Je now address the following extended initial-boundary value problem for ne-dimensional wave phenomena:

$$
\begin{array}{rlrl}
u_{t t} & =c^{2} u_{x x}+f(x, t), & x \in(0, L), & t \in(0, T] \\
u(x, 0) & =I(x), & x \in[0, L] \\
u_{t}(x, 0) & =V(x), & x \in[0, L] \\
u(0, t) & =0, & & t>0 \\
u(L, t) & =0, & & t>0
\end{array}
$$

Sampling the PDE at $\left(x_{i}, t_{n}\right)$ and using the same finite difference approximaons as above, yields

$$
\begin{equation*}
\left[D_{t} D_{t} u=c^{2} D_{x} D_{x}+f\right]_{i}^{n} \tag{22}
\end{equation*}
$$

Jriting this out and solving for the unknown u_{i}^{n+1} results in

$$
\begin{equation*}
u_{i}^{n+1}=-u_{i}^{n-1}+2 u_{i}^{n}+C^{2}\left(u_{i+1}^{n}-2 u_{i}^{n}+u_{i-1}^{n}\right)+\Delta t^{2} f_{i}^{n} \tag{23}
\end{equation*}
$$

The equation for the first time step must be rederived. The discretization of re initial condition $u_{t}=V(x)$ at $t=0$ becomes

$$
\left[D_{2 t} u=V\right]_{i}^{0} \quad \Rightarrow \quad u_{i}^{-1}=u_{i}^{1}-2 \Delta t V_{i}
$$

hich, when inserted in (23) for $n=0$, gives the special formula

$$
\begin{equation*}
u_{i}^{1}=u_{i}^{0}-\Delta t V_{i}+\frac{1}{2} C^{2}\left(u_{i+1}^{n}-2 u_{i}^{n}+u_{i-1}^{n}\right)+\frac{1}{2} \Delta t^{2} f_{i}^{n} \tag{24}
\end{equation*}
$$

. 2 Using an analytical solution of physical significance

Iany wave problems feature sinusoidal oscillations in time and space. For xample, the original PDE problem (1)-(5) allows a solution

$$
\begin{equation*}
\left.u_{\mathrm{e}}(x, y, t)\right)=A \sin \left(\frac{\pi}{L} x\right) \cos \left(\frac{\pi}{L} c t\right) \tag{25}
\end{equation*}
$$

his u_{e} fulfills the PDE with $f=0$, boundary conditions $u_{\mathrm{e}}(0, t)=u_{\mathrm{e}}(L, 0)=0$, ; well as initial conditions $I(x)=A \sin \left(\frac{\pi}{L} x\right)$ and $V=0$.

It is common to use such exact solutions of physical interest to verify impleıentations. However, the numerical solution u_{i}^{n} will only be an approximation) $u_{\mathrm{e}}\left(x_{i}, t_{n}\right)$. We no have knowledge of the precise size of the error in this approxnation, and therefore we can never know if discrepancies between the computed ${ }_{i}^{n}$ and $u_{\mathrm{e}}\left(x_{i}, t_{n}\right)$ are caused by mathematical approximations or programming crors. In particular, if a plot of the computed solution u_{i}^{n} and the exact one :5) looks similar, many are attempted to claim that the implementation works, ut there can still be serious programming errors although color plots look nice.

The only way to use exact physical solutions like (25) for serious and t. verification is to run a series of finer and finer meshes, measure the int error in each mesh, and from this information estimate the convergence these rates are very close to 2 , we have strong evidence that the implemı works.

2.3 Manufactured solution

One problem with the exact solution (25) is that it requires a simpli ($V=0, f=0$) of the implemented problem (17)-(21). An advantage , a manufactured solution is that we can test all terms in the PDE F The idea of this approach is to set up some chosen solution and fit the term, boundary conditions, and initial conditions to be compatible v chosen solution. Given that our boundary conditions in the implementa $u(0, t)=u(L, t)=0$, we must choose a solution that fulfills these cor One example is

$$
u_{\mathrm{e}}(x, t)=x(L-x) \sin t
$$

Inserted in the PDE $u_{t t}=c^{2} u_{x x}+f$ we get

$$
-x(L-x) \sin t=-2 \sin t+f \quad \Rightarrow f=(2-x(L-x)) \sin t
$$

The initial conditions become

$$
\begin{aligned}
& u(x, 0)=I(x)=0 \\
& \quad u_{t}(x, 0)=V(x)=(2-x(L-x)) \cos t
\end{aligned}
$$

To verify the code, we run a series of refined meshes and comp convergence rates. In more detail, we keep $\Delta t / \Delta x$ constant for eac implying that C is also constant throughout the experiments. A c discretization parameter $h=\Delta t$ is introduced. For a given C (and $c), L$ We choose an initial time cell size h_{0} and run experiments with decre $h_{i}=2^{-i} h_{0}, i=1,2, \ldots, m$. Halving the cell size in each experimen necessary, but common. For each experiment we must record a scalar 1 of the error. As will be shown later, it is expected that such error meas proportional to h^{2}. A standard choice of error measure is the ℓ^{2} or ℓ^{∞} the error mesh function e_{i}^{n} :

$$
\begin{aligned}
\left\|e_{i}^{n}\right\|_{\ell^{2}} & =\left(\Delta t \Delta x \sum_{n=0}^{N_{t}} \sum_{i=0}^{N_{x}}\left(e_{i}^{n}\right)^{2}\right)^{\frac{1}{2}}, \quad e_{i}^{n}=u_{\mathrm{e}}\left(x_{i}, t_{n}\right)-u_{i}^{n} \\
\left\|e_{i}^{n}\right\|_{\ell \infty} & =\max _{i, n}\left|e_{n}^{i}\right|
\end{aligned}
$$

In Python, one can compute $\sum_{i}\left(e_{i}^{n+1}\right)^{2}$ at each time step and accumu value in some sum variable, say e2_sum. At the final time step one
qrt (dt*dx*e2_sum). For the ℓ^{∞} norm one must compare the maximum error t a time level $(\mathrm{e} \cdot \max ())$ with the global maximum over the time domain: $__{\text {max }}=\max \left(\mathrm{e} _\max , \mathrm{e} \cdot \max ()\right)$.
An alternative error measure is to use a spatial norm at one time step only, g., the end time T :

$$
\begin{align*}
\left\|e_{i}^{n}\right\|_{\ell^{2}} & =\left(\Delta x \sum_{i=0}^{N_{x}}\left(e_{i}^{n}\right)^{2}\right)^{\frac{1}{2}}, \quad e_{i}^{n}=u_{\mathrm{e}}\left(x_{i}, t_{n}\right)-u_{i}^{n} \tag{28}\\
\left\|e_{i}^{n}\right\|_{\ell \infty} & =\max _{0 \leq i \leq N_{x}}\left|e_{n}^{i}\right| . \tag{29}
\end{align*}
$$

Let E_{i} be the error measure in experiment (mesh) number i and let h_{i} be the orresponding discretization parameter (h). We expect an error model $E_{i}=C h_{i}^{r}$, ere with $r=0$. To estimate r, we can compare two consecutive experiments nd compute

$$
r_{i}=\frac{\ln E_{i+1} / E_{i}}{\ln h_{i+1} / h_{i}}, \quad i=0, \ldots, m-1
$$

Je should observe that r_{i} approaches 2 as i increases.
The next section describes a method of manufactured solutions where do not eed to compute error measures and check that they converge as expected as re mesh is refined.

. 4 Constructing an exact solution of the discrete equations

or verification purposes we shall use a solution that is quadratic in space and near in time. More specifically, our choice of the manufactured solution is

$$
\begin{equation*}
u_{\mathrm{e}}(x, t)=x(L-x)\left(1+\frac{1}{2} t\right) \tag{30}
\end{equation*}
$$

hich by insertion in the PDE leads to $f(x, t)=2(1+t) c^{2}$. This u_{e} fulfills re boundary conditions and is compatible with $I(x)=x(L-x)$ and $V(x)=$ $x(L-x)$.

A key feature of the chosen u_{e} is that it is also an exact solution of the iscrete equations. To realize this very important result, we first establish the ssults

$$
\begin{gather*}
{\left[D_{t} D_{t} t^{2}\right]^{n}=\frac{t_{n+1}^{2}-2 t_{n}^{2}+t_{n-1}^{2}}{\Delta t^{2}}=(n+1)^{2}-n^{2}+(n-1)^{2}=2} \tag{31}\\
{\left[D_{t} D_{t} t\right]^{n}=\frac{t_{n+1}-2 t_{n}+t_{n-1}}{\Delta t^{2}}=\frac{((n+1)-n+(n-1)) \Delta t}{\Delta t^{2}}=0} \tag{32}
\end{gather*}
$$

ence,

$$
\left[D_{t} D_{t} u_{\mathrm{e}}\right]_{i}^{n}=x_{i}\left(L-x_{i}\right)\left[D_{t} D_{t}\left(1+\frac{1}{2} t\right)\right]^{n}=x_{i}\left(L-x_{i}\right) \frac{1}{2}\left[D_{t} D_{t} t\right]^{n}=0
$$

and

$$
\begin{aligned}
{\left[D_{x} D_{x} u_{\mathrm{e}}\right]_{i}^{n} } & =\left(1+\frac{1}{2} t_{n}\right)\left[D_{x} D_{x}\left(x L-x^{2}\right)\right]_{i}=\left(1+\frac{1}{2} t_{n}\right)\left[L D_{x} D_{x} x-D_{x}\right. \\
& =-2\left(1+\frac{1}{2} t_{n}\right)
\end{aligned}
$$

Now, $f_{i}^{n}=2\left(1+\frac{1}{2} t_{n}\right) c^{2}$ and we get

$$
\left[D_{t} D_{t} u_{\mathrm{e}}-c^{2} D_{x} D_{x} u_{\mathrm{e}}-f\right]_{i}^{n}=0-c^{2}(-1) 2\left(1+\frac{1}{2} t_{n}+2\left(1+\frac{1}{2} t_{n}\right) c^{2}:\right.
$$

Moreover, $u_{\mathrm{e}}\left(x_{i}, 0\right)=I\left(x_{i}\right), \partial u_{\mathrm{e}} / \partial t=V\left(x_{i}\right)$ at $t=0$, and $u_{\mathrm{e}}(:$ $u_{\mathrm{e}}\left(x_{N_{x}}, 0\right)=0$. Also the modified scheme for the first time step is fult $u_{\mathrm{e}}\left(x_{i}, t_{n}\right)$.

Therefore, the exact solution $u_{\mathrm{e}}(x, t)=x(L-x)(1+t / 2)$ of the PDE is also an exact solution of the discrete problem. We can use this result that the computed u_{i}^{n} vales from an implementation equals $u_{\mathrm{e}}\left(x_{i}, t_{n}\right)$ machine precision, regardless of the mesh spacings Δx and Δt ! Neve: there might be stability restrictions on Δx and Δt, so the test can only for a mesh that is compatible with the stability criterion (which in the case is $C \leq 1$, to be derived later).

Notice.

A product of quadratic or linear expressions in the various indepes variables, as shown above, will often fulfill both the continuous and dis PDE problem and can therefore be very useful solutions for ver: implementations. However, for 1D wave equations of the type $u_{t}=$ we shall see that there is always another much more powerful w generating exact solutions (just set $C=1$).

3 Implementation

This section present the complete computational algorithm, its implement Python code, animation of the solution, and verification of the implemt

A real implementation of the basic computational algorithm from Sect and 1.6 can be encapsulated in a function, taking all the input data problem as arguments. The physical input data consists of $c, I(x), V(x)$ L, and T. The numerical input is the mesh parameters Δt and Δ : possibility is to specify N_{x} and the Courant number $C=c \Delta t / \Delta x$. The convenient to prescribe instead of Δt when performing numerical invest: because the numerical accuracy depends directly on C.

The solution at all spatial points at a new time level is stored in ε u (of length $N_{x}+1$). We need to decide what do to with this soluti visualize the curve, analyze the values, or write the array to file for l_{i} The decision what to do is left to the user in a suppled function
lef user_action(u, x, t, n)
here u is the solution at the spatial points x at time $t[n]$.

. 1 Making a solver function

first attempt at a solver function is listed below.

```
Erom numpy import *
lef solver(I, V, f, c, L, Nx, C, T, user_action=None):
    """Solve u_tt=c^2*u_xx + f on (0,L)x(0,T]."""
    x = linspace(0, L, Nx+1) # Mesh points in space
    dx = x[1] - x[0]
    dt = C*dx/c
    Nt = int(round(T/dt))
    t = linspace(0, Nt*dt, Nt+1) # Mesh points in time
    C2 = C**2 # Help variable in the scheme
    if f is None or f == 0 :
        f = lambda x, t: 0
    if V is None or V == 0:
        V = lambda x: 0
    u = zeros(Nx+1) # Solution array at new time level
    u_1 = zeros(Nx+1) # Solution at 1 time level back
    u_2 = zeros(Nx+1) # Solution at 2 time levels back
    import time; to = time.clock() # for measuring CPU time
    # Load initial condition into u_1
    for i in range(0,Nx+1):
        u_1[i] = I(x[i])
    if user_action is not None:
        user_action(u_1, x, t, 0)
    # Special formula for first time step
    n = 0
    for i in range(1, Nx)
        u[i] = u_1[i] + dt*V(x[i]) + \
            0.5*C2*(u_1[i-1] - 2*u_1[i] + u_1[i+1]) + \
            0.5*dt**2*f(x[i], t[n])
    u[0] = 0; u[Nx] = 0
    if user_action is not None:
        user_action(u, x, t, 1)
    # Switch variables before next step
    u_2[:], u_1[:] = u_1, u
    for n in range(1, Nt):
        # Update all inner points at time t[n+1]
        for i in range(1, Nx)
            u[i] = - u_2[i] + 2*u_1[i] +
                    C2*(u_1[i-1] - 2*u_1[i] + u_1[i+1]) +
                    dt**2*f(x[i], t[n])
```

\# Insert boundary conditions
$u[0]=0 ; \quad u[N x]=0$
if user_action is not None:
if user_action(u, x, t, $n+1$): break
\# Switch variables before next step u_2[:], u_1[:] = u_1, u
cpu_time $=$ to - time.clock(
return u, x, t, cpu_time

3.2 Verification: exact quadratic solution

We use the test problem derived in Section 2.1 for verification. Here is a realizing this verification as a nose test:

```
import nose.tools as nt
def test_quadratic()
    """Check that \(u(x, t)=x(L-x)(1+t / 2)\) is exactly reproduced."""
    def exact_solution(x, t):
        return \(\mathrm{x} *(\mathrm{~L}-\mathrm{x}) *(1+0.5 * \mathrm{t})\)
    def \(I(x)\) :
        return exact_solution(x, 0)
    def \(V(x)\)
        return 0.5*exact_solution(x, 0)
    def \(f(x, t)\) :
        return \(2 *(1+0.5 * t) * c * * 2\)
    \(\mathrm{L}=2\).
    \(\mathrm{Nx}=3\) \# Very coarse mesh
    \(\mathrm{C}=0.75\)
    \(\mathrm{T}=18\)
    u, x, t, cpu = solver (I, V, f, c, L, Nx, C, T)
    \(u_{-} e=\) exact_solution( \(\left.x, t[-1]\right)\)
    diff = abs(u - u_e).max ()
    nt.assert_almost_equal(diff, 0, places=14)
```


3.3 Visualization: animating the solution

Now that we have verified the implementation it is time to do a real comI where we also display the evolution of the waves on the screen.

Visualization via SciTools. The following viz function defines a uses callback function for plotting the solution at each time level:

"""Run solver and visualize u at each time level."""
import scitools.std as plt
import time, glob, os
def plot_u(u, x, t, n):
"user action function for solver."""
plt.plot(x, u, 'r-',
xlabel='x', ylabel='u',
title='t=\%f, \% t[n], show=True)
\# Let the initial condition stay on the screen for 2
\# seconds, else insert a pause of 0.2 s between each plot
time.sleep(2) if $t[n]==0$ else time.sleep(0.2)
plt.savefig('frame_\%04d.png' \% n) \# for movie making
\# Clean up old movie frames
for filename in glob.glob('frame_*.png')
os.remove(filename)
user_action = plot_u if animate else None
$u, x, t, c p u=\operatorname{sol} \operatorname{ver}\left(I, V, f, c, L, N x, C, T, u s e r _a c t i o n\right)$
\# Make movie files
fps $=4$ \# Frames per second
plt.movie('frame_*.png', encoder='html', fps=fps,
output_file='movie.html')
codec2ext $=\operatorname{dict}(f l v=' f l v ', ~ l i b x 64=' m p 4 ', ~ l i b v p x=' w e b m '$, libtheora='ogg')
filespec $=$ 'frame_\%04d.png'
movie_program = 'avconv' \# or 'ffmpeg'
for codec in codec2ext:
ext $=$ codec2ext [codec]
cmd $=, \%($ movie program $) ~-r ~ \%(f p s) d ~-i ~ \%(f i l e s p e c) s ~$

os.system (cmd)
function inside another function, like plot_u in the above code segment, has scess to and remembers all the local variables in the surrounding code inside re viz function (!). This is known in computer science as a closure and is эry convenient to program with. For example, the plt and time modules efined outside plot_u are accessible for plot_u when the function is called (as ser_action) in the solver function. Some may think, however, that a class ıstead of a closure is a cleaner and easier-to-understand implementation of the ser action function, see Section 8.

Laking movie files. Several hardcopies of the animation are made from the rame_*.png files. The first movie, made by the SciTools function plt.movie :eates a movie.html file with a movie player for displaying the frame_*.png les. This movie player can be generated from the command line too

[^1]We also use the avconv (or ffmpeg) programs to make movie files in formats: Flash, MP4, Webm, and Ogg. A typical avconv (or ffmpeg) cc for creating a movie file in Ogg format with 4 frames per second built collection of plot files with names generated by frame_\%04d.png, look

Terminal> avconv -r 4 -i frame_\%04d.png -vcodec libtheora movie.og

The different formats require different video encoders (-vcodec) to be i: Flash applies flv, WebM applies libvpx, and MP4 applies libx64. Pla vlc, mplayer, gxine, and totem can be used to play these movie files.

Note that padding the frame counter with zeros in the frame_*. F as specified by the \%04d format, is essential so that the wildcard r frame_*.png expands to the correct set of files.

Skipping frames for animation speed. Sometimes the time step and T is large, leading to an inconveniently large number of plot files an animation on the screen. The solution to such a problem is to decide or number of frames in the animation, num_frames, and plot the solution every every frame. The total number of time levels (i.e., maximum number of frames) is the length of t, $t . s i z e$, and if we want num_fra need to plot every t. size/num_frames frame:

```
every = int(t.size/float(num_frames))
if n % every == 0 or n == t.size-1:
    st.plot(x, u, 'r-', ...)
```

The initial condition ($\mathrm{n}=0$) is natural to include, and as $\mathrm{n} \%$ every $=$: very seldom be true for the very final frame, we also ensure that $\mathrm{n}=\mathrm{t}$. and hence the final frame is included.

A simple choice of numbers may illustrate the formulas: say we h frames in total (t.size) and we allow only 60 frames to be plotted.] need to plot every $801 / 60$ frame, which with integer division yields 13 a Using the mod function, $n \%$ every, this operation is zero every time r divided by 13 without a remainder. That is, the if test is true when 1 $0,13,26,39, \ldots, 780,801$. The associated code is included in the plot_u f in the file wave1D_u0_sv.py ${ }^{3}$.

Visualization via Matplotlib. The previous code based on the plot i from scitools.std can be run with Matplotlib as the visualization k but if one desires to program directly with Matplotlib, quite different needed. Matplotlib's interactive mode must be turned on:

[^2]
import matplotlib.pyplot as plt

)lt.ion() \# interactive mode on
he most commonly used animation technique with Matplotlib is to update the ata in the plot at each time level:
\# Make a first plot
Lines $=p l t . p l o t(t, u)$
\ddagger call plt.axis, plt.xlabel, plt.ylabel, etc. as desired
\# At later time levels
Lines[0].set_ydata(u)
)lt.legend(' $\mathrm{t}=\mathrm{F} \%$ ' \% $\mathrm{t}[\mathrm{n}]$)
)lt.draw() \# make updated plot
)lt.savefig(...)
An alternative is to rebuild the plot at every time level:

```
)lt.clf() # delete any previous curve(s)
)lt.axis([...])
)lt.plot(t, u)
# plt.xlabel, plt.legend and other decorations
)lt.draw()
)lt.savefig(...)
```

Iany prefer to work with figure and axis objects as in MATLAB:

```
:ig = plt.figure()
:ig.clf()
ix = fig.gca()
mx.axis(...)
xx.plot(t, u)
# ax.set_xlabel, ax.legend and other decorations
)lt.draw()
!ig.savefig(...)
```


. 4 Running a case

he first demo of our 1D wave equation solver concerns vibrations of a string lat is initially deformed to a triangular shape, like when picking a guitar string:

$$
I(x)= \begin{cases}a x / x_{0}, & x<x_{0} \tag{33}\\ a(L-x) /\left(L-x_{0}\right), & \text { otherwise }\end{cases}
$$

Je choose $L=75 \mathrm{~cm}, x_{0}=0.8 L, a=5 \mathrm{~mm}, N_{x}=50$, and a time frequency $=440 \mathrm{~Hz}$. The relation between the wave speed c and ν is $c=\nu \lambda$, where is the wavelength, taken as $2 L$ because the longest wave on the string form alf a wavelength. There is no external force, so $f=0$, and the string is at rest itially so that $V=0$. A function setting these physical parameters and calling iz for this case goes as follows:
def guitar(C):
"""Triangular wave (pulled guitar string)."""
$\mathrm{L}=0.75$
$\mathrm{x} 0=0.8 * \mathrm{~L}$
$a=0.005$
freq $=440$ wavel $=2 *$ I
$\mathrm{c}=$ freq*wavelength
$\mathrm{c}=$ freq*wavelength
omega $=2 *$ pi*freq
omega $=2 *$ pi*fre
$\mathrm{T}=2 * \mathrm{pi} /$ omega*num_periods
$\mathrm{Nx}=50$
def $I(x)$:
return $a * x / x 0$ if $x<x 0$ else $a /(L-x 0) *(L-x)$
umin $=-1.2 * a ; \quad u \max =-u m i n$
$\mathrm{cpu}=\operatorname{viz}(\mathrm{I}, 0,0, \mathrm{c}, \mathrm{L}, \mathrm{Nx}, \mathrm{C}, \mathrm{T}, \mathrm{umin}, \mathrm{umax}$, animate=True)
The associated program has the name wave1D_u0_s.py ${ }^{4}$. Run the prog1 watch the movie of the vibrating string ${ }^{5}$.

3.5 The benefits of scaling

The previous example demonstrated that quite some work is needed wit lishing relevant physical parameters for a case. By scaling the mathe problem we can often reduce the need to estimate physical parameters (cally. A scaling consists of introducing new independent and dependent v with the aim that the absolute value of these vary between 0 and 1 :

$$
\bar{x}=\frac{x}{L}, \quad \bar{t}=\frac{c}{L} t, \quad \bar{u}=\frac{u}{a} .
$$

Replacing old by new variables in the PDE, using $f=0$, and dropping t results in the scaled equation $u_{t t}=u_{x x}$. This equation has no physical pa (!).

If we have a program implemented for the physical wave equati, dimensions, we can obtain the dimensionless, scaled version by settin The initial condition corresponds to (183), but with setting $a=1, L=$ $x_{0} \in[0,1]$. This means that we only need to decide on the x_{0} value as a of unity, because the scaled problem corresponds to setting all other par to unity! In the code we can just set $a=c=L=1, x 0=0.8$, and there is no calculate with wavelengths and frequencies to estimate c.

The only non-trivial parameter to estimate in the scaled problem is 1 end time of the simulation, or more precisely, how it relates to periods in solutions in time, since we often want to express the end time as a number of periods. Suppose as u behaves as $\sin (\omega t)$ in time in variab dimension. The corresponding period is $P=2 \pi / \omega$. The frequency ω is $\mathrm{r} \epsilon$ the wavelength λ of the waves through the relations $\omega=k c$ and $k=2 \pi / \lambda$

[^3]$=2 \pi c / \lambda$ and $P=\lambda / c$. It remains to estimate λ. With $u(x, t)=F(x) \sin \omega t$ e find from $u_{t t}=c^{2} u_{x x}$ that $c^{2} F^{\prime \prime}+\omega^{2} F=0$, and the boundary conditions emand $F(0)=F(L)=0$. The solution is $F(x)=\sin (x \pi / L)$, which has avelength $\lambda=2 \pi /(\pi / L)=2 L$. One period is therefore given by $P=2 L / c$. he dimensionless period is $\bar{P}=P c / L=2$.

Vectorization

he computational algorithm for solving the wave equation visits one mesh oint at a time and evaluates a formula for the new value u_{i}^{n+1} at that point. echnically, this is implemented by a loop over array elements in a program. uch loops may run slowly in Python (and similar interpreted languages such as , and MATLAB). One technique for speeding up loops is to perform operations n entire arrays instead of working with one element at a time. This is referred) as vectorization, vector computing, or array computing. Operations on whole crays are possible if the computations involving each element is independent of ach other and therefore can, at least in principle, be performed simultaneously. ectorization not only speeds up the code on serial computers, but it also makes easy to exploit parallel computing.

. 1 Operations on slices of arrays

fficient computing with numpy arrays demands that we avoid loops and compute ith entire arrays at once (or at least large portions of them). Consider this alculation of differences $d_{i}=u_{i+1}-u_{i}$:

```
l = u.size
:or \(i\) in range ( \(0, n-1\) ):
\(d[i]=u[i+1]-u[i]\)
```

11 the differences here are independent of each other. The computation of d can rerefore alternatively be done by subtracting the array $\left(u_{0}, u_{1}, \ldots, u_{n-1}\right)$ from 1e array where the elements are shifted one index upwards: $\left(u_{1}, u_{2}, \ldots, u_{n}\right)$, 3e Figure 3. The former subset of the array can be expressed by $u[0: n-1]$, [$0:-1$, or just $u[:-1]$, meaning from index 0 up to, but not including, the ist element (-1). The latter subset is obtained by $u[1: n]$ or $u[1:]$, meaning om index 1 and the rest of the array. The computation of d can now be done ithout an explicit Python loop:
$\mathrm{i}=\mathrm{u}[1:]-\mathrm{u}[:-1]$
r with explicit limits if desired:
$\mathrm{i}=\mathrm{u}[1: \mathrm{n}]-\mathrm{u}[0: \mathrm{n}-1]$
rdices with a colon, going from an index to (but not including) another index re called slices. With numpy arrays, the computations are still done by loops,
but in efficient, compiled, highly optimized code in C or Fortran. Suc operations can also easily be distributed among many processors on computers. We say that the scalar code above, working on an element (i at a time, has been replaced by an equivalent vectorized code. The pr vectorizing code is called vectorization.

Figure 3: Illustration of subtracting two slices of two arrays.

Test the understanding.

Newcomers to vectorization are encouraged to choose a small array ${ }_{1}$ with five elements, and simulate with pen and paper both the loop vt and the vectorized version.

Finite difference schemes basically contains differences between array ϵ with shifted indices. Consider the updating formula
for i in range ($1, n-1$):
$u 2[i]=u[i-1]-2 * u[i]+u[i+1]$
The vectorization consists of replacing the loop by arithmetics on slices c of length $\mathrm{n}-2$:
$u 2=u[:-2]-2 * u[1:-1]+u[2:]$
$u 2=u[0: n-2]-2 * u[1: n-1]+u[2: n] \quad \#$ alternative
Note that $u 2$ here gets length $n-2$. If $u 2$ is already an array of length n want to use the formula to update all the "inner" elements of u2, as when solving a 1D wave equation, we can write
$u 2[1:-1]=u[:-2]-2 * u[1:-1]+u[2:]$
$\mathrm{u} 2[1: \mathrm{n}-1]=\mathrm{u}[0: \mathrm{n}-2]-2 * \mathrm{u}[1: \mathrm{n}-1]+\mathrm{u}[2: n] \quad$ \# alternative
Pen and paper calculations with a small array will demonstrate what is going on. The expression on the right-hand side are done in the followir involving temporary arrays with intermediate results, since we can on with two arrays at a time in arithmetic expressions:

```
;emp1 = 2*u[1:-1]
emp2 = u[0:-2] - temp1
emp2 = u[0:-2] - temp
```

$12[1:-1]=$ temp3

We can extend the previous example to a formula with an additional term mputed by calling a function:

```
lef f(x):
    return x**2 + 1
:or i in range(1, n-1):
    u2[i] = u[i-1] - 2*u[i] + u[i+1] + f(x[i])
```

ssuming $u 2, \mathrm{u}$, and x all have length n , the vectorized version becomes
$12[1:-1]=u[:-2]-2 * u[1:-1]+u[2:]+f(x[1:-1])$

. 2 Finite difference schemes expressed as slices

le now have the necessary tools to vectorize the algorithm for the wave equation. here are three loops: one for the initial condition, one for the first time step, nd finally the loop that is repeated for all subsequent time levels. Since only re latter is repeated a potentially large number of times, we limit the efforts of actorizing the code to this loop:

```
:or i in range(1, Nx):
    u[i] = 2*u_1[i] - u_2[i] + \
    C2*(u_1[i-1] - 2*u_1[i] + u_1[i+1])
```

he vectorized version becomes

$$
\begin{aligned}
{ }_{1}[1:-1]= & -u_{-} 2[1:-1]+2 * u_{1} 1[1:-1]+\text { \} } \\
{ } &{\text { C2*(u_1 } \left.[:-2]-2 * u_{-} 1[1:-1]+u_{-} 1[2:]\right)}
\end{aligned}
$$

r

```
1[1:Nx] = 2*u_1[1:Nx]- u_2[1:Nx] +\
    C2*(u_1[0:Nx-1] - 2*u_1[1:Nx] + u_1 [2:Nx+1])
```

The program wave1D_u0_sv.py ${ }^{6}$ contains a new version of the function olver where both the scalar and the vectorized loops are included (the argument ersion is set to scalar or vectorized, respectively).

4.3 Verification

We may reuse the quadratic solution $u_{\mathrm{e}}(x, t)=x(L-x)\left(1+\frac{1}{2} t\right)$ for verify the vectorized code. A nose test can now test both the scalar and the ve version. Moreover, we may use a user_action function that compe computed and exact solution at each time level and performs a test:

def test_quadratic()
 ""

Check the scalar and vectorized versions work for
a quadratic $u(x, t)=x(L-x)(1+t / 2)$ that is exactly reproduced.
\# The following function must work for x as array or scalar
exact_solution $=l a m b d a \mathrm{x}, \mathrm{t}: \mathrm{x} *(\mathrm{~L}-\mathrm{x}) *(1+0.5 * \mathrm{t})$
I = lambda $x:$ exact_solution($x, 0)$
\# f is a s.
\# f is a scalar (zeros_like(x) works for scalar x too)
$\mathrm{f}=$ lambda $\mathrm{x}, \mathrm{t}:$ zeros_like $(\mathrm{x})+2 * \mathrm{c} * * 2 *(1+0.5 * \mathrm{t})$
$\mathrm{L}=2.5$
$c=1.5$
Nx $=3$ \# Very coarse mesh
$\mathrm{C}=1$
$\mathrm{~T}=18$
def as u und
$u_{-} e=$ exact_solution(x, $\left.t[n]\right)$
$\operatorname{diff}=\operatorname{abs}\left(u-u_{-} e\right) \cdot \max ()$
nt.assert_almost_equal(diff, 0, places=13)
solver (I, V, f, c, L, Nx, C, T,
user_action=assert_no_error, version='scalar')
solver (I, V, f, c, L, Nx, C, T,
user_action=assert_no_error, version='vectorized')

Lambda functions.

The code segment above demonstrates how to achieve very compact with the use of lambda functions for the various input parameters require a Python function. In essence,

$$
f=\operatorname{lambda} x, t: L *(x-t) * * 2
$$

is equivalent to
$\operatorname{def} f(x, t)$:
return $\mathrm{L}(\mathrm{x}-\mathrm{t}) * * 2$
Note that lambda functions can just contain a single expression ar statements.

One advantage with lambda functions is that they can be used di in calls:

[^4]
. 4 Efficiency measurements

unning the wave1D_u0_sv.py code with the previous string vibration exmple for $N_{x}=50,100,200,400,800$, and measuring the CPU time (see the un_efficiency_experiments function), shows that the vectorized code runs abstantially faster: the scalar code uses approximately a factor $N_{x} / 5$ more me!

Exercises

’xercise 1: Simulate a standing wave

he purpose of this exercise is to simulate standing waves on $[0, L]$ and illustrate re error in the simulation. Standing waves arise from an initial condition

$$
u(x, 0)=A \sin \left(\frac{\pi}{L} m x\right),
$$

here m is an integer and A is a freely chosen amplitude. The corresponding xact solution can be computed and reads

$$
u_{\mathrm{e}}(x, t)=A \sin \left(\frac{\pi}{L} m x\right) \cos \left(\frac{\pi}{L} m c t\right) .
$$

) Explain that for a function $\sin k x \cos \omega t$ the wave length in space is $\lambda=2 \pi / k$ nd the period in time is $P=2 \pi / \omega$. Use these expressions to find the wave ngth in space and period in time of u_{e} above.
) Import the solver function wave1D_u0_s.py into a new file where the viz motion is reimplemented such that it plots either the numerical and the exact slution, or the error.
) Make animations where you illustrate how the error $e_{i}^{n}=u_{\mathrm{e}}\left(x_{i}, t_{n}\right)-u_{i}^{n}$ evelops and increases in time. Also make animations of u and u_{e} simultaneously.
[int 1. Quite long time simulations are needed in order to display significant iscrepancies between the numerical and exact solution.
[int 2. A possible set of parameters is $L=12, m=9, c=2, A=1, N_{x}=80$, $'=0.8$. The error mesh function e^{n} can be simulated for 10 periods, while J-30 periods are needed to show significant differences between the curves for re numerical and exact solution.
Filename: wave_standing.py.

Remarks. The important parameters for numerical quality are C al where $C=c \Delta t / \Delta x$ is the Courant number and k is defined above proportional to how many mesh points we have per wave length in sp Section 10.4 for explanation).

Exercise 2: Add storage of solution in a user action fuı

Extend the plot_u function in the file wave1D_u0_s.py to also store the s u in a list. To this end, declare all_u as an empty list in the viz f outside plot_u, and perform an append operation inside the plot_u f Note that a function, like plot_u, inside another function, like viz, ren all local variables in viz function, including all_u, even when plot_u (as user_action) in the solver function. Test both all_u.append' all_u.append(u.copy()). Why does one of these constructions fail the solution correctly? Let the viz function return the all_u list conver two-dimensional numpy array. Filename: wave1D_u0_s_store.py.

Exercise 3: Use a class for the user action function

Redo Exercise 2 using a class for the user action function. That is, defin Action where the all_u list is an attribute, and implement the user acti tion as a method (the special method __call__ is a natural choice). T versions avoids that the user action function depends on parameters defi side the function (such as all_u in Exercise 2). Filename: wave1D_u0_

Exercise 4: Compare several Courant numbers in one

The goal of this exercise is to make movies where several curves, corres to different Courant numbers, are visualized. Import the solver functi the wave1D_u0_s movie in a new file wave_compare.py. Reimplement function such that it can take a list of C values as argument and create with solutions corresponding to the given C values. The plot_u functir be changed to store the solution in an array (see Exercise 2 or 3 for solver must be computed for each value of the Courant number, anc one must run through each time step and plot all the spatial solution c one figure and store it in a file.

The challenge in such a visualization is to ensure that the curves in . corresponds to the same time point. The easiest remedy is to keep the t space resolution constant and change the wave velocity c to change the ${ }^{\prime}$ number. Filename: wave_numerics_comparison.py.

Project 5: Calculus with 1D mesh functions

This project explores integration and differentiation of mesh functior with scalar and vectorized implementations. We are given a mesh functi a spatial one-dimensional mesh $x_{i}=i \Delta x, i=0, \ldots, N_{x}$, over the interv
) Define the discrete derivative of f_{i} by using centered differences at internal lesh points and one-sided differences at the end points. Implement a scalar arsion of the computation in a Python function and supply a nose test for the near case $f(x)=4 x-2.5$ where the discrete derivative should be exact.
) Vectorize the implementation of the discrete derivative. Extend the nose ist to check the validity of the implementation.
) To compute the discrete integral F_{i} of f_{i}, we assume that the mesh function ; varies linearly between the mesh points. Let $f(x)$ be such a linear interpolant $f f_{i}$. We then have

$$
F_{i}=\int_{x_{0}}^{x_{i}} f(x) d x
$$

he exact integral of a piecewise linear function $f(x)$ is given by the Trapezoidal ıle. S how that if F_{i} is already computed, we can find F_{i+1} from

$$
F_{i+1}=F_{i}+\frac{1}{2}\left(f_{i}+f_{i+1}\right) \Delta x .
$$

Lake a function for a scalar implementation of the discrete integral as a mesh inction. That is, the function should return F_{i} for $i=0, \ldots, N_{x}$. For a nose sst one can use the fact that the above defined discrete integral of a linear unction (say $f(x)=4 x-2.5$) is exact.
) Vectorize the implementation of the discrete integral. Extend the nose test , check the validity of the implementation
[int. Interpret the recursive formula for F_{i+1} as a sum. Make an array with ach element of the sum and use the "cumsum" (numpy. cumsum) operation to ompute the accumulative sum: numpy.cumsum ($[1,3,5]$) is $[1,4,9]$.
) Create a class MeshCalculus that can integrate and differentiate mesh inctions. The class can just define some methods that call the previously nplemented Python functions. Here is an example on the usage:

import numpy as np

:alc = MeshCalculus(vectorized=True)
₹ = np.linspace ($0,1,11$) \# mesh
= np. $\exp (\mathrm{x})$
= \# mesh function
= calc.differentiate(f, x)
\# mesh function
: = calc.integrate(f, x)
\# discrete anti-derivative

Filename: mesh_calculus_1D.py

6 Generalization: reflecting boundaries

The boundary condition $u=0$ makes u change sign at the boundar: the condition $u_{x}=0$ perfectly reflects the wave, see a web page ${ }^{7}$ or : file ${ }^{8}$ for demonstration. Our next task is to explain how to implem boundary condition $u_{x}=0$, which is more complicated to express num and also to implement than a given value of u. We shall present two r for implementing $u_{x}=0$ in a finite difference scheme, one based on de modified stencil at the boundary, and another one based on extending t. with ghost cells and ghost points.

6.1 Neumann boundary condition

When a wave hits a boundary and is to be reflected back, one app condition

$$
\frac{\partial u}{\partial n} \equiv \boldsymbol{n} \cdot \nabla u=0
$$

The derivative $\partial / \partial n$ is in the outward normal direction from a general b_{1} For a 1D domain $[0, L]$, we have that

$$
\left.\frac{\partial}{\partial n}\right|_{x=L}=\frac{\partial}{\partial x},\left.\quad \frac{\partial}{\partial n}\right|_{x=0}=-\frac{\partial}{\partial x} .
$$

Boundary condition terminology.

Boundary conditions that specify the value of $\partial u / \partial n$, or shorter u_{r} known as Neumann ${ }^{a}$ conditions, while Dirichlet conditions ${ }^{b}$ refer to fications of u. When the values are zero $(\partial u / \partial n=0$ or $u=0)$ we : about homogeneous Neumann or Dirichlet conditions.
${ }^{{ }^{a} \text { http://en.wikipedia.org/wiki/Neumann_boundary_condition }}{ }^{b_{\text {}}}$
${ }^{b}$ http://en.wikipedia.org/wiki/Dirichlet_conditions

6.2 Discretization of derivatives at the boundary

How can we incorporate the condition (34) in the finite difference schems we have used central differences in all the other approximations to der in the scheme, it is tempting to implement (34) at $x=0$ and $t=t_{n}$ difference

$$
\frac{u_{-1}^{n}-u_{1}^{n}}{2 \Delta x}=0
$$

The problem is that u_{-1}^{n} is not a u value that is being computed since t . is outside the mesh. However, if we combine (35) with the scheme for i

[^5]\[

$$
\begin{equation*}
u_{i}^{n+1}=-u_{i}^{n-1}+2 u_{i}^{n}+C^{2}\left(u_{i+1}^{n}-2 u_{i}^{n}+u_{i-1}^{n}\right), \tag{36}
\end{equation*}
$$

\]

e can eliminate the fictitious value u_{-1}^{n}. We see that $u_{-1}^{n}=u_{1}^{n}$ from (35), which m be used in (36) to arrive at a modified scheme for the boundary point u_{0}^{n+1} :

$$
\begin{equation*}
u_{i}^{n+1}=-u_{i}^{n-1}+2 u_{i}^{n}+2 C^{2}\left(u_{i+1}^{n}-u_{i}^{n}\right), \quad i=0 \tag{37}
\end{equation*}
$$

igure 4 visualizes this equation for computing u_{0}^{3} in terms of u_{0}^{2}, u_{0}^{1}, and u_{1}^{2}.

Stencil at boundary point

Figure 4: Modified stencil at a boundary with a Neumann condition.
Similarly, (34) applied at $x=L$ is discretized by a central difference

$$
\begin{equation*}
\frac{u_{N_{x}+1}^{n}-u_{N_{x}-1}^{n}}{2 \Delta x}=0 . \tag{38}
\end{equation*}
$$

ombined with the scheme for $i=N_{x}$ we get a modified scheme for the boundary alue $u_{N_{x}}^{n+1}$:

$$
\begin{equation*}
u_{i}^{n+1}=-u_{i}^{n-1}+2 u_{i}^{n}+2 C^{2}\left(u_{i-1}^{n}-u_{i}^{n}\right), \quad i=N_{x} \tag{39}
\end{equation*}
$$

The modification of the scheme at the boundary is also required for the jecial formula for the first time step. How the stencil moves through the mesh nd is modified at the boundary can be illustrated by an animation in a web age 9 or a movie file ${ }^{10}$.

[^6]
6.3 Implementation of Neumann conditions

The implementation of the special formulas for the boundary points car from using the general formula for the interior points also at the bou but replacing u_{i-1}^{n} by u_{i+1}^{n} when computing u_{i}^{n+1} for $i=0$ and u_{i+1}^{n} by $i=N_{x}$. This is achieved by just replacing the index $i-1$ by $i+1$ for i $i+1$ by $i-1$ for $i=N_{x}$. In a program, we introduce variables to hold t . of the offset indices: $i m 1$ for $i-1$ and $i p 1$ for $i+1$. It is now just a me defining im1 and ip1 properly for the internal points and the boundar: The coding for the latter reads

$$
\begin{aligned}
& i=0 \\
& \text { ip1 }=\text { i+1 } \\
& \text { im1 }=\text { ip1 \# i-1 }->\text { i+1 } \\
& u[i]=u _1[i]+C 2 *\left(u_{-} 1[i m 1]-2 * u_{-} 1[i]+u_{-} 1[i p 1]\right) \\
& i=N x \\
& i m 1=i-1 \\
& i p 1=\text { im1 \# i+1 }->\text { i-1 } \\
& u[i]=u _1[i]+C 2 *\left(u_{-} 1[i m 1]-2 * u_{1} 1[i]+u_{-1} 1[i p 1]\right)
\end{aligned}
$$

We can in fact create one loop over both the internal and boundar: and use only one updating formula:

```
for i in range(0, Nx+1):
    ip1 = i+1 if i < Nx else i-1
    im1 = i-1 if i > 0 else i+1
    u[i] = u_1[i] + C2*(u_1[im1] - 2*u_1[i] + u_1[ip1])
```

The program wave1D_dn0.py ${ }^{11}$ contains a complete implementatio 1D wave equation with boundary conditions $u_{x}=0$ at $x=0$ and $x=I$

6.4 Index set notation

We shall introduce a special notation for index sets, consisting of wr: $i \in \mathcal{I}_{x}$, instead of $i=0, \ldots, N_{x}$. Obviously, \mathcal{I}_{x} must be the set $\mathcal{I}_{x}=\{0$, but it is often advantageous to have a symbol for this set rather than sp all its elements. This saves writing and makes specification of algoritr. implementation of computer code easier.

The first index in the set will be denoted \mathcal{I}_{x}^{0} and the last \mathcal{I}_{x}^{-1}. Somet need to count from the second element in the set, and the notation \mathcal{I}_{x}^{+} used. Correspondingly, \mathcal{I}_{x}^{-}means $\left\{0, \ldots, N_{x}-1\right\}$. All the indices corres to inner grid points are $\mathcal{I}_{x}^{i}=\left\{1, \ldots, N_{x}-1\right\}$. For the time domain w natural to explicitly use 0 as the first index, so we will usually write n : t_{0} rather than $n=\mathcal{I}_{t}^{0}$. We also avoid notation like $x_{\mathcal{I}_{x}^{-1}}$ and will instear $i=\mathcal{I}_{x}^{-1}$.

The Python code associated with index sets applies the following cons

[^7]| Notation | Python |
| :--- | :--- |
| \mathcal{I}_{x} | Ix |
| \mathcal{I}_{x}^{0} | $\operatorname{Ix}[0]$ |
| \mathcal{I}_{x}^{-1} | $\operatorname{Ix}[-1]$ |
| \mathcal{I}_{x}^{-} | $\operatorname{Ix}[:-1]$ |
| \mathcal{I}_{x}^{+} | $\operatorname{Ix}[1:]$ |
| \mathcal{I}_{x}^{i} | $\operatorname{Ix}[1:-1]$ |

n important feature of the index set notation is that it keeps our formulas nd code independent of how we count mesh points. For example, the notation $\in \mathcal{I}_{x}$ or $i=\mathcal{I}_{x}^{0}$ remains the same whether \mathcal{I}_{x} is defined as above or as starting t 1 , i.e., $\mathcal{I}_{x}=\{1, \ldots, Q\}$. Similarly, we can in the code define Ix $=$ range $(\mathrm{Nx}+1)$ $r \operatorname{Ix}=$ range $(1, Q)$, and expressions like $\operatorname{Ix}[0]$ and $\mathrm{Ix}[1:-1]$ remain correct. 'ne application where the index set notation is convenient is conversion of code om a language where arrays has base index 0 (e.g., Python and C) to languages here the base index is 1 (e.g., MATLAB and Fortran). Another important pplication is implementation of Neumann conditions via ghost points (see next sction).

For the current problem setting in the x, t plane, we work with the index sets

$$
\begin{equation*}
\mathcal{I}_{x}=\left\{0, \ldots, N_{x}\right\}, \quad \mathcal{I}_{t}=\left\{0, \ldots, N_{t}\right\}, \tag{40}
\end{equation*}
$$

efined in Python as

$$
\begin{aligned}
& {[x=\operatorname{range}(0, N x+1)} \\
& {[t=\operatorname{range}(0, N t+1)}
\end{aligned}
$$

A finite difference scheme can with the index set notation be specified as

$$
\begin{aligned}
u_{i}^{n+1} & =-u_{i}^{n-1}+2 u_{i}^{n}+C^{2}\left(u_{i+1}^{n}-2 u_{i}^{n}+u_{i-1}^{n}\right), \quad i \in \mathcal{I}_{x}^{i}, n \in \mathcal{I}_{t}^{i} \\
u_{i} & =0, \quad i=\mathcal{I}_{x}^{0}, n \in \mathcal{I}_{t}^{i} \\
u_{i} & =0, \quad i=\mathcal{I}_{x}^{-1}, n \in \mathcal{I}_{t}^{i}
\end{aligned}
$$

nd implemented by code like

```
:or n in It[1:-1]:
    for i in Ix[1:-1]:
    u[i] = - u_2[i] + 2*u_1[i] +
        C2*(u_1[i-1] - 2*u_1[i] + u_1[i+1])
    i = Ix[0]; u[i] = 0
    i = Ix [0];
```


Notice.

The program wave1D_dn.py ${ }^{a}$ applies the index set notation and solves the 1D wave equation $u_{t t}=c^{2} u_{x x}+f(x, t)$ with quite general boundary and initial conditions:

- $x=0: u=U_{0}(t)$ or $u_{x}=0$
- $x=L: u=U_{L}(t)$ or $u_{x}=0$
- $t=0: u=I(x)$
- $t=0: u_{t}=I(x)$

The program combines Dirichlet and Neumann conditions, scalar an torized implementation of schemes, and the index notation into one of code. A lot of test examples are also included in the program:

- A rectangular plug profile as initial condition (easy to use a: example as the rectangle should jump one cell per time step $C=1$, without any numerical errors).
- A Gaussian function as initial condition.
- A triangular profile as initial condition, which resembles the ty initial shape of a guitar string.
- A sinusoidal variation of u at $x=0$ and either $u=0$ or $u_{x}=$ $x=L$.
- An exact analytical solution $u(x, t)=\cos (m \pi t / L) \sin \left(\frac{1}{2} m \pi x / L\right)$, can be used for convergence rate tests.

[^8]
6.5 Alternative implementation via ghost cells

Idea. Instead of modifying the scheme at the boundary, we can introdu points outside the domain such that the fictitious values u_{-1}^{n} and u_{Λ}^{n} defined in the mesh. Adding the intervals $[-\Delta x, 0]$ and $[L, L+\Delta x]$, often to as ghost cells, to the mesh gives us all the needed mesh points, corres to $i=-1,0, \ldots, N_{x}, N_{x}+1$. The extra points $i=-1$ and $i=N_{x}+1$ ar, as ghost points, and values at these points, u_{-1}^{n} and $u_{N_{x}+1}^{n}$, are calle values.

The important idea is to ensure that we always have

$$
u_{-1}^{n}=u_{1}^{n} \text { and } u_{N_{x}+1}^{n}=u_{N_{x}-1}^{n},
$$

because then the application of the standard scheme at a boundary poi or $i=N_{x}$ will be correct and guarantee that the solution is compatible , boundary condition $u_{x}=0$.

Implementation. The u array now needs extra elements correspor the ghost cells and points. Two new point values are needed:
$1=\operatorname{zeros}(N x+3)$
he arrays u_1 and u_2 must be defined accordingly.
Unfortunately, a major indexing problem arises with ghost cells. The reason that Python indices must start at 0 and $\mathrm{u}[-1]$ will always mean the last ement in u. This fact gives, apparently, a mismatch between the mathematical ıdices $i=-1,0, \ldots, N_{x}+1$ and the Python indices running over u: $0, \ldots, N x+2$. ne remedy is to change the mathematical notation of the scheme, as in

$$
u_{i}^{n+1}=\cdots, \quad i=1, \ldots, N_{x}+1,
$$

reaning that the ghost points correspond to $i=0$ and $i=N_{x}+1$. A better slution is to use the ideas of Section 6.4: we hide the specific index value in n index set and operate with inner and boundary points using the index set otation.

To this end, we define u with proper length and Ix to be the corresponding adices for the real physical points:

```
1 = zeros(Nx+3)
[x = range(1, u.shape[0]-1)
```

hat is, the boundary points have indices $\operatorname{Ix}[0]$ and $\operatorname{Ix}[-1]$ (as before). We rst update the solution at all physical mesh points (i.e., interior points in the ıesh extended with ghost cells):

```
:or i in Ix:
    u[i] = - u_2[i] + 2*u_1[i] +
        C2*(u_1[i-1] - 2*u_1[i] + u_1[i+1])
```

remains to update the ghost points. For a boundary condition $u_{x}=0$, the host value must equal to the value at the associated inner mesh point. Computer ode makes this statement precise:

$i=\operatorname{Ix}[0]$	$\# \mathrm{x}=0$ boundary
$1[\mathrm{i}-1]=u[i+1]$	
$\mathrm{i}=\operatorname{Ix}[-1]$	$\# \mathrm{x}=\mathrm{L}$ boundary
$1[\mathrm{i}+1]=\mathrm{u}[\mathrm{i}-1]$	

The physical solution to be plotted is now in $u[1:-1]$, so this slice is the uantity to be returned from a solver function. A complete implementation ppears in the program wave1D_dn0_ghost.py ${ }^{12}$.

Warning.

We have to be careful with how the spatial and temporal mesh points are stored. Say we let x be the physical mesh points,
$\mathrm{x}=\operatorname{linspace}(0, \mathrm{~L}, \mathrm{Nx}+1)$
"Standard coding" of the initial condition,

```
for i in Ix:
    u_1[i] = I(x[i])
```

becomes wrong, since $u_{-} 1$ and x have different lengths and the in corresponds to two different mesh points. In fact, $\mathrm{x}[\mathrm{i}]$ correspon $u[1+i]$. A correct implementation is
for i in Ix:
$u_{-} 1[i]=I(x[i-I x[0]])$
Similarly, a source term usually coded as $f(x[i], t[n])$ is incorrect defined to be the physical points.

An alternative remedy is to let x also cover the ghost points sucł $u[i]$ is the value at $x[i]$. This is the recommended approach.

The ghost cell is only added to the boundary where we have a N_{1} condition. Suppose we have a Dirichlet condition at $x=L$ and a homo Neumann condition at $x=0$. The relevant implementation then becor

```
u = zeros(Nx+2)
u = zeros(Nx+2)
for i in Ix[:-1]:
    u[i] = - u_2[i] + 2*u_1[i] +\
        C2*(u_1[i-1] -2*u_1[i] + u_1[i+1]) + \
        dt2*f(x[i], t[n])
i = Ix[-1]
u[i] = U_0
i = Ix[0]
i = Ix[0]
```

The physical solution to be plotted is now in $u[1:]$.

7 Generalization: variable wave velocity

Our next generalization of the 1 D wave equation (1) or (17) is to allc variable wave velocity $c: c=c(x)$, usually motivated by wave motion in a composed of different physical media with different properties for prof waves and hence different wave velocities c. Figure

7.1 The model PDE with a variable coefficient

Instead of working with the squared quantity $c^{2}(x)$ we shall for no convenience introduce $q(x)=c^{2}(x)$. A 1D wave equation with variak velocity often takes the form

igure 5: Left: wave entering another medium; right: transmitted and reflected ave .

$$
\begin{equation*}
\frac{\partial^{2} u}{\partial t^{2}}=\frac{\partial}{\partial x}\left(q(x) \frac{\partial u}{\partial x}\right)+f(x, t) \tag{41}
\end{equation*}
$$

his equation sampled at a mesh point $\left(x_{i}, t_{n}\right)$ reads

$$
\frac{\partial^{2}}{\partial t^{2}} u\left(x_{i}, t_{n}\right)=\frac{\partial}{\partial x}\left(q\left(x_{i}\right) \frac{\partial}{\partial x} u\left(x_{i}, t_{n}\right)\right)+f\left(x_{i}, t_{n}\right)
$$

here the only new term is

$$
\frac{\partial}{\partial x}\left(q\left(x_{i}\right) \frac{\partial}{\partial x} u\left(x_{i}, t_{n}\right)\right)=\left[\frac{\partial}{\partial x}\left(q(x) \frac{\partial u}{\partial x}\right)\right]_{i}^{n}
$$

. 2 Discretizing the variable coefficient

he principal idea is to first discretize the outer derivative. Define

$$
\phi=q(x) \frac{\partial u}{\partial x}
$$

nd use a centered derivative around $x=x_{i}$ for the derivative of ϕ :

$$
\left[\frac{\partial \phi}{\partial x}\right]_{i}^{n} \approx \frac{\phi_{i+\frac{1}{2}}-\phi_{i-\frac{1}{2}}}{\Delta x}=\left[D_{x} \phi\right]_{i}^{n}
$$

hen discretize

$$
\phi_{i+\frac{1}{2}}=q_{i+\frac{1}{2}}\left[\frac{\partial u}{\partial x}\right]_{i+\frac{1}{2}}^{n} \approx q_{i+\frac{1}{2}} \frac{u_{i+1}^{n}-u_{i}^{n}}{\Delta x}=\left[q D_{x} u\right]_{i+\frac{1}{2}}^{n}
$$

imilarly,

$$
\phi_{i-\frac{1}{2}}=q_{i-\frac{1}{2}}\left[\frac{\partial u}{\partial x}\right]_{i-\frac{1}{2}}^{n} \approx q_{i-\frac{1}{2}} \frac{u_{i}^{n}-u_{i-1}^{n}}{\Delta x}=\left[q D_{x} u\right]_{i-\frac{1}{2}}^{n}
$$

These intermediate results are now combined to

$$
\left[\frac{\partial}{\partial x}\left(q(x) \frac{\partial u}{\partial x}\right)\right]_{i}^{n} \approx \frac{1}{\Delta x^{2}}\left(q_{i+\frac{1}{2}}\left(u_{i+1}^{n}-u_{i}^{n}\right)-q_{i-\frac{1}{2}}\left(u_{i}^{n}-u_{i-1}^{n}\right)\right)
$$

With operator notation we can write the discretization as

$$
\left[\frac{\partial}{\partial x}\left(q(x) \frac{\partial u}{\partial x}\right)\right]_{i}^{n} \approx\left[D_{x} q D_{x} u\right]_{i}^{n}
$$

Remark.

Many are tempted to use the chain rule on the term $\frac{\partial}{\partial x}\left(q(x) \frac{\partial u}{\partial x}\right)$, bu is not a good idea when discretizing such a term.

7.3 Computing the coefficient between mesh points

If q is a known function of x, we can easily evaluate $q_{i+\frac{1}{2}}$ simply as $q\left(x_{i+}\right.$ $x_{i+\frac{1}{2}}=x_{i}+\frac{1}{2} \Delta x$. However, in many cases c, and hence q, is only kno discrete function, often at the mesh points x_{i}. Evaluating q between tv points x_{i} and x_{i+1} can then be done by averaging in three ways:

$$
\begin{aligned}
q_{i+\frac{1}{2}} & \approx \frac{1}{2}\left(q_{i}+q_{i+1}\right)=\left[\bar{q}^{x}\right]_{i} \\
q_{i+\frac{1}{2}} & \approx 2\left(\frac{1}{q_{i}}+\frac{1}{q_{i+1}}\right)^{-1} \\
q_{i+\frac{1}{2}} & \approx\left(q_{i} q_{i+1}\right)^{1 / 2}
\end{aligned}
$$

(arithmetic mean)
(harmonic mean)
(geometric mean)
The arithmetic mean in (44) is by far the most commonly used av technique.

With the operator notation from (44) we can specify the discretiz the complete variable-coefficient wave equation in a compact way:

$$
\left[D_{t} D_{t} u=D_{x} \bar{q}^{x} D_{x} u+f\right]_{i}^{n}
$$

From this notation we immediately see what kind of differences that each approximated with. The notation \bar{q}^{x} also specifies that the variable coefl approximated by an arithmetic mean, the definition being $\left[\bar{q}^{x}\right]_{i+\frac{1}{2}}=\left(q_{i}+\right.$ With the notation $\left[D_{x} q D_{x} u\right]_{i}^{n}$, we specify that q is evaluated direct function, between the mesh points: $q\left(x_{i-\frac{1}{2}}\right)$ and $q\left(x_{i+\frac{1}{2}}\right)$.

Before any implementation, it remains to solve (47) with respect to

$$
\begin{aligned}
u_{i}^{n+1}= & -u_{i}^{n-1}+2 u_{i}^{n}+ \\
& \left(\frac{\Delta x}{\Delta t}\right)^{2}\left(\frac{1}{2}\left(q_{i}+q_{i+1}\right)\left(u_{i+1}^{n}-u_{i}^{n}\right)-\frac{1}{2}\left(q_{i}+q_{i-1}\right)\left(u_{i}^{n}-u_{i-1}^{n}\right)\right. \\
& \Delta t^{2} f_{i}^{n}
\end{aligned}
$$

. 4 How a variable coefficient affects the stability

he stability criterion derived in Section 10.3 reads $\Delta t \leq \Delta x / c$. If $c=c(x)$, se criterion will depend on the spatial location. We must therefore choose a .t that is small enough such that no mesh cell has $\Delta x / c(x)>\Delta t$. That is, we ust use the largest c value in the criterion:

$$
\begin{equation*}
\Delta t \leq \beta \frac{\Delta x}{\max _{x \in[0, L]} c(x)} \tag{49}
\end{equation*}
$$

he parameter β is included as a safety factor: in some problems with a gnificantly varying c it turns out that one must choose $\beta<1$ to have stable slutions ($\beta=0.9$ may act as an all-round value).

. 5 Neumann condition and a variable coefficient

onsider a Neumann condition $\partial u / \partial x=0$ at $x=L=N_{x} \Delta x$, discretized as

$$
\frac{u_{i+1}^{n}-u_{i-1}^{n}}{2 \Delta x}=0 \quad u_{i+1}^{n}=u_{i-1}^{n}
$$

rr $i=N_{x}$. Using the scheme (48) at the end point $i=N_{x}$ with $u_{i+1}^{n}=u_{i-1}^{n}$ ssults in

$$
\begin{align*}
u_{i}^{n+1}= & -u_{i}^{n-1}+2 u_{i}^{n}+ \\
& \left(\frac{\Delta x}{\Delta t}\right)^{2}\left(q_{i+\frac{1}{2}}\left(u_{i-1}^{n}-u_{i}^{n}\right)-q_{i-\frac{1}{2}}\left(u_{i}^{n}-u_{i-1}^{n}\right)\right)+ \\
& \Delta t^{2} f_{i}^{n} \tag{50}\\
= & -u_{i}^{n-1}+2 u_{i}^{n}+\left(\frac{\Delta x}{\Delta t}\right)^{2}\left(q_{i+\frac{1}{2}}+q_{i-\frac{1}{2}}\right)\left(u_{i-1}^{n}-u_{i}^{n}\right)+\Delta t^{2} f_{i}^{n} \tag{51}\\
\approx & -u_{i}^{n-1}+2 u_{i}^{n}+\left(\frac{\Delta x}{\Delta t}\right)^{2} 2 q_{i}\left(u_{i-1}^{n}-u_{i}^{n}\right)+\Delta t^{2} f_{i}^{n} . \tag{52}
\end{align*}
$$

ere we used the approximation

$$
\begin{align*}
q_{i+\frac{1}{2}}+q_{i-\frac{1}{2}} & =q_{i}+\left(\frac{d q}{d x}\right)_{i} \Delta x+\left(\frac{d^{2} q}{d x^{2}}\right)_{i} \Delta x^{2}+\cdots+ \\
& q_{i}-\left(\frac{d q}{d x}\right)_{i} \Delta x+\left(\frac{d^{2} q}{d x^{2}}\right)_{i} \Delta x^{2}+\cdots \\
& =2 q_{i}+2\left(\frac{d^{2} q}{d x^{2}}\right)_{i} \Delta x^{2}+\mathcal{O}\left(\Delta x^{4}\right) \\
& \approx 2 q_{i} . \tag{53}
\end{align*}
$$

An alternative derivation may apply the arithmetic mean of q in (48), leading) the term

$$
\left(q_{i}+\frac{1}{2}\left(q_{i+1}+q_{i-1}\right)\right)\left(u_{i-1}^{n}-u_{i}^{n}\right) .
$$

Since $\frac{1}{2}\left(q_{i+1}+q_{i-1}\right)=q_{i}+\mathcal{O}\left(\Delta x^{2}\right)$, we end up with $2 q_{i}\left(u_{i-1}^{n}-u_{i}^{n}\right)$ for as we did above.

A common technique in implementations of $\partial u / \partial x=0$ boundary co is to assume $d q / d x=0$ as well. This implies $q_{i+1}=q_{i-1}$ and $q_{i+1 / 2}=q_{i}$ $i=N_{x}$. The implications for the scheme are

$$
\begin{aligned}
u_{i}^{n+1}= & -u_{i}^{n-1}+2 u_{i}^{n}+ \\
& \left(\frac{\Delta x}{\Delta t}\right)^{2}\left(q_{i+\frac{1}{2}}\left(u_{i-1}^{n}-u_{i}^{n}\right)-q_{i-\frac{1}{2}}\left(u_{i}^{n}-u_{i-1}^{n}\right)\right)+ \\
& \Delta t^{2} f_{i}^{n} \\
= & -u_{i}^{n-1}+2 u_{i}^{n}+\left(\frac{\Delta x}{\Delta t}\right)^{2} 2 q_{i-\frac{1}{2}}\left(u_{i-1}^{n}-u_{i}^{n}\right)+\Delta t^{2} f_{i}^{n} .
\end{aligned}
$$

7.6 Implementation of variable coefficients

The implementation of the scheme with a variable wave velocity may that c is available as an array $\mathrm{c}[\mathrm{i}]$ at the spatial mesh points. The fc loop is a straightforward implementation of the scheme (48):

```
for i in range(1, Nx):
    u[i] = - u_2[i] + 2*u_1[i] +
        C2*(0.5*(q[i] + q[i+1])*(u_1[i+1] - u_1[i]) - \
        0.5*(q[i] + q[i-1])*(u_1[i] - u_1[i-1])) + \
        dt2*f(x[i], t[n])
```

The coefficient C 2 is now defined as ($\mathrm{dt} / \mathrm{dx}$) **2 and not as the squared ' number since the wave velocity is variable and appears inside the parer

With Neumann conditions $u_{x}=0$ at the boundary, we need to c this scheme with the discrete version of the boundary condition, as s] Section 7.5. Nevertheless, it would be convenient to reuse the formula interior points and just modify the indices ip1=i+1 and im1=i-1 as w Section 6.3. Assuming $d q / d x=0$ at the boundaries, we can impler scheme at the boundary with the following code.

$$
\begin{aligned}
& i=0 \\
& i p 1=i+1 \\
& i m 1=i p 1 \\
& \mathrm{u}[\mathrm{i}]=-\mathrm{u} \text { _ } 2[\mathrm{i}]+2 * \mathrm{u} _1 \text { [i] + } 1 \\
& \mathrm{C} 2 *\left(0.5 *(\mathrm{q}[\mathrm{i}]+\mathrm{q}[\mathrm{ip} 1]) *\left(\mathrm{u}_{-1} 1[\mathrm{ip} 1]-\mathrm{u}_{-} 1[\mathrm{i}]\right)-\right.\text { - } \\
& \left.0.5 *(\mathrm{q}[\mathrm{i}]+\mathrm{q}[\mathrm{im} 1]) *\left(\mathrm{u}_{-} 1[\mathrm{i}]-\mathrm{u}_{-} 1[\mathrm{im} 1]\right)\right)+\backslash \\
& \mathrm{dt} 2 * \mathrm{f}(\mathrm{x}[\mathrm{i}], \mathrm{t}[\mathrm{n}])
\end{aligned}
$$

With ghost cells we can just reuse the formula for the interior poi at the boundary, provided that the ghost values of both u and q are c updated to ensure $u_{x}=0$ and $q_{x}=0$.

A vectorized version of the scheme with a variable coefficient at internal oints in the mesh becomes

```
1[1:-1] = - u_2[1:-1] + 2*u_1[1:-1] +
    C2*(0.5*(q[1:-1] + q[2:])*(u_1[2:] - u_1[1:-1]) -
        0.5*(q[1:-1] + q[:-2])*(u_1[1:-1] - u_1[:-2])) +
    dt2*f(x[1:-1], t[n])
```


. 7 A more general model PDE with variable coefficients

ometimes a wave PDE has a variable coefficient also in front of the timeerivative term:

$$
\begin{equation*}
\varrho(x) \frac{\partial^{2} u}{\partial t^{2}}=\frac{\partial}{\partial x}\left(q(x) \frac{\partial u}{\partial x}\right)+f(x, t) . \tag{56}
\end{equation*}
$$

natural scheme is

$$
\begin{equation*}
\left[\varrho D_{t} D_{t} u=D_{x} \bar{q}^{x} D_{x} u+f\right]_{i}^{n} . \tag{57}
\end{equation*}
$$

Je realize that the ϱ coefficient poses no particular difficulty because the only alue ϱ_{i}^{n} enters the formula above (when written out). There is hence no need for ny averaging of ϱ. Often, ϱ will be moved to the right-hand side, also without ny difficulty:

$$
\begin{equation*}
\left[D_{t} D_{t} u=\varrho^{-1} D_{x} \bar{q}^{x} D_{x} u+f\right]_{i}^{n} \tag{58}
\end{equation*}
$$

. 8 Generalization: damping

laves die out by two mechanisms. In 2D and 3D the energy of the wave spreads ut in space, and energy conservation then requires the amplitude to decrease. his effect is not present in 1D. Damping is another cause of amplitude reduction. or example, the vibrations of a string die out because of damping due to air sistance and non-elastic effects in the string.
The simplest way of including damping is to add a first-order derivative to re equation (in the same way as friction forces enter a vibrating mechanical rstem):

$$
\begin{equation*}
\frac{\partial^{2} u}{\partial t^{2}}+b \frac{\partial u}{\partial t}=c^{2} \frac{\partial^{2} u}{\partial x^{2}}+f(x, t), \tag{59}
\end{equation*}
$$

here $b \geq 0$ is a prescribed damping coefficient.
A typical discretization of (59) in terms of centered differences reads

$$
\begin{equation*}
\left[D_{t} D_{t} u+b D_{2 t} u=c^{2} D_{x} D_{x} u+f\right]_{i}^{n} . \tag{60}
\end{equation*}
$$

Jriting out the equation and solving for the unknown u_{i}^{n+1} gives the scheme
$u_{i}^{n+1}=\left(1+\frac{1}{2} b \Delta t\right)^{-1}\left(\left(\frac{1}{2} b \Delta t-1\right) u_{i}^{n-1}+2 u_{i}^{n}+C^{2}\left(u_{i+1}^{n}-2 u_{i}^{n}+u_{i-1}^{n}\right)+\right.$
for $i \in \mathcal{I}_{x}^{i}$ and $n \geq 1$. New equations must be derived for u_{i}^{1}, and for bc points in case of Neumann conditions.

The damping is very small in many wave phenomena and then only for very long time simulations. This makes the standard wave equation damping relevant for a lot of applications.

8 Building a general 1D wave equation sol

The program wave1D_dn_vc.py ${ }^{13}$ is a fairly general code for 1D wave pror problems that targets the following initial-boundary value problem

$$
\begin{aligned}
u_{t} & =\left(c^{2}(x) u_{x}\right)_{x}+f(x, t), & x \in(0, L), & t \in(0, T] \\
u(x, 0) & =I(x), & & x \in[0, L] \\
u_{t}(x, 0) & =V(t), & & x \in[0, L] \\
u(0, t) & =U_{0}(t) \text { or } u_{x}(0, t)=0, & & t \in(0, T] \\
u(L, t) & =U_{L}(t) \text { or } u_{x}(L, t)=0, & & t \in(0, T]
\end{aligned}
$$

The solver function is a natural extension of the simplest solver f in the initial wave1D_u0_s.py program, extended with Neumann bc conditions ($u_{x}=0$), a possibly time-varying boundary condition on \imath $U_{L}(t)$), and a variable wave velocity. The different code segments ne make these extensions are shown and commented upon in the precedin.

The vectorization is only applied inside the time loop, not for th condition or the first time steps, since this initial work is negligible for lc simulations in 1D problems.

The following sections explain various more advanced programming tec applied in the general 1D wave equation solver.

8.1 User action function as a class

A useful feature in the wave1D_dn_vc.py program is the specification user_action function as a class. Although the plot_u function in function of previous wave1D*. py programs remembers the local variable viz function, it is a cleaner solution to store the needed variables togetl the function, which is exactly what a class offers.

A class for flexible plotting, cleaning up files, and making a movie \ddagger function viz and plot_u did can be coded as follows:

[^9]
:lass PlotSolution

Class for the user_action function in solver
Visualizes the solution only.
def __init__(self,
casename='tmp', \# Prefix in filenames
umin=-1, umax=1, \# Fixed range of y axis
pause between frames=None, \# Movie speed
pause_between_frames=None, \# Movie speed,
screen_movie=True, \#'Show movie on screen?
screen_movie=True, \# Show movie on screen?
every_frame=1): \# Show every frame frame self.casename = casename
self.yaxis = [umin, umax]
self.pause = pause_between_frames
module = 'scitools.easyviz.' + backend + ','
exec('import \%s as plt' \% module)
self.plt = plt
self.screen_movie $=$ screen_movie
self.title = title
self.every_frame = every_frame
\# Clean up old movie frames
for filename in glob('frame_*.png'):
os.remove(filename)
def __call__(self, u, x, t, n):
if $\mathrm{n} \%$ self.every_frame $!=0$: return
title $=$ 't=\%f, \% t[n]
if self.title:
title $=$ self.title + , , + title
self.plt.plot(x, u, 'r-',
xlabel='x', ylabel='u'
axis=[x[0], x[-1],
self.yaxis[0], self.yaxis[1]],
title=title,
show=self.screen_movie)

\# pause

${ }^{f} t[n]==0$:
time.sleep(2) \# let initial condition stay 2 s else:
if self.pause is None:
pause $=0.2$ if u.size <100 else 0
time.sleep (pause)
self.plt.savefig('\%s_frame_\%04d.png' \% (self.casename, n))
nderstanding this class requires quite some familiarity with Python in general nd class programming in particular.

The constructor shows how we can flexibly import the plotting engine as ypically) scitools.easyviz.gnuplot_ or scitools.easyviz.matplotlib_ tote the trailing underscore). With the screen_movie parameter we can ppress displaying each movie frame on the screen. Alternatively, for slow orvies associated with fine meshes, one can set every_frame to, e.g., 10, causing very 10 frames to be shown

The __call__ method makes PlotSolution instances behave like fi so we can just pass an instance, say p, as the user_action argumen solver function, and any call to user_action will be a call to p.__ca:

8.2 Pulse propagation in two media

The function pulse in wave1D_dn_vc.py demonstrates wave motion in r neous media where c varies. One can specify an interval where the wave is decreased by a factor slowness_factor (or increased by making thi less than one). Four types of initial conditions are available: a rect pulse (plug), a Gaussian function (gaussian), a "cosine hat" consistin, period of the cosine function (cosinehat), and half a period of a "cos half-cosinehat). These peak-shaped initial conditions can be placer middle (loc='center') or at the left end (loc='left') of the doma pulse function is a flexible tool for playing around with various wave and location of a medium with a different wave velocity:

```
def pulse(C=1, Nx=200, animate=True, version='vectorized', T=2
        loc='center', pulse_tp='gaussian', slowness_factor=2
        medium=[0.7, 0.9], every_frame=1, sigma=0.05):
    """
    Various peaked-shaped initial conditions on [0,1].
    Wave velocity is decreased by the slowness_factor inside
    medium. The loc parameter can be 'center' or 'left',
    depending on where the initial pulse is to be located
    The sigma parameter governs the width of the pulse.
    # Use scaled parameters: L=1 for domain length, c_0=1
    # for wave velocity outside the domain.
    L = 1.0
    c_0 = 1.0
    if loc == 'center'.
        xc = L/2
    elif loc == 'left':
        xc = 0
    if pulse_tp in ('gaussian','Gaussian'):
        def I(x)
            return exp(-0.5*((x-xc)/sigma)**2)
    elif pulse_tp == 'plug':
        def I(x):
            return 0 if abs(x-xc) > sigma else 1
    elif pulse_tp == 'cosinehat':
        def I(x):
            # One period of a cosine
            w = 2
            a = w*sigma
            return 0.5*(1 + cos(pi*(x-xc)/a))
                if xc - a <= x <= xc + a else 0
    elif pulse_tp == 'half-cosinehat':
        def I(x):
            # Half a period of a cosine
            w = 4
            a = w*sigma
```

```
return cos(pi*(x-xc)/a)
    if xc - 0.5*a <= x <= xc + 0.5*a else 0
else:
    raise ValueError('Wrong pulse_tp="%s"' % pulse_tp)
def c(x):
    return c_0/slowness_factor \
    if medium[0] <= x <= medium[1] else c_0
umin=-0.5; umax=1.5*I(xc)
casename = '%s_Nx%s_sf%s'%\
            (pulse_tp, Nx, slowness_factor)
action = PlotMediumAndSolution(
    medium, casename=casename, umin=umin, umax=umax,
    every_frame=every_frame, screen_movie=animate)
solver(I=I, V=None, f=None, c=c, U_0=None, U_L=None,
    L=L, Nx=Nx, C=C, T=T,
    user_action=action, version=version,
        dt_safety_factor=1
```

he PlotMediumAndSolution class used here is a subclass of PlotSolution here the medium with reduced c value, as specified by the medium interval, is isualized in the plots.
The reader is encouraged to play around with the pulse function:
>>> import wave1D_dn_vc as w
>>> w.pulse(loc='left', pulse_tp='cosinehat', $N x=50$, every_frame=10)
o easily kill the graphics by Ctrl-C and restart a new simulation it might be asier to run the above two statements from the command line with
erminal> python -c 'import wave1D_dn_vc as w; w.pulse(...)'

1 Exercises

ixercise 6: Find the analytical solution to a damped wave quation

'onsider the wave equation with damping (59). The goal is to find an exact slution to a wave problem with damping. A starting point is the standing wave slution from Exercise 1. It becomes necessary to include a damping term $e^{-c t}$ nd also have both a sine and cosine component in time:

$$
u_{\mathrm{e}}(x, t)=e^{-\beta t} \sin k x(A \cos \omega t+B \sin \omega t) .
$$

ind k from the boundary conditions $u(0, t)=u(L, t)=0$. Then use the PDE , find constraints on β, ω, A, and B. Set up a complete initial-boundary value roblem and its solution. Filename: damped_waves.pdf.

Problem 7: Explore symmetry boundary conditions

Consider the simple "plug" wave where $\Omega=[-L, L]$ and

$$
I(x)= \begin{cases}1, & x \in[-\delta, \delta] \\ 0, & \text { otherwise }\end{cases}
$$

for some number $0<\delta<L$. The other initial condition is $u_{t}(x, 0)=0$ as is no source term f. The boundary conditions can be set to $u=0$. The to this problem is symmetric around $x=0$. This means that we can s the wave process in only the half of the domain $[0, L]$.
a) Argue why the symmetry boundary condition is $u_{x}=0$ at $x=0$.

Hint. Symmetry of a function about $x=x_{0}$ means that $f\left(x_{0}+h\right)=f$
b) Perform simulations of the complete wave problem from on $[-L, L]$ after, utilize the symmetry of the solution and run a simulation in ha: domain $[0, L]$, using a boundary condition at $x=0$. Compare the two s and make sure that they are the same.
c) Prove the symmetry property of the solution by setting up the c। initial-boundary value problem and showing that if $u(x, t)$ is a solutic also $u(-x, t)$ is a solution.

Filename: wave1D_symmetric.

Exercise 8: Send pulse waves through a layered med

Use the pulse function in wave1D_dn_vc.py to investigate sending located with its peak at $x=0$, through the medium to the right wher another medium for $x \in[0.7,0.9]$ where the wave velocity is decreas factor s_{f}. Report what happens with a Gaussian pulse, a "cosine hat half a "cosine hat" pulse, and a plug pulse for resolutions $N_{x}=40,80,1$ $s_{f}=2,4$. Use $C=1$ in the medium outside $[0.7,0.9]$. Simulate unti Filename: pulse1D.py.

Exercise 9: Compare discretizations of a Neumann tion

We have a 1D wave equation with variable wave velocity: $u_{t}=(q 2$ Neumann condition u_{x} at $x=0, L$ can be discretized as shown in (52) a

The aim of this exercise is to examine the rate of the numerical err using different ways of discretizing the Neumann condition. As test F $q=1+(x-L / 2)^{4}$ can be used, with $f(x, t)$ adapted such that the solu a simple form, say $u(x, t)=\cos (\pi x / L) \cos (\omega t)$ for some $\omega=\sqrt{q} \pi / L$.
) Perform numerical experiments and find the convergence rate of the error sing the approximation and (55).
) Switch to $q(x)=\cos (\pi x / L)$, which is symmetric at $x=0, L$, and check the onvergence rate of the scheme (55). Now, $q_{i-1 / 2}$ is a 2 nd-order approximation to i, $q_{i-1 / 2}=q_{i}+0.25 q_{i}^{\prime \prime} \Delta x^{2}+\cdots$, because $q_{i}^{\prime}=0$ for $i=N_{x}$ (a similar argument m be applied to the case $i=0$).
) A third discretization can be based on a simple and convenient, but less scurate, one-sided difference: $u_{i}-u_{i-1}=0$ at $i=N_{x}$ and $u_{i+1}-u_{i}=0$ at $=0$. Derive the resulting scheme in detail and implement it. Run experiments) establish the rate of convergence.
) A fourth technique is to view the scheme as

$$
\left[D_{t} D_{t} u\right]_{i}^{n}=\frac{1}{\Delta x}\left(\left[q D_{x} u\right]_{i+\frac{1}{2}}^{n}-\left[q D_{x} u\right]_{i-\frac{1}{2}}^{n}\right)+[f]_{i}^{n},
$$

nd place the boundary at $x_{i+\frac{1}{2}}, i=N_{x}$, instead of exactly at the physical oundary. With this idea, we can just set $\left[q D_{x} u\right]_{i+\frac{1}{2}}^{n}=0$. Derive the complete sheme using this technique. The implementation of the boundary condition at $-\Delta x / 2$ is $\mathcal{O}\left(\Delta x^{2}\right)$ accurate, but the interesting question is what impact the lovement of the boundary has on the convergence rate (compute the errors as sual over the entire mesh).

0 Analysis of the difference equations

0.1 Properties of the solution of the wave equation

he wave equation

$$
\frac{\partial^{2} u}{\partial t^{2}}=c^{2} \frac{\partial^{2} u}{\partial x^{2}}
$$

as solutions of the form

$$
\begin{equation*}
u(x, t)=g_{R}(x-c t)+g_{L}(x+c t), \tag{67}
\end{equation*}
$$

rr any functions g_{R} and g_{L} sufficiently smooth to be differentiated twice. The ssult follows from inserting (67) in the wave equation. A function of the form ${ }_{R}(x-c t)$ represents a signal moving to the right in time with constant velocity
This feature can be explained as follows. At time $t=0$ the signal looks ke $g_{R}(x)$. Introducing a moving x axis with coordinates $\xi=x-c t$, we see re function $g_{R}(\xi)$ is "at rest" in the ξ coordinate system, and the shape is lways the same. Say the $g_{R}(\xi)$ function has a peak at $\xi=0$. This peak is cated at $x=c t$, which means that it moves with the velocity $d x / d t=c$ in re x coordinate system. Similarly, $g_{L}(x+c t)$ is a function initially with shape
$g_{L}(x)$ that moves in the negative x direction with constant velocity c (ir $\xi=x+c t$, look at the point $\xi=0, x=-c t$, which has velocity $d x / d t=$

With the particular initial conditions

$$
u(x, 0)=I(x), \quad \frac{\partial}{\partial t} u(x, 0)=0
$$

we get, with u as in (67),

$$
g_{R}(x)+g_{L}(x)=I(x), \quad-c g_{R}^{\prime}(x)+c g_{L}^{\prime}(x)=0
$$

which have the solution $g_{R}=g_{L}=I / 2$, and consequently

$$
u(x, t)=\frac{1}{2} I(x-c t)+\frac{1}{2} I(x+c t) .
$$

The interpretation of (68) is that the initial shape of u is split into tw each with the same shape as I but half of the initial amplitude. One traveling to the left and the other one to the right.

The solution has two important physical features: constant amplitud left and right wave, and constant velocity of these two waves. It turns (the numerical solution will also preserve the constant amplitude, but the depends on the mesh parameters Δt and Δx.

The solution (68) will be influenced by boundary conditions when t$]$ $\frac{1}{2} I(x-c t)$ and $\frac{1}{2} I(x+c t)$ hit the boundaries and get, e.g., reflected b: the domain. However, when $I(x)$ is nonzero only in a small part in the n the spatial domain $[0, L]$, which means that the boundaries are placed f from the initial disturbance of u, the solution (68) is very clearly obser simulation.

A useful representation of solutions of wave equations is a linear coml of sine and/or cosine waves. Such a sum of waves is a solution if the gc PDE is linear and each sine or cosine wave fulfills the equation. To ease ar calculations by hand we shall work with complex exponential functions of real-valued sine or cosine functions. The real part of complex exp will typically be taken as the physical relevant quantity (whenever a] relevant quantity is strictly needed). The idea now is to build $I(x)$ of (wave components $e^{i k x}$:

$$
I(x) \approx \sum_{k \in K} b_{k} e^{i k x} .
$$

Here, k is the frequency of a component, K is some set of all the discrete needed to approximate $I(x)$ well, and b_{k} are constants that must be det, We will very seldom need to compute the b_{k} coefficients: most of the in: look for and the understanding of the numerical methods we want to ei come from investigating how the PDE and the scheme treat a single cor $e^{i k x}$ wave.

Letting the number of k values in K tend to infinity makes the s converge to $I(x)$, and this sum is known as a Fourier series represent $I(x)$. Looking at (68), we see that the solution $u(x, t)$, when $I(x)$ is reps
s in (69), is also built of basic complex exponential wave components of the rm $e^{i k(x \pm c t)}$ according to

$$
\begin{equation*}
u(x, t)=\frac{1}{2} \sum_{k \in K} b_{k} e^{i k(x-c t)}+\frac{1}{2} \sum_{k \in K} b_{k} e^{i k(x+c t)} \tag{70}
\end{equation*}
$$

is common to introduce the frequency in time $\omega=k c$ and assume that $u(x, t)$ a sum of basic wave components written as $e^{i k x-\omega t}$. (Observe that inserting uch a wave component in the governing PDE reveals that $\omega^{2}=k^{2} c^{2}$, or $\omega \pm k c$, sflecting the two solutions: one $(+k c)$ traveling to the right and the other $(-k c)$ aveling to the left.)

0.2 More precise definition of Fourier representations

'he quick intuitive introduction above to representing a function by a sum of ne and cosine waves suffices as background for the forthcoming material on nalyzing a single wave component. However, to understand all details of how ifferent wave components sum up to the analytical and numerical solution, a tore precise mathematical treatment is helpful and therefore summarized below.
It is well known that periodic functions can be represented by Fourier series. generalization of the Fourier series idea to non-periodic functions defined on 1e real line is the Fourier transform:

$$
\begin{align*}
& I(x)=\int_{-\infty}^{\infty} A(k) e^{i k x} d k \tag{71}\\
& A(k)=\int_{-\infty}^{\infty} I(x) e^{-i k x} d x \tag{72}
\end{align*}
$$

he function $A(k)$ reflects the weight of each wave component $e^{i k x}$ in an infinite 1 m of such wave components. That is, $A(k)$ reflects the frequency content in le function $I(x)$. Fourier transforms are particularly fundamental for analyzing nd understanding time-varying signals.

The solution of the linear 1D wave PDE can be expressed as

$$
u(x, t)=\int_{-\infty}^{\infty} A(k) e^{i(k x-\omega(k) t)} d x
$$

In a finite difference method, we represent u by a mesh function u_{q}^{n}, where n sunts temporal mesh points and q counts the spatial ones (the usual counter or spatial points, i, is here already used as imaginary unit). Similarly, $I(x)$ approximated by the mesh function $I_{q}, q=0, \ldots, N_{x}$. On a mesh, it does ot make sense to work with wave components $e^{i k x}$ for very large k, because re shortest possible sine or cosine wave that can be represented on a mesh ith spacing Δx is the wave with wavelength $2 \Delta x$ (the sine/cosine signal imps up and down between each mesh point). The corresponding k value is $=2 \pi /(2 \Delta x)=\pi / \Delta x$, known as the Nyquist frequency. Within the range of
relevant frequencies $(0, \pi / \Delta x]$ one defines the discrete Fourier transform ${ }^{1}$ $N_{x}+1$ discrete frequencies:

$$
\begin{aligned}
I_{q} & =\frac{1}{N_{x}+1} \sum_{k=0}^{N_{x}} A_{k} e^{i 2 \pi k j /\left(N_{x}+1\right)}, \quad i=0, \ldots, N_{x} \\
A_{k} & =\sum_{q=0}^{N_{x}} I_{q} e^{-i 2 \pi k q /\left(N_{x}+1\right)}, \quad k=0, \ldots, N_{x}+1
\end{aligned}
$$

The A_{k} values is the discrete Fourier transform of the I_{q} values, and tl are the inverse discrete Fourier transform of the A_{k} values.

The discrete Fourier transform is efficiently computed by the Fast transform algorithm. For a real function $I(x)$ the relevant Python c computing and plotting the discrete Fourier transform appears in the ϵ below.

import numpy as np
 from numpy import sin

def $I(x)$:

return $\sin (2 * \mathrm{pi} * \mathrm{x})+0.5 * \sin (4 * \mathrm{pi} * x)+0.1 * \sin (6 * \mathrm{pi} * x)$

\# Mesh

$\mathrm{L}=10 ; \mathrm{Nx}=100$
$\mathrm{x}=\mathrm{np} . \operatorname{linspace}(0, \mathrm{~L}, \mathrm{Nx}+1)$
dx = L/float (Nx)
\# Discrete Fourier transform
$\mathrm{A}=\mathrm{np} . \mathrm{fft} \cdot \mathrm{rfft}(\mathrm{I}(\mathrm{x}))$
A_amplitude $=\mathrm{np}$.abs (A)
\# Compute the corresponding frequencies
freqs = np.linspace(0, pi/dx, A_amplitude.size)
import matplotlib.pyplot as plt
plt.plot(freqs, A_amplitude)
plt.show()

10.3 Stability

The scheme

$$
\left[D_{t} D_{t} u=c^{2} D_{x} D_{x} u\right]_{q}^{n}
$$

for the wave equation $u_{t}=c^{2} u_{x x}$ allows basic wave components

$$
u_{q}^{n}=e^{i\left(k x_{q}-\tilde{\omega} t_{n}\right)}
$$

${ }^{14}$ http://en.wikipedia.org/wiki/Discrete_Fourier_transform
s solution, but it turns out that the frequency in time, $\tilde{\omega}$, is not equal to the zact $\omega=k c$. The idea now is to study how the scheme treats an arbitrary wave omponent with a given k. We ask two key questions:

- How accurate is $\tilde{\omega}$ compared to ω ?
- Does the amplitude of such a wave component preserve its (unit) amplitude, as it should, or does it get amplified or damped in time (due to a complex $\tilde{\omega})$?
he following analysis will answer these questions. Note the need for using q as Junter for the mesh point in x direction since i is already used as the imaginary nit (in this analysis).
'reliminary results. A key result needed in the investigations is the finite ifference approximation of a second-order derivative acting on a complex wave गmponent:

$$
\left[D_{t} D_{t} e^{i \omega t}\right]^{n}=-\frac{4}{\Delta t^{2}} \sin ^{2}\left(\frac{\omega \Delta t}{2}\right) e^{i \omega n \Delta t}
$$

y just changing symbols ($\omega \rightarrow k, t \rightarrow x, n \rightarrow q$) it follows that

$$
\left[D_{x} D_{x} e^{i k x}\right]_{q}=-\frac{4}{\Delta x^{2}} \sin ^{2}\left(\frac{k \Delta x}{2}\right) e^{i k q \Delta x}
$$

Jumerical wave propagation. Inserting a basic wave component $u_{q}^{n}=$ $:\left(k x_{q}-\tilde{\omega} t_{n}\right)$ in (75) results in the need to evaluate two expressions:

$$
\begin{align*}
{\left[D_{t} D_{t} e^{i k x} e^{-i \tilde{\omega} t}\right]_{q}^{n} } & =\left[D_{t} D_{t} e^{-i \tilde{\omega} t}\right]^{n} e^{i k q \Delta x} \\
& =-\frac{4}{\Delta t^{2}} \sin ^{2}\left(\frac{\tilde{\omega} \Delta t}{2}\right) e^{-i \tilde{\omega} n \Delta t} e^{i k q \Delta x} \tag{76}\\
{\left[D_{x} D_{x} e^{i k x} e^{-i \tilde{\omega} t}\right]_{q}^{n} } & =\left[D_{x} D_{x} e^{i k x}\right]_{q} e^{-i \tilde{\omega} n \Delta t} \\
& =-\frac{4}{\Delta x^{2}} \sin ^{2}\left(\frac{k \Delta x}{2}\right) e^{i k q \Delta x} e^{-i \tilde{\omega} n \Delta t} \tag{77}
\end{align*}
$$

hen the complete scheme,

$$
\left[D_{t} D_{t} e^{i k x} e^{-i \tilde{\omega} t}=c^{2} D_{x} D_{x} e^{i k x} e^{-i \tilde{\omega} t}\right]_{q}^{n}
$$

ads to the following equation for the unknown numerical frequency $\tilde{\omega}$ (after ividing by $\left.-e^{i k x} e^{-i \tilde{\omega} t}\right)$:

$$
\frac{4}{\Delta t^{2}} \sin ^{2}\left(\frac{\tilde{\omega} \Delta t}{2}\right)=c^{2} \frac{4}{\Delta x^{2}} \sin ^{2}\left(\frac{k \Delta x}{2}\right),
$$

$$
\sin ^{2}\left(\frac{\tilde{\omega} \Delta t}{2}\right)=C^{2} \sin ^{2}\left(\frac{k \Delta x}{2}\right),
$$

where

$$
C=\frac{c \Delta t}{\Delta x}
$$

is the Courant number. Taking the square root of (78) yields

$$
\sin \left(\frac{\tilde{\omega} \Delta t}{2}\right)=C \sin \left(\frac{k \Delta x}{2}\right)
$$

Since the exact ω is real it is reasonable to look for a real solution $\tilde{\omega}$ The right-hand side of (80) must then be in $[-1,1]$ because the sine f on the left-hand side has values in $[-1,1]$ for real $\tilde{\omega}$. The sine functior right-hand side can attain the value 1 when

$$
\frac{k \Delta x}{2}=m \frac{\pi}{2}, \quad m \in \mathbb{Z}
$$

With $m=1$ we have $k \Delta x=\pi$, which means that the wavelength λ becomes $2 \Delta x$. This is the absolutely shortest wavelength that can be rep: on the mesh: the wave jumps up and down between each mesh point. values of $|m|$ are irrelevant since these correspond to k values whose w: too short to be represented on a mesh with spacing Δx. For the shortest wave in the mesh, $\sin (k \Delta x / 2)=1$, and we must require

$$
C \leq 1
$$

Consider a right-hand side in (80) of magnitude larger than unit solution $\tilde{\omega}$ of (80) must then be a complex number $\tilde{\omega}=\tilde{\omega}_{r}+i \tilde{\omega}_{i}$ bec ε sine function is larger than unity for a complex argument. One can sh for any ω_{i} there will also be a corresponding solution with $-\omega_{i}$. The cor with $\omega_{i}>0$ gives an amplification factor $e^{\omega_{i} t}$ that grows exponentially We cannot allow this and must therefore require $C \leq 1$ as a stability cr

Remark.

For smoother wave components with longer wave lengths per lengt. (81) can in theory be relaxed. However, small round-off errors are a present in a numerical solution and these vary arbitrarily from mesh to mesh point and can be viewed as unavoidable noise with wavel $2 \Delta x$. As explained, $C>1$ will for this very small noise lead to expon growth of the shortest possible wave component in the mesh. This will therefore grow with time and destroy the whole solution.

0.4 Numerical dispersion relation

quation (80) can be solved with respect to $\tilde{\omega}$:

$$
\begin{equation*}
\tilde{\omega}=\frac{2}{\Delta t} \sin ^{-1}\left(C \sin \left(\frac{k \Delta x}{2}\right)\right) \tag{82}
\end{equation*}
$$

he relation between the numerical frequency $\tilde{\omega}$ and the other parameters k, c, x, and Δt is called a numerical dispersion relation. Correspondingly, $\omega=k c$ is 1е analytical dispersion relation.

The special case $C=1$ deserves attention since then the right-hand side of ;2) reduces to

$$
\frac{2}{\Delta t} \frac{k \Delta x}{2}=\frac{1}{\Delta t} \frac{\omega \Delta x}{c}=\frac{\omega}{C}=\omega
$$

hat is, $\tilde{\omega}=\omega$ and the numerical solution is exact at all mesh points regardless of x and Δt ! This implies that the numerical solution method is also an analytical)lution method, at least for computing u at discrete points (the numerical rethod says nothing about the variation of u between the mesh points, and nploying the common linear interpolation for extending the discrete solution ives a curve that deviates from the exact one).

For a closer examination of the error in the numerical dispersion relation hen $C<1$, we can study $\tilde{\omega}-\omega, \tilde{\omega} / \omega$, or the similar error measures in wave əlocity: $\tilde{c}-c$ and \tilde{c} / c, where $c=\omega / k$ and $\tilde{c}=\tilde{\omega} / k$. It appears that the most onvenient expression to work with is \tilde{c} / c :

$$
\frac{\tilde{c}}{c}=\frac{1}{C p} \sin ^{-1}(C \sin p)
$$

ith $p=k \Delta x / 2$ as a non-dimensional measure of the spatial frequency. In isence, p tells how many spatial mesh points we have per wave length in space f the wave component with frequency k (the wave length is $2 \pi / k$). That is, p sflects how well the spatial variation of the wave component is resolved in the resh. Wave components with wave length less than $2 \Delta x(2 \pi / k<2 \Delta x)$ are not isible in the mesh, so it does not make sense to have $p>\pi / 2$.
We may introduce the function $r(C, p)=\tilde{c} / c$ for further investigation of umerical errors in the wave velocity:

$$
\begin{equation*}
r(C, p)=\frac{1}{C p} \sin ^{-1}(C \sin p), \quad C \in(0,1], p \in(0, \pi / 2] \tag{83}
\end{equation*}
$$

his function is very well suited for plotting since it combines several parameters 1 the problem into a dependence on two non-dimensional numbers, C and p.

Defining

lef $r(C, p)$:

return 2/(C*p)*asin(C*sin(p))

Figure 6: The fractional error in the wave velocity for different Courant r
we can plot $r(C, p)$ as a function of p for various values of C, see Figure that the shortest waves have the most erroneous velocity, and that shor move more slowly than they should.

With sympy we can also easily make a Taylor series expansion in cretization parameter p :

```
>>> C, p = symbols('C p')
```

>>> rs $=r(C, p)$.series $(p, 0,7)$
>>> print rs
$1-\mathrm{p} * * 2 / 6+\mathrm{p} * * 4 / 120-\mathrm{p} * * 6 / 5040+\mathrm{C} * * 2 * \mathrm{p} * * 2 / 6$ -
$\mathrm{C} * * 2 * \mathrm{p} * * 4 / 12+13 * \mathrm{C} * * 2 * \mathrm{p} * * 6 / 720+3 * \mathrm{C} * * 4 * \mathrm{p} * * 4 / 40-$
$\mathrm{C} * * 4 * \mathrm{p} * * 6 / 16+5 * \mathrm{C} * * 6 * \mathrm{p} * * 6 / 112+\mathrm{O}$
$\mathrm{C} * * 4 * \mathrm{p} * * 6 / 16+5 * \mathrm{C} * * 6 * \mathrm{p} * * 6 / 112+0(\mathrm{p} * * 7)$
>>> \# Factorize each term and drop the remainder $0(\ldots)$ term
>>> rs_factored = [factor (term) for term in rs.lseries (p)]
>>> rs_factored = sum(rs_factored)
>>> print rs_factored
$\mathrm{p} * * 6 *(\mathrm{C}-1) *(\mathrm{C}+1) *(225 * \mathrm{C} * * 4-90 * \mathrm{C} * * 2+1) / 5040+$
$\mathrm{p} * * 4 *(\mathrm{C}-1) *(\mathrm{C}+1) *(3 * \mathrm{C}-1) *(3 * \mathrm{C}+1) / 120+$
$\mathrm{p} * * 2 *(\mathrm{C}-1) *(\mathrm{C}+1) / 6+1$

We see that $C=1$ makes all the terms in rs_factored vanish, except one. Since we already know that the numerical solution is exact for C : remaining terms in the Taylor series expansion will also contain factors ${ }^{\prime}$ and cancel for $C=1$.

From the rs_factored expression above we also see that the leading order erms in the error of this series expansion are

$$
\begin{equation*}
\frac{1}{6}\left(\frac{k \Delta x}{2}\right)^{2}\left(C^{2}-1\right)=\frac{k^{2}}{24}\left(c^{2} \Delta t^{2}-\Delta x^{2}\right) \tag{84}
\end{equation*}
$$

ointing to an error $\mathcal{O}\left(\Delta t^{2}, \Delta x^{2}\right)$, which is compatible with the errors in the ifference approximations $\left(D_{t} D_{t}\right.$ and $\left.D_{x} D_{x}\right)$.

0.5 Extending the analysis to 2D and 3D

he typical analytical solution of a 2D wave equation

$$
u_{t t}=c^{2}\left(u_{x x}+u_{y y}\right),
$$

a wave traveling in the direction of $\boldsymbol{k}=k_{x} \boldsymbol{i}+k_{y} \boldsymbol{j}$, where \boldsymbol{i} and \boldsymbol{j} are unit actors in the x and y directions, respectively. Such a wave can be expressed by

$$
u(x, y, t)=g\left(k_{x} x+k_{y} y-k c t\right)
$$

rr some twice differentiable function g, or with $\omega=k c, k=|\boldsymbol{k}|$:

$$
u(x, y, t)=g\left(k_{x} x+k_{y} y-\omega t\right)
$$

le can in particular build a solution by adding complex Fourier components of ıe form

$$
\exp \left(i\left(k_{x} x+k_{y} y-\omega t\right)\right)
$$

A discrete 2D wave equation can be written as

$$
\begin{equation*}
\left[D_{t} D_{t} u=c^{2}\left(D_{x} D_{x} u+D_{y} D_{y} u\right)\right]_{q, r}^{n} . \tag{85}
\end{equation*}
$$

his equation admits a Fourier component

$$
\begin{equation*}
u_{q, r}^{n}=\exp \left(i\left(k_{x} q \Delta x+k_{y} r \Delta y-\tilde{\omega} n \Delta t\right)\right), \tag{86}
\end{equation*}
$$

; solution. Letting the operators $D_{t} D_{t}, D_{x} D_{x}$, and $D_{y} D_{y}$ act on $u_{q, r}^{n}$ from (86) ansforms (85) to

$$
\begin{gather*}
\frac{4}{\Delta t^{2}} \sin ^{2}\left(\frac{\tilde{\omega} \Delta t}{2}\right)=c^{2} \frac{4}{\Delta x^{2}} \sin ^{2}\left(\frac{k_{x} \Delta x}{2}\right)+c^{2} \frac{4}{\Delta y^{2}} \sin ^{2}\left(\frac{k_{y} \Delta y}{2}\right) . \tag{87}\\
\sin ^{2}\left(\frac{\tilde{\omega} \Delta t}{2}\right)=C_{x}^{2} \sin ^{2} p_{x}+C_{y}^{2} \sin ^{2} p_{y} \tag{88}
\end{gather*}
$$

r
here we have eliminated the factor 4 and introduced the symbols

$$
C_{x}=\frac{c^{2} \Delta t^{2}}{\Delta x^{2}}, \quad C_{y}=\frac{c^{2} \Delta t^{2}}{\Delta y^{2}}, \quad p_{x}=\frac{k_{x} \Delta x}{2}, \quad p_{y}=\frac{k_{y} \Delta y}{2} .
$$

For a real-valued $\tilde{\omega}$ the right-hand side must be less than or equal to absolute value, requiring in general that

$$
C_{x}^{2}+C_{y}^{2} \leq 1
$$

This gives the stability criterion, more commonly expressed directl inequality for the time step:

$$
\Delta t \leq \frac{1}{c}\left(\frac{1}{\Delta x^{2}}+\frac{1}{\Delta y^{2}}\right)^{-1 / 2}
$$

A similar, straightforward analysis for the 3D case leads to

$$
\Delta t \leq \frac{1}{c}\left(\frac{1}{\Delta x^{2}}+\frac{1}{\Delta y^{2}}+\frac{1}{\Delta z^{2}}\right)^{-1 / 2}
$$

In the case of a variable coefficient $c^{2}=c^{2}(\boldsymbol{x})$, we must use the worst-ca

$$
\bar{c}=\sqrt{\max _{\boldsymbol{x} \in \Omega} c^{2}(\boldsymbol{x})}
$$

in the stability criteria. Often, especially in the variable wave velocity $\mathrm{c}:$ wise to introduce a safety factor $\beta \in(0,1]$ too:

$$
\Delta t \leq \beta \frac{1}{\bar{c}}\left(\frac{1}{\Delta x^{2}}+\frac{1}{\Delta y^{2}}+\frac{1}{\Delta z^{2}}\right)^{-1 / 2}
$$

The exact numerical dispersion relations in 2D and 3D becomes, for c c,

$$
\begin{aligned}
& \tilde{\omega}=\frac{2}{\Delta t} \sin ^{-1}\left(\left(C_{x}^{2} \sin ^{2} p_{x}+C_{y}^{2} \sin _{y}^{p}\right)^{\frac{1}{2}}\right) \\
& \tilde{\omega}=\frac{2}{\Delta t} \sin ^{-1}\left(\left(C_{x}^{2} \sin ^{2} p_{x}+C_{y}^{2} \sin _{y}^{p}+C_{z}^{2} \sin _{z}^{p}\right)^{\frac{1}{2}}\right) .
\end{aligned}
$$

We can visualize the numerical dispersion error in 2D much like we di To this end, we need to reduce the number of parameters in $\tilde{\omega}$. The dir the wave is parameterized by the polar angle θ, which means that

$$
k_{x}=k \sin \theta, \quad k_{y}=k \cos \theta
$$

A simplification is to set $\Delta x=\Delta y=h$. Then $C_{x}=C_{y}=c \Delta t / h$, which C. Also,

$$
p_{x}=\frac{1}{2} k h \cos \theta, \quad p_{y}=\frac{1}{2} k h \sin \theta .
$$

The numerical frequency $\tilde{\omega}$ is now a function of three parameters:

- C reflecting the number cells a wave is displaced during a time st
- $k h$ reflecting the number of cells per wave length in space
- θ expressing the direction of the wave
le want to visualize the error in the numerical frequency. To avoid having Δt з a free parameter in $\tilde{\omega}$, we work with \tilde{c} / c, because the fraction $2 / \Delta t$ is then written as

$$
\frac{2}{k c \Delta t}=\frac{2}{2 k c \Delta t h / h}=\frac{1}{C k h}
$$

nd

$$
\frac{\tilde{c}}{c}=\frac{1}{C k h} \sin ^{-1}\left(C\left(\sin ^{2}\left(\frac{1}{2} k h \cos \theta\right)+\sin ^{2}\left(\frac{1}{2} k h \sin \theta\right)\right)^{\frac{1}{2}}\right) .
$$

le want to visualize this quantity as a function of $k h$ and θ for some values of $' \leq 1$. It is instructive to make color contour plots of $1-\tilde{c} / c$ in polar coordinates ith θ as the angular coordinate and $k h$ as the radial coordinate.
The stability criterion (89) becomes $C \leq C_{\max }=1 / \sqrt{2}$ in the present 2D ase with the C defined above. Let us plot $1-\tilde{c} / c$ in polar coordinates for ${ }_{\max }, 0.9 C_{\max }, 0.5 C_{\max }, 0.2 C_{\max }$. The program below does the somewhat tricky ork in Matplotlib, and the result appears in Figure 7. From the figure we early see that the maximum C value gives the best results, and that waves hose propagation direction makes an angle of 45 degrees with an axis are the lost accurate.

```
lef dispersion_relation_2D(kh, theta, C):
    arg = C*sqrt (sin(0.5*kh*\operatorname{cos}(theta))**2 +
    sin(0.5*kh*\operatorname{sin}(theta))**2)
    c_frac = 2./(C*kh)*arcsin(arg)
    return c_frac
```

Erom numpy import exp, sin, cos, linspace, \}
pi, meshgrid, arcsin, sqrt
$=\mathrm{kh}=$ linspace(0.001, pi, 101)
;heta $=$ linspace $(0,2 *$ pi, 51$)$
\therefore, theta = meshgrid(r, theta)
\neq Make 2 x 2 filled contour plots for 4 values of C
import matplotlib. pyplot as plt
?_max $=1 /$ sqrt (2)
= = [[C_max, 0.9*C_max], [0.5*C_max, 0.2*C_max]]
ix, axes = plt.subplots (2, 2, subplot_kw=dict(polar=True))
:or row in range(2):
for column in range (2) :
error = 1 - dispersion_relation_2D(
kh , theta, C[row] [column])
print error.min(), error.max ()
cax = axes[row] [column]. contourf (
theta, r, error, 50, vmin=0, vmax=0.36)
axes [row] [column]. set_xticks([])
axes [row] [column].set_yticks([])
\# Add colorbar to the last plot
cbar $=$ plt.colorbar (cax)
cbar.ax.set_ylabel('error in wave velocity')
plt.savefig('disprel2D.png')
plt.savefig('disprel2D.pdf')
plt.show()

Figure 7: Error in numerical dispersion in 2D.

11 Finite difference methods for 2D and 3D equations

A natural next step is to consider extensions of the methods for varic ants of the one-dimensional wave equation to two-dimensional (2D) an dimensional (3D) versions of the wave equation.

11.1 Multi-dimensional wave equations

The general wave equation in d space dimensions, with constant wave $\mathrm{v} \epsilon$ can be written in the compact form

$$
\frac{\partial^{2} u}{\partial t^{2}}=c^{2} \nabla^{2} u \text { for } \boldsymbol{x} \in \Omega \subset \mathbb{R}^{d}, t \in(0, T]
$$

In a 2 D problem $(d=2)$,

$$
\nabla^{2} u=\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}},
$$

hile in three space dimensions $(d=3)$,

$$
\nabla^{2} u=\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}+\frac{\partial^{2} u}{\partial z^{2}}
$$

Many applications involve variable coefficients, and the general wave equation $1 d$ dimensions is in this case written as

$$
\begin{equation*}
\varrho \frac{\partial^{2} u}{\partial t^{2}}=\nabla \cdot(q \nabla u)+f \text { for } \boldsymbol{x} \in \Omega \subset \mathbb{R}^{d}, t \in(0, T] \tag{97}
\end{equation*}
$$

hich in 2 D becomes

$$
\begin{equation*}
\varrho(x, y) \frac{\partial^{2} u}{\partial t^{2}}=\frac{\partial}{\partial x}\left(q(x, y) \frac{\partial u}{\partial x}\right)+\frac{\partial}{\partial y}\left(q(x, y) \frac{\partial u}{\partial y}\right)+f(x, y, t) . \tag{98}
\end{equation*}
$$

o save some writing and space we may use the index notation, where subscript x, y, or z means differentiation with respect to that coordinate. For example,

$$
\begin{aligned}
\frac{\partial^{2} u}{\partial t^{2}} & =u_{t t} \\
\frac{\partial}{\partial y}\left(q(x, y) \frac{\partial u}{\partial y}\right) & =\left(q u_{y}\right)_{y}
\end{aligned}
$$

he 3D versions of the two model PDEs, with and without variable coefficients, mn with now with the aid of the index notation for differentiation be stated as

$$
\begin{align*}
u_{t t} & =c^{2}\left(u_{x x}+u_{y y}+u_{z z}\right)+f, \tag{99}\\
\varrho u_{t t} & =\left(q u_{x}\right)_{x}+\left(q u_{z}\right)_{z}+\left(q u_{z}\right)_{z}+f . \tag{100}
\end{align*}
$$

At each point of the boundary $\partial \Omega$ of Ω we need one boundary condition ivolving the unknown u. The boundary conditions are of three principal types:

1. u is prescribed ($u=0$ or a known time variation for an incoming wave),
2. $\partial u / \partial n=\boldsymbol{n} \cdot \nabla u$ prescribed (zero for reflecting boundaries),
3. an open boundary condition (also called radiation condition) is specified to let waves travel undisturbed out of the domain, see Exercise ?? for details.
11 the listed wave equations with second-order derivatives in time need two iitial conditions:
4. $u=I$,
5. $u_{t}=V$.

11.2 Mesh

We introduce a mesh in time and in space. The mesh in time consists points

$$
t_{0}=0<t_{1}<\cdots<t_{N_{t}}
$$

often with a constant spacing $\Delta t=t_{n+1}-t_{n}, n \in \mathcal{I}_{t}^{-}$.
Finite difference methods are easy to implement on simple rectangleshaped domains. More complicated shapes of the domain require subst more advanced techniques and implementational efforts. On a recta box-shaped domain mesh points are introduced separately in the varior directions:

$$
\begin{aligned}
& x_{0}<x_{1}<\cdots<x_{N_{x}} \text { in } x \text { direction } \\
& y_{0}<y_{1}<\cdots<y_{N_{y}} \text { in } y \text { direction } \\
& z_{0}<z_{1}<\cdots<z_{N_{z}} \text { in } z \text { direction }
\end{aligned}
$$

We can write a general mesh point as $\left(x_{i}, y_{j}, z_{k}, t_{n}\right)$, with $i \in \mathcal{I}_{x}, j \in \mathcal{I}_{y}$ and $n \in \mathcal{I}_{t}$.

It is a very common choice to use constant mesh spacings: $\Delta x=x_{i}$ $i \in \mathcal{I}_{x}^{-}, \Delta y=y_{j+1}-y_{j}, j \in \mathcal{I}_{y}^{-}$, and $\Delta z=z_{k+1}-z_{k}, k \in \mathcal{I}_{z}^{-}$. With equ spacings one often introduces $h=\Delta x=\Delta y=\Delta z$.

The unknown u at mesh point $\left(x_{i}, y_{j}, z_{k}, t_{n}\right)$ is denoted by $u_{i, j, k}^{n}$. problems we just skip the z coordinate (by assuming no variation direction: $\partial / \partial z=0$) and write $u_{i, j}^{n}$.

11.3 Discretization

Two- and three-dimensional wave equations are easily discretized by ass building blocks for discretization of 1D wave equations, because th dimensional versions just contain terms of the same type that occurs ir

Discretizing the PDEs. Equation (99) can be discretized as

$$
\left[D_{t} D_{t} u=c^{2}\left(D_{x} D_{x} u+D_{y} D_{y} u+D_{z} D_{z} u\right)+f\right]_{i, j, k}^{n}
$$

A 2 D version might be instructive to write out in detail:

$$
\left[D_{t} D_{t} u=c^{2}\left(D_{x} D_{x} u+D_{y} D_{y} u\right)+f\right]_{i, j, k}^{n},
$$

which becomes
$\frac{u_{i, j}^{n+1}-2 u_{i, j}^{n}+u_{i, j}^{n-1}}{\Delta t^{2}}=c^{2} \frac{u_{i+1, j}^{n}-2 u_{i, j}^{n}+u_{i-1, j}^{n}}{\Delta x^{2}}+c^{2} \frac{u_{i, j+1}^{n}-2 u_{i, j}^{n}+u_{i, j}^{n}}{\Delta y^{2}}$
ssuming as usual that all values at the time levels n and $n-1$ are known, we an solve for the only unknown $u_{i, j}^{n+1}$. The result can be compactly written as

$$
\begin{equation*}
u_{i, j}^{n+1}=2 u_{i, j}^{n}+u_{i, j}^{n-1}+c^{2} \Delta t^{2}\left[D_{x} D_{x} u+D_{y} D_{y} u\right]_{i, j}^{n} . \tag{102}
\end{equation*}
$$

As in the 1D case, we need to develop a special formula for $u_{i, j}^{1}$ where we mmbine the general scheme for $u_{i, j}^{n+1}$, when $n=0$, with the discretization of the litial condition:

$$
\left[D_{2 t} u=V\right]_{i, j}^{0} \quad \Rightarrow \quad u_{i, j}^{-1}=u_{i, j}^{1}-2 \Delta t V_{i, j}
$$

he result becomes, in compact form,

$$
\begin{equation*}
u_{i, j}^{n+1}=u_{i, j}^{n}-2 \Delta V_{i, j}+\frac{1}{2} c^{2} \Delta t^{2}\left[D_{x} D_{x} u+D_{y} D_{y} u\right]_{i, j}^{n} . \tag{103}
\end{equation*}
$$

The PDE (100) with variable coefficients is discretized term by term using иe corresponding elements from the 1D case:

$$
\begin{equation*}
\left[\varrho D_{t} D_{t} u=\left(D_{x} \bar{q}^{x} D_{x} u+D_{y} \bar{q}^{y} D_{y} u+D_{z} \bar{q}^{z} D_{z} u\right)+f\right]_{i, j, k}^{n} . \tag{104}
\end{equation*}
$$

Then written out and solved for the unknown $u_{i, j, k}^{n+1}$, one gets the scheme

$$
\begin{aligned}
& u_{i, j, k}^{n+1}=-u_{i, j, k}^{n-1}+2 u_{i, j, k}^{n}+ \\
&=\frac{1}{\varrho_{i, j, k}} \frac{1}{\Delta x^{2}}\left(\frac{1}{2}\left(q_{i, j, k}+q_{i+1, j, k}\right)\left(u_{i+1, j, k}^{n}-u_{i, j, k}^{n}\right)-\right. \\
&\left.\frac{1}{2}\left(q_{i-1, j, k}+q_{i, j, k}\right)\left(u_{i, j, k}^{n}-u_{i-1, j, k}^{n}\right)\right)+ \\
& \frac{1}{\varrho_{i, j, k}} \frac{1}{\Delta x^{2}}\left(\frac{1}{2}\left(q_{i, j, k}+q_{i, j+1, k}\right)\left(u_{i, j+1, k}^{n}-u_{i, j, k}^{n}\right)-\right. \\
&\left.\frac{1}{2}\left(q_{i, j-1, k}+q_{i, j, k}\right)\left(u_{i, j, k}^{n}-u_{i, j-1, k}^{n}\right)\right)+ \\
& \frac{1}{\varrho_{i, j, k}} \frac{1}{\Delta x^{2}}\left(\frac{1}{2}\left(q_{i, j, k}+q_{i, j, k+1}\right)\left(u_{i, j, k+1}^{n}-u_{i, j, k}^{n}\right)-\right. \\
&\left.+\quad \frac{1}{2}\left(q_{i, j, k-1}+q_{i, j, k}\right)\left(u_{i, j, k}^{n}-u_{i, j, k-1}^{n}\right)\right)+ \\
& \Delta t^{2} f_{i, j, k}^{n} .
\end{aligned}
$$

Also here we need to develop a special formula for $u_{i, j, k}^{1}$ by combining the sheme for $n=0$ with the discrete initial condition, which is just a matter of ıserting $u_{i, j, k}^{-1}=u_{i, j, k}^{1}-2 \Delta t V_{i, j, k}$ in the scheme and solving for $u_{i, j, k}^{1}$.

Landling boundary conditions where is u known. The schemes listed bove are valid for the internal points in the mesh. After updating these, we eed to visit all the mesh points at the boundaries and set the prescribed u alue.

Discretizing the Neumann condition. The condition $\partial u / \partial n=0$ plemented in 1D by discretizing it with a $D_{2 x} u$ centered difference, and th eliminating the fictitious u point outside the mesh by using the general at the boundary point. Alternatively, one can introduce ghost cells and a ghost value to for use in the Neumann condition. Exactly the same is reused in multi dimensions.

Consider $\partial u / \partial n=0$ at a boundary $y=0$. The normal direction is $-y$ direction, so

$$
\frac{\partial u}{\partial n}=-\frac{\partial u}{\partial y},
$$

and we set

$$
\left[-D_{2 y} u=0\right]_{i, 0}^{n} \quad \Rightarrow \quad \frac{u_{i, 1}^{n}-u_{i,-1}^{n}}{2 \Delta y}=0
$$

From this it follows that $u_{i,-1}^{n}=u_{i, 1}^{n}$. The discretized PDE at the bc point $(i, 0)$ reads
$\frac{u_{i, 0}^{n+1}-2 u_{i, 0}^{n}+u_{i, 0}^{n-1}}{\Delta t^{2}}=c^{2} \frac{u_{i+1,0}^{n}-2 u_{i, 0}^{n}+u_{i-1,0}^{n}}{\Delta x^{2}}+c^{2} \frac{u_{i, 1}^{n}-2 u_{i, 0}^{n}+u_{i,-}^{n}}{\Delta y^{2}}$
We can then just insert $u_{i, 1}^{1}$ for $u_{i,-1}^{n}$ in this equation and then solve boundary value $u_{i, 0}^{n+1}$ as done in 1D.

From these calculations, we see a pattern: the general scheme ap the boundary $j=0$ too if we just replace $j-1$ by $j+1$. Such a pa particularly useful for implementations. The details follow from the ex 1D case in Section 6.3.

The alternative approach to eliminating fictitious values outside the to have $u_{i,-1}^{n}$ available as a ghost value. The mesh is extended with or line (2D) or plane (3D) of ghost cells at a Neumann boundary. In the example it means that we need a line ghost cells below the y axis. Tr values must be updated according to $u_{i,-1}^{n+1}=u_{i, 1}^{n+1}$.

12 Implementation

We shall now describe in detail various Python implementations for si standard 2D, linear wave equation with constant wave velocity and $u=1$ boundary. The wave equation is to be solved in the space-time domain Ω where $\Omega=\left(0, L_{x}\right) \times\left(0, L_{y}\right)$ is a rectangular spatial domain. More precis complete initial-boundary value problem is defined by

$$
\begin{array}{rlrl}
u_{t} & =c^{2}\left(u_{x x}+u_{y y}\right)+f(x, y, t), & (x, y) \in \Omega, & t \in(0, T], \\
u(x, y, 0) & =I(x, y), & (x, y) \in \Omega, \\
u_{t}(x, y, 0) & =V(x, y), & & (x, y) \in \Omega,
\end{array}
$$

$$
u=0
$$

$(x, y) \in \partial \Omega, t \in(0, T]$,
here $\partial \Omega$ is the boundary of Ω, in this case the four sides of the rectangle ,,$\left.L_{x}\right] \times\left[0, L_{y}\right]: x=0, x=L_{x}, y=0$, and $y=L_{y}$.

The PDE is discretized as

$$
\left[D_{t} D_{t} u=c^{2}\left(D_{x} D_{x} u+D_{y} D_{y} u\right)+f\right]_{i, j}^{n}
$$

hich leads to an explicit updating formula to be implemented in a program:

$$
\begin{align*}
u^{n+1}= & -u_{i, j}^{n-1}+2 u_{i, j}^{n}+ \\
& C_{x}^{2}\left(u_{i+1, j}^{n}-2 u_{i, j}^{n}+u_{i-1, j}^{n}\right)+C_{y}^{2}\left(u_{i, j+1}^{n}-2 u_{i, j}^{n}+u_{i, j-1}^{n}\right)+\Delta t^{2} f_{i, j}^{n}, \tag{109}
\end{align*}
$$

rr all interior mesh points $i \in \mathcal{I}_{x}^{i}$ and $j \in \mathcal{I}_{y}^{i}$, and for $n \in \mathcal{I}_{t}^{+}$. The constants ${ }^{\prime}{ }_{x}$ and C_{y} are defined as

$$
C_{x}=c \frac{\Delta t}{\Delta x}, \quad C_{x}=c \frac{\Delta t}{\Delta y}
$$

At the boundary we simply set $u_{i, j}^{n+1}=0$ for $i=0, j=0, \ldots, N_{y} ; i=N_{x}$, $=0, \ldots, N_{y} ; j=0, i=0, \ldots, N_{x} ;$ and $j=N_{y}, i=0, \ldots, N_{x}$. For the first ;ep, $n=0,(110)$ is combined with the discretization of the initial condition $t=V,\left[D_{2 t} u=V\right]_{i, j}^{0}$ to obtain a special formula for $u_{i, j}^{1}$ at the interior mesh oints:

$$
\begin{align*}
u^{1}= & u_{i, j}^{0}+\Delta t V_{i, j}+ \\
& \frac{1}{2} C_{x}^{2}\left(u_{i+1, j}^{0}-2 u_{i, j}^{0}+u_{i-1, j}^{0}\right)+\frac{1}{2} C_{y}^{2}\left(u_{i, j+1}^{0}-2 u_{i, j}^{0}+u_{i, j-1}^{0}\right)+\frac{1}{2} \Delta t^{2} f_{i, j}^{n}, \tag{110}
\end{align*}
$$

The algorithm is very similar to the one in 1D:

1. Set initial condition $u_{i, j}^{0}=I\left(x_{i}, y_{j}\right)$
2. Compute $u_{i, j}^{1}$ from (110)
3. Set $u_{i, j}^{1}=0$ for the boundaries $i=0, N_{x}, j=0, N_{y}$
4. For $n=1,2, \ldots, N_{t}$:
(a) Find $u_{i, j}^{n+1}$ from (110) for all internal mesh points, $i \in \mathcal{I}_{x}^{i}, j \in \mathcal{I}_{y}^{i}$
(b) Set $u_{i, j}^{n+1}=0$ for the boundaries $i=0, N_{x}, j=0, N_{y}$

2.1 Scalar computations

he solver function for a 2D case with constant wave velocity and $u=0$ as oundary condition follows the setup from the similar function for the 1D case 1 wave1D_u0_s.py, but there are a few necessary extensions. The code is in re program wave2D_u0.py ${ }^{15}$.

[^10]Domain and mesh. The spatial domain is now $\left[0, L_{x}\right] \times\left[0, L_{y}\right]$, sper the arguments Lx and Ly. Similarly, the number of mesh points in the directions, N_{x} and N_{y}, become the arguments Nx and Ny . In multi-dim problems it makes less sense to specify a Courant number as the wave is a vector and the mesh spacings may differ in the various spatial dis We therefore give Δt explicitly. The signature of the solver function ii
def solver(I, V, f, c, Lx, Ly, Nx, Ny, dt, T,
user_action=None, version='scalar'):

Key parameters used in the calculations are created as

```
x = linspace(0, Lx, Nx+1)
y = linspace(0, Ly, Ny+1)
dx = x[1] - x[0]
dy = y[1] - y[0]
Nt = int(round(T/float(dt)))
l = linspace(0,N*dt,N+1)
dt2 = dt**2
```

\# mesh points in x dir \# mesh points in y dir
\# mesh points in time
\# help variables

Solution arrays. We store $u_{i, j}^{n+1}, u_{i, j}^{n}$, and $u_{i, j}^{n-1}$ in three two-dim九 arrays,

```
u = zeros((Nx+1,Ny+1)) # solution array
u_1 = zeros((Nx+1,Ny+1)) # solution at t-dt
u_2 = zeros((Nx+1,Ny+1)) # solution at t-2*dt
```

where $u_{i, j}^{n+1}$ corresponds to $u[i, j], u_{i, j}^{n}$ to $u_{-} 1[i, j]$, and $u_{i, j}^{n-1}$ to $u_{-} 2$
Index sets. It is also convenient to introduce the index sets (cf. Sect

```
Ix = range(0, u.shape [0])
Iy = range(0, u.shape[1])
```

Computing the solution. Inserting the initial condition I in u_1 and a callback to the user in terms of the user_action function is a straight generalization of the 1D code from Section 1.6:

```
for i in Ix:
    for j in Iy:
        u_1[i,j] = I(x[i], y[j])
```

if user_action is not None:
user_action($\left.u_{-} 1, x, x v, y, y v, t, 0\right)$
he user_action function has additional arguments compared to the 1D case. he arguments xv and yv fact will be commented upon in Section 12.2.

The key finite difference formula (102) for updating the solution at a time sel is implemented in a separate function as

```
lef advance_scalar (u, u_1, u_2, f, x, y, t, \(n, C x 2, C y 2, d t\),
    \(\mathrm{V}=\) None, step1=False) :
    Ix = range ( \(0, \mathrm{u} . \operatorname{shape[0]);} \mathrm{Iy}=\operatorname{range}(0, \mathrm{u} . \operatorname{shape[1]})\)
    \(I x=\) range
\(\mathrm{dt} 2=\mathrm{dt} * * 2\)
    if step1:
        \(\mathrm{Cx} 2=0.5 * \mathrm{Cx} 2 ; \quad \mathrm{Cy} 2=0.5 * \mathrm{Cy} 2 ; \mathrm{dt} 2=0.5 * \mathrm{dt} 2\)
        D1 \(=1 ; \quad\) D2 \(=0\)
else:
    \(\mathrm{D} 1=2 ; \quad \mathrm{D} 2=1\)
for \(i\) in \(\operatorname{Ix}[1:-1]:\)
```



```
        \(u_{-x x}=u_{-}[1-1, j]-2 * u_{-1}[1, j]+u_{-} 1[1+1, j]\)
        \(u_{-} y y=\)
\(u[i, j]=\)
\(u_{-} 1 * u_{-} 1[i, j]-D 2 * u_{-} 2[i, j]+1\)
```



```
        if step1:
            \(u[i, j]+=d t * V(x[i], y[j])\)
    \# Boundary condition \(u=0\)
    \# Boundary
\(\mathrm{j}=\mathrm{Iy}[0]\)
    for \(i\) in Ix: \(u[i, j]=0\)
    \(j=\operatorname{Iy}[-1]\)
    for \(i\) in Ix: \(u[i, j]=0\)
    \(i=\operatorname{Ix}[0]\)
    for \(j\) in Iy: \(u[i, j]=0\)
    \(i=\operatorname{Ix}[-1]\).
    for \(j\) in Iy: \(u[i, j]=0\)
    for \(j\) in
```

he step1 variable has been introduced to allow the formula to be reused for rst step $u_{i, j}^{1}$:

1 = advance_scalar(u, u_1, u_2, f, x, y, t,
n, Cx2, Cy2, dt, V, step1=True)
elow, we will make many alternative implementations of the advance_scalar inction to speed up the code since most of the CPU time in simulations is spent 1 this function.

2.2 Vectorized computations

he scalar code above turns out to be extremely slow for large 2D meshes, and robably useless in 3D beyond debugging of small test cases. Vectorization is erefore a must for multi-dimensional finite difference computations in Python. or example, with a mesh consisting of 30×30 cells, vectorization brings down re CPU time by a factor of 70 (!).
In the vectorized case we must be able to evaluate user-given functions like (x, y) and $f(x, y, t)$, provided as Python functions $\mathrm{I}(\mathrm{x}, \mathrm{y})$ and $\mathrm{f}(\mathrm{x}, \mathrm{y}, \mathrm{t})$, for re entire mesh in one array operation. Having the one-dimensional coordinate rrays x and y is not sufficient: these must be extended to vectorized versions,

```
from numpy import newaxis
xv = x[:,newaxis]
xv = x[:,newaxis]
yv =
xv = x.reshape((x.size, 1))
yv = y.reshape((1, y.size))
```

This is a standard required technique when evaluating functions over a 2 say $\sin (\mathrm{xv}) * \cos (\mathrm{xv})$, which then gives a result with shape ($\mathrm{Nx}+1, \mathrm{Ny}+$

With the xv and yv arrays for vectorized computing, setting thr condition is just a matter of

$u_{-} 1[:,:]=I(x v, y v)$

One could also have written $u_{_} 1=I(x v, y v)$ and let $u_{_} 1$ point to a nev but vectorized operations often makes use of direct insertion in the origin through $u_{-} 1[:,:]$ because sometimes not all of the array is to be filled a function evaluation. This is the case with the computational scheme f_{r}

```
def advance_vectorized(u, u_1, u_2, f_a, Cx2, Cy2, dt,
\(\mathrm{V}=\) None, step \(1=\) False):
    \(\mathrm{dt} 2=\mathrm{dt} * * 2\)
    if step1:
        \(\mathrm{Cx} 2=0.5 * \mathrm{Cx} 2 ; \mathrm{Cy} 2=0.5 * \mathrm{Cy} 2 ; \mathrm{dt} 2=0.5 * \mathrm{dt} 2\)
        D1 = 1; D2 = 0
    else:
    \(D 1=2 ; \quad D 2=1\)
\(x x=u_{-}[:-2,1:-1]\)
    \(u_{-x x}=u_{-} 1[:-2,1:-1]-2 * u_{-1}[1:-1,1:-1]+u_{-1}[2:, 1:-1]\)
    \(u_{-y y}=u_{-} 1[1:-1,:-2]-2 * u_{-1}[1:-1,1:-1]+u_{-1}[1:-1,2:]\)
    \(\mathrm{u}[1:-1,1:-1]=\mathrm{D} 1 * \mathrm{u}\) _1 \(1[1:-1,1:-1]\) - D2*u_2[1:-1,1:-1] +
    if step1: Cx2*u_xx + Cy2*u_yy + dt2*f_a[1:-1, 1:-1]
    step1:
        \(u[1:-1,1:-1]+=\mathrm{dt} * \mathrm{~V}[1:-1,1:-1]\)
    \# Boundary condition \(u=0\)
    \(j=0\)
    \(\mathrm{u}[:, \mathrm{j}]=0\)
    \(j=u\).shape [1]-1
    \(\mathrm{u}[\mathrm{:}, \mathrm{j}]=0\)
    \(i=0\)
    \(u[i,:]=0\)
    \(i=u\). shape [0]-1
    \(\mathrm{u}[\mathrm{i},:]=0\)
    return u
```

Array slices in 2D are more complicated to understand than thos but the logic from 1D applies to each dimension separately. For exampl doing $u_{i, j}^{n}-u_{i-1, j}^{n}$ for $i \in \mathcal{I}_{x}^{+}$, we just keep j constant and make a slic first index: $u_{-} 1[1:, j]-u_{-} 1[:-1, j]$, exactly as in 1D. The 1 : slice s all the indices $i=1,2, \ldots, N_{x}$ (up to the last valid index), while : -1 spec relevant indices for the second term: $0,1, \ldots, N_{x}-1$ (up to, but not ir the last index).

In the above code segment, the situation is slightly more complicated, each displaced slice in one direction is accompanied by a $1:-1$ slice in $t]$
irection. The reason is that we only work with the internal points for the index lat is kept constant in a difference.
The boundary conditions along the four sides makes use of a slice consisting f all indices along a boundary:

```
1[:,0] = 0
1[:,Ny] = 0
l[0,:] = 0
1[Nx,:] = 0
```

The f function is in the above vectorized update of u first computed as an rray over all mesh points:

$$
\mathrm{f}_{-} \mathrm{a}=\mathrm{f}(\mathrm{xv}, \mathrm{yv}, \mathrm{t}[\mathrm{n}])
$$

le could, alternatively, used the call $\mathrm{f}(\mathrm{xv}, \mathrm{yv}, \mathrm{t}[\mathrm{n}])[1:-1,1:-1]$ in the last srm of the update statement, but other implementations in compiled languages enefit from having f available in an array rather than calling our Python unction $f(x, y, t)$ for every point.
Also in the advance_vectorized function we have introduced a boolean tep1 to reuse the formula for the first time step in the same way as we did ith advance_scalar. We refer to the solver function in wave2D_u0.py for re details on how the overall algorithm is implemented.
The callback function now has the arguments $u, x, x v, y, y v, t, n$. he inclusion of xv and yv makes it easy to, e.g., compute an exact 2D sottion in the callback function and compute errors, through an expression like - exact_solution(xv, yv, t[n]).

2.3 Verification

'esting a quadratic solution. The 1D solution from Section 2.4 can be eneralized to multi-dimensions and provides a test case where the exact solution Iso fulfills the discrete equations such that we know (to machine precision) hat numbers the solver function should produce. In 2D we use the following эneralization of (30):

$$
\begin{equation*}
u_{\mathrm{e}}(x, y, t)=x\left(L_{x}-x\right) y\left(L_{y}-y\right)\left(1+\frac{1}{2} t\right) \tag{111}
\end{equation*}
$$

his solution fulfills the PDE problem if $I(x, y)=u_{\mathrm{e}}(x, y, 0), V=\frac{1}{2} u_{\mathrm{e}}(x, y, 0)$, nd $f=2 c^{2}\left(1+\frac{1}{2} t\right)\left(y\left(L_{y}-y\right)+x\left(L_{x}-x\right)\right)$. To show that u_{e} also solves the iscrete equations, we start with the general results $\left[D_{t} D_{t} 1\right]^{n}=0,\left[D_{t} D_{t} t\right]^{n}=0$, nd $\left[D_{t} D_{t} t^{2}\right]=2$, and use these to compute
$\left.D_{x} D_{x} u_{\mathrm{e}}\right]_{i, j}^{n}=\left[y\left(L_{y}-y\right)\left(1+\frac{1}{2} t\right) D_{x} D_{x} x\left(L_{x}-x\right)\right]_{i, j}^{n}=y_{j}\left(L_{y}-y_{j}\right)\left(1+\frac{1}{2} t_{n}\right) 2$.
. similar calculation must be carried out for the $\left[D_{y} D_{y} u_{\mathrm{e}}\right]_{i, j}^{n}$ and $\left[D_{t} D_{t} u_{\mathrm{e}}\right]_{i, j}^{n}$ rms. One must also show that the quadratic solution fits the special formula
for $u_{i, j}^{1}$. The details are left as Exercise 10. The test_quadratic fun the wave2D_u0.py ${ }^{16}$ program implements this verification as a nose tes

13 Migrating loops to Cython

Although vectorization can bring down the CPU time dramatically compa: scalar code, there is still some factor 5-10 to win in these types of applica implementing the finite difference scheme in compiled code, typically in C, or C++. This can quite easily be done by adding a little extra cod program. Cython is an extension of Python that offers the easiest way our Python loops in the scalar code down to machine code and the effic C.

Cython can be viewed as an extended Python language where varia declared with types and where functions are marked to be implement Migrating Python code to Cython is done by copying the desired code s to functions (or classes) and placing them in one or more separate fi. extension .pyx.

13.1 Declaring variables and annotating the code

Our starting point is the plain advance_scalar function for a scalar ir. tation of the updating algorithm for new values $u_{i, j}^{n+1}$:

```
def advance_scalar(u, u_1, u_2, f, x, y, t, n, Cx2, Cy2, dt,
            V=None, step1=False):
    Ix = range(0,u.shape[0]); Iy = range(0, u.shape[1])
    dt2 = dt**2
    if step1:
        Cx2 = 0.5*Cx2; Cy2 = 0.5*Cy2; dt2 = 0.5*dt2
        D1 = 1; D2 = 0
    else:
    D1 = 2; D2 = 1
    for i in Ix[1:-1]:
        for j in Iy[1:-1]:
            u_xx = u_1[i-1,j] - 2*u_1[i,j] + u_1[i+1,j]
            u_yy = u_1[i,j-1] - 2*u_1[i,j] + u_1[i,j+1
            u[i,j] = D1*u_1[i,j] - D2*u_2[i,j] +\
                Cx2*u_xx + Cy2*u_yy + dt2*f(x[i], y[j], t[n]
            if step1:
            u[i,j] += dt*V(x[i], y[j])
    # Boundary condition u=0
    j = Iy [0]
    for i in Ix: u[i,j] = 0
    j = Iy[-1]
    for i in Ix: u[i,j] = 0
    i = Ix[0]
    for j in Iy: u[i,j] = 0
    i = Ix[-1]
    for }j\mathrm{ in Iy: u[i,j] = 0
    return u
```

[^11]We simply take a copy of this function and put it in a file wave2D_u0_loop_cy.pyx. he relevant Cython implementation arises from declaring variables with types nd adding some important annotations to speed up array computing in Cython. et us first list the complete code in the .pyx file:

```
import numpy as np
cimport numpy as np
cimport cython
ctypedef np.float64_t DT # data type
@cython.boundscheck(False) # turn off array bounds check
@cython.wraparound(False) # turn off negative indices (u[-1,-1])
cpdef advance(
    np.ndarray[DT, ndim=2, mode='c'] u,
    np.ndarray[DT, ndim=2, mode='c'] u_1,
    np.ndarray[DT, ndim=2, mode='c'] u_2
    louble Cx2, double Cy2 double dt2):
    cdef int Ix_start = 0
    def int Iy start = 0
    cdef int Ix_end = u.shape[0]-1
    cdef int Ix_end = u.shape[0]-1
    cdef int i, j
    cdef double u_xx, u_yy
    for i in range(Ix_start+1, Ix_end):
        for j in range(Iy_start+1, Iy_end):
        u_xx = u_1 [i-1,j] - 2*u_1[i,j] + u_1 [i+1,j]
        u_yy = u_1[i,j-1] - 2*u_1[i,j] + u_1[i,j+1]
        u[i,j] = 2*u_1[i,j] - u_2[i,j] +\
            Cx2*u_xx + Cy2*u_yy + dt2*f[i,j]
    # Boundary condition u=0
    j = Iy_start
    for i in range(Ix_start, Ix_end+1): u[i,j] = 0
    j = Iy_end
    for i in range(Ix_start, Ix_end+1): u[i,j] = 0
    i = Ix_start
    for j in range(Iy_start, Iy_end+1): u[i,j] = 0
    i = Iy_end
    for j in range(Iy_start, Iy_end+1): u[i,j] = 0
    return u
```

This example may act as a recipe on how to transform array-intensive code ith loops into Cython.

1. Variables are declared with types: for example, double v in the argument list instead of just v, and cdef double v for a variable v in the body of the function. A Python float object is declared as double for translation to C by Cython, while an int object is declared by int.
2. Arrays need a comprehensive type declaration involving

- the type np.ndarray,
- the data type of the elements, here 64-bit floats, abbreviated as DT through ctypedef np.float64_t DT (instead of DT we could use the
full name of the data type: np.float64_t, which is a Cython type),
- the dimensions of the array, here ndim=2 and ndim=1,
- specification of contiguous memory for the array (mode=' c')

3. Functions declared with cpdef are translated to C but also accessil Python.
4. In addition to the standard numpy import we also need a special import of numpy: cimport numpy as $n p$, to appear after the s import.
5. By default, array indices are checked to be within their legal lin speed up the code one should turn off this feature for a specific f by placing @cython.boundscheck(False) above the function heє
6. Also by default, array indices can be negative (counting from the e: this feature has a performance penalty and is therefore here turne writing @cython. wraparound (False) right above the function he
7. The use of index sets $I x$ and Iy in the scalar code cannot be fully translated to C. One reason is that constructions like Is involve negative indices, and these are now turned off. Anot son is that Cython loops must take the form for i in xr for i in range for being translated into efficient C loops. We ha' fore introduced Ix_start as $\operatorname{Ix}[0]$ and Ix _end as $\operatorname{Ix}[-1]$ to r start and end of the values of index i. Similar variables are introd the j index. A loop for i in $I x$ is with these new variables wr for i in range(Ix_start, Ix_end+1).

Array declaration syntax in Cython.

We have used the syntax $n p . n d a r r a y[D T, ~ n d i m=2, \operatorname{mode}=$ 'c'] to di numpy arrays in Cython. There is a simpler, alternative syntax, empl typed memory views ${ }^{a}$, where the declaration looks like double [However, the full support for this functionality is not yet ready, and i: text we use the full array declaration syntax.
${ }^{a_{\text {http: }} / / \text { docs.cython.org/src/userguide/memoryviews.html }}$

13.2 Visual inspection of the C translation

Cython can visually explain how successfully it can translate a code from to C. The command

Terminal> cython -a wave2D_u0_loop_cy.pyx
roduces an HTML file wave2D_u0_loop_cy.html, which can be loaded into a eb browser to illustrate which lines of the code that have been translated to C. igure 8 shows the illustrated code. Yellow lines indicate the lines that Cython id not manage to translate to efficient C code and that remain in Python. For ie present code we see that Cython is able to translate all the loops with array omputing to C , which is our primary goal.

Figure 8: Visual illustration of Cython's ability to translate Python to C.
You can also inspect the generated C code directly, as it appears in the file ave2D_uO_loop_cy.c. Nevertheless, understanding this C code requires some miliarity with writing Python extension modules in C by hand. Deep down in re file we can see in detail how the compute-intensive statements are translated me complex C code that is quite different from what we a human would write it least if a direct correspondence to the mathematics was in mind).

3.3 Building the extension module

ython code must be translated to C, compiled, and linked to form what is known 1 the Python world as a C extension module. This is usually done by making a etup.py script, which is the standard way of building and installing Python fftware. For an extension module arising from Cython code, the following etup.py script is all we need to build and install the module:

```
Erom distutils.core import setup
From distutils.extension import Extension
:rom distutis.extension import Extensi
:ymodule = 'wave2D_u0_loop_cy'
jetup(
    name=cymodule
    ext_modules=[Extension(cymodule, [cymodule + '.pyx'],)],
    cmdclass={'build_ext': build_ext},
```


Terminal> python setup.py build_ext --inplace

The --inplace option makes the extension module available in the directory as the file wave2D_u0_loop_cy.so. This file acts as a normal module that can be imported and inspected:
>>> import wave2D_u0_loop_cy
>>> dir(wave2D_uO_loop cy)
[',_-builtins__', ',_doc_-', , ,_file_-', '__name__',
,,-_package_-', ', _-test_-_', ,'-advance', ', np']
The important output from the dir function is our Cython function a (the module also features the imported numpy module under the name nr as many standard Python objects with double underscores in their nan

The setup.py file makes use of the distutils package in Pytl. Cython's extension of this package. These tools know how Python was the computer and will use compatible compiler(s) and options when 1 other code in Cython, C , or $\mathrm{C}++$. Quite some experience with buildis program systems is needed to do the build process manually, so using a $s \in$ script is strongly recommended.

Simplified build of a Cython module.

When there is no need to link the C code with special libraries, C ! offers a shortcut for generating and importing the extension module:
import pyximport; pyximport.install()
This makes the setup. py script redundant. However, in the wave2D_ı code we do not use pyximport and require an explicit build process c and many other modules.

13.4 Calling the Cython function from Python

The wave2D_u0_loop_cy module contains our advance function, which may call from the Python program for the wave equation:
import wave2D_u0_loop_cy
advance $=$ wave2D_u0_loop_cy.advance
for n in It [1:-1:
$f_{-}[:,:]=f(x v, y v, t[n]) \quad$ \# precompute, size as u
\# time loop
u = advance (u, u_1, u_2, f_a, x, y, t, Cx2, Cy2, dt2)
ifficiency. For a mesh consisting of 120×120 cells, the scalar Python code equire 1370 CPU time units, the vectorized version requires 5.5 , while the ython version requires only 1! For a smaller mesh with 60×60 cells Cython is bout 1000 times faster than the scalar Python code, and the vectorized version about 6 times slower than the Cython version.

4 Migrating loops to Fortran

1stead of relying on Cython's (excellent) ability to translate Python to C, we mn invoke a compiled language directly and write the loops ourselves. Let us jart with Fortran 77, because this is a language with more convenient array andling than C (or plain $\mathrm{C}++$). Or more precisely, we can with ease program ith the same multi-dimensional indices in the Fortran code as in the numpy rrays in the Python code, while in C these arrays are one-dimensional and equires us to reduce multi-dimensional indices to a single index.

4.1 The Fortran subroutine

Ve write a Fortran subroutine advance in a file wave2D_u0_loop_f77.f ${ }^{17}$ for nplementing the updating formula (110) and setting the solution to zero at the oundaries:

```
subroutine advance(u, u_1, u_2, f, Cx2, Cy2, dt2, Nx, Ny)
    integer Nx, Ny
    real*8 u(0:Nx,0:Ny), u_1(0:Nx,0:Ny), u_2(0:Nx,0:Ny)
    real*8 f(0:Nx, 0:Ny), Cx2, Cy2, dt2
    integer i, j
Cf2py intent(in, out) u
C Scheme at interior points
    do j = 1, Ny-1
    do i = 1, Nx-1
        u(i,j) = 2*u_1(i,j) - u_2(i,j) +
        Cx2*(u_1(i-1,j) - 2*u_1(i,j) + u_1(i+1,j)) +
        Cy2*(u_1(i,j-1) - 2*u_1(i,j) + u_1(i,j+1)) +
            dt2*f(i,j)
        end do
end do
C Boundary conditions
j = 0
    o i = 0, Nx
    u(i,j) = 0
end do
j = Ny
do i}=0,N
    u(i,j) = 0
end do
i = 0
do j= 0,Ny
    u(i,j)=0
```

[^12]```
do j = 0, Ny
 u(i,j) = 0
 end do
 retur
end
```

This code is plain Fortran 77, except for the special Cf2py comment linı here specifies that u is both an input argument and an object to be r from the advance routine. Or more precisely, Fortran is not able return : from a function, but we need a wrapper code in C for the Fortran subro enable calling it from Python, and in this wrapper code one can return calling Python code.

## Remark.

It is not strictly necessary to return $u$ to the calling Python code the advance function will modify the elements of $u$, but the convent; Python is to get all output from a function as returned values. That i right way of calling the above Fortran subroutine from Python is
u = advance(u, u_1, u_2, f, Cx2, Cy2, dt2)
The less encouraged style, which works and resembles the way the Fc subroutine is called from Fortran, reads

```
advance(u, u_1, u_2, f, Cx2, Cy2, dt2)
```


### 14.2 Building the Fortran module with f2py

The nice feature of writing loops in Fortran is that the tool f2py can w little work produce a C extension module such that we can call the version of advance from Python. The necessary commands to run are

```
Terminal> f2py -m wave2D_u0_loop_f77 -h wave2D_u0_loop_f77.pyf \}
 --overwrite-signature wave2D_u0_loop_f77.f
Terminal> f2py -c wave2D_u0_loop_f77.pyf --build-dir build_f77 \}
 -DF2PY_REPORT_ON_ARRAY_COPY=1 wave2D_u0_loop_f77.f
```

The first command asks $f 2$ py to interpret the Fortran code and make a Fo specification of the extension module in the file wave2D_u0_loop_f77.p second command makes f 2 py generate all necessary wrapper code, com Fortran file and the wrapper code, and finally build the module. The build takes place in the specified subdirectory build_f77 so that files can be ir if something goes wrong. The option -DF2PY_REPORT_ON_ARRAY_COPY=

2py write a message for every array that is copied in the communication between ortran and Python, which is very useful for avoiding unnecessary array copying ee below). The name of the module file is wave2D_u0_loop_f77.so, and this le can be imported and inspected as any other Python module:
>>> import wave2D_u0_loop_f77
>> dir(wave2D
[', -_doc_,', ', file__, ,', -_name__', '_-package__,
'--version__', 'advance']
>> print wave2D_u0_loop_f77.__doc_
Chis module 'wave2D_u0_loop_f77' is auto-generated with f2py...
'unctions:
u = advance(u,u_1, u_2,f,cx2,cy2,dt2,
$n x=($ shape $(u, 0)-1), n y=(\operatorname{shape}(u, 1)-1))$

## Examine the doc strings!

Printing the doc strings of the module and its functions is extremely important after having created a module with f2py, because f2py makes Python interfaces to the Fortran functions that are different from how the functions are declared in the Fortran code (!). The rationale for this behavior is that f2py creates Pythonic interfaces such that Fortran routines can be called in the same way as one calls Python functions. Output data from Python functions is always returned to the calling code, but this is technically impossible in Fortran. Also, arrays in Python are passed to Python functions without their dimensions because that information is packed with the array data in the array objects, but this is not possible in Fortran. Therefore, f2py removes array dimensions from the argument list, and f2py makes it possible to return objects back to Python.

Let us follow the advice of examining the doc strings and take a close look $t$ the documentation $f 2$ py has generated for our Fortran advance subroutine:

```
>>> print wave2D_u0_loop_f77.advance.__doc__
Chis module 'wave2D_u0_loop_f77' is auto-generated with f2py
Chis modul
 u = advance(u,u_1,u_2,f,cx2, cy2,dt2
 nx=(shape(u,0)-1),ny=(shape (u,1)-1))
idvance - Function signature:
idvance - Function signature:
u = advance(u,u_1,
u : input rank-2 array('d') with bounds (nx + 1,ny + 1)
 u : input rank-2 array('d'), with bounds (nx + 1,ny + 1)
 u_1 : input rank-2 array('d') with bounds (nx + 1,ny + 1)
 f}: input rank-2 array('d') with bounds (nx + 1,ny + 1) ()
 cx2 : input float
 cy2 : input float
 dt2 : input float
Jptional arguments:
 nx := (shape (u,0)-1) input int
 ny := (shape(u,1)-1) input int
{eturn objects:
 u : rank-2 array('d') with bounds (nx + 1,ny + 1)
```

Here we see that the $n x$ and ny parameters declared in Fortran are c arguments that can be omitted when calling advance from Python.

We strongly recommend to print out the documentation of every function to be called from Python and make sure the call syntax is ex listed in the documentation.

### 14.3 How to avoid array copying

Multi-dimensional arrays are stored as a stream of numbers in memc a two-dimensional array consisting of rows and columns there are tv of creating such a stream: row-major ordering, which means that r stored consecutively in memory, or column-major ordering, which means columns are stored one after each other. All programming languages is from C, including Python, apply the row-major ordering, but Fortr column-major storage. Thinking of a two-dimensional array in Python o matrix, it means that Fortran works with the transposed matrix.

Fortunately, f2py creates extra code so that accessing $u(i, j)$ in the subroutine corresponds to the element $u[i, j]$ in the underlying nump (without the extra code, $u(i, j)$ in Fortran would access $u[j, i]$ in th array). Technically, f2py takes a copy of our numpy array and reorders t before sending the array to Fortran. Such copying can be costly. For 2 simulations on a $60 \times 60$ grid the overhead of copying is a factor of 5 means that almost the whole performance gain of Fortran over vectorize code is lost!

To avoid having f2py to copy arrays with C storage to the corres] Fortran storage, we declare the arrays with Fortran storage:

```
order = 'Fortran' if version == 'f77' else 'C'
u = zeros((Nx+1,Ny+1), order=order) # solution array
u_1 = zeros((Nx+1,Ny+1), order=order) # solution at t-dt
u_2 = zeros((Nx+1,Ny+1), order=order) # solution at t-2*dt
```

In the compile and build step of using f2py, it is recommended to extra option for making $f 2 p y$ report on array copying:

Terminal> f2py -c wave2D_u0_loop_f77.pyf --build-dir build_f77 \} -DF2PY_REPORT_ON_ARRAY_COPY=1 wave2D_u0_1oop_f77.f

It can sometimes be a challenge to track down which array that c copying. There are two principal reasons for copying array data: either t t does not have Fortran storage or the element types do not match those , in the Fortran code. The latter cause is usually effectively eliminated $k$ real*8 data in the Fortran code and float64 (the default float type ir in the arrays on the Python side. The former reason is more common check whether an array before a Fortran call has the right storage one c the result of isfortran (a), which is True if the array a has Fortran st

Let us look at an example where we face problems with array storage. A ppical problem in the wave2D_u0.py code is to set

E_a $=f(x v, y v, t[n])$
efore the call to the Fortran advance routine. This computation creates a new rray with C storage. An undesired copy of $f_{-}$a will be produced when sending _a to a Fortran routine. There are two remedies, either direct insertion of data 1 an array with Fortran storage,
$z_{-} a=\operatorname{zeros}((N x+1, N y+1)$, order='Fortran')
:_a[:,:] = f(xv, yv, t[n])
r remaking the $\mathrm{f}(\mathrm{xv}, \mathrm{yv}, \mathrm{t}[\mathrm{n}])$ array,
ミ_a = asarray(f(xv, yv, t[n]), order='Fortran')
he former remedy is most efficient if the asarray operation is to be performed large number of times.
ifficiency. The efficiency of this Fortran code is very similar to the Cython ode. There is usually nothing more to gain, from a computational efficiency oint of view, by implementing the complete Python program in Fortran or C. 'hat will just be a lot more code for all administering work that is needed in sientific software, especially if we extend our sample program wave2D_u0.py to andle a real scientific problem. Then only a small portion will consist of loops ith intensive array calculations. These can be migrated to Cython or Fortran s explained, while the rest of the programming can be more conveniently done 1 Python.

## 5 Migrating loops to C via Cython

he computationally intensive loops can alternatively be implemented in C ode. Just as Fortran calls for care regarding the storage of two-dimensional rrays, working with two-dimensional arrays in C is a bit tricky. The reason is lat numpy arrays are viewed as one-dimensional arrays when transferred to C, hile C programmers will think of $u, u_{\_} 1$, and $u_{\_} 2$ as two dimensional arrays nd index them like $u[i][j]$. The $C$ code must declare $u$ as double* $u$ and anslate an index pair [i] [j] to a corresponding single index when $u$ is viewed s one-dimensional. This translation requires knowledge of how the numbers in are stored in memory.

### 5.1 Translating index pairs to single indices

wo-dimensional numpy arrays with the default C storage are stored row by row. 1 general, multi-dimensional arrays with C storage are stored such that the last
index has the fastest variation, then the next last index, and so on, en with the slowest variation in the first index. For a two-dimensional u c as $z \operatorname{eros}((N \mathrm{~N}+1, \mathrm{Ny}+1))$ in Python, the individual elements are storer following order:
$u[0,0], u[0,1], u[0,2], \ldots, u[0, N y], u[1,0], u[1,1], \ldots$,
$u[1, N y], u[2,0], \ldots, u[N x, 0], u[N x, 1], \ldots, u[N x, N y]$
Viewing u as one-dimensional, the index pair $(i, j)$ translates to $i\left(N_{y}\right.$ So, where a C programmer would naturally write an index $u[i][j]$, the $i$ must read $u[i *(N y+1)+j]$. This is tedious to write, so it can be $h$ define a C macro,
\#define $i d x(i, j)(i) *(N y+1)+j$
so that we can write $u[i d x(i, j)]$, which reads much better and is e debug.

## Be careful with macro definitions.

Macros just perform simple text substitutions: idx (hello, world) panded to (hello)*(Ny+1) + world. The parenthesis in (i) are ess - using the natural mathematical formula $i *(N y+1)+j$ in the macr nition, $i d x(i-1, j)$ would expand to $i-1 *(N y+1)+j$, which is the $r$ formula. Macros are handy, but requires careful use. In $\mathrm{C}++$, functions are safer and replace the need for macros.

### 15.2 The complete C code

The C version of our function advance can be coded as follows.

```
#define idx(i,j) (i)*(Ny+1) + j
void advance(double* u, double* u_1, double* u_2, double* f,
 double Cx2, double Cy2, double dt2,
 int Nx, int Ny)
{
 int i, j;
 /* Scheme at interior points */
 for (i=1; i<=Nx-1; i++) {
 for (j=1; j<=Ny-1; j++) {
 u[idx(i,j)] = 2*u_1[idx(i,j)] - u_2[idx(i,j)] +
 Cx2*(u_1[idx(i-1,j)] - 2*u_1[idx(i,j)] + u_1[idx(i+1,j)]
 Cy2*(u_1[idx(i,j-1)] - 2*u_1[idx(i,j)] + u_1[idx(i,j+1)]
 dt2*f[idx(i,j)];
 | dt2
 }
/* Boundary conditions */
 j = 0; for (i=0; i<=Nx; i++) u[idx(i,j)] = 0;
 = Ny; for (i=0; i<=Nx; i++) u[idx(i,j)]=0
 i = 0; for (j=0; j<=Ny; j++) u[idx(i,j)] = 0
 i = Nx; for (j=0; j<=Ny; j++) u[idx(i,j)] = 0;
}
```


### 5.3 The Cython interface file

11 the code above appears in a file wave2D_u0_1oop_c.c ${ }^{18}$. We need to compile is file together with C wrapper code such that advance can be called from ython. Cython can be used to generate appropriate wrapper code. The relevant ython code for interfacing C is placed in a file with extension .pyx. Here this le, called wave2D_u0_loop_c_cy.pyx ${ }^{19}$, looks like

```
import numpy as np
cimport numpy as np
cimport cython
```

cdef extern from "wave2D_u0_loop_c.h":
void advance (double* $u$, double* $u_{-1}$, double* $u_{-} 2$, double* $f$,
double Cx2, double Cy2, double dt2,
int $N x$, int $N y$ )
@cython. boundscheck(False)
@cython. wraparound(False)
def advance_cwrap(
np.ndarray[double, ndim=2, mode='c'] u,
np.ndarray [double, ndim=2, mode='c'] u_1
np.ndarray [double, ndim=2, mode='c'] u_2,
np.ndarray [double, ndim=2, mode='c'] f
double Cx2, double Cy2, double dt2):
advance ( $\& u[0,0], \& u \_1[0,0], \& u_{-} 2[0,0], \& f[0,0]$,
Cx2, Cy2, dt2,
u.shape[0]-1, u.shape[1]-1)
return u

Te first declare the C functions to be interfaced. These must also appear in a C eader file, wave2D_u0_loop_c. ${ }^{20}$,

```
extern void advance(double* u, double* u_1, double* u_2, double* f,
 double Cx2, double Cy2, double dt2,
 int Nx, int Ny);
```

he next step is to write a Cython function with Python objects as arguments. he name advance is already used for the $C$ function so the function to be called om Python is named advance_cwrap. The contents of this function is simply call to the advance version in C . To this end, the right information from the ython objects must be passed on as arguments to advance. Arrays are sent ith their C pointers to the first element, obtained in Cython as \&u [0,0] (the takes the address of a C variable). The $N x$ and Ny arguments in advance are asily obtained from the shape of the numpy array u. Finally, u must be returned uch that we can set $u=\operatorname{advance}(\ldots)$ in Python.

### 5.4 Building the extension module

remains to build the extension module. An appropriate setup.py file is

[^13]```
from distutils.core import setup
from distutils.extension import Extension
from Cython.Distutils import build_ext
sources = ['wave2D_u0_loop_c.c', 'wave2D_u0_loop_c_cy.pyx']
module = 'wave2D_u0_loop_c_cy'
setup(
    name=module
    ext_modules=[Extension(module, sources
                                    libraries=[], # C libs to link with
                                    )],
cmdclass={'build_ext': build_ext},
```

-)

All we need to specify is the .c file(s) and the .pyx interface file. Cyth tomatically run to generate the necessary wrapper code. Files are then c and linked to an extension module residing in the file wave2D_uO_loop_c Here is a session with running setup.py and examining the resulting m • Python

```
Terminal> python setup.py build_ext --inplace
Terminal> python
>>> import wave2D_u0_loop_c_cy as m
>> dir(m)
[,__builtins__, ',_doc__', '__file__', '__name__', '__package__',
    ,-_-test__,', ''advance_cwrap', ',np']
```

The call to the C version of advance can go like this in Python:
import wave2D_u0_loop_c_cy
advance = wave2D_u0_loop_c_cy.advance_cwrap
$f_{-} a[:,:]=f(x v, y v, t[n])$
u = advance(u, u_1, u_2, f_a, Cx2, Cy2, dt2)

Efficiency. In this example, the C and Fortran code runs at the sam and there are no significant differences in the efficiency of the wrapper co overhead implied by the wrapper code is negligible as long as we do n with very small meshes and consequently little numerical work in the a function.

16 Migrating loops to C via f2py

An alternative to using Cython for interfacing C code is to apply f 2 py code is the same, just the details of specifying how it is to be called from differ. The f2py tool requires the call specification to be a Fortran 90 defined in a .pyf file. This file was automatically generated when we in a Fortran subroutine. With a C function we need to write this module o
r we can use a trick and let f2py generate it for us. The trick consists in writing re signature of the C function with Fortran syntax and place it in a Fortran le, here wave2D_u0_loop_c_f2py_signature.f:
subroutine advance(u, u_1, u_2, f, Cx2, Cy2, dt2, Nx, Ny)
Cf2py intent (c) advance
integer Nx, Ny,
real*8 u(0:Nx, $0: N y), u_{-} 1(0: N x, 0: N y), u_{-} 2(0: N x, 0: N y)$ real* $8 \mathrm{f}(0: \mathrm{Nx}, \mathrm{O}: \mathrm{Ny}), \mathrm{Cx} 2, \mathrm{Cy} 2, \mathrm{dt} 2$
Cf2py intent (in, out) u
Cf2py intent(c) u, u_1, u_2, f, Cx2, Cy2, dt2, Nx, Ny retur
ote that we need a special f2py instruction, through a Cf2py comment line, for slling that all the function arguments are C variables. We also need to specify lat the function is actually in C : intent (c) advance.

Since $f 2 p y$ is just concerned with the function signature and not the complete ontents of the function body, it can easily generate the Fortran 90 module secification based solely on the signature above:

```
эrminal> f2py -m wave2D_u0_loop_c_f2py \
    -h wave2D_u0_loop_c_f2py.pyf --overwrite-signature \
    wave2D_u0_loop_c_f2py_signature.f
```

he compile and build step is as for the Fortran code, except that we list C files ıstead of Fortran files:

```
эrminal> f2py -c wave2D_u0_loop_c_f2py.pyf \
    -DF2PY_REPORT_ON_ARRAY_COPY=1 wave2D_u0_loop_c.c
```

s when interfacing Fortran code with f2py, we need to print out the doc string) see the exact call syntax from the Python side. This doc string is identical or the C and Fortran versions of advance.

6.1 Migrating loops to C++ via f2py

++ is a much more versatile language than C or Fortran and has over the last vo decades become very popular for numerical computing. Many will therefore refer to migrate compute-intensive Python code to $\mathrm{C}++$. This is, in principle, asy: just write the desired $\mathrm{C}++$ code and use some tool for interfacing it om Python. A tool like SWIG 21 can interpret the $\mathrm{C}++$ code and generate Iterfaces for a wide range of languages, including Python, Perl, Ruby, and Java. owever, SWIG is a comprehensive tool with a correspondingly steep learning

[^14]curve. Alternative tools, such as Boost Python ${ }^{22}$, SIP 23, and Shibokt similarly comprehensive. Simpler tools include PyBindGen ${ }^{25}$,

A technically much easier way of interfacing C++ code is to d possibility to use C++ classes directly from Python, but instead m: interface to the $\mathrm{C}++$ code. The C interface can be handled by f 2 py a in the example with pure C code. Such a solution means that classes in and $\mathrm{C}++$ cannot be mixed and that only primitive data types like n strings, and arrays can be transferred between Python and C++. Actuc is often a very good solution because it forces the C++ code to work c data, which usually gives faster code than if fancy data structures witr are used. The arrays coming from Python, and looking like plain $\mathrm{C} / \mathrm{C}+-$ can be efficiently wrapped in more user-friendly $\mathrm{C}++$ array classes in t code, if desired.

17 Using classes to implement a simulator

- Introduce classes Mesh, Function, Problem, Solver, Visualizer

18 Exercises

Exercise 10: Check that a solution fulfills the discrete

Carry out all mathematical details to show that (111) is indeed a sol the discrete model for a 2 D wave equation with $u=0$ on the bounda must check the boundary conditions, the initial conditions, the general equation at a time level and the special version of this equation for the fi level. Filename: check_quadratic_solution.pdf.

Project 11: Calculus with 2D/3D mesh functions

The goal of this project is to redo Project 5 with 2D and 3D mesh fi $\left(f_{i, j}\right.$ and $\left.{ }_{f i, j, k}\right)$.

Differentiation. The differentiation results in a discrete gradient f which in the 2D case can be represented by a three-dimensional array $\mathrm{df} \mid$ where d represents the direction of the derivative and i and j are mes counters in 2D (the 3D counterpart is $\mathrm{df}[\mathrm{d}, \mathrm{i}, \mathrm{j}, \mathrm{k}]$).

[^15]ategration. The integral of a 2D mesh function $f_{i, j}$ is defined as
$$
F_{i, j}=\int_{y_{0}}^{y_{j}} \int_{x_{0}}^{x_{i}} f(x, y) d x d y
$$
here $f(x, y)$ is a function that takes on the values of the discrete mesh function i, j at the mesh points, but can also be evaluated in between the mesh points. he particular variation between mesh points can be taken as bilinear, but this not important as we will use a product Trapezoidal rule to approximate the ttegral over a cell in the mesh and then we only need to evaluate $f(x, y)$ at the lesh points.
Suppose $F_{i, j}$ is computed. The calculation of $F_{i+1, j}$ is then
\[

$$
\begin{aligned}
F_{i+1, j} & =F_{i, j}+\int_{x_{i}}^{x_{i+1}} \int_{y_{0}}^{y_{j}} f(x, y) d y d x \\
& \approx \Delta x \int_{y_{0}}^{y_{j}} f\left(x_{i+\frac{1}{2}}, y\right) d y \\
& \approx \Delta x \frac{1}{2}\left(\int_{y_{0}}^{y_{j}} f\left(x_{i}, y\right) d y+\int_{y_{0}}^{y_{j}} f\left(x_{i+1}, y\right) d y\right)
\end{aligned}
$$
\]

he integrals in the y direction can be approximated by a Trapezoidal rule. A milar idea can be used to compute $F_{i, j+1}$. Thereafter, $F_{i+1, j+1}$ can be computed y adding the integral over the final corner cell to $F_{i+1, j}+F_{i, j+1}-F_{i, j}$. Carry ut the details of these computations and extend the ideas to 3D. Filename: esh_calculus_3D.py.

\xercise 12: Implement Neumann conditions in 2D

Iodify the wave2D_u0.py ${ }^{26}$ program, which solves the 2 D wave equation $u_{t t}=$ ${ }^{2}\left(u_{x x}+u_{y y}\right)$ with constant wave velocity c and $u=0$ on the boundary, to ave Neumann boundary conditions: $\partial u / \partial n=0$. Include both scalar code (for ebugging and reference) and vectorized code (for speed).
To test the code, use $u=1.2$ as solution $(I(x, y)=1.2, V=f=0$, and c rbitrary), which should be exactly reproduced with any mesh as long as the ability criterion is satisfied. Another test is to use the plug-shaped pulse in the ulse function from Section 8 and the wave1D_dn_vc.py ${ }^{27}$ program. This pulse exactly propagated in 1D if $c \Delta t / \Delta x=1$. Check that also the 2D program an propagate this pulse exactly in x direction $(c \Delta t / \Delta x=1, \Delta y$ arbitrary $)$ and direction $(c \Delta t / \Delta y=1, \Delta x$ arbitrary). Filename: wave2D_dn.py.

'xercise 13: Test the efficiency of compiled loops in 3D

xtend the wave2D_u0.py code and the Cython, Fortran, and C versions to 3D. et up an efficiency experiment to determine the relative efficiency of pure scalar

[^16]Python code, vectorized code, Cython-compiled loops, Fortran-compile and C-compiled loops. Normalize the CPU time for each mesh by the version. Filename: wave3D_u0.py.

19 Applications of wave equations

This section presents a range of wave equation models for different $]$ phenomena. Although many wave motion problems in physics can be mor the standard linear wave equation, or a similar formulation with a syster order equations, there are some exceptions. Perhaps the most important waves: these are modeled by the Laplace equation with time-dependent b conditions at the water surface (long water waves, however, can be appro by a standard wave equation, see Section 19.7). Quantum mechanica constitute another example where the waves are governed by the Schr equation and not a standard wave equation. Many wave phenomena a. to take nonlinear effects into account when the wave amplitude is sig Shock waves in the air is a primary example.

The derivations in the following are very brief. Those with a firm bac: in continuum mechanics will probably have enough information to fil details, while other readers will hopefully get some impression of the phy approximations involved when establishing wave equation models.

19.1 Waves on a string

Figure 9 shows a model we may use to derive the equation for waves on The string is modeled as a set of discrete point masses (at mesh poin elastic strings in between. The strings are at a high constant tension let the mass at mesh point x_{i} be m_{i}. The displacement of this mass pc direction is denoted by $u_{i}(t)$.

The motion of mass m_{i} is governed by Newton's second law of moti position of the mass at time t is $x_{i} \boldsymbol{i}+u_{i}(t) \boldsymbol{j}$, where \boldsymbol{i} and \boldsymbol{j} are unit v ϵ the x and y direction, respectively. The acceleration is then $u_{i}^{\prime \prime}(t) \boldsymbol{j}$. Tw are acting on the mass as indicated in Figure 9. The force \boldsymbol{T}^{-}acting tov point x_{i-1} can be decomposed as

$$
\boldsymbol{T}^{-}=-T \sin \phi \boldsymbol{i}-T \cos \phi \boldsymbol{j}
$$

where ϕ is the angle between the force and the line $x=x_{i}$. Let $\Delta u_{i}=u$ and let $\Delta s_{i}=\sqrt{\Delta u_{i}^{2}+\left(x_{i}-x_{i-1}\right)^{2}}$ be the distance from mass m_{i-1} m_{i}. It is seen that $\cos \phi=\Delta u_{i} / \Delta s_{i}$ and $\sin \phi=\left(x_{i}-x_{i-1}\right) / \Delta s$ or Δ we introduce a constant mesh spacing $\Delta x=x_{i}-x_{i-1}$. The force can written

$$
\boldsymbol{T}^{-}=-T \frac{\Delta x}{\Delta s_{i}} \boldsymbol{i}-T \frac{\Delta u_{i}}{\Delta s_{i}} \boldsymbol{j}
$$

The force \boldsymbol{T}^{+}acting toward x_{i+1} can be calculated in a similar way:

igure 9: Discrete string model with point masses connected by elastic strings.

$$
\boldsymbol{T}^{+}=T \frac{\Delta x}{\Delta s_{i+1}} \boldsymbol{i}+T \frac{\Delta u_{i+1}}{\Delta s_{i+1}} \boldsymbol{j}
$$

ewton's second law becomes

$$
m_{i} u_{i}^{\prime \prime}(t) \boldsymbol{j}=\boldsymbol{T}^{+}+\boldsymbol{T}^{-}
$$

hich gives the component equations

$$
\begin{align*}
T \frac{\Delta x}{\Delta s_{i}} & =T \frac{\Delta x}{\Delta s_{i+1}} \tag{112}\\
m_{i} u_{i}^{\prime \prime}(t) & =T \frac{\Delta u_{i+1}}{\Delta s_{i+1}}-T \frac{\Delta u_{i}}{\Delta s_{i}} \tag{113}
\end{align*}
$$

A basic reasonable assumption for a string is small displacements small displacement gradients $\Delta u_{i} / \Delta x$. For small $g=\Delta u_{i} / \Delta x$ we have

$$
\Delta s_{i}=\sqrt{\Delta u_{i}^{2}+\Delta x^{2}}=\Delta x \sqrt{1+g^{2}}+\Delta x\left(1+\frac{1}{2} g^{2}+\mathcal{O}\left(g^{4}\right) \approx \Delta x\right.
$$

Equation (112) is then simply the identity $T=T$, while (113) can be wı

$$
m_{i} u_{i}^{\prime \prime}(t)=T \frac{\Delta u_{i+1}}{\Delta x}-T \frac{\Delta u_{i}}{\Delta x}
$$

which upon division by Δx and introducing the density $\varrho_{i}=m_{i} / \Delta x$ b ϵ

$$
\varrho_{i} u_{i}^{\prime \prime}(t)=T \frac{1}{\Delta x^{2}}\left(u_{i+1}-2 u_{i}+u_{i-1}\right)
$$

We can now choose to approximate $u_{i}^{\prime \prime}$ by a finite difference in time and discretized wave equation,

$$
\varrho_{i} \frac{1}{\Delta t^{2}}\left(u_{i}^{n+1}-2 u_{i}^{n}-u_{i}^{n-1}\right)=T \frac{1}{\Delta x^{2}}\left(u_{i+1}-2 u_{i}+u_{i-1}\right) .
$$

On the other hand, we may go to the continuum limit $\Delta x \rightarrow 0$ and repl ε by $u(x, t), \varrho_{i}$ by $\varrho(x)$, and recognize that the right-hand side of (114) apt $\partial^{2} u / \partial x^{2}$ as $\Delta x \rightarrow 0$. We end up with the continuous model for wav string:

$$
\varrho \frac{\partial^{2} u}{\partial t^{2}}=T \frac{\partial^{2} u}{\partial x^{2}} .
$$

Note that the density ϱ may change along the string, while the tensio constant. With variable wave velocity $c(x)=\sqrt{T / \varrho(x)}$ we can write t . equation in the more standard form

$$
\frac{\partial^{2} u}{\partial t^{2}}=c^{2}(x) \frac{\partial^{2} u}{\partial x^{2}}
$$

Because of the way ϱ enters the equations, the variable wave velocity c appear inside the derivatives as in many other versions of the wave e However, most strings of interest have constant ϱ.

The end point of a string are fixed so that the displacement u is ze boundary conditions are therefore $u=0$.

Damping. Air resistance and non-elastic effects in the string will cos to reduce the amplitudes of the waves so that the motion dies out aft time. This damping effect can be modeled by a term $b u_{t}$ on the left-hanc the equation

$$
\varrho \frac{\partial^{2} u}{\partial t^{2}}+b \frac{\partial u}{\partial t}=T \frac{\partial^{2} u}{\partial x^{2}}
$$

The parameter b must normally be determined from physical experime:
ixternal forcing. It is easy to include an external force acting on the string. ay we have a vertical force $\tilde{f}_{i} \boldsymbol{j}$ acting on mass m_{i}. This force affects the artical component of Newton's law and gives rise to an extra term $\tilde{f}(x, t)$ n the right-hand side of (116). In the model (117) we would add a term $(x, t)=f(x, y) / \varrho(x)$.

Iodeling the tension via springs. We assumed, in the derivation above, lat the tension in the string, T, was constant. It is easy to check this assumption y modeling the string segments between the masses as standard springs, where e force (tension T) is proportional to the elongation of the spring segment. et k be the spring constant, and set $T_{i}=k \Delta \ell$ for the tension in the spring zgment between x_{i-1} and x_{i}, where $\Delta \ell$ is the elongation of this segment from re tension-free state. A basic feature of a string is that it has high tension in re equilibrium position $u=0$. Let the string segment have an elongation $\Delta \ell_{0}$ 1 the equilibrium position. After deformation of the string, the elongation is $\ell=\Delta \ell_{0}+\Delta s_{i}: T_{i}=k\left(\Delta \ell_{0}+\Delta s_{i}\right) \approx k\left(\Delta \ell_{0}+\Delta x\right)$. This shows that T_{i} is Idependent of i. Moreover, the extra approximate elongation Δx is very small ompared to $\Delta \ell_{0}$, so we may well set $T_{i}=T=k \Delta \ell_{0}$. This means that the snsion is completely dominated by the initial tension determined by the tuning f the string. The additional deformations of the spring during the vibrations o not introduce significant changes in the tension.

9.2 Waves on a membrane

9.3 Elastic waves in a rod

onsider an elastic rod subject to a hammer impact at the end. This experiment ill give rise to an elastic deformation pulse that travels through the rod. A lathematical model for longitudinal waves along an elastic rod starts with the eneral equation for deformations and stresses in an elastic medium,

$$
\begin{equation*}
\varrho \boldsymbol{u}_{t t}=\nabla \cdot \boldsymbol{\sigma}+\varrho \boldsymbol{f} \tag{119}
\end{equation*}
$$

here ϱ is the density, \boldsymbol{u} the displacement field, $\boldsymbol{\sigma}$ the stress tensor, and \boldsymbol{f} body rces. The latter has normally no impact on elastic waves.
For stationary deformation of an elastic rod, one has that $\sigma_{x x}=E u_{x}$, with $\|_{l}$ other stress components being zero. Moreover, $\boldsymbol{u}=u(x) \boldsymbol{i}$. The parameter E known as Young's modulus. Assuming that this simple stress and deformation eld, which is exact in the stationary case, is a good approximation in the ansient case with wave motion, (119) simplifies to

$$
\begin{equation*}
\varrho \frac{\partial^{2} u}{\partial t^{2}}=\frac{\partial}{\partial x}\left(E \frac{\partial u}{\partial x}\right) . \tag{120}
\end{equation*}
$$

The associated boundary conditions are u or $\sigma_{x x}=E u_{x}$ known, typically $=0$ for a clamped end and $\sigma_{x x}=0$ for a free end.

19.4 The acoustic model for seismic waves

Seismic waves are used to infer properties of subsurface geological str The physical model is a heterogeneous elastic medium where sound is pro by small elastic vibrations. The general mathematical model for deform ε an elastic medium is based on Newton's second law,

$$
\varrho \boldsymbol{u}_{t t}=\nabla \cdot \boldsymbol{\sigma}+\varrho \boldsymbol{f}
$$

and a constitutive law relating $\boldsymbol{\sigma}$ to \boldsymbol{u}, often Hooke's generalized law,

$$
\boldsymbol{\sigma}=K \nabla \cdot \boldsymbol{u} \boldsymbol{I}+G\left(\nabla \boldsymbol{u}+(\nabla \boldsymbol{u})^{T}-\frac{2}{3} \nabla \cdot \boldsymbol{u} \boldsymbol{I}\right) .
$$

Here, \boldsymbol{u} is the displacement field, $\boldsymbol{\sigma}$ is the stress tensor, \boldsymbol{I} is the identity t is the medium's density, \boldsymbol{f} are body forces (such as gravity), K is the m bulk modulus and G is the shear modulus. All these quantities may space, while \boldsymbol{u} and $\boldsymbol{\sigma}$ will also show significant variation in time duris motion.

The acoustic approximation to elastic waves arises from a basic assı that the second term in Hooke's law, representing the deformations $t]$ rise to shear stresses, can be neglected. This assumption can be interp. approximating the geological medium by a fluid. Neglecting also the bod $\boldsymbol{f},(121)$ becomes

$$
\varrho \boldsymbol{u}_{t t}=\nabla(K \nabla \cdot \boldsymbol{u})
$$

Introducing p as a pressure via

$$
p=-K \nabla \cdot \boldsymbol{u}
$$

and dividing (123) by ϱ, we get

$$
\boldsymbol{u}_{t t}=-\frac{1}{\varrho} \nabla p
$$

Taking the divergence of this equation, using $\nabla \cdot \boldsymbol{u}=-p / K$ from (12 < the acoustic approximation to elastic waves:

$$
p_{t t}=K \nabla \cdot\left(\frac{1}{\varrho} \nabla p\right)
$$

This is a standard, linear wave equation with variable coefficients. It is (to add a source term $s(x, y, z, t)$ to model the generation of sound wavt

$$
p_{t t}=K \nabla \cdot\left(\frac{1}{\varrho} \nabla p\right)+s
$$

A common additional approximation of (127) is based on using th rule on the right-hand side,

$$
K \nabla \cdot\left(\frac{1}{\varrho} \nabla p\right)=\frac{K}{\varrho} \nabla^{2} p+K \nabla\left(\frac{1}{\varrho}\right) \cdot \nabla p \approx \frac{K}{\varrho} \nabla^{2} p,
$$

nder the assumption that the relative spatial gradient $\nabla \varrho^{-1}=-\varrho^{-2} \nabla \varrho$ is small. his approximation results in the simplified equation

$$
\begin{equation*}
p_{t t}=\frac{K}{\varrho} \nabla^{2} p+s \tag{128}
\end{equation*}
$$

The acoustic approximations to seismic waves are used for sound waves in ne ground, and the Earth's surface is then a boundary where p equals the tmospheric pressure p_{0} such that the boundary condition becomes $p=p_{0}$.
nisotropy. Quite often in geological materials, the effective wave velocity $=\sqrt{K / \varrho}$ is different in different spatial directions because geological layers are mpacted such that the properties in the horizontal and vertical direction differ. Jith z as the vertical coordinate, we can introduce a vertical wave velocity c_{z} nd a horizontal wave velocity c_{h}, and generalize (128) to

$$
\begin{equation*}
p_{t t}=c_{z}^{2} p_{z z}+c_{h}^{2}\left(p_{x x}+p_{y y}\right)+s . \tag{129}
\end{equation*}
$$

9.5 Sound waves in liquids and gases

ound waves arise from pressure and density variations in fluids. The starting oint of modeling sound waves is the basic equations for a compressible fluid here we omit viscous (frictional) forces, body forces (gravity, for instance), and mperature effects:

$$
\begin{align*}
\varrho_{t}+\nabla \cdot(\varrho \boldsymbol{u}) & =0 \tag{130}\\
\varrho \boldsymbol{u}_{t}+\varrho \boldsymbol{u} \cdot \nabla \boldsymbol{u} & =-\nabla p \tag{131}\\
\varrho & =\varrho(p) \tag{132}
\end{align*}
$$

hese equations are often referred to as the Euler equations for the motion of a uid. The parameters involved are the density ϱ, the velocity \boldsymbol{u}, and the pressure . Equation (131) reflects mass balance, (130) is Newton's second law for a fluid, ith frictional and body forces omitted, and (132) is a constitutive law relating ensity to pressure by thermodynamics considerations. A typical model for (132) the so-called isentropic relation ${ }^{28}$, valid for adiabatic processes where there is o heat transfer:

$$
\begin{equation*}
\varrho=\varrho_{0}\left(\frac{p}{p_{0}}\right)^{1 / \gamma} \tag{133}
\end{equation*}
$$

Here, p_{0} and ϱ_{0} are references values for p and ϱ when the fluid is at res is the ratio of specific heat at constant pressure and constant volume (for air).

The key approximation in a mathematical model for sound waves is to that these waves are small perturbations to the density, pressure, and We therefore write

$$
\begin{aligned}
p & =p_{0}+\hat{p}, \\
\varrho & =\varrho_{0}+\hat{\varrho}, \\
\boldsymbol{u} & =\hat{\boldsymbol{u}}
\end{aligned}
$$

where we have decomposed the fields in a constant equilibrium valu sponding to $\boldsymbol{u}=0$, and a small perturbation marked with a hat sym inserting these decompositions in (130) and (131), neglecting all produc of small perturbations and/or their derivatives, and dropping the hat s one gets the following linearized PDE system for the small perturba density, pressure, and velocity:

$$
\begin{aligned}
\varrho_{t}+\varrho_{0} \nabla \cdot \boldsymbol{u} & =0 \\
\varrho_{0} \boldsymbol{u}_{t} & =-\nabla p
\end{aligned}
$$

Now we can eliminate ϱ_{t} by differentiating the relation $\varrho(p)$,

$$
\varrho_{t}=\varrho_{0} \frac{1}{\gamma}\left(\frac{p}{p_{0}}\right)^{1 / \gamma-1} \frac{1}{p_{0}} p_{t}=\frac{\varrho_{0}}{\gamma p_{0}}\left(\frac{p}{p_{0}}\right)^{1 / \gamma-1} p_{t} .
$$

The product term $p^{1 / \gamma-1} p_{t}$ can be linearized as $p_{0}^{1 / \gamma-1} p_{t}$, resulting in

$$
\varrho_{t} \approx \frac{\varrho_{0}}{\gamma p_{0}} p_{t} .
$$

We then get

$$
\begin{aligned}
p_{t}+\gamma p_{0} \nabla \cdot \boldsymbol{u} & =0, \\
\boldsymbol{u}_{t} & =-\frac{1}{\varrho_{0}} \nabla p, .
\end{aligned}
$$

Taking the divergence of (137) and differentiating (136) with respect gives the possibility to easily eliminate $\nabla \cdot \boldsymbol{u}_{t}$ and arrive at a standarc wave equation for p :

$$
p_{t t}=c^{2} \nabla^{2} p
$$

where $c=\sqrt{\gamma p_{0} / \varrho_{0}}$ is the speed of sound in the fluid.

9.6 Spherical waves

pherically symmetric three-dimensional waves propagate in the radial direction only so that $u=u(r, t)$. The fully three-dimensional wave equation

$$
\frac{\partial^{2} u}{\partial t^{2}}=\nabla \cdot\left(c^{2} \nabla u\right)+f
$$

ren reduces to the spherically symmetric wave equation

$$
\begin{equation*}
\frac{\partial^{2} u}{\partial t^{2}}=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(c^{2}(r) r^{2} \frac{\partial u}{\partial t}\right)+f(r, t), \quad r \in(0, R), t>0 \tag{139}
\end{equation*}
$$

Ine can easily show that the function $v(r, t)=r u(r, t)$ fulfills a standard wave quation in Cartesian coordinates if c is constant. To this end, insert $u=v / r$ in

$$
\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(c^{2}(r) r^{2} \frac{\partial u}{\partial t}\right)
$$

) obtain

$$
r\left(\frac{d c^{2}}{d r} \frac{\partial v}{\partial r}+c^{2} \frac{\partial^{2} v}{\partial r^{2}}\right)-\frac{d c^{2}}{d r} v
$$

he two terms in the parenthesis can be combined to

$$
r \frac{\partial}{\partial r}\left(c^{2} \frac{\partial v}{\partial r}\right)
$$

hich is recognized as the variable-coefficient Laplace operator in one Cartesian jordinate. The spherically symmetric wave equation in terms of $v(r, t)$ now ecomes

$$
\begin{equation*}
\frac{\partial^{2} v}{\partial t^{2}}=\frac{\partial}{\partial r}\left(c^{2}(r) \frac{\partial v}{\partial r}\right)-\frac{1}{r} \frac{d c^{2}}{d r} v+r f(r, t), \quad r \in(0, R), t>0 \tag{140}
\end{equation*}
$$

1 the case of constant wave velocity c, this equation reduces to the wave equation 1 a single Cartesian coordinate called r :

$$
\begin{equation*}
\frac{\partial^{2} v}{\partial t^{2}}=c^{2} \frac{\partial^{2} v}{\partial r^{2}}+r f(r, t), \quad r \in(0, R), t>0 \tag{141}
\end{equation*}
$$

hat is, any program for solving the one-dimensional wave equation in a Cartesian วordinate system can be used to solve (141), provided the source term is ultiplied by the coordinate, and that we divide the Cartesian mesh solution by to get the spherically symmetric solution. Moreover, if $r=0$ is included in the omain, spherical symmetry demands that $\partial u / \partial r=0$ at $r=0$, which means rat

$$
\frac{\partial u}{\partial r}=\frac{1}{r^{2}}\left(r \frac{\partial v}{\partial r}-v\right)=0, \quad r=0
$$

implying $v(0, t)=0$ as a necessary condition. For practical applicati exclude $r=0$ from the domain and assume that some boundary conc assigned at $r=\epsilon$, for some $\epsilon>0$.

19.7 The linear shallow water equations

The next example considers water waves whose wavelengths are much las the depth and whose wave amplitudes are small. This class of waves generated by catastrophic geophysical events, such as earthquakes at bottom, landslides moving into water, or underwater slides (or a comb as earthquakes frequently release avalanches of masses). For example, ε earthquake will normally have an extension of many kilometers but lift tl only a few meters. The wave length will have a size dictated by the ear area, which is much lager than the water depth, and compared to th length, an amplitude of a few meters is very small. The water is essentiall film, and mathematically we can average the problem in the vertical d and approximate the 3D wave phenomenon by 2D PDEs. Instead of a water domain in three space dimensions, we get a horizontal 2D domain unknown function for the surface elevation and the water depth as a coefficient in the PDEs.

Let $\eta(x, y, t)$ be the elevation of the water surface, $H(x, y)$ the wate corresponding to a flat surface $(\eta=0), u(x, y, t)$ and $v(x, y, t)$ the depth- ε horizontal velocities of the water. Mass and momentum balance of th volume give rise to the PDEs involving these quantities:

$$
\begin{aligned}
\eta_{t} & =-(H u)_{x}-(H v)_{x} \\
u_{t} & =-g \eta_{x} \\
v_{t} & =-g \eta_{y}
\end{aligned}
$$

where g is the acceleration of gravity. Equation (142) corresponds balance while the other two are derived from momentum balance (N second law).

The initial conditions associated with (142)-(144) are η, u, and v pr, at $t=0$. A common condition is to have some water elevation $\eta=I(x$ assume that the surface is at rest: $u=v=0$. A subsea earthquake means a sufficiently rapid motion of the bottom and the water volum that the bottom deformation is mirrored at the water surface as an in $I(x, y)$ and that $u=v=0$.

Boundary conditions may be η prescribed for incoming, known w zero normal velocity at reflecting boundaries (steep mountains, for in $u n_{x}+v n_{y}=0$, where $\left(n_{x}, n_{y}\right)$ is the outward unit normal to the boundar sophisticated boundary conditions are needed when waves run up at tt and at open boundaries where we want the waves to leave the compu domain undisturbed.

Equations (142), (143), and (144) can be transformed to a standard, linear ave equation. First, multiply (143) and (144) by H, differentiate (143)) with sspect to x and (144) with respect to y. Second, differentiate (142) with sspect to t and use that $(H u)_{x t}=\left(H u_{t}\right)_{x}$ and $(H v)_{y t}=\left(H v_{t}\right)_{y}$ when H is idependent of t. Third, eliminate $\left(H u_{t}\right)_{x}$ and $\left(H v_{t}\right)_{y}$ with the aid of the other vo differentiated equations. These manipulations results in a standard, linear ave equation for η :

$$
\begin{equation*}
\eta_{t t}=\left(g H \eta_{x}\right)_{x}+\left(g H \eta_{y}\right)_{y}=\nabla \cdot(g H \nabla \eta) . \tag{145}
\end{equation*}
$$

In the case we have an initial non-flat water surface at rest, the initial onditions become $\eta=I(x, y)$ and $\eta_{t}=0$. The latter follows from (142) if $=v=0$, or simply from the fact that the vertical velocity of the surface is η_{t}, hich is zero for a surface at rest.
The system (142)-(144) can be extended to handle a time-varying bottom jpography, which is relevant for modeling long waves generated by underwater ides. In such cases the water depth function H is also a function of t, due to re moving slide, and one must add a time-derivative term H_{t} to the left-hand de of (142). A moving bottom is best described by introducing $z=H_{0}$ as the ;ill-water level, $z=B(x, y, t)$ as the time- and space-varying bottom topography,) that $H=H_{0}-B(x, y, t)$. In the elimination of u and v one may assume that re dependence of H on t can be neglected in the terms $(H u)_{x t}$ and $(H v)_{y t}$. We ren end up with a source term in (145), because of the moving (accelerating) ottom:

$$
\begin{equation*}
\eta_{t t}=\nabla \cdot(g H \nabla \eta)+B_{t t} . \tag{146}
\end{equation*}
$$

The reduction of (146) to 1D, for long waves in a straight channel, or for pproximately plane waves in the ocean, is trivial by assuming no change in y irection $(\partial / \partial y=0)$:

$$
\begin{equation*}
\eta_{t}=\left(g H \eta_{x}\right)_{x}+B_{t t} . \tag{147}
\end{equation*}
$$

Vind drag on the surface. Surface waves are influenced by the drag of the ind, and if the wind velocity some meters above the surface is (U, V), the wind rag gives contributions $C_{V} \sqrt{U^{2}+V^{2}} U$ and $C_{V} \sqrt{U^{2}+V^{2}} V$ to (143) and (144), sspectively, on the right-hand sides.
;ottom drag. The waves will experience a drag from the bottom, often ,ughly modeled by a term similar to the wind drag: $C_{B} \sqrt{u^{2}+v^{2}} u$ on the ght-hand side of (143) and $C_{B} \sqrt{u^{2}+v^{2}} v$ on the right-hand side of (144). Note rat in this case the PDEs (143) and (144) become nonlinear and the elimination f u and v to arrive at a 2nd-order wave equation for η is not possible anymore.

Effect of the Earth's rotation. Long geophysical waves will often be by the rotation of the Earth because of the Coriolis force. This force g. to a term $f v$ on the right-hand side of (143) and $-f u$ on the right-he of (144). Also in this case one cannot eliminate u and v to work with equation for η. The Coriolis parameter is $f=2 \Omega \sin \phi$, where Ω is the velocity of the earth and ϕ is the latitude.

19.8 Waves in blood vessels

The flow of blood in our bodies is basically fluid flow in a network (Unlike rigid pipes, the walls in the blood vessels are elastic and will : their diameter when the pressure rises. The elastic forces will then push back and accelerate the fluid. This interaction between the flow of blood deformation of the vessel wall results in waves traveling along our blood

A model for one-dimensional waves along blood vessels can be deriv averaging the fluid flow over the cross section of the blood vessels. Le coordinate along the blood vessel and assume that all cross sections are though with different radius $R(x, t)$. The main quantities to comput cross section area $A(x, t)$, the averaged pressure $P(x, t)$, and the total flux $Q(x, t)$. The area of this cross section is

$$
A(x, t)=2 \pi \int_{0}^{R(x, t)} r d r
$$

Let $v_{x}(x, t)$ be the velocity of blood averaged over the cross section at The volume flux, being the total volume of blood passing a cross sec ${ }^{1}$ time unit, becomes

$$
Q(x, t)=A(x, t) v_{x}(x, t)
$$

Mass balance and Newton's second law lead to the PDEs

$$
\begin{aligned}
\frac{\partial A}{\partial t}+\frac{\partial Q}{\partial x} & =0 \\
\frac{\partial Q}{\partial t}+\frac{\gamma+2}{\gamma+1} \frac{\partial}{\partial x}\left(\frac{Q^{2}}{A}\right)+\frac{A}{\varrho} \frac{\partial P}{\partial x} & =-2 \pi(\gamma+2) \frac{\mu}{\varrho} \frac{Q}{A}
\end{aligned}
$$

where γ is a parameter related to the velocity profile, ϱ is the density c and μ is the dynamic viscosity of blood.

We have three unknowns A, Q, and P, and two equations (150) an A third equation is needed to relate the flow to the deformations of the common form for this equation is

$$
\frac{\partial P}{\partial t}+\frac{1}{C} \frac{\partial Q}{\partial x}=0
$$

where C is the compliance of the wall, given by the constitutive relatio

$$
C=\frac{\partial A}{\partial P}+\frac{\partial A}{\partial t}
$$

hich require a relationship between A and P. One common model is to view ne vessel wall, locally, as a thin elastic tube subject to an internal pressure. his gives the relation

$$
P=P_{0}+\frac{\pi h E}{\left(1-\nu^{2}\right) A_{0}}\left(\sqrt{A}-\sqrt{A_{0}}\right)
$$

here P_{0} and A_{0} are corresponding reference values when the wall is not deformed, is the thickness of the wall, and E and ν are Young's modulus and Poisson's atio of the elastic material in the wall. The derivative becomes

$$
\begin{equation*}
C=\frac{\partial A}{\partial P}=\frac{2\left(1-\nu^{2}\right) A_{0}}{\pi h E} \sqrt{A_{0}}+2\left(\frac{\left(1-\nu^{2}\right) A_{0}}{\pi h E}\right)^{2}\left(P-P_{0}\right) \tag{154}
\end{equation*}
$$

nother (nonlinear) deformation model of the wall, which has a better fit with xperiments, is

$$
P=P_{0} \exp \left(\beta\left(A / A_{0}-1\right)\right)
$$

here β is some parameter to be estimated. This law leads to

$$
\begin{equation*}
C=\frac{\partial A}{\partial P}=\frac{A_{0}}{\beta P} . \tag{155}
\end{equation*}
$$

ieduction to standard wave equation. It is not uncommon to neglect the iscous term on the right-hand side of (151) and also the quadratic term with Q^{2} n the left-hand side. The reduced equations (151) and (152) form a first-order near wave equation system:

$$
\begin{align*}
C \frac{\partial P}{\partial t} & =-\frac{\partial Q}{\partial x} \tag{156}\\
\frac{\partial Q}{\partial t} & =-\frac{A}{\varrho} \frac{\partial P}{\partial x} \tag{157}
\end{align*}
$$

hese can be combined into standard 1D wave equation PDE by differentiating re first equation with respect t and the second with respect to x,

$$
\frac{\partial}{\partial t}\left(C C \frac{\partial P}{\partial t}\right)=\frac{\partial}{\partial x}\left(\frac{A}{\varrho} \frac{\partial P}{\partial x}\right)
$$

hich can be approximated by

$$
\begin{equation*}
\frac{\partial^{2} Q}{\partial t^{2}}=c^{2} \frac{\partial^{2} Q}{\partial x^{2}}, \quad c=\sqrt{\frac{A}{\varrho C}} \tag{158}
\end{equation*}
$$

here the A and C in the expression for c are taken as constant reference values.

19.9 Electromagnetic waves

Light and radio waves are governed by standard wave equations arisi: Maxwell's general equations. When there are no charges and no curren a vacuum, Maxwell's equations take the form

$$
\begin{aligned}
\nabla \cdot \boldsymbol{E} & =0 \\
\nabla \cdot \boldsymbol{B} & =0 \\
\nabla \times \boldsymbol{E} & =-\frac{\partial \boldsymbol{B}}{\partial t} \\
\nabla \times \boldsymbol{B} & =\mu_{0} \epsilon_{0} \frac{\partial \boldsymbol{E}}{\partial t}
\end{aligned}
$$

where $\epsilon_{0}=8.854187817620 \cdot 10^{-12}(\mathrm{~F} / \mathrm{m})$ is the permittivity of free sp ε known as the electric constant, and $\mu_{0}=1.2566370614 \cdot 10^{-6}(\mathrm{H} / \mathrm{m}$ permeability of free space, also known as the magnetic constant. Taking of the two last equations and using the identity

$$
\nabla \times(\nabla \times \boldsymbol{E})=\nabla(\nabla \cdot \boldsymbol{E})-\nabla^{2} \boldsymbol{E}=-\nabla^{2} \boldsymbol{E} \text { when } \nabla \cdot \boldsymbol{E}=0,
$$

immediately gives the wave equation governing the electric and magnet

$$
\begin{aligned}
\frac{\partial^{2} \boldsymbol{E}}{\partial t^{2}} & =c^{2} \frac{\partial^{2} \boldsymbol{E}}{\partial x^{2}} \\
\frac{\partial^{2} \boldsymbol{E}}{\partial t^{2}} & =c^{2} \frac{\partial^{2} \boldsymbol{E}}{\partial x^{2}}
\end{aligned}
$$

with $c=1 / \sqrt{\mu_{0} \epsilon_{0}}$ as the velocity of light. Each component of \boldsymbol{E} and \boldsymbol{B} wave equation and can hence be solved independently.

20 Exercises

Exercise 14: Simulate waves on a non-homogeneous :

Simulate waves on a string that consists of two materials with different The tension in the string is constant, but the density has a jump at the n the string. Experiment with different sizes of the jump and produce ani that visualize the effect of the jump on the wave motion.

Hint. According to Section 19.1, the density enters the mathematical r . ϱ in $\varrho u_{t t}=T u_{x x}$, where T is the string tension. Modify, e.g., the wave1D_ı code to incorporate the tension and two density values. Make a mesh f rho with density values at each spatial mesh point. A value for the tens be 150 N . Corresponding density values can be computed from the wave estimations in the guitar function in the wave1D_u0_sv.py file.

Filename: wave1D_u0_sv_discont.py.

`xercise 15: Simulate damped waves on a string

ormulate a mathematical model for damped waves on a string. Use data from ection 3.4, and tune the damping parameter so that the string is very close) the rest state after 15 s . Make a movie of the wave motion. Filename: ave1D_u0_sv_damping.py.

jxercise 16: Simulate elastic waves in a rod

hammer hits the end of an elastic rod. The exercise is to simulate the resulting ave motion using the model (120) from Section 19.3. Let the rod have length and let the boundary $x=L$ be stress free so that $\sigma_{x x}=0$, implying that $u / \partial x=0$. The left end $x=0$ is subject to a strong stress pulse (the hammer), ıodeled as

$$
\sigma_{x x}(t)= \begin{cases}S, & 0<t \leq t_{s} \\ 0, & t>t_{s}\end{cases}
$$

he corresponding condition on u becomes $u_{x}=S / E$ for $t \leq t_{s}$ and zero fterwards (recall that $\sigma_{x x}=E u_{x}$). This is a non-homogeneous Neumann ondition, and you will need to approximate this condition and combine it with re scheme (the ideas and manipulations follow closely the handling of a non-zero iitial condition $u_{t}=V$ in wave PDEs or the corresponding second-order ODEs or vibrations). Filename: wave_rod.py.

jxercise 17: Simulate spherical waves

nplement a model for spherically symmetric waves using the method described , Section 19.6. The boundary condition at $r=0$ must be $\partial u / \partial r=0$, while the mndition at $r=R$ can either be $u=0$ or a radiation condition as described in roblem 20. The $u=0$ condition is sufficient if R is so large that the amplitude £ the spherical wave has become insignificant. Make movie(s) of the case where 1e source term is located around $r=0$ and sends out pulses

$$
f(r, t)= \begin{cases}Q \exp \left(-\frac{r^{2}}{2 \Delta r^{2}}\right) \sin \omega t, & \sin \omega t \geq 0 \\ 0, & \sin \omega t<0\end{cases}
$$

ere, Q and ω are constants to be chosen.
[int. Use the program wave1D_u0_sv.py as a starting point. Let solver ompute the v function and then set $u=v / r$. However, $u=v / r$ for $r=0$ quires special treatment. One possibility is to compute $u[1:]=v[1:] / r[1:]$ nd then set $\mathrm{u}[0]=\mathrm{u}[1]$. The latter makes it evident that $\partial u / \partial r=0$ in a plot.

Filename: wave1D_spherical.py.

Exercise 18: Explain why numerical noise occurs

The experiments performed in Exercise 8 shows considerable numeric in the form of non-physical waves, especially for $s_{f}=4$ and the ple or the half a "cosinehat" pulse. The noise is much less visible for a G pulse. Run the case with the plug and half a "cosinehat" pulses for $C=0.9,0.25$, and $N_{x}=40,80,160$. Use the numerical dispersion reli explain the observations. Filename: pulse1D_analysis.pdf.

Exercise 19: Investigate harmonic averaging in a 1D

Harmonic means are often used if the wave velocity is non-smooth or tinuous. Will harmonic averaging of the wave velocity give less nu noise for the case $s_{f}=4$ in Exercise 8? Filenames: pulse1D_harmon pulse1D_harmonic.py.

Problem 20: Implement open boundary conditions

To enable a wave to leave the computational domain and travel undi through the boundary $x=L$, one can in a one-dimensional problem ims following condition, called a radiation condition or open boundary cond

$$
\frac{\partial u}{\partial t}+c \frac{\partial u}{\partial x}=0 .
$$

The parameter c is the wave velocity.
Show that (161) accepts a solution $u=g_{R}(x-c t)$, but not $u=g_{L}$ This means that (161) will allow any right-going wave $g_{R}(x-c t)$ to pass the boundary.

A corresponding open boundary condition for a left-going wave throuॄ is

$$
\frac{\partial u}{\partial t}+c \frac{\partial u}{\partial x}=0
$$

The condition (161) can be discretized by centered differences at the end point $i=N_{x}$, corresponding to $x=x_{R}$:

$$
\left[D_{2 t} u+c D_{2 x} u=0\right]_{N_{x}}^{n} .
$$

Eliminate the fictitious value $u_{N_{x}+1}^{n}$ by using the discrete equation at t . point. The equation for the first step, u_{i}^{1}, is in principal affected, but then use the condition $u_{N_{x}}=0$ since the wave has not yet reached t . boundary.

A corresponding open boundary condition for a left-going wave throuॄ is

$$
\frac{\partial u}{\partial t}-c \frac{\partial u}{\partial x}=0
$$

nplement a solver that incorporates the conditions (163) and (164). Start with)me peak-shaped Gaussian function in the middle of the domain as $I(x)$ and emonstrate that waves travel undisturbed out of the domain at $x=L$ and $=0$. Make a nose test for checking that the surface is flat after a certain time.
iemark. The condition (161) works perfectly in 1 D when c is known. In 2D nd 3 D , however, the condition reads $u_{t}+c_{x} u_{x}+c_{y} u_{y}=0$, where c_{x} and c_{y} re the wave speeds in the x and y directions. Estimating these components .e., the direction of the wave) is often challenging. Other methods are normally sed in 2D and 3D to let waves move out of a computational domain. Filename: ave1D_open_BC.py.

'roblem 21: Earthquake-generated tsunami over a subsea

 ill. subsea earthquake leads to an immediate lift of the water surface, see Figure 10. he lifted water surface splits into two tsunamis, one traveling to the right and ne to the left, as depicted in Figure 11. Since tsunamis are normally very long aves, compared to the depth, with a small amplitude, compared to the wave ngth, the wave equation model described in Section 19.7 is relevant:

$$
\eta_{t t}=\left(g H(x) \eta_{x}\right)_{x}
$$

here g is the acceleration of gravity, and $H(x)$ is the still water depth.

Figure 10: Sketch of initial water surface due to a subsea earthquake.
To simulate the right-going tsunami, we can impose a symmetry boundary $\mathrm{t} x=0: \partial \eta \partial x=0$. We then simulate the wave motion in $[0, L]$. Unless the cean ends at $x=L$, the waves should travel undisturbed through the boundary $=L$. A radiation condition as explained in Problem 20 can be used for this

Figure 11: An initial surface elevation is split into two waves.
purpose. Alternatively, one can just stop the simulations before the w the boundary at $x=L$. In that case it does not matter what kind of b_{1} condition we use at $x=L$. Imposing $\eta=0$ and stopping the simulatios $\left|\eta_{i}^{n}\right|>\epsilon, i=N_{x}-1$, is a possibility (ϵ is a small parameter).

The shape of the initial surface can be taken as a Gaussian functior

$$
I\left(x ; I_{0}, I_{a}, I_{m}, I_{s}\right)=I_{0}+I_{a} \exp \left(-\left(\frac{x-I_{m}}{I_{s}}\right)^{2}\right)
$$

with $I_{m}=0$ reflecting the location of the peak of $I(x)$ and I_{s} being a 1 of the width of the function $I(x)$ (I_{s} is $\sqrt{2}$ times the standard deviatio familiar normal distribution curve).

Now we extend the problem with a hill at the sea bottom, see Figure wave speed $c=\sqrt{g H(x)}=\sqrt{g\left(H_{0}-B(x)\right)}$ will then be reduced in the water above the hill.

One possible form of the hill is a Gaussian function,

$$
B\left(x ; B_{0}, B_{a}, B_{m}, B_{s}\right)=B_{0}+B_{a} \exp \left(-\left(\frac{x-B_{m}}{B_{s}}\right)^{2}\right)
$$

but many other shapes are also possible, e.g., a "cosine hat" where

$$
B\left(x ; B_{0}, B_{a}, B_{m}, B_{s}\right)=B_{0}+B_{a} \cos \left(\pi \frac{x-B_{m}}{2 B_{s}}\right),
$$

when $x \in\left[B_{m}-B_{s}, B_{m}+B_{s}\right]$ while $B=B_{0}$ outside this interval.
Also an abrupt construction may be tried:

$$
B\left(x ; B_{0}, B_{a}, B_{m}, B_{s}\right)=B_{0}+B_{a},
$$

igure 12: Sketch of an earthquake-generated tsunami passing over a subsea ill.
rr $x \in\left[B_{m}-B_{s}, B_{m}+B_{s}\right]$ while $B=B_{0}$ outside this interval.
The wave1D_dn_vc.py ${ }^{29}$ program can be used as starting point for the nplementation. Visualize both the bottom topography and the water surface evation in the same plot. Allow for a flexible choice of bottom shape: (166), 67), (168), or $B(x)=B_{0}$ (flat).
The purpose of this problem is to explore the quality of the numerical solution ${ }_{i}^{n}$ for different shapes of the bottom obstruction. The "cosine hat" and the boxlaped hills have abrupt changes in the derivative of $H(x)$ and are more likely to эnerate numerical noise than the smooth Gaussian shape of the hill. Investigate this is true. Filenames: tsunami1D_hill.py, tsunami1D_hill.pdf.
'roblem 22: Earthquake-generated tsunami over a 3D hill
his problem extends Problem 21 to a three-dimensional wave phenomenon, jverned by the 2D PDE (145). We assume that the earthquake arise from a ult along the line $x=0$ in the $x y$-plane so that the initial lift of the surface in be taken as $I(x)$ in Problem 21. That is, a plane wave is propagating to the ght, but will experience bending because of the bottom.

The bottom shape is now a function of x and y. An "elliptic" Gaussian unction in two dimensions, with its peak at ($B_{m x}, B_{m y}$), generalizes (166):
$\therefore\left(x ; B_{0}, B_{a}, B_{m x}, B_{m y}, B_{s}, b\right)=B_{0}+B_{a} \exp \left(-\left(\frac{x-B_{m x}}{B_{s}}\right)^{2}-\left(\frac{y-B_{m y}}{b B_{s}}\right)^{2}\right)$, (169)

[^17]where b is a scaling parameter: $b=1$ gives a circular Gaussian functi circular contour lines, while $b \neq 1$ gives an elliptic shape with elliptic lines.

The "cosine hat" (167) can also be generalized to

$$
B\left(x ; B_{0}, B_{a}, B_{m x}, B_{m y}, B_{s}\right)=B_{0}+B_{a} \cos \left(\pi \frac{x-B_{m x}}{2 B_{s}}\right) \cos \left(\pi \frac{y-E}{2 B}\right.
$$

when $0 \leq \sqrt{x^{2}+y^{2}} \leq B_{s}$ and $B=B_{0}$ outside this circle.
A box-shaped obstacle means that

$$
B\left(x ; B_{0}, B_{a}, B_{m}, B_{s}, b\right)=B_{0}+B_{a}
$$

for x and y inside a rectangle

$$
B_{m x}-B_{s} \leq x \leq B_{m x}+B_{s}, \quad B_{m y}-b B_{s} \leq y \leq B_{m y}+b B_{s}
$$

and $B=B_{0}$ outside this rectangle. The b parameter controls the rect shape of the cross section of the box.

Note that the initial condition and the listed bottom shapes are syl around the line $y=B_{m y}$. We therefore expect the surface elevation be symmetric with respect to this line. This means that we can hi computational domain by working with $\left[0, L_{x}\right] \times\left[0, B_{m y}\right]$. Along th boundary, $y=B_{m y}$, we must impose the symmetry condition $\partial \eta / \partial n=$ a symmetry condition $\left(-\eta_{x}=0\right)$ is also needed at the $x=0$ boundary the initial condition has a symmetry here. At the lower boundary $y=0$ set a Neumann condition (which becomes $-\eta_{y}=0$). The wave motion simulated until the wave hits the reflecting boundaries where $\partial \eta / \partial n=$ (one can also set $\eta=0$ - the particular condition does not matter as lon simulation is stopped before the wave is influenced by the boundary col

Visualize the surface elevation. Investigate how different hill sha ferent sizes of the water gap above the hill, and different resolution: $\Delta y=h$ and Δt influence the numerical quality of the solution. Fil tsunami2D_hill.py, tsunami2D_hill.pdf.

Problem 23: Investigate Matplotlib for visualization

Play with native Matplotlib code for visualizing 2D solutions of the wave ϵ with variable wave velocity. See if there are effective ways to visualize k solution and the wave velocity. Filename: tsunami2D_hill_mpl.py.

Problem 24: Investigate visualization packages

Create some fancy 3D visualization of the water waves and the subse Problem 22. Try to make the hill transparent. Possible visualization to

- Mayavi ${ }^{30}$
- Paraview ${ }^{31}$
- OpenDX ${ }^{32}$
ilename: tsunami2D_hill_viz.py.

'roblem 25: Implement loops in compiled languages

xtend the program from Problem 22 such that the loops over mesh points, inside ie time loop, are implemented in compiled languages. Consider implementations ${ }_{1}$ Cython, Fortran via f2py, C via Cython, C via f2py, C/C++ via Instant, nd C/C++ via scipy.weave. Perform efficiency experiments to investigate the lative performance of the various implementations. It is often advantageous , normalize CPU times by the fastest method on a given mesh. Filename: sunami2D_hill_compiled.py.

jxercise 26: Simulate seismic waves in 2D

he goal of this exercise is to simulate seismic waves using the PDE model 29) in a $2 \mathrm{D} x z$ domain with geological layers. Introduce m horizontal layers f thickness $h_{i}, i=0, \ldots, m-1$. Inside layer number i we have a vertical wave slocity $c_{z, i}$ and a horizontal wave velocity $c_{h, i}$. Make a program for simulating 1ch 2D waves. Test it on a case with 3 layers where

$$
c_{z, 0}=c_{z, 1}=c_{z, 2}, \quad c_{h, 0}=c_{h, 2}, \quad c_{h, 1} \ll c_{h, 0} .
$$

et s be a localized point source at the middle of the Earth's surface (the pper boundary) and investigate how the resulting wave travels through the ledium. The source can be a localized Gaussian peak that oscillates in time rr some time interval. Place the boundaries far enough from the expanding ave so that the boundary conditions do not disturb the wave. Then the type £ boundary condition does not matter, except that we physically need to have $=p_{0}$, where p_{0} is the atmospheric pressure, at the upper boundary. Filename: eismic2D.py.

'roject 27: Model 3D acoustic waves in a room

he equation for sound waves in air is derived in Section 19.5 and reads

$$
p_{t t}=c^{2} \nabla^{2} p
$$

here $p(x, y, z, t)$ is the pressure and c is the speed of sound, taken as $340 \mathrm{~m} / \mathrm{s}$. owever, sound is absorbed in the air due to relaxation of molecules in the gas.

[^18]A model for simple relaxation, valid for gases consisting only of one molecules, is a term $c^{2} \tau_{s} \nabla^{2} p_{t}$ in the PDE , where τ_{s} is the relaxation tir generate sound from, e.g., a loudspeaker in the room, this sound sour also be added to the governing equation.

The PDE with the mentioned type of damping and source then bec

$$
p_{t} t=c^{2} \nabla^{p}+c^{2} \tau_{s} \nabla^{2} p_{t}+f
$$

where $f(x, y, z, t)$ is the source term.
The walls can absorb some sound. A possible model is to have a " $w s$ (thicker than the physical wall) outside the room where c is changed st some of the wave energy is reflected and some is absorbed in the wa absorption of energy can be taken care of by adding a damping term $b x$ equation:

$$
p_{t} t+b p_{t}=c^{2} \nabla^{p}+c^{2} \tau_{s} \nabla^{2} p_{t}+f .
$$

Typically, $b=0$ in the room and $b>0$ in the wall. A discontinuity i will give rise to reflections. It can be wise to use a constant c in the control reflections because of the discontinuity between c in the air an wall, while b is gradually increased as we go into the wall to avoid ref because of rapid changes in b. At the outer boundary of the wall the cc $p=0$ or $\partial p / \partial n=0$ can be imposed. The waves should anyway be approz dampened to $p=0$ this far out in the wall layer.

There are two strategies for discretizing the $\nabla^{2} p_{t}$ term: using ε difference between times $n+1$ and $n-1$ (if the equation is sampled at or use a one-sided difference based on levels n and $n-1$. The latter advantage of not leading to any equation system, while the former is secor accurate as the scheme for the simple wave equation $p_{t} t=c^{2} \nabla^{2} p$. To ε equation system, go for the one-sided difference such that the overall becomes explicit and only of first order in time.

Develop a 3D solver for the specified PDE and introduce a wall layer. solver with the method of manufactured solutions. Make some demons where the wall reflects and absorbs the waves (reflection because of disco in b and absorption because of growing b). Experiment with the impac τ_{s} parameter. Filename: acoustics.py.

Project 28: Solve a 1D transport equation

We shall study the wave equation

$$
u_{t}+c u_{x}=0, \quad x \in(0, L], t \in(0, T]
$$

with initial condition

$$
u(x, 0)=I(x), \quad x \in[0, L],
$$

and one periodic boundary condition

$$
\begin{equation*}
u(0, t)=u(L, t) \tag{176}
\end{equation*}
$$

his boundary condition means that what goes out of the domain at $x=L$ omes in at $x=0$. Roughly speaking, we need only one boundary condition ecause of the spatial derivative is of first order only.
'hysical interpretation. The parameter c can be constant or variable, $c=$ ' x). The equation (174) arises in transport problems where a quantity u, which suld be temperature or concentration of some contaminant, is transported with re velocity c of a fluid. In addition to the transport imposed by "travelling ith the fluid", u may also be transported by diffusion (such as heat conduction r Fickian diffusion), but we have in the model $u_{t}+c u_{x}$ assumed that diffusion fects are negligible, which they often are.

A widely used numerical scheme for (174) applies a forward difference in me and a backward difference in space when $c>0$:

$$
\begin{equation*}
\left[D_{t}^{+} u+c D_{x}^{-} u=0\right]_{i}^{n} \tag{177}
\end{equation*}
$$

or $c<0$ we use a forward difference in space: $\left[c D_{x}^{+} u\right]_{i}^{n}$.
We shall hereafter assume that $=c(x)>0$.
To compute (182) we need to integrate $1 / c$ to obtain C and then compute re inverse of C.
The inverse function computation can be easily done if we first think discretely. ay we have some function $y=g(x)$ and seeks its inverse. Plotting $\left(x_{i}, y_{i}\right)$, here $y_{i}=g\left(x_{i}\right)$ for some mesh points x_{i}, displays g as a function of x. The ıverse function is simply x as a function of g, i.e., the curve with points $\left(y_{i}, x_{i}\right)$. Ve can therefore quickly compute points at the curve of the inverse function. 'ne way of extending these points to a continuous function is to assume a linear ariation (known as linear interpolation) between the points (which actually ıeans to draw straight lines between the points, exactly as done by a plotting rogram).

The function wrap2callable in scitools.std can take a set of points and sturn a continuous function that corresponds to linear variation between the oints. The computation of the inverse of a function g on $[0, L]$ can then be one by
lef inverse(g, domain, resolution=101):
$\mathrm{x}=$ linspace(domain[0], domain[L], resolution)
$y=g(x)$
from scitools.std import wrap2callable
g_inverse = wrap2callable((y, x))
return g_inverse
To compute $C(x)$ we need to integrate $1 / c$, which can be done by a Trapezoidal le. Suppose we have computed $C\left(x_{i}\right)$ and need to compute $C\left(x_{i+1}\right)$. Using re Trapezoidal rule with m subintervals over the integration domain $\left[x_{i}, x_{i+1}\right]$ ives

$$
C\left(x_{i+1}\right)=C\left(x_{i}\right)+\int_{x_{i}}^{x_{i+1}} \frac{d x}{c} \approx h\left(\frac{1}{2} \frac{1}{c\left(x_{i}\right)}+\frac{1}{2} \frac{1}{c\left(x_{i+1}\right)}+\sum_{j=1}^{m-1} \frac{1}{c\left(x_{i}+!\right.}\right.
$$

where $h=\left(x_{i+1}-x_{i}\right) / m$ is the length of the subintervals used for the over $\left[x_{i}, x_{i+1}\right]$. We observe that (178) is a difference equation which we c by repeatedly applying (178) for $i=0,1, \ldots, N_{x}-1$ if a mesh $x_{0}, x_{,} \ldots$ prescribed. Note that $C(0)=0$.
a) Show that under the assumption of $a=$ const,

$$
u(x, t)=I(x-c t)
$$

fulfills the PDE as well as the initial and boundary condition (providec $I(L))$.
b) Set up a computational algorithm and implement it in a function. a is constant and positive.
c) Test implementation by using the remarkable property that the n solution is exact at the mesh points if $\Delta t=c^{-1} \Delta x$.
d) Make a movie comparing the numerical and exact solution for the f_{i} two choices of initial conditions:

$$
I(x)=\left[\sin \left(\pi \frac{x}{L}\right)\right]^{2 n}
$$

where n is an integer, typically $n=5$, and

$$
I(x)=\exp \left(-\frac{(x-L / 2)^{2}}{2 \sigma 2}\right) .
$$

Choose $\Delta t=c^{-1} \Delta x, 0.9 c^{-1} \Delta x, 0.5 c^{-1} \Delta x$.
e) The performance of the suggested numerical scheme can be inve: by analyzing the numerical dispersion relation. Analytically, we have 1 Fourier component

$$
u(x, t)=e^{i(k x-\omega t)}
$$

is a solution of the PDE if $\omega=k c$. This is the analytical dispersion relc complete solution of the PDE can be built by adding up such Fourier com with different amplitudes, where the initial condition I determines the am The solution u is then represented by a Fourier series.

A similar discrete Fourier component at $\left(x_{p}, t_{n}\right)$ is

$$
u_{p}^{q}=e^{i(k p \Delta x-\tilde{\omega} n \Delta t)}
$$

here in general $\tilde{\omega}$ is a function of $k, \Delta t$, and Δx, and differs from the exact $=k c$.
Insert the discrete Fourier component in the numerical scheme and derive an xpression for $\tilde{\omega}$, i.e., the discrete dispersion relation. Show in particular that the $\Delta t /(c \Delta x)=1$, the discrete solution coincides with the exact solution at re mesh points, regardless of the mesh resolution (!). Show that if the stability ondition

$$
\frac{\Delta t}{c \Delta x} \leq 1
$$

1e discrete Fourier component cannot grow (i.e., $\tilde{\omega}$ is real).
) Write a test for your implementation where you try to use information from re numerical dispersion relation.
) Set up a computational algorithm for the variable coefficient case and nplement it in a function. Make a test that the function works for constant a.
) It can be shown that for an observer moving with velocity $c(x), u$ is constant. his can be used to derive an exact solution when a varies with x. Show first rat

$$
\begin{equation*}
u(x, t)=f(C(x)-t) \tag{182}
\end{equation*}
$$

here

$$
C^{\prime}(x)=\frac{1}{c(x)}
$$

a solution of (174) for any differentiable function f.
olution. Let $\xi=C(x)-t$. We have that

$$
u_{t}=f^{\prime}(\xi)(-1),
$$

hile

$$
u_{x}=f^{\prime}(\xi) C^{\prime}(x)=f^{\prime}(\xi) \frac{1}{c(x)}
$$

nplying that $a u_{x}=f^{\prime}(\xi)$. Then we have $u_{t}+c u_{x}=-f^{\prime}(\xi)+f^{\prime}(\xi)=0$.
Use the initial condition to show that an exact solution is

$$
u(x, t)=I\left(C^{-1}(C(x)-t)\right)
$$

ith C^{-1} being the inverse function of $C=\int c^{1} d x$. Since $C(x)$ is an integral ${ }_{j}^{x}(1 / c) d x, C(x)$ is monotonically increasing and there exists hence an inverse metion C^{-1} with values in $[0, L]$.

Solution. In general we have $u(x, t)=f(C(x)-t)$ and the solution i form with $f(\xi)=I\left(C^{-1}(\xi)\right)$. Moreover, at $t=0$ we have $I\left(C^{-1}(C(x))\right)$ which is the required initial condition.
j) Implement a function for computing $C\left(x_{i}\right)$ and one for computing C^{-} any x. Use these two functions for computing the exact solution $I\left(C^{-1}(C\right.$ End up with a function u_exact_variable_c(x, n, c, I) that retr value of $I\left(C^{-1}\left(C(x)-t_{n}\right)\right)$.
k) Make movies showing a comparison of the numerical and exact st for the two initial conditions (180) and (28). Choose $\Delta t=\Delta x / \max _{0, L} c$ the velocity of the medium as

1. $c(x)=1+\epsilon \sin (k \pi x / L), \epsilon<1$,
2. $c(x)=1+I(x)$, where I is given by (180) or (28).

The PDE $u_{t}+c u_{x}=0$ expresses that the initial condition $I(x)$ is tran with velocity $c(x)$.

Filename: advec1D.py.

Problem 29: General analytical solution of a 1D da wave equation

We consider an initial-boundary value problem for the damped wave ec

$$
\begin{aligned}
u_{t t}+b u_{t} & =c^{2} u_{x x}, \quad x \in(0, L), t \in(0, T] \\
u(0, t) & =0 \\
u(L, t) & =0 \\
u(x, 0) & =I(x), \\
u_{t}(x, 0) & =V(x) .
\end{aligned}
$$

Here, $b \geq 0$ and c are given constants. The aim is to derive a general ar solution of this problem. Familiarity with the method of separation of v for solving PDEs will be assumed.
a) Seek a solution on the form $u(x, t)=X(x) T(t)$. Insert this solutio PDE and show that it leads to two differential equations for X and T :

$$
T^{\prime \prime}+b T^{\prime}+\lambda T=0, \quad c^{2} X^{\prime \prime}+\lambda X=0
$$

with $X(0)=X(L)=0$ as boundary conditions, and λ as a constar determined.
) Show that $X(x)$ is on the form

$$
X_{n}(x)=C_{n} \sin k x, \quad k=\frac{n \pi}{L}, \quad n=1,2, \ldots
$$

here C_{n} is an arbitrary constant.
) Under the assumption that $(b / 2)^{2}<k^{2}$, show that $T(t)$ is on the form

$$
T_{n}(t)=e^{-\frac{1}{2} b t}\left(a_{n} \cos \omega t+b_{n} \sin \omega t\right), \quad \omega=\sqrt{k^{2}-\frac{1}{4} b^{2}}, \quad n=1,2, \ldots
$$

he complete solution is then

$$
u(x, t)=\sum_{n=1}^{\infty} \sin k x e^{-\frac{1}{2} b t}\left(A_{n} \cos \omega t+B_{n} \sin \omega t\right)
$$

here the constants A_{n} and B_{n} must be computed from the initial conditions.
) Derive a formula for A_{n} from $u(x, 0)=I(x)$ and developing $I(x)$ as a sine ourier series on $[0, L]$.
) Derive a formula for B_{n} from $u_{t}(x, 0)=V(x)$ and developing $V(x)$ as a sine ourier series on $[0, L]$.
) Calculate A_{n} and B_{n} from vibrations of a string where $V(x)=0$ and

$$
I(x)= \begin{cases}a x / x_{0}, & x<x_{0} \tag{183}\\ a(L-x) /\left(L-x_{0}\right), & \text { otherwise }\end{cases}
$$

) Implement the series for $u(x, t)$ in a function u_{-}series ($\mathrm{x}, \mathrm{t}, \mathrm{tol}=1 \mathrm{E}-10$), here tol is a tolerance for truncating the series. Simply sum the terms until ${ }_{i_{n}} \mid$ and $\left|b_{b}\right|$ both are less than tol.
) What will change in the derivation of the analytical solution if we have ${ }_{x}(0, t)=u_{x}(L, t)=0$ as boundary conditions? And how will you solve the roblem with $u(0, t)=0$ and $u_{x}(L, t)=0$?

Filename: damped_wave1D.pdf.

'roblem 30: General analytical solution of a 2D damped rave equation

arry out Problem 29 in the 2D case: $u_{t t}+b u_{t}=c^{2}\left(u_{x x}+u_{y y}\right)$, where $(x, y) \in$ ।, $\left.L_{x}\right) \times\left(0, L_{y}\right)$. Assume a solution on the form $u(x, y, t)=X(x) Y(y) T(t)$.
Filename: damped_wave2D.pdf.

Index

arithmetic mean, 36
array slices, 21
averaging
arithmetic, 36
geometric, 36
harmonic, 36
C extension module, 69
C/Python array storage, 74
column-major ordering, 74
Courant number, 50
Cython, 66
cython -a (Python-C translation in HTML), 68
declaration of variables in Cython, 67
Dirichlet conditions, 28
discrete Fourier transform, 47
distutils, 69
Fortran array storage, 74
Fortran subroutine, 71
Fourier series, 47
Fourier transform, 47
geometric mean, 36
harmonic average, 36
homogeneous Dirichlet conditions, 28
homogeneous Neumann conditions, 28
index set notation, 30,62
lambda function (Python), 24
mesh
finite differences, 5
mesh function, 6
Neumann conditions, 28 nose tests, 16
open boundary condition, 96
radiation condition, 96
row-major ordering, 74
scalar code, 21
setup.py, 69
slice, 21
software testing
nose, 16
stability criterion, 50
stencil
1D wave equation, 6
Neumann boundary, 29
unit testing, 16
vectorization, 21
wave equation
1D, 5
1D, analytical properties,
1D, exact numerical solut
1D, finite difference methc
1D, implementation, 14
1D, stability, 50
2D, implementation, 60
waves
on a string, 5
wrapper code, 71

[^0]: ${ }^{1}$ http://tinyurl.com/k3sdbuv/pub/mov-wave/wave1D_PDE_Dirichlet_stencil_gpl/index.html ${ }^{2}$ http://tinyurl.com/k3sdbuv/pub/mov-wave/wave1D_PDE_Dirichlet_stencil_gpl/movie.ogg

[^1]: эrminal> scitools movie encoder=html output_file=movie.html \} fps=4 frame_*.png

[^2]: ${ }^{3}$ http://tinyurl.com/jvzzcfn/wave/wave1D_u0_sv.py

[^3]: ${ }^{4}$ http://tinyurl.com/jvzzcfn/wave/wave1D_u0_s.py
 ${ }^{5}$ http://tinyurl.com/k3sdbuv/pub/mov-wave/guitar_C0.8/index.html

[^4]: ${ }^{6}$ http://tinyurl.com/jvzzcfn/wave/wave1D_u0_sv.py

[^5]: ${ }^{7}$ http://tinyurl.com/k3sdbuv/pub/mov-wave/demo_BC_gaussian/index.html
 ${ }^{8}$ http://tinyurl.com/k3sdbuv/pub/mov-wave/demo_BC_gaussian/movie.flv

[^6]: ${ }^{9}$ http://tinyurl.com/k3sdbuv/pub/mov-wave/wave1D_PDE_Neumann_stencil_gpl/index.html
 ${ }^{10}$ http://tinyurl.com/k3sdbuv/pub/mov-wave/wave1D_PDE_Neumann_stencil_gpl/movie.ogg

[^7]: ${ }^{11}$ http://tinyurl.com/jvzzcfn/wave/wave1D_dn0.py

[^8]: ${ }^{a^{\text {http }}: / / t i n y u r 1 . c o m / j v z z c f n / w a v e / w a v e 1 D _d n . p y ~}$

[^9]: ${ }^{13}$ http://tinyurl.com/jvzzcfn/wave/wave1D_dn_vc.py

[^10]: $\overline{{ }^{15} \mathrm{http}: / / t i n y u r l . c o m / j v z z c f n / w a v e / w a v e 2 D _u 0 / w a v e 2 D _u 0 . p y ~}$

[^11]: ${ }^{16}$ http://tinyurl.com/jvzzcfn/wave/wave2D_u0/wave2D_u0.py

[^12]: $\overline{{ }^{17} \text { http://tinyurl.com/jvzzcfn/wave/wave2D_u0/wave2D_u0_loop_f77.f }}$

[^13]: ${ }^{18}$ http://tinyurl.com/jvzzcfn/wave//wave2D_u0/wave2D_u0_loop_c.c
 ${ }^{19} \mathrm{http}: / /$ tinyurl.com/jvzzcfn/wave/wave2D_u0/wave2D_u0_loop_c_cy.pyx
 ${ }^{20}$ http://tinyurl.com/jvzzcfn/wave/wave2D_u0/wave2D_u0_loop_c.h

[^14]: ${ }^{21}$ http://swig.org/

[^15]: ${ }^{22}$ http://www.boost.org/doc/libs/1_51_0/libs/python/doc/index.html
 ${ }^{23} \mathrm{http}: / /$ riverbankcomputing.co.uk/software/sip/intro
 ${ }^{24} \mathrm{http}: / /$ qt-project.org/wiki/Category:LanguageBindings: :PySide: :Shiboker ${ }^{25} \mathrm{http}: / /$ code.google.com/p/pybindgen/

[^16]: $\overline{{ }^{26} \text { http://tinyurl.com/jvzzcfn/wave/wave2D_u0/wave2D_u0.py }}$
 ${ }^{27} \mathrm{http}: / /$ tinyurl.com/jvzzcfn/wave/wave1D_dn_vc.py

[^17]: $\overline{{ }^{29} \mathrm{http}: / / t i n y u r l . c o m / j v z z c f n / w a v e / w a v e 1 D / w a v e 1 D _d n _v c . p y ~}$

[^18]: ${ }^{30}$ http://code.enthought.com/projects/mayavi/
 ${ }^{31}$ http://www.paraview.org/
 ${ }^{32} \mathrm{http}$://www.opendx.org/

