Finite difference methods for vibration problems

Hans Petter Langtangen ${ }^{1,2}$
${ }^{1}$ Center for Biomedical Computing, Simula Research Laboratory
${ }^{2}$ Department of Informatics, University of Oslo

Dec 14, 2013

Note: PRELIMINARY VERSION (expect typos)

Contents

1 Finite difference discretization 3
1.1 A basic model for vibrations 3
1.2 A centered finite difference scheme 3
2 Implementation 5
2.1 Making a solver function 5
2.2 Verification 7
3 Long time simulations 8
3.1 Using a moving plot window 8
3.2 Making a movie file 10
3.3 Using a line-by-line ascii plotter 11
3.4 Empirical analysis of the solution 11
4 Analysis of the numerical scheme 13
4.1 Deriving an exact numerical solution 13
4.2 Exact discrete solution 14
4.3 The global error 15
4.4 Stability 16
4.5 About the accuracy at the stability limit 17
5 Alternative schemes based on 1st-order equations 18
5.1 Standard methods for 1st-order ODE systems 19
5.2 Enegy considerations 22
5.3 The Euler-Cromer method 26
5.4 The Euler-Cromer scheme on a staggered mesh 27
5.5 Implementation of the scheme on a staggered mesh 28
6 Generalization: damping, nonlinear spring, and external excitation 30
6.1 A centered scheme for linear damping 30
6.2 A centered scheme for quadratic damping 31
6.3 A forward-backward discretization of the quadratic damping term 32
6.4 Implementation 32
6.5 Verification 33
6.6 Visualization 34
6.7 User interface 34
6.8 A staggered Euler-Cromer scheme for the generalized model 35
7 Exercises and Problems 37

List of Exercises and Problems

| Problem | 1 | Use linear/quadratic functions for verification \ldots. | p. 37 |
| :--- | ---: | :--- | :--- | :--- |
| Exercise | 2 | Show linear growth of the phase with time | p. 38 |
| Exercise | 3 | Improve the accuracy by adjusting the frequency \ldots | p. 38 |
| Exercise | 4 | See if adaptive methods improve the phase ... | p. 38 |
| Exercise | 5 | Use a Taylor polynomial to compute u^{1} | p. 39 |
| Exercise | 6 | Find the largest relevant value of $\omega \Delta t$ | p. 39 |
| Exercise | 7 | Visualize the accuracy of finite differences | p. 39 |
| Exercise | 8 | Verify convergence rates of the error in energy ... | p. 39 |
| Exercise | 9 | Use linear/quadratic functions for verification ... | p. 40 |
| Exercise | 10 | Use an exact discrete solution for verification ... | p. 40 |
| Exercise | 11 | Use analytical solution for convergence rate ... | p. 40 |
| Exercise | 12 | Investigate the amplitude errors of many solvers ... | p. 40 |
| Exercise | 13 | Minimize memory usage of a vibration solver | p. 40 |
| Exercise | 14 | Implement the solver via classes | p. 40 |
| Exercise | 15 | Show equivalence between schemes | p. 41 |
| Exercise | 16 | Interpret $\left[D_{t} D_{t} u\right]^{n}$ as a forward-backward ... | p. 41 |
| Exercise | 17 | Use the forward-backward scheme with quadratic \ldots | p. 41 |
| Exercise | 18 | Use a backward difference for the damping \ldots | p. 41 |

Vibration problems lead to differential equations with solutions that oscillates in time, typically in a damped or undamped sinusoidal fashion. Such solutions put certain demands on the numerical methods compared to other phenomena whose solutions are monotone. Both the frequency and amplitude of the oscillations need to be accurately handled by the numerical schemes. Most of the reasoning and specific building blocks introduced in the fortcoming text can be reused to construct sound methods for partial differential equations of wave nature in multiple spatial dimensions.

1 Finite difference discretization

Much of the numerical challenges with computing oscillatory solutions in ODEs and PDEs can be captured by the very simple ODE $u^{\prime \prime}+u=0$ and this is therefore the starting point for method development, implementation, and analysis.

1.1 A basic model for vibrations

A system that vibrates without damping and external forcing can be described by ODE problem

$$
\begin{equation*}
u^{\prime \prime}+\omega^{2} u=0, \quad u(0)=I, u^{\prime}(0)=0, t \in(0, T] \tag{1}
\end{equation*}
$$

Here, ω and I are given constants. The exact solution of (1) is

$$
\begin{equation*}
u(t)=I \cos (\omega t) \tag{2}
\end{equation*}
$$

That is, u oscillates with constant amplitude I and angular frequency ω. The corresponding period of oscillations (i.e., the time between two neighboring peaks in the cosine function) is $P=2 \pi / \omega$. The number of periods per second is $f=\omega /(2 \pi)$ and measured in the unit Hz. Both f and ω are referred to as frequency, but ω may be more precisely named angular frequency, measured in rad/s.

In vibrating mechanical systems modeled by $(1), u(t)$ very often represents a position or a displacement of a particular point in the system. The derivative $u^{\prime}(t)$ then has the interpretation of the point's velocity, and $u^{\prime \prime}(t)$ is the associated acceleration. The model (1) is not only applicable to vibrating mechanical systems, but also to oscillations in electrical circuits.

1.2 A centered finite difference scheme

To formulate a finite difference method for the model problem (1) we follow the four steps from Section ?? in [1].

Step 1: Discretizing the domain. The domain is discretized by introducing a uniformly partitioned time mesh in the present problem. The points in the mesh are hence $t_{n}=n \Delta t$, $n=0,1, \ldots, N_{t}$, where $\Delta t=T / N_{t}$ is the constant length of the time steps. We introduce a mesh function u^{n} for $n=0,1, \ldots, N_{t}$, which approximates the exact solution at the mesh points. The mesh function will be computed from algebraic equations derived from the differential equation problem.

Step 2: Fulfilling the equation at discrete time points. The ODE is to be satisfied at each mesh point:

$$
\begin{equation*}
u^{\prime \prime}\left(t_{n}\right)+\omega^{2} u\left(t_{n}\right)=0, \quad n=1, \ldots, N_{t} . \tag{3}
\end{equation*}
$$

Step 3: Replacing derivatives by finite differences. The derivative $u^{\prime \prime}\left(t_{n}\right)$ is to be replaced by a finite difference approximation. A common second-order accurate approximation to the second-order derivative is

$$
\begin{equation*}
u^{\prime \prime}\left(t_{n}\right) \approx \frac{u^{n+1}-2 u^{n}+u^{n-1}}{\Delta t^{2}} \tag{4}
\end{equation*}
$$

Inserting (4) in (3) yields

$$
\begin{equation*}
\frac{u^{n+1}-2 u^{n}+u^{n-1}}{\Delta t^{2}}=-\omega^{2} u^{n} \tag{5}
\end{equation*}
$$

We also need to replace the derivative in the initial condition by a finite difference. Here we choose a centered difference, whose accuracy is similar to the centered difference we used for $u^{\prime \prime}$:

$$
\begin{equation*}
\frac{u^{1}-u^{-1}}{2 \Delta t}=0 \tag{6}
\end{equation*}
$$

Step 4: Formulating a recursive algorithm. To formulate the computational algorithm, we assume that we have already computed u^{n-1} and u^{n} such that u^{n+1} is the unknown value, which we can readily solve for:

$$
\begin{equation*}
u^{n+1}=2 u^{n}-u^{n-1}-\Delta t^{2} \omega^{2} u^{n} \tag{7}
\end{equation*}
$$

The computational algorithm is simply to apply (7) successively for $n=1,2, \ldots, N_{t}-1$. This numerical scheme sometimes goes under the name Störmer's method or Verlet integration ${ }^{1}$.

Computing the first step. We observe that (7) cannot be used for $n=0$ since the computation of u^{1} then involves the undefined value u^{-1} at $t=-\Delta t$. The discretization of the initial condition then come to rescue: (6) implies $u^{-1}=u^{1}$ and this relation can be combined with (7) for $n=1$ to yield a value for u^{1} :

$$
u^{1}=2 u^{0}-u^{1}-\Delta t^{2} \omega^{2} u^{0}
$$

which reduces to

$$
\begin{equation*}
u^{1}=u^{0}-\frac{1}{2} \Delta t^{2} \omega^{2} u^{0} \tag{8}
\end{equation*}
$$

Exercise 5 asks you to perform an alternative derivation and also to generalize the initial condition to $u^{\prime}(0)=V \neq 0$.

The computational algorithm. The steps for solving (1) becomes

1. $u^{0}=I$
2. compute u^{1} from (8)
3. for $n=1,2, \ldots, N_{t}-1$:
(a) compute u^{n+1} from (7)

The algorithm is more precisely expressed directly in Python:

[^0]```
t = linspace(0, T, Nt+1) # mesh points in time
dt = t[1] - t[0] # constant time step
u = zeros(Nt+1) # solution
u[0] = I
u[1] = u[0] - 0.5*dt**2*w**2*u[0]
for n in range(1, Nt):
 u[n+1] = 2*u[n] - u[n-1] - dt**2*W**2*u[n]
```


## Remark.

In the code, we use w as the symbol for $\omega$. The reason is that this author prefers w for readability and comparison with the mathematical $\omega$ instead of the full word omega as variable name.

Operator notation. We may write the scheme using the compact difference notation (see Section ?? in [1]). The difference (4) has the operator notation $\left[D_{t} D_{t} u\right]^{n}$ such that we can write:

$$
\begin{equation*}
\left[D_{t} D_{t} u+\omega^{2} u=0\right]^{n} . \tag{9}
\end{equation*}
$$

Note that $\left[D_{t} D_{t} u\right]^{n}$ means applying a central difference with step $\Delta t / 2$ twice:

$$
\left[D_{t}\left(D_{t} u\right)\right]^{n}=\frac{\left[D_{t} u\right]^{n+\frac{1}{2}}-\left[D_{t} u\right]^{n-\frac{1}{2}}}{\Delta t}
$$

which is written out as

$$
\frac{1}{\Delta t}\left(\frac{u^{n+1}-u^{n}}{\Delta t}-\frac{u^{n}-u^{n-1}}{\Delta t}\right)=\frac{u^{n+1}-2 u^{n}+u^{n-1}}{\Delta t^{2}} .
$$

The discretization of initial conditions can in the operator notation be expressed as

$$
\begin{equation*}
[u=I]^{0}, \quad\left[D_{2 t} u=0\right]^{0} \tag{10}
\end{equation*}
$$

where the operator $\left[D_{2 t} u\right]^{n}$ is defined as

$$
\begin{equation*}
\left[D_{2 t} u\right]^{n}=\frac{u^{n+1}-u^{n-1}}{2 \Delta t} . \tag{11}
\end{equation*}
$$

## 2 Implementation

### 2.1 Making a solver function

The algorithm from the previous section is readily translated to a complete Python function for computing (returning) $u^{0}, u^{1}, \ldots, u^{N_{t}}$ and $t_{0}, t_{1}, \ldots, t_{N_{t}}$, given the input $I, \omega, \Delta t$, and $T$ :

```
from numpy import *
from matplotlib.pyplot import *
from vib_empirical_analysis import minmax, periods, amplitudes
def solver(I, w, dt, T):
 """
 Solve u'' + w**2*u = 0 for t in (0,T], u(0)=I and u'(0)=0,
 by a central finite difference method with time step dt.
```

```
dt = float(dt)
Nt = int(round(T/dt))
u = zeros(Nt+1)
t = linspace(0, Nt*dt, Nt+1)
u[0] = I
u[1] = u[0] - 0.5*dt**2*W**2*u[0]
for n in range(1, Nt):
 u[n+1] = 2*u[n] - u[n-1] - dt**2*w**2*u[n]
return u, t
```

A function for plotting the numerical and the exact solution is also convenient to have:

```
def exact_solution(t, I, w):
 return I* cos(w*t)
def visualize(u, t, I, w):
 plot(t, u, 'r--o')
 t_fine = linspace(0, t[-1], 1001) # very fine mesh for u_e
 u_e = exact_solution(t_fine, I, w)
 hold('on')
 plot(t_fine, u_e, 'b-')
 legend(['numerical', 'exact'], loc='upper left')
 xlabel('t')
 ylabel('u')
 dt = t[1] - t[0]
 title('dt=%g' % dt)
 umin = 1.2*u.min(); umax = -umin
 axis([t[0], t[-1], umin, umax])
 savefig('vib1.png')
 savefig('vib1.pdf')
 savefig('vib1.eps')
```

A corresponding main program calling these functions for a simulation of a given number of periods (num_periods) may take the form

```
I = 1
w = 2*pi
dt = 0.05
num_periods = 5
P = 2*pi/w # one period
T = P*num_periods
u, t = solver(I, w, dt, T)
visualize(u, t, I, w, dt)
```

Adjusting some of the input parameters on the command line can be handy. Here is a code segment using the ArgumentParser tool in the argparse module to define option value (--option value) pairs on the command line:

```
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--I', type=float, default=1.0)
parser.add_argument('--w', type=float, default=2*pi)
parser.add_argument('--dt', type=float, default=0.05)
parser.add_argument('--num_periods', type=int, default=5)
a = parser.parse_args()
I, w, dt, num_periods = a.I, a.w, a.dt, a.num_periods
```

A typical execution goes like

Terminal> python vib_undamped.py --num_periods 20 --dt 0.1

Computing $u^{\prime}$. In mechanical vibration applications one is often interested in computing the velocity $v(t)=u^{\prime}(t)$ after $u(t)$ has been computed. This can be done by a central difference,

$$
\begin{equation*}
v\left(t_{n}\right)=u^{\prime}\left(t_{n}\right) \approx v^{n}=\frac{u^{n+1}-u^{n-1}}{2 \Delta t}=\left[D_{2 t} u\right]^{n} \tag{12}
\end{equation*}
$$

This formula applies for all inner mesh points, $n=1, \ldots, N_{t}-1$. For $n=0$ we have that $v(0)$ is given by the initial condition on $u^{\prime}(0)$, and for $n=N_{t}$ we can use a one-sided, backward difference: $v^{n}=\left[D_{t}^{-} u\right]^{n}$.

Appropriate vectorized Python code becomes

```
v = np.zeros_like(u)
v[1:-1] = (u[2:] - u[:-2])/(2*dt) # internal mesh points
v[0] = V # Given boundary condition u'(0)
v[-1] = (u[-1] - u[-2])/dt # backward difference
```


### 2.2 Verification

Manual calculation. The simplest type of verification, which is also instructive for understanding the algorithm, is to compute $u^{1}, u^{2}$, and $u^{3}$ with the aid of a calculator and make a function for comparing these results with those from the solver function. We refer to the test_three_steps function in the file vib_undamped.py ${ }^{2}$ for details.

Testing very simple solutions. Constructing test problems where the exact solution is constant or linear helps initial debugging and verification as one expects any reasonable numerical method to reproduce such solutions to machine precision. Second-order accurate methods will often also reproduce a quadratic solution. Here $\left[D_{t} D_{t} t^{2}\right]^{n}=2$, which is the exact result. A solution $u=t^{2}$ leads to $u^{\prime \prime}+\omega^{2} u=2+(\omega t)^{2} \neq 0$. We must therefore add a source in the equation: $u^{\prime \prime}+\omega^{2} u=f$ to allow a solution $u=t^{2}$ for $f=(\omega t)^{2}$. By simple insertion we can show that the mesh function $u^{n}=t_{n}^{2}$ is also a solution of the discrete equations. Problem 1 asks you to carry out all details with showing that linear and quadratic solutions are solutions of the discrete equations. Such results are very useful for debugging and verification.

Checking convergence rates. Empirical computation of convergence rates, as explained in Section ?? in [1], yields a good method for verification. The function below

- performs $m$ simulations with halved time steps: $2^{-i} \Delta t, i=0, \ldots, m-1$,
- computes the $L^{2}$ norm of the error, $E=\sqrt{2^{-i} \Delta t \sum_{n=0}^{N_{t}-1}\left(u^{n}-u_{\mathrm{e}}\left(t_{n}\right)\right)^{2}}$ in each case,
- estimates the convergence rates $r_{i}$ based on two consecutive experiments $\left(\Delta t_{i-1}, E_{i-1}\right)$ and ( $\Delta t_{i}, E_{i}$ ), assuming $E_{i}=C \Delta t_{i}^{r_{i}}$ and $E_{i-1}=C \Delta t_{i-1}^{r_{i}}$. From these equations it follows that $r_{i-1}=\ln \left(E_{i-1} / E_{i}\right) / \ln \left(\Delta t_{i-1} / \Delta t_{i}\right)$, for $i=1, \ldots, m-1$.

All the implementational details appear below.

[^1]```
def convergence_rates(m, num_periods=8):
    """
    Return m-1 empirical estimates of the convergence rate
    based on m simulations, where the time step is halved
    for each simulation.
    """
    w = 0.35; I = 0.3
    dt = 2*pi/w/30 # 30 time step per period 2*pi/w
    T = 2*pi/w*num_periods
    dt_values = []
    E_values = []
    for i in range(m):
        u, t = solver(I, w, dt, T)
        u_e = exact_solution(t, I, w)
        E = sqrt(dt*sum((u_e-u)**2))
        dt_values.append(dt)
        E_values.append(E)
        dt = dt/2
    r = [log(E_values[i-1]/E_values[i])/
        log(dt_values[i-1]/dt_values[i])
        for i in range(1, m, 1)]
    return r
```

The returned r list has its values equal to 2.00 , which is in excellent agreement with what is expected from the second-order finite difference approximation $\left[D_{t} D_{t} u\right]^{n}$ and other theoretical measures of the error in the numerical method. The final $r[-1]$ value is a good candidate for a unit test:

```
def test_convergence_rates():
    r = convergence_rates(m=5, num_periods=8)
    # Accept rate to 1 decimal place
    nt.assert_almost_equal(r[-1], 2.0, places=1)
```

The complete code appears in the file vib_undamped.py.

3 Long time simulations

Figure 1 shows a comparison of the exact and numerical solution for $\Delta t=0.1,0.05$ and $w=2 \pi$. From the plot we make the following observations:

- The numerical solution seems to have correct amplitude.
- There is a phase error which is reduced by reducing the time step.
- The total phase error grows with time.

By phase error we mean that the peaks of the numerical solution have incorrect positions compared with the peaks of the exact cosine solution. This effect can be understood as if also the numerical solution is on the form $I \cos \tilde{\omega} t$, but where $\tilde{\omega}$ is not exactly equal to ω. Later, we shall mathematically quantify this numerical frequency $\tilde{\omega}$.

3.1 Using a moving plot window

In vibration problems it is often of interest to investigate the system's behavior over long time intervals. Errors in the phase may then show up as crucial. Let us investigate long time

Figure 1: Effect of halving the time step.
series by introducing a moving plot window that can move along with the p most recently computed periods of the solution. The SciTools ${ }^{3}$ package contains a convenient tool for this: MovingPlotWindow. Typing pydoc scitools.MovingPlotWindow shows a demo and description of usage. The function below illustrates the usage and is invoked in the vib_undamped.py code if the number of periods in the simulation exceeds 10:

```
def visualize_front(u, t, I, w, savefig=False):
    """
    Visualize u and the exact solution vs t, using a
    moving plot window and continuous drawing of the
    curves as they evolve in time.
    Makes it easy to plot very long time series.
    """
    import scitools.std as st
    from scitools.MovingPlotWindow import MovingPlotWindow
    P = 2*pi/w # one period
    umin = 1.2*u.min(); umax = -umin
    plot_manager = MovingPlotWindow(
        window_width=8*P,
        dt=t[1]-t[0] ,
        yaxis=[umin, umax],
        mode='continuous drawing')
    for n in range(1,len(u)):
        if plot_manager.plot(n):
            s = plot_manager.first_index_in_plot
            st.plot(t[s:n+1], u[s:n+1], 'r-1',
                t[s:n+1], I* cos(w*t)[s:n+1], 'b-1',
                title='t=%6.3f' % t[n],
                axis=plot_manager.axis(),
                show=not savefig) # drop window if savefig
            if savefig:
                filename = 'tmp_vib%04d.png' % n
                st.savefig(filename)
                print 'making plot file', filename, 'at t=%g' % t[n]
        plot_manager.update(n)
```

Running

[^2]```
Terminal> python vib_undamped.py --dt 0.05 --num_periods 40
```

makes the simulation last for 40 periods of the cosine function. With the moving plot window we can follow the numerical and exact solution as time progresses, and we see from this demo that the phase error is small in the beginning, but then becomes more prominent with time. Running vib_undamped.py with $\Delta t=0.1$ clearly shows that the phase errors become significant even earlier in the time series and destroys the solution.

### 3.2 Making a movie file

The visualize_front function stores all the plots in files whose names are numbered: tmp_vib0000.png, tmp_vib0001.png, tmp_vib0002.png, and so on. From these files we may make a movie. The Flash format is popular,

```
Terminal> avconv -r 12 -i tmp_vib%04d.png -vcodec flv movie.flv
```

The avconv program can be replaced by the ffmpeg program in the above command if desired. The $-r$ option should come first and describes the number of frames per second in the movie. The -i option describes the name of the plot files. Other formats can be generated by changing the video codec and equipping the movie file with the right extension:

| Format | Codec and filename |
| :--- | :--- |
| Flash | -vcodec flv movie.flv |
| MP4 | -vcodec libx64 movie.mp4 |
| Webm | -vcodec libvpx movie.webm |
| Ogg | -vcodec libtheora movie.ogg |

The movie file can be played by some video player like vlc, mplayer, gxine, or totem, e.g.,

Terminal> vlc movie.webm

A web page can also be used to play the movie. Today's standard is to use the HTML5 video tag:

```
<video autoplay loop controls
 width='640' height='365' preload='none'>
<source src='movie.webm' type='video/webm; codecs="vp8, vorbis"'>
</video>
```


## Caution: number the plot files correctly.

To ensure that the individual plot frames are shown in correct order, it is important to number the files with zero-padded numbers ( $0000,0001,0002$, etc.). The printf format $\% 04 \mathrm{~d}$ specifies an integer in a field of width 4, padded with zeros from the left. A simple Unix wildcard file specification like tmp_vib*.png will then list the frames in the right order. If
the numbers in the filenames were not zero-padded, the frame tmp_vib11.png would appear before tmp_vib2.png in the movie.

### 3.3 Using a line-by-line ascii plotter

Plotting functions vertically, line by line, in the terminal window using ascii characters only is a simple, fast, and convenient visualization technique for long time series (the time arrow points downward). The tool scitools.avplotter. Plotter makes it easy to create such plots:

```
def visualize_front_ascii(u, t, I, w, fps=10):
 """
 Plot \(u\) and the exact solution vs \(t\) line by line in a
 terminal window (only using ascii characters).
 Makes it easy to plot very long time series.
 """
 from scitools.avplotter import Plotter
 import time
 \(\mathrm{P}=2 * \mathrm{pi} / \mathrm{w}\)
 umin \(=1.2 * u . \min () ; \quad u \max =-u m i n\)
 \(\mathrm{p}=\) Plotter (ymin=umin, ymax=umax, width=60, symbols='+o')
 for \(n\) in range(len(u)):
 print p.plot \((t[n], u[n], I * \cos (w * t[n])), ~ \\)
 , \% . 1f , \% (t [n]/P)
 time.sleep(1/float(fps))
if __name__ == '__main__':
 main()
```

The call p.plot returns a line of text, with the $t$ axis marked and a symbol + for the first function (u) and o for the second function (the exact solution). Here we append this text a time counter reflecting how many periods the current time point corresponds to. A typical output ( $\omega=2 \pi$, $\Delta t=0.05)$ looks like this:


### 3.4 Empirical analysis of the solution

For oscillating functions like those in Figure 1 we may compute the amplitude and frequency (or period) empirically. That is, we run through the discrete solution points $\left(t_{n}, u_{n}\right)$ and find all
maxima and minima points. The distance between two consecutive maxima (or minima) points can be used as estimate of the local period, while half the difference between the $u$ value at a maximum and a nearby minimum gives an estimate of the local amplitude.

The local maxima are the points where

$$
\begin{equation*}
u^{n-1}<u^{n}>u^{n+1}, \quad n=1, \ldots, N_{t}-1 \tag{13}
\end{equation*}
$$

and the local minima are recognized by

$$
\begin{equation*}
u^{n-1}>u^{n}<u^{n+1}, \quad n=1, \ldots, N_{t}-1 . \tag{14}
\end{equation*}
$$

In computer code this becomes

```
def minmax(t, u):
 minima = []; maxima = []
 for n in range(1, len(u)-1, 1):
 if u[n-1] > u[n] < u[n+1]:
 minima.append((t[n],u[n]))
 if u[n-1] < u[n] > u[n+1]:
 maxima.append((t[n],u[n]))
 return minima, maxima
```

Note that the returned objects are list of tuples.
Let $\left(t_{i}, e_{i}\right), i=0, \ldots, M-1$, be the sequence of all the $M$ maxima points, where $t_{i}$ is the time value and $e_{i}$ the corresponding $u$ value. The local period can be defined as $p_{i}=t_{i+1}-t_{i}$. With Python syntax this reads

```
def periods(maxima):
 p = [extrema[n][0] - maxima[n-1][0]
 for n in range(1, len(maxima))]
 return np.array(p)
```

The list p created by a list comprehension is converted to an array since we probably want to compute with it, e.g., find the corresponding frequencies $2 *$ pi/p.

Having the minima and the maxima, the local amplitude can be calculated as the difference between two neighboring minimum and maximum points:

```
def amplitudes(minima, maxima):
 a = [(abs(maxima[n] [1] - minima[n] [1]))/2.0
 for n in range(min(len(minima),len(maxima)))]
 return np.array(a)
```

The code segments are found in the file vib_empirical_analysis.py ${ }^{4}$.
Visualization of the periods p or the amplitudes a it is most conveniently done with just a counter on the horizontal axis, since a[i] and $\mathrm{p}[\mathrm{i}]$ correspond to the $i$-th amplitude estimate and the $i$-th period estimate, respectively. There is no unique time point associated with either of these estimate since values at two different time points were used in the computations.

In the analysis of very long time series, it is advantageous to compute and plot p and a instead of $u$ to get an impression of the development of the oscillations.

[^3]
## 4 Analysis of the numerical scheme

### 4.1 Deriving an exact numerical solution

After having seen the phase error grow with time in the previous section, we shall now quantify this error through mathematical analysis. The key tool in the analysis will be to establish an exact solution of the discrete equations. The difference equation (7) has constant coefficients and is homogeneous. The solution is then $u^{n}=C A^{n}$, where $A$ is some number to be determined from the differential equation and $C$ is determined from the initial condition $(C=I)$. Recall that $n$ in $u^{n}$ is a superscript labeling the time level, while $n$ in $A^{n}$ is an exponent. With oscillating functions as solutions, the algebra will be considerably simplified if we seek an $A$ on the form

$$
A=e^{i \tilde{\omega} \Delta t}
$$

and solve for the numerical frequency $\tilde{\omega}$ rather than $A$. Note that $i=\sqrt{-1}$ is the imaginary unit. (Using a complex exponential function gives simpler arithmetics than working with a sine or cosine function.) We have

$$
A^{n}=e^{i \tilde{\omega} \Delta t n}=e^{i \tilde{\omega} t}=\cos (\tilde{\omega} t)+i \sin (\tilde{\omega} t) .
$$

The physically relevant numerical solution can be taken as the real part of this complex expression.
The calculations goes as

$$
\begin{aligned}
{\left[D_{t} D_{t} u\right]^{n} } & =\frac{u^{n+1}-2 u^{n}+u^{n-1}}{\Delta t^{2}} \\
& =I \frac{A^{n+1}-2 A^{n}+A^{n-1}}{\Delta t^{2}} \\
& =I \frac{\exp (i \tilde{\omega}(t+\Delta t))-2 \exp (i \tilde{\omega} t)+\exp (i \tilde{\omega}(t-\Delta t))}{\Delta t^{2}} \\
& =I \exp (i \tilde{\omega} t) \frac{1}{\Delta t^{2}}(\exp (i \tilde{\omega}(\Delta t))+\exp (i \tilde{\omega}(-\Delta t))-2) \\
& =I \exp (i \tilde{\omega} t) \frac{2}{\Delta t^{2}}(\cosh (i \tilde{\omega} \Delta t)-1) \\
& =I \exp (i \tilde{\omega} t) \frac{2}{\Delta t^{2}}(\cos (\tilde{\omega} \Delta t)-1) \\
& =-I \exp (i \tilde{\omega} t) \frac{4}{\Delta t^{2}} \sin ^{2}\left(\frac{\tilde{\omega} \Delta t}{2}\right)
\end{aligned}
$$

The last line follows from the relation $\cos x-1=-2 \sin ^{2}(x / 2)\left(\operatorname{try} \cos (\mathrm{x})-1\right.$ in wolframalpha.com ${ }^{5}$ to see the formula).

The scheme (7) with $u^{n}=I e^{i \omega \tilde{\Delta} t n}$ inserted now gives

$$
\begin{equation*}
-I e^{i \tilde{\omega} t} \frac{4}{\Delta t^{2}} \sin ^{2}\left(\frac{\tilde{\omega} \Delta t}{2}\right)+\omega^{2} I e^{i \tilde{\omega} t}=0 \tag{15}
\end{equation*}
$$

which after dividing by $I e^{i \tilde{\omega} t}$ results in

$$
\begin{equation*}
\frac{4}{\Delta t^{2}} \sin ^{2}\left(\frac{\tilde{\omega} \Delta t}{2}\right)=\omega^{2} . \tag{16}
\end{equation*}
$$

[^4]The first step in solving for the unknown $\tilde{\omega}$ is

$$
\sin ^{2}\left(\frac{\tilde{\omega} \Delta t}{2}\right)=\left(\frac{\omega \Delta t}{2}\right)^{2}
$$

Then, taking the square root, applying the inverse sine function, and multiplying by $2 / \Delta t$, results in

$$
\begin{equation*}
\tilde{\omega}= \pm \frac{2}{\Delta t} \sin ^{-1}\left(\frac{\omega \Delta t}{2}\right) . \tag{17}
\end{equation*}
$$

The first observation of (17) tells that there is a phase error since the numerical frequency $\tilde{\omega}$ never equals the exact frequency $\omega$. But how good is the approximation (17)? That is, what is the error $\omega-\tilde{\omega}$ or $\tilde{\omega} / \omega$ ? Taylor series expansion for small $\Delta t$ may give an expression that is easier to understand than the complicated function in (17):

```
>>> from sympy import *
>>> dt, w = symbols('dt w')
>>> w_tilde_e = 2/dt*asin(w*dt/2)
>>> w_tilde_series = w_tilde_e.series(dt, 0, 4)
>>> print w_tilde_series
w + dt**2*w**3/24 + O(dt**4)
```

This means that

$$
\begin{equation*}
\tilde{\omega}=\omega\left(1+\frac{1}{24} \omega^{2} \Delta t^{2}\right)+\mathcal{O}\left(\Delta t^{4}\right) \tag{18}
\end{equation*}
$$

The error in the numerical frequency is of second-order in $\Delta t$, and the error vanishes as $\Delta t \rightarrow 0$. We see that $\tilde{\omega}>\omega$ since the term $\omega^{3} \Delta t^{2} / 24>0$ and this is by far the biggest term in the series expansion for small $\omega \Delta t$. A numerical frequency that is too large gives an oscillating curve that oscillates too fast and therefore "lags behind" the exact oscillations, a feature that can be seen in the plots.

Figure 2 plots the discrete frequency (17) and its approximation (18) for $\omega=1$ (based on the program vib_plot_freq. $\left.\mathrm{py}^{6}\right)$. Although $\tilde{\omega}$ is a function of $\Delta t$ in (18), it is misleading to think of $\Delta t$ as the important discretization parameter. It is the product $\omega \Delta t$ that is the key discretization parameter. This quantity reflects the number of time steps per period of the oscillations. To see this, we set $P=N_{P} \Delta t$, where $P$ is the length of a period, and $N_{P}$ is the number of time steps during a period. Since $P$ and $\omega$ are related by $P=2 \pi / \omega$, we get that $\omega \Delta t=2 \pi / N_{P}$, which shows that $\omega \Delta t$ is directly related to $N_{P}$.

The plot shows that at least $N_{P} \sim 25-30$ points per period are necessary for reasonable accuracy, but this depends on the length of the simulation $(T)$ as the total phase error due to the frequency error grows linearly with time (see Exercise 2).

### 4.2 Exact discrete solution

Perhaps more important than the $\tilde{\omega}=\omega+\mathcal{O}\left(\Delta t^{2}\right)$ result found above is the fact that we have an exact discrete solution of the problem:

$$
\begin{equation*}
u^{n}=I \cos (\tilde{\omega} n \Delta t), \quad \tilde{\omega}=\frac{2}{\Delta t} \sin ^{-1}\left(\frac{\omega \Delta t}{2}\right) \tag{19}
\end{equation*}
$$

We can then compute the error mesh function

[^5]

Figure 2: Exact discrete frequency and its second-order series expansion.

$$
\begin{equation*}
e^{n}=u_{\mathrm{e}}\left(t_{n}\right)-u^{n}=I \cos (\omega n \Delta t)-I \cos (\tilde{\omega} n \Delta t) . \tag{20}
\end{equation*}
$$

In particular, we can use this expression to show convergence of the numerical scheme, i.e., $e^{n} \rightarrow 0$ as $\Delta t \rightarrow 0$. We have that

$$
\lim _{\Delta t \rightarrow 0} \tilde{\omega}=\lim _{\Delta t \rightarrow 0} \frac{2}{\Delta t} \sin ^{-1}\left(\frac{\omega \Delta t}{2}\right)=\omega
$$

by L'Hopital's rule or simply asking (2/x)*asin( $\mathrm{w} * \mathrm{x} / 2$ ) as $\mathrm{x} \rightarrow 0$ in WolframAlpha ${ }^{7}$. Therefore, $\tilde{\omega} \rightarrow \omega$, and the two terms in $e^{n}$ cancel each other in the limit $\Delta t \rightarrow 0$.

The error mesh function is ideal for verification purposes (and you are encouraged to make a test based on (19) in Exercise 10).

### 4.3 The global error

To achieve more analytical insight into the nature of the global error, we can Taylor expand the error mesh function. Since $\tilde{\omega}$ contains $\Delta t$ in the denominator we use the series expansion for $\tilde{\omega}$ inside the cosine function:

[^6]```
>>> dt, w, t = symbols('dt w t')
>>> w_tilde_e = 2/dt*asin(w*dt/2)
>>> w_tilde_series = w_tilde_e.series(dt, 0, 4)
>>> # Get rid of O() term
>>> w_tilde_series = sum(w_tilde_series.as_ordered_terms()[:-1])
>>> w_tilde_series
dt**2*W**3/24 + w
>>> error = cos(w*t) - cos(w_tilde_series*t)
>>> error.series(dt, 0, 6)
dt**2*t*W**3*\operatorname{sin}(\textrm{t}*\textrm{w})/24+dt**4*t**2*W**6*\operatorname{cos}(\textrm{t}*\textrm{w})/1152 + 0(dt**6)
>>> error.series(dt, 0, 6).as_leading_term(dt)
dt**2*t*W**3*sin(t*w)/24
```

This means that the leading order global (true) error at a point t is proportional to $\omega^{3} t \Delta t^{2}$. Setting $t=n \Delta t$ and replacing $\sin (\omega t)$ by its maximum value 1 , we have the analytical leading-order expression

$$
e^{n}=\frac{1}{24} n \omega^{3} \Delta t^{3},
$$

and the ℓ^{2} norm of this error can be computed as

$$
\left\|e^{n}\right\|_{\ell^{2}}^{2}=\Delta t \sum_{n=0}^{N_{t}} \frac{1}{24^{2}} n^{2} \omega^{6} \Delta t^{6}=\frac{1}{24^{2}} \omega^{6} \Delta t^{7} \sum_{n=0}^{N_{t}} n^{2}
$$

The sum $\sum_{n=0}^{N_{t}} n^{2}$ is approximately equal to $\frac{1}{3} N_{t}^{3}$. Replacing N_{t} by $T / \Delta t$ and taking the square root gives the expression

$$
\left\|e^{n}\right\|_{\ell^{2}}=\frac{1}{24} \sqrt{\frac{T^{3}}{3}} \omega^{3} \Delta t^{2}
$$

which shows that also the integrated error is proportional to Δt^{2}.

4.4 Stability

Looking at (19), it appears that the numerical solution has constant and correct amplitude, but an error in the frequency (phase error). However, there is another error that is more serious, namely an unstable growing amplitude that can occur of Δt is too large.

We realize that a constant amplitude demands $\tilde{\omega}$ to be a real number. A complex $\tilde{\omega}$ is indeed possible if the argument x of $\sin ^{-1}(x)$ has magnitude larger than unity: $|x|>1$ (type $\operatorname{asin}(\mathrm{x})$ in wolframalpha.com ${ }^{8}$ to see basic properties of $\left.\sin ^{-1}(x)\right)$. A complex $\tilde{\omega}$ can be written $\tilde{\omega}=\tilde{\omega}_{r}+i \tilde{\omega}_{i}$. Since $\sin ^{-1}(x)$ has a negative imaginary part for $x>1, \tilde{\omega}_{i}<0$, it means that $\exp (i \omega \tilde{t})=\exp \left(-\tilde{\omega}_{i} t\right) \exp \left(i \tilde{\omega}_{r} t\right)$ will lead to exponential growth in time because $\exp \left(-\tilde{\omega}_{i} t\right)$ with $\tilde{\omega}_{i}<0$ has a positive exponent.

We do not tolerate growth in the amplitude and we therefore have a stability criterion arising from requiring the argument $\omega \Delta t / 2$ in the inverse sine function to be less than one:

$$
\begin{equation*}
\frac{\omega \Delta t}{2} \leq 1 \quad \Rightarrow \quad \Delta t \leq \frac{2}{\omega} \tag{21}
\end{equation*}
$$

With $\omega=2 \pi, \Delta t>\pi^{-1}=0.3183098861837907$ will give growing solutions. Figure 3 displays what happens when $\Delta t=0.3184$, which is slightly above the critical value: $\Delta t=\pi^{-1}+9.01 \cdot 10^{-5}$.

[^7]

Figure 3: Growing, unstable solution because of a time step slightly beyond the stability limit.

4.5 About the accuracy at the stability limit

An interesting question is whether the stability condition $\Delta t<2 / \omega$ is unfortunate, or more precisely: would it be meaningful to take larger time steps to speed up computations? The answer is a clear no. At the stability limit, we have that $\sin ^{-1} \omega \Delta t / 2=\sin ^{-1} 1=\pi / 2$, and therefore $\tilde{\omega}=\pi / \Delta t$. (Note that the approximate formula (18) is very inaccurate for this value of Δt as it predicts $\tilde{\omega}=2.34 / p i$, which is a 25 percent reduction.) The corresponding period of the numerical solution is $\tilde{P}=2 \pi / \tilde{\omega}=2 \Delta t$, which means that there is just one time step Δt between a peak and a through in the numerical solution. This is the shortest possible wave that can be represented in the mesh. In other words, it is not meaningful to use a larger time step than the stability limit.

Also, the phase error when $\Delta t=2 / \omega$ is severe: Figure 4 shows a comparison of the numerical and analytical solution with $\omega=2 \pi$ and $\Delta t=2 / \omega=\pi^{-1}$. Already after one period, the numerical solution has a through while the exact solution has a peak (!). The error in frequency when Δt is at the stability limit becomes $\omega-\tilde{\omega}=\omega(1-\pi / 2) \approx-0.57 \omega$. The corresponding error in the period is $P-\tilde{P} \approx 0.36 P$. The error after m periods is then $0.36 m P$. This error has reach half a period when $m=1 /(2 \cdot 0.36) \approx 1.38$, which theoretically confirms the observations in Figure 4 that the numerical solution is a through ahead of a peak already after one and a half period.

Summary.

From the accuracy and stability analysis we can draw three important conclusions:

Figure 4: Numerical solution with Δt exactly at the stability limit.

1. The key parameter in the formulas is $p=\omega \Delta t$. The period of oscillations is $P=2 \pi / \omega$, and the number of time steps per period is $N_{P}=P / \Delta t$. Therefore, $p=\omega \Delta t=2 \pi N_{P}$, showing that the critical parameter is the number of time steps per period. The smallest possible N_{P} is 2 , showing that $p \in(0, \pi]$.
2. Provided $p \leq 2$, the amplitude of the numerical solution is constant.
3. The numerical solution exhibits a relative phase error $\tilde{\omega} / \omega \approx 1+\frac{1}{24} p^{2}$. This error leads to wrongly displaced peaks of the numerical solution, and the error in peak location grows linearly with time (see Exercise 2).

5 Alternative schemes based on 1st-order equations

A standard technique for solving second-order ODEs is to rewrite them as a system of first-order ODEs and then apply the vast collection of methods for first-order ODE systems. Given the second-order ODE problem

$$
u^{\prime \prime}+\omega^{2} u=0, \quad u(0)=I, u^{\prime}(0)=0
$$

we introduce the auxiliary variable $v=u^{\prime}$ and express the ODE problem in terms of first-order derivatives of u and v :

$$
\begin{align*}
u^{\prime} & =v, \tag{22}\\
v^{\prime} & =-\omega^{2} u . \tag{23}
\end{align*}
$$

The initial conditions become $u(0)=I$ and $v(0)=0$.

5.1 Standard methods for 1st-order ODE systems

The Forward Euler scheme. A Forward Euler approximation to our 2×2 system of ODEs (22)-(23) becomes

$$
\begin{equation*}
\left[D_{t}^{+} u=v\right]^{n},\left[D_{t}^{+} v=-\omega^{2} u\right]^{n} \tag{24}
\end{equation*}
$$

or written out,

$$
\begin{align*}
& u^{n+1}=u^{n}+\Delta t v^{n} \tag{25}\\
& v^{n+1}=v^{n}-\Delta t \omega^{2} u^{n} \tag{26}
\end{align*}
$$

Let us briefly compare this Forward Euler method with the centered difference scheme for the second-order differential equation. We have from (25) and (26) applied at levels n and $n-1$ that

$$
u^{n+1}=u^{n}+\Delta t v^{n}=u^{n}+\Delta t\left(v^{n-1}-\Delta t \omega^{2} u^{n-1}\right.
$$

Since from (25)

$$
v^{n-1}=\frac{1}{\Delta t}\left(u^{n}-u^{n-1}\right),
$$

it follows that

$$
u^{n+1}=2 u^{n}-u^{n-1}-\Delta t^{2} \omega^{2} u^{n-1}
$$

which is very close to the centered difference scheme, but the last term is evaluated at t_{n-1} instead of t_{n}. This difference is actually crucial for the accuracy of the Forward Euler method applied to vibration problems.

The Backward Euler scheme. A Backward Euler approximation the ODE system is equally easy to write up in the operator notation:

$$
\begin{align*}
& {\left[D_{t}^{-} u=v\right]^{n+1}} \tag{27}\\
& {\left[D_{t}^{-} v=-\omega u\right]^{n+1} .} \tag{28}
\end{align*}
$$

This becomes a coupled system for u^{n+1} and v^{n+1} :

$$
\begin{align*}
u^{n+1}-\Delta t v^{n+1} & =u^{n}, \tag{29}\\
v^{n+1}+\Delta t \omega^{2} u^{n+1} & =v^{n} . \tag{30}
\end{align*}
$$

The Crank-Nicolson scheme. The Crank-Nicolson scheme takes this form in the operator notation:

$$
\begin{align*}
& {\left[D_{t} u=\bar{v}^{t}\right]^{n+\frac{1}{2}}} \tag{31}\\
& {\left[D_{t} v=-\omega \bar{u}^{t}\right]^{n+\frac{1}{2}}} \tag{32}
\end{align*}
$$

Writing the equations out shows that is also a coupled system:

$$
\begin{align*}
u^{n+1}-\frac{1}{2} \Delta t v^{n+1} & =u^{n}+\frac{1}{2} \Delta t v^{n} \tag{33}\\
v^{n+1}+\frac{1}{2} \Delta t \omega^{2} u^{n+1} & =v^{n}-\frac{1}{2} \Delta t \omega^{2} u^{n} \tag{34}
\end{align*}
$$

Comparison of schemes. We can easily compare methods like the ones above (and many more!) with the aid of the Odespy ${ }^{9}$ package. Below is a sketch of the code.

```
import odespy
import numpy as np
def f(u, t, w=1):
    u, v = u # u is array of length 2 holding our [u, v]
    return [v, -w**2*u]
def run_solvers_and_plot(solvers, timesteps_per_period=20,
    num_periods=1, I=1, w=2*np.pi):
    P = 2*np.pi/w # duration of one period
    dt = P/timesteps_per_period
    Nt = num_periods*timesteps_per_period
    T = Nt*dt
    t_mesh = np.linspace(0, T, Nt+1)
    legends = []
    for solver in solvers:
        solver.set(f_kwargs={'w': w})
        solver.set_initial_condition([I, 0])
        u, t = solver.solve(t_mesh)
```

There is quite some more code dealing with plots also, and we refer to the source file vib_ undamped_odespy.py ${ }^{10}$ for details. Observe that keyword arguments in $f(u, t, w=1)$ can be supplied through a solver parameter f_kwargs (dictionary).

Specification of the Forward Euler, Backward Euler, and Crank-Nicolson schemes is done like this:

```
solvers = [
    odespy.ForwardEuler(f),
    # Implicit methods must use Newton solver to converge
    odespy.BackwardEuler(f, nonlinear_solver='Newton'),
    odespy.CrankNicolson(f, nonlinear_solver='Newton'),
    ]
```

The vib_undamped_odespy.py program makes two plots of the computed solutions with the various methods in the solvers list: one plot with $u(t)$ versus t, and one phase plane plot where

[^8]v is plotted against u. That is, the phase plane plot is the curve $(u(t), v(t))$ parameterized by t. Analytically, $u=I \cos (\omega t)$ and $v=u^{\prime}=-\omega I \sin (\omega t)$. The exact curve $(u(t), v(t))$ is therefore an ellipse, which often looks like a circle in a plot if the axes are automatically scaled. The important feature, however, is that exact curve $(u(t), v(t))$ is closed and repeats itself for every period. Not all numerical schemes are capable to do that, meaning that the amplitude instead shrinks or grows with time.

The Forward Euler scheme in Figure 5 has a pronounced spiral curve, pointing to the fact that the amplitude steadily grows, which is also evident in Figure 6. The Backward Euler scheme has a similar feature, except that the spriral goes inward and the amplitude is significantly damped. The changing amplitude and the sprial form decreases with decreasing time step. The Crank-Nicolson scheme looks much more accurate. In fact, these plots tell that the Forward and Backward Euler schemes are not suitable for solving our ODEs with oscillating solutions.

Figure 5: Comparison of classical schemes in the phase plane.

Figure 6: Comparison of classical schemes.

We may run two popular standard methods for first-order ODEs, the 2nd- and 4th-order Runge-Kutta methods, to see how they perform. Figures 7 and 8 show the solutions with larger Δt values than what was used in the previous two plots.

Figure 7: Comparison of Runge-Kutta schemes in the phase plane.

Figure 8: Comparison of Runge-Kutta schemes.

The visual impression is that the 4th-order Runge-Kutta method is very accurate, under all circumstances in these tests, and the 2nd-order scheme suffer from amplitude errors unless the time step is very small.

The corresponding results for the Crank-Nicolson scheme are shown in Figures 9 and 10. It is clear that the Crank-Nicolson scheme outperforms the 2nd-order Runge-Kutta method. Both schemes have the same order of accuracy $\mathcal{O}\left(\Delta t^{2}\right)$, but their differences in the accuracy that matters in a real physical application is very clearly pronounced in this example. Exercise 12 invites you to investigate how

5.2 Enegy considerations

The observations of various methods in the previous section can be better interpreted if we compute an quantity reflecting the total energy of the system. It turns out that this quantity,

$$
E(t)=\frac{1}{2}\left(u^{\prime}\right)^{2}+\frac{1}{2} \omega^{2} u^{2}
$$

Figure 9: Long-time behavior of the Crank-Nicolson scheme in the phase plane.

Figure 10: Long-time behavior of the Crank-Nicolson scheme.
is constant for all t. Checking that $E(t)$ really remains constant brings evidence that the numerical computations are sound. Such energy measures, when they exist, are much used to check numerical simulations.

Derivation of the energy expression. We starting multiplying

$$
u^{\prime \prime}+\omega^{2} u=0
$$

by u^{\prime} and integrating from 0 to T :

$$
\int_{0}^{T} u^{\prime \prime} u^{\prime} d t+\int_{0}^{T} \omega^{2} u u^{\prime} d t=0
$$

Observing that

$$
u^{\prime \prime} u^{\prime}=\frac{d}{d t} \frac{1}{2}\left(u^{\prime}\right)^{2}, \quad u u^{\prime}=\frac{d}{d t} \frac{1}{2} u^{2},
$$

we get

$$
\int_{0}^{T}\left(\frac{d}{d t} \frac{1}{2}\left(u^{\prime}\right)^{2}+\frac{d}{d t} \frac{1}{2} \omega^{2} u^{2}\right) d t=E(T)-E(0)
$$

where we have introduced the energy measure $E(t)$

$$
\begin{equation*}
E(t)=\frac{1}{2}\left(u^{\prime}\right)^{2}+\frac{1}{2} \omega^{2} u^{2} . \tag{35}
\end{equation*}
$$

The important result from this derivation is that the total energy is constant:

$$
E(t)=\text { const }
$$

Remark on the energy expression.

The quantity $E(t)$ derived above is physically not the energy of a vibrating mechanical system, but the energy per unit mass. To see this, we start with Newton's second law $F=m a$ (F is the sum of forces, m is the mass of the system, and a is the acceleration). The displacement u is related to a through $a=u^{\prime \prime}$. With a spring force as the only force we have $F=-k u$, where k is a spring constant measuring the stiffness of the spring. Newton's second law then implies the differential equation

$$
-k u=m u^{\prime \prime} \quad \Rightarrow m u^{\prime \prime}+k u=0 .
$$

This equation of motion can be turned into an energy balance equation by finding the work done by each term during a time interval $[0, T]$. To this end, we multiply the equation by $d u=u^{\prime} d t$ and integrate:

$$
\int_{0}^{T} m u u^{\prime} d t+\int_{0}^{T} k u u^{\prime} d t=0
$$

The result is

$$
E(t)=E_{k}(t)+E_{p}(t)=0,
$$

where

$$
\begin{equation*}
E_{k}(t)=\frac{1}{-2 m v^{2}}, \quad v=u^{\prime}, \tag{36}
\end{equation*}
$$

is the kinetic energy of the system,

$$
\begin{equation*}
E_{p}(t)=\frac{1}{2} k u^{2} \tag{37}
\end{equation*}
$$

is the potential energy, and the sum $E(t)$ is the total energy. The derivation demonstrates the famous energy principle that any change in the kinetic energy is due to a change in potential energy and vice versa.

The equation $m u^{\prime \prime}+k u=0$ can be divided by m and written as $u^{\prime \prime}+\omega^{2} u=0$ for $\omega=\sqrt{k / m}$. The energy expression $E(t)=\frac{1}{2}\left(u^{\prime}\right)^{2}+\frac{1}{2} \omega^{2} u^{2}$ derived earlier is then simply the true physical total energy $\frac{1}{2} m\left(u^{\prime}\right)^{2}+\frac{1}{2} k^{2} u^{2}$ divided by m, i.e., total energy per unit mass.

Example. Analytically, we have $u(t)=I \cos \omega t$, if $u(0)=I$ and $u^{\prime}(0)=0$, so we can easily check that the evolution of the energy $E(t)$ is constant:

$$
E(t)=\frac{1}{2} I^{2}(-\omega \sin \omega t)^{2}+\frac{1}{2} \omega^{2} I^{2} \cos ^{2} \omega t=\frac{1}{2} \omega^{2}\left(\sin ^{2} \omega t+\cos ^{2} \omega t\right)=\frac{1}{2} \omega^{2} .
$$

Discrete total energy. The total energy $E(t)$ can be computed as soon as u^{n} is available. Using $\left(u^{\prime}\right)^{n} \approx\left[D_{2 t} u^{n}\right]$ we have

$$
E^{n}=\frac{1}{2}\left(\left[D_{2 t} u\right]^{n}\right)^{2}+\frac{1}{2} \omega^{2}\left(u^{n}\right)^{2} .
$$

The errors involved in E^{n} get a contribution $\mathcal{O}\left(\Delta t^{2}\right)$ from the difference approximation of u^{\prime} and a contribution from the numerical error in u^{n}. With a second-order scheme for computing u^{n}, the overall error in E^{n} is expected to be $\mathcal{O}\left(\Delta t^{2}\right)$.

An error measure based on total energy. The error in total energy, as a mesh function, can be computed by

$$
\begin{equation*}
e_{E}^{n}=\frac{1}{2}\left(\frac{u^{n+1}-u^{n-1}}{2 \Delta t}\right)^{2}+\frac{1}{2} \omega^{2}\left(u^{n}\right)^{2}-E(0), \quad n=1, \ldots, N_{t}-1, \tag{38}
\end{equation*}
$$

where

$$
E(0)=\frac{1}{2} V^{2}+\frac{1}{2} \omega^{2} I^{2}
$$

if $u(0)=I$ and $u^{\prime}(0)=V$. A useful norm can be the maximum absolute value of e_{E}^{n} :

$$
\left\|e_{E}^{n}\right\|_{\ell \infty}=\max _{1 \leq n<N_{t}}\left|e_{E}^{n}\right|
$$

The corresponding Python implementation takes the form

```
# import numpy as np and compute u, t
dt = t[1]-t[0]
E = 0.5* ((u[2:] - u[:-2])/(2*dt))**2 + 0.5*W**2*u[1:-1]**2
EO = 0.5*V**2 + 0.5**W**2*I**2
e_E = E - E0
e_E_norm = np.abs(e_E).max()
```

The convergence rates of the quantity e_E_norm can be used for verification. The value of e_E_norm is also useful for comparing schemes through their ability to preserve energy. Below is a table demonstrating the error in total energy for various schemes. We clearly see that the Crank-Nicolson and 4th-order Runge-Kutta schemes are superior to the 2nd-order Runge-Kutta method and even more superior to the Forward and Backward Euler schemes.

| Method | T | Δt | $\max \left\|e_{E}^{n}\right\|$ |
| :---: | :---: | :---: | :---: |
| Forward Euler | 1 | 0.05 | $1.113 \cdot 10^{2}$ |
| Forward Euler | 1 | 0.025 | $3.312 \cdot 10^{1}$ |
| Backward Euler | 1 | 0.05 | $1.683 \cdot 10^{1}$ |
| Backward Euler | 1 | 0.025 | $1.231 \cdot 10^{1}$ |
| Runge-Kutta 2nd-order | 1 | 0.1 | 8.401 |
| Runge-Kutta 2nd-order | 1 | 0.05 | $9.637 \cdot 10^{-1}$ |
| Crank-Nicolson | 1 | 0.05 | $9.389 \cdot 10^{-1}$ |
| Crank-Nicolson | 1 | 0.025 | $2.411 \cdot 10^{-1}$ |
| Runge-Kutta 4th-order | 1 | 0.1 | 2.387 |
| Runge-Kutta 4th-order | 1 | 0.05 | $6.476 \cdot 10^{-1}$ |
| Crank-Nicolson | 10 | 0.1 | 3.389 |
| Crank-Nicolson | 10 | 0.05 | $9.389 \cdot 10^{-1}$ |
| Runge-Kutta 4th-order | 10 | 0.1 | 3.686 |
| Runge-Kutta 4th-order | 10 | 0.05 | $6.928 \cdot 10^{-1}$ |

5.3 The Euler-Cromer method

While the 4th-order Runge-Kutta method and the a centered Crank-Nicolson scheme work well for the first-order formulation of the vibration model, both were inferior to the straightforward centered difference scheme for the second-order equation $u^{\prime \prime}+\omega^{2} u=0$. However, there is a similarly successful scheme available for the first-order system $u^{\prime}=v, v^{\prime}=-\omega^{2} u$, to be presented next.

Forward-backward discretization. The idea is to apply a Forward Euler discretization to the first equation and a Backward Euler discretization to the second. In operator notation this is stated as

$$
\begin{align*}
& {\left[D_{t}^{+} u=v\right]^{n}} \tag{39}\\
& {\left[D_{t}^{-} v=-\omega u\right]^{n+1}} \tag{40}
\end{align*}
$$

We can write out the formulas and collect the unknowns on the left-hand side:

$$
\begin{align*}
& u^{n+1}=u^{n}+\Delta t v^{n} \tag{41}\\
& v^{n+1}=v^{n}-\Delta t \omega^{2} u^{n+1} \tag{42}
\end{align*}
$$

We realize that u^{n+1} can be computed from (41) and then v^{n+1} from (42) using the recently computed value u^{n+1} on the right-hand side.

The scheme (41)-(42) goes under several names: Forward-backward scheme, Semi-implicit Euler method ${ }^{11}$, symplectic Euler, semi-explicit Euler, Newton-Störmer-Verlet, and Euler-Cromer. We shall stick to the latter name. Since both time discretizations are based on first-order difference approximation, one may think that the scheme is only of first-order, but this is not true: the use of a forward and then a backward difference make errors cancel so that the overall error in the scheme is $\mathcal{O}\left(\Delta t^{2}\right)$. This is explaned below.

[^9]Equivalence with the scheme for the second-order ODE. We may eliminate the v^{n} variable from (41)-(42). From (42) we have $v^{n}=v^{n-1}-\Delta t \omega^{2} u^{n}$, which can be inserted in (41) to yield

$$
\begin{equation*}
u^{n+1}=u^{n}+\Delta t v^{n-1}-\Delta t^{2} \omega^{2} u^{n} . \tag{43}
\end{equation*}
$$

The v^{n-1} quantity can be expressed by u^{n} and u^{n-1} using (41):

$$
v^{n-1}=\frac{u^{n}-u^{n-1}}{\Delta t}
$$

and when this is inserted in (43) we get

$$
\begin{equation*}
u^{n+1}=2 u^{n}-u^{n-1}-\Delta t^{2} \omega^{2} u^{n} \tag{44}
\end{equation*}
$$

which is nothing but the centered scheme (7)! The previous analysis of this scheme then also applies to the Euler-Cromer method. That is, the amplitude is constant, given that the stability criterion is fulfilled, but there is always a phase error (18).

The initial condition $u^{\prime}=0$ means $u^{\prime}=v=0$. Then $v^{0}=0$, and (41) implies $u^{1}=u^{0}$, while (42) says $v^{1}=-\omega^{2} u^{0}$. This approximation, $u^{1}=u^{0}$, corresponds to a first-order Forward Euler discretization of the initial condition $u^{\prime}(0)=0:\left[D_{t}^{+} u=0\right]^{0}$. Therefore, the Euler-Cromer scheme will start out differently and not exactly reproduce the solution of (7).

5.4 The Euler-Cromer scheme on a staggered mesh

The Forward and Backward Euler schemes used in the Euler-Cromer method are both nonsymmetric, but their combination yields a symmetric method since the resulting scheme is equivalent with a centered (symmetric) difference scheme for $u^{\prime \prime}+\omega^{2} u=0$. The symmetric nature of the Euler-Cromer scheme is much more evident if we introduce a staggered mesh in time where u is sought at integer time points t_{n} and v is sought at $t_{n+1 / 2}$ between two u points. The unknowns are then $u^{1}, v^{3 / 2}, u^{2}, v^{5 / 2}$, and so on. We typically use the notation u^{n} and $v^{n+\frac{1}{2}}$ for the two unknown mesh functions.

On a staggered mesh it is natural to use centered difference approximations, expressed in operator notation as

$$
\begin{align*}
& {\left[D_{t} u=v\right]^{n+\frac{1}{2}}} \tag{45}\\
& {\left[D_{t} v=-\omega u\right]^{n+1}} \tag{46}
\end{align*}
$$

Writing out the formulas gives

$$
\begin{align*}
u^{n+1} & =u^{n}+\Delta t v^{n+\frac{1}{2}} \tag{47}\\
v^{n+\frac{3}{2}} & =v^{n+\frac{1}{2}}-\Delta t \omega^{2} u^{n+1} \tag{48}
\end{align*}
$$

Of esthetic reasons one often writes these equations at the previous time level to replace the $\frac{3}{2}$ by $\frac{1}{2}$ in the left-most term in the last equation,

$$
\begin{align*}
u^{n} & =u^{n-1}+\Delta t v^{n-\frac{1}{2}} \tag{49}\\
v^{n+\frac{1}{2}} & =v^{n-\frac{1}{2}}-\Delta t \omega^{2} u^{n} \tag{50}
\end{align*}
$$

Such a rewrite is only mathematical cosmetics. The important thing is that this centered scheme has exactly the same computational structure as the forward-backward scheme. We shall use the names forward-backward Euler-Cromer and staggered Euler-Cromer to distinguish the two schemes.

We can eliminate the v values and get back the centered scheme based on the second-order differential equation, so all these three schemes are equivalent. However, they differ somewhat in the treatment of the initial conditions.

Suppose we have $u(0)=I$ and $u^{\prime}(0)=v(0)=0$ as mathematical initial conditions. This means $u^{0}=I$ and

$$
v(0) \approx \frac{1}{2}\left(v^{-\frac{1}{2}}+v^{\frac{1}{2}}\right)=0, \quad \Rightarrow \quad v^{-\frac{1}{2}}=-v^{\frac{1}{2}}
$$

Using the discretized equation (50) for $n=0$ yields

$$
v^{\frac{1}{2}}=v^{-\frac{1}{2}}-\Delta t \omega^{2} I,
$$

and eliminating $v^{-\frac{1}{2}}=-v^{\frac{1}{2}}$ results in $v^{\frac{1}{2}}=-\frac{1}{2} \Delta t \omega^{2} I$ and

$$
u^{1}=u^{0}-\frac{1}{2} \Delta t^{2} \omega^{2} I,
$$

which is exactly the same equation for u^{1} as we had in the centered scheme based on the secondorder differential equation (and hence corresponds to a centered difference approximation of the initial condition for $\left.u^{\prime}(0)\right)$. The conclusion is that a staggered mesh is fully equivalent with that scheme, while the forward-backward version gives a slight deviation in the computation of u^{1}.

We can redo the derivation of the initial conditions when $u^{\prime}(0)=V$:

$$
v(0) \approx \frac{1}{2}\left(v^{-\frac{1}{2}}+v^{\frac{1}{2}}\right)=V, \quad \Rightarrow \quad v^{-\frac{1}{2}}=2 V-v^{\frac{1}{2}} .
$$

Using this $v^{-\frac{1}{2}}$ in

$$
v^{\frac{1}{2}}=v^{-\frac{1}{2}}-\Delta t \omega^{2} I,
$$

then gives $v^{\frac{1}{2}}=V-\frac{1}{2} \Delta t \omega^{2} I$. The general initial conditions are therefore

$$
\begin{align*}
u^{0} & =I \tag{51}\\
v^{\frac{1}{2}} & =V-\frac{1}{2} \Delta t \omega^{2} I . \tag{52}
\end{align*}
$$

5.5 Implementation of the scheme on a staggered mesh

The algorithm goes like this:

1. Set the initial values (51) and (52).
2. For $n=1,2, \ldots$:
(a) Compute u^{n} from (49).
(b) Compute $v^{n+\frac{1}{2}}$ from (50).

Implementation with integer indices. Translating the schemes (49) and (50) to computer code faces the problem of how to store and access $v^{n+\frac{1}{2}}$, since arrays only allow integer indices with base 0 . We must then introduce a convention: $v^{1+\frac{1}{2}}$ is stored in $\mathrm{v}[\mathrm{n}]$ while $v^{1-\frac{1}{2}}$ is stored in $v[n-1]$. We can then write the algorithm in Python as

```
def solver(I, w, dt, T)
    dt = float(dt)
    Nt = int(round(T/dt))
    u = zeros(Nt+1)
    v = zeros(Nt+1)
    t = linspace(0, Nt*dt, Nt+1) # mesh for u
    t_v = t + dt/2 # mesh for v
    u[0] = I
    v[0] = 0 - 0.5*dt*W**2*u[0]
    for n in range(1, Nt+1):
        u[n] = u[n-1] + dt*v[n-1]
        v[n] = v[n-1] - dt*w**2*u[n]
    return u, t, v, t_v
```

Note that the return u and v together with the mesh points such that the complete mesh function for u is described by u and t , while v and $\mathrm{t}_{-} \mathrm{v}$ represents the mesh function for v.

Implementation with half-integer indices. Some prefer to see a closer relationship between the code and the mathematics for the quantities with half-integer indices. For example, we would like to replace the updating equation for $\mathrm{v}[\mathrm{n}]$ by

```
v[n+half] = v[n-half] - dt*w**2*u[n]
```

This is easy to do if we could be sure that $n+h a l f$ means n and $n-h a l f$ means $n-1$. A possible solution is to define half as a special object such that an integer plus half results in the integer, while an integer minus half equals the integer minus 1. A simple Python class may realize the half object:

```
class HalfInt:
    def __radd__(self, other):
        return other
    def __rsub__(self, other):
        return other - 1
half = HalfInt()
```

The __radd__ function is invoked for all expressions n+half ("right add" with self as half and other as n). Similarly, the __rsub__ function is invoked for n-half and results in n-1.

Using the half object, we can implement the algorithms in an even more readable way:

```
def solver(I, w, dt, T):
    Solve u'=v, v' = - w**2*u for t in (0,T], u(0)=I and v(0)=0,
    by a central finite difference method with time step dt.
    dt = float(dt)
    Nt = int(round(T/dt))
    u = zeros(Nt+1)
    v = zeros(Nt+1)
    t = linspace(0, Nt*dt, Nt+1) # mesh for u
```

```
t_v = t + dt/2 # mesh for v
u[0] = I
v[0+half] = 0 - 0.5*dt*W**2*u[0]
for n in range(1, Nt+1):
    print n, n+half, n-half
    u[n] = u[n-1] + dt*v[n-half]
    v[n+half] = v[n-half] - dt*w**2*u[n]
return u, t, v, t_v
```

Verification of this code is easy as we can just compare the computed u with the u produced by the solver function in vib_undamped.py (which solves $u^{\prime \prime}+\omega^{2} u=0$ directly). The values should coincide to machine precision since the two numerical methods are mathematically equivalent. We refer to the file vib_undamped_staggered.py ${ }^{12}$ for the details of a nose test that checks this property.

6 Generalization: damping, nonlinear spring, and external excitation

We shall now generalize the simple model problem from Section 1 to include a possibly nonlinear damping term $f\left(u^{\prime}\right)$, a possibly nonlinear spring (or restoring) force $s(u)$, and some external excitation $F(t)$:

$$
\begin{equation*}
m u^{\prime \prime}+f\left(u^{\prime}\right)+s(u)=F(t), \quad u(0)=I, u^{\prime}(0)=V, t \in(0, T] . \tag{53}
\end{equation*}
$$

We have also included a possibly nonzero initial value of $u^{\prime}(0)$. The parameters $m, f\left(u^{\prime}\right), s(u)$, $F(t), I, V$, and T are input data.

There are two main types of damping (friction) forces: linear $f\left(u^{\prime}\right)=b u$, or quadratic $f\left(u^{\prime}\right)=b u^{\prime}\left|u^{\prime}\right|$. Spring systems often feature linear damping, while air resistance usually gives rise to quadratic damping. Spring forces are often linear: $s(u)=c u$, but nonlinear versions are also common, the most famous is the gravity force on a pendulum that acts as a spring with $s(u) \sim \sin (u)$.

6.1 A centered scheme for linear damping

Sampling (53) at a mesh point t_{n}, replacing $u^{\prime \prime}\left(t_{n}\right)$ by $\left[D_{t} D_{t} u\right]^{n}$, and $u^{\prime}\left(t_{n}\right)$ by $\left[D_{2 t} u\right]^{n}$ results in the discretization

$$
\begin{equation*}
\left[m D_{t} D_{t} u+f\left(D_{2 t} u\right)+s(u)=F\right]^{n} \tag{54}
\end{equation*}
$$

which written out means

$$
\begin{equation*}
m \frac{u^{n+1}-2 u^{n}+u^{n-1}}{\Delta t^{2}}+f\left(\frac{u^{n+1}-u^{n-1}}{2 \Delta t}\right)+s\left(u^{n}\right)=F^{n} \tag{55}
\end{equation*}
$$

where F^{n} as usual means $F(t)$ evaluated at $t=t_{n}$. Solving (55) with respect to the unknown u^{n+1} gives a problem: the u^{n+1} inside the f function makes the equation nonlinear unless $f\left(u^{\prime}\right)$ is a linear function, $f\left(u^{\prime}\right)=b u^{\prime}$. For now we shall assume that f is linear in u^{\prime}. Then

$$
\begin{equation*}
m \frac{u^{n+1}-2 u^{n}+u^{n-1}}{\Delta t^{2}}+b \frac{u^{n+1}-u^{n-1}}{2 \Delta t}+s\left(u^{n}\right)=F^{n} \tag{56}
\end{equation*}
$$

[^10]which gives an explicit formula for u at each new time level:
\[

$$
\begin{equation*}
u^{n+1}=\left(2 m u^{n}+\left(\frac{b}{2} \Delta t-m\right) u^{n-1}+\Delta t^{2}\left(F^{n}-s\left(u^{n}\right)\right)\right)\left(m+\frac{b}{2} \Delta t\right)^{-1} \tag{57}
\end{equation*}
$$

\]

For the first time step we need to discretize $u^{\prime}(0)=V$ as $\left[D_{2 t} u=V\right]^{0}$ and combine with (57) for $n=0$. The discretized initial condition leads to

$$
\begin{equation*}
u^{-1}=u^{1}-2 \Delta t V, \tag{58}
\end{equation*}
$$

which inserted in (57) for $n=0$ gives an equation that can be solved for u^{1} :

$$
\begin{equation*}
u^{1}=u^{0}+\Delta t V+\frac{\Delta t^{2}}{2 m}\left(-b V-s\left(u^{0}\right)+F^{0}\right) \tag{59}
\end{equation*}
$$

6.2 A centered scheme for quadratic damping

When $f\left(u^{\prime}\right)=b u^{\prime}\left|u^{\prime}\right|$, we get a quadratic equation for u^{n+1} in (55). This equation can straightforwardly be solved, but we can also avoid the nonlinearity by performing an approximation that is within other numerical errors that we have already committed by replacing derivatives with finite differences.

The idea is to reconsider (53) and only replace $u^{\prime \prime}$ by $D_{t} D_{t} u$, giving

$$
\begin{equation*}
\left[m D_{t} D_{t} u+b u^{\prime}\left|u^{\prime}\right|+s(u)=F\right]^{n}, \tag{60}
\end{equation*}
$$

Here, $u^{\prime}\left|u^{\prime}\right|$ is to be computed at time t_{n}. We can introduce a geometric mean, defined by

$$
\left(w^{2}\right)^{n} \approx w^{n-\frac{1}{2}} w^{n+\frac{1}{2}},
$$

for some quantity w depending on time. The error in the geometric mean approximation is $\mathcal{O}\left(\Delta t^{2}\right)$, the same as in the approximation $u^{\prime \prime} \approx D_{t} D_{t} u$. With $w=u^{\prime}$ it follows that

$$
\left[u^{\prime}\left|u^{\prime}\right|\right]^{n} \approx u^{\prime}\left(t_{n}+\frac{1}{2}\right)\left|u^{\prime}\left(t_{n}-\frac{1}{2}\right)\right| .
$$

The next step is to approximate u^{\prime} at $t_{n \pm 1 / 2}$, but here a centered difference can be used:

$$
\begin{equation*}
u^{\prime}\left(t_{n+1 / 2}\right) \approx\left[D_{t} u\right]^{n+\frac{1}{2}}, \quad u^{\prime}\left(t_{n-1 / 2}\right) \approx\left[D_{t} u\right]^{n-\frac{1}{2}} . \tag{61}
\end{equation*}
$$

We then get

$$
\begin{equation*}
\left[u^{\prime}\left|u^{\prime}\right|\right]^{n} \approx\left[D_{t} u\right]^{n+\frac{1}{2}}\left|\left[D_{t} u\right]^{n-\frac{1}{2}}\right|=\frac{u^{n+1}-u^{n}}{\Delta t} \frac{\left|u^{n}-u^{n-1}\right|}{\Delta t} . \tag{62}
\end{equation*}
$$

The counterpart to (55) is then

$$
\begin{equation*}
m \frac{u^{n+1}-2 u^{n}+u^{n-1}}{\Delta t^{2}}+b \frac{u^{n+1}-u^{n}}{\Delta t} \frac{\left|u^{n}-u^{n-1}\right|}{\Delta t}+s\left(u^{n}\right)=F^{n}, \tag{63}
\end{equation*}
$$

which is linear in u^{n+1}. Therefore, we can easily solve with respect to u^{n+1} and achieve the explicit updating formula

$$
\begin{align*}
u^{n+1}= & \left(m+b\left|u^{n}-u^{n-1}\right|\right)^{-1} \times \\
& \left(2 m u^{n}-m u^{n-1}+b u^{n}\left|u^{n}-u^{n-1}\right|+\Delta t^{2}\left(F^{n}-s\left(u^{n}\right)\right)\right) . \tag{64}
\end{align*}
$$

In the derivation of a special equation for the first time step we run into some trouble: inserting (58) in (64) for $n=0$ results in a complicated nonlinear equation for u^{1}. By thinking differently about the problem we can easily get away with the nonlinearity again. We have for $n=0$ that $b\left[u^{\prime}\left|u^{\prime}\right|\right]^{0}=b V|V|$. Using this value in (60) gives

$$
\begin{equation*}
\left[m D_{t} D_{t} u+b V|V|+s(u)=F\right]^{0} \tag{65}
\end{equation*}
$$

Writing this equation out and using (58) results in the special equation for the first time step:

$$
\begin{equation*}
u^{1}=u^{0}+\Delta t V+\frac{\Delta t^{2}}{2 m}\left(-b V|V|-s\left(u^{0}\right)+F^{0}\right) \tag{66}
\end{equation*}
$$

6.3 A forward-backward discretization of the quadratic damping term

The previous section first proposed to discretize the quadratic damping term $\left|u^{\prime}\right| u^{\prime}$ using centered differences: $\left[\left|D_{2 t}\right| D_{2 t} u\right]^{n}$. As this gives rise to a nonlinearity in u^{n+1}, it was instead proposed to use a geometric mean combined with centered differences. But there are other alternatives. To get rid of the nonlinearity in $\left[\left|D_{2 t}\right| D_{2 t} u\right]^{n}$, one can think differently: apply a backward difference to $\left|u^{\prime}\right|$, such that the term involves known values, and apply a forward difference to u^{\prime} to make the term linear in the unknown u^{n+1}. With mathematics,

$$
\left[\beta\left|u^{\prime}\right| u^{\prime}\right]^{n} \approx \beta\left|\left[D_{t}^{-} u\right]^{n}\right|\left[D_{t}^{+} u\right]^{n}=\beta\left|\frac{u^{-} u^{n-1}}{\Delta t}\right| \frac{u^{n+1}-u^{n}}{\Delta t}
$$

The forward and backward differences have both an error proportional to Δt so one may think the discretization above leads to a first-order scheme. However, by looking at the formulas, we realize that the forward-backward differences result in exactly the same scheme as when we used a geometric mean and centered differences. Therefore, the forward-backward differences act in a symmetric way and actually produce a second-order accurate discretization of the quadratic damping term.

6.4 Implementation

The algorithm arising from the methods in Sections 6.1 and 6.2 is very similar to the undamped case in Section 1.2. The difference is basically a question of different formulas for u^{1} and u^{n+1}. This is actually quite remarkable. The equation (53) is normally impossible to solve by pen and paper, but possible for some special choices of F, s, and f. On the contrary, the complexity of the nonlinear generalized model (53) versus the simple undamped model is not a big deal when we solve the problem numerically!

The computational algorithm takes the form

1. $u^{0}=I$
2. compute u^{1} from (59) if linear damping or (66) if quadratic damping
3. for $n=1,2, \ldots, N_{t}-1$:
(a) compute u^{n+1} from (57) if linear damping or (64) if quadratic damping

Modifying the solver function for the undamped case is fairly easy, the big difference being many more terms and if tests on the type of damping:

```
def solver(I, V, m, b, s, F, dt, T, damping='linear'):
    Solve m*u'' + f(u') + s(u) = F(t) for t in (0,T],
    u(0)=I and u'(0) =V,
    by a central finite difference method with time step dt.
    If damping is 'linear', f(u')=b*u, while if damping is
    'quadratic', f(u')=b*u'*abs(u').
    F(t) and s(u) are Python functions.
    """
    dt = float(dt); b = float(b); m = float(m) # avoid integer div.
    Nt = int(round(T/dt))
    u = zeros(Nt+1)
    t = linspace(0, Nt*dt, Nt+1)
    u[0] = I
    if damping == 'linear':
        u[1] = u[0] + dt*V + dt**2/(2*m)*(-b*V - s(u[0]) + F(t[0]))
    elif damping == 'quadratic':
        u[1] = u[0] + dt*V + \
                    dt**2/(2*m)*(-b*V*abs(V) - s(u[0]) + F(t[0]))
    for n in range(1, Nt):
        if damping == 'linear':
            u[n+1] = (2*m*u[n] + (b*dt/2 - m)*u[n-1] +
                                    dt**2*(F(t[n]) - s(u[n])))/(m + b*dt/2)
        elif damping == 'quadratic':
            u[n+1] = (2*m*u[n] - m*u[n-1] + b*u[n]*abs(u[n] - u[n-1])
                        + dt**2*(F(t[n]) - s(u[n])))/\
                            (m + b*abs(u[n] - u[n-1]))
    return u, t
```

The complete code resides in the file vib. py ${ }^{13}$.

6.5 Verification

Constant solution. For debugging and initial verification, a constant solution is often very useful. We choose $u_{\mathrm{e}}(t)=I$, which implies $V=0$. Inserted in the ODE, we get $F(t)=s(I)$ for any choice of f. Since the discrete derivative of a constant vanishes (in particular, $\left[D_{2 t} I\right]^{n}=0$, $\left[D_{t} I\right]^{n}=0$, and $\left[D_{t} D_{t} I\right]^{n}=0$), the constant solution also fulfills the discrete equations. The constant should therefore be reproduced to machine precision.

Linear solution. Now we choose a linear solution: $u_{\mathrm{e}}=c t+d$. The initial condition $u(0)=I$ implies $d=I$, and $u^{\prime}(0)=V$ forces c to be V. Inserting $u_{\mathrm{e}}=V t+I$ in the ODE with linear damping results in

$$
0+b V+s(V t+I)=F(t)
$$

while quadratic damping requires the source term

$$
0+b|V| V+s(V t+I)=F(t)
$$

Since the finite difference approximations used to compute u^{\prime} all are exact for a linear function, it turns out that the linear u_{e} is also a solution of the discrete equations. Exercise 9 asks you to carry out all the details.

[^11]Quadratic solution. Choosing $u_{\mathrm{e}}=b t^{2}+V t+I$, with b arbitrary, fulfills the initial conditions and fits the ODE if F is adjusted properly. The solution also solves the discrete equations with linear damping. However, this quadratic polynomial in t does not fulfill the discrete equations in case of quadratic damping, because the geometric mean used in the approximation of this term introduces an error. Doing Exercise 9 will reveal the details. One can fit F^{n} in the discrete equations such that the quadratic polynomial is reproduced by the numerical method (to machine precision).

6.6 Visualization

The functions for visualizations differ significantly from those in the undamped case in the vib_undamped.py program because we in the present general case do not have an exact solution to include in the plots. Moreover, we have no good estimate of the periods of the oscillations as there will be one period determined by the system parameters, essentially the approximate frequency $\sqrt{s^{\prime}(0) / m}$ for linear s and small damping, and one period dictated by $F(t)$ in case the excitation is periodic. This is, however, nothing that the program can depend on or make use of. Therefore, the user has to specify T and the window width in case of a plot that moves with the graph and shows the most recent parts of it in long time simulations.

The vib.py code contains several functions for analyzing the time series signal and for visualizing the solutions.

6.7 User interface

The main function has substantial changes from the vib_undamped.py code since we need to specify the new data $c, s(u)$, and $F(t)$. In addition, we must set T and the plot window width (instead of the number of periods we want to simulate as in vib_undamped.py). To figure out whether we can use one plot for the whole time series or if we should follow the most recent part of u, we can use the plot_empricial_freq_and_amplitude function's estimate of the number of local maxima. This number is now returned from the function and used in main to decide on the visualization technique.

```
def main():
    import argparse
    parser = argparse.ArgumentParser()
    parser.add_argument('--I', type=float, default=1.0)
    parser.add_argument('--V', type=float, default=0.0)
    parser.add_argument('--m', type=float, default=1.0)
    parser.add_argument('--c', type=float, default=0.0)
    parser.add_argument('--s', type=str, default='u')
    parser.add_argument('--F', type=str, default='0')
    parser.add_argument('--dt', type=float, default=0.05)
    parser.add_argument('--T', type=float, default=140)
    parser.add_argument('--damping', type=str, default='linear')
    parser.add_argument('--window_width', type=float, default=30)
    parser.add_argument('--savefig', action='store_true')
    a = parser.parse_args()
    from scitools.std import StringFunction
    s = StringFunction(a.s, independent_variable='u')
    F = StringFunction(a.F, independent_variable='t')
    I, V, m, c, dt, T, window_width, savefig, damping = \
        a.I, a.V, a.m, a.c, a.dt, a.T, a.window_width, a.savefig, \
        a.damping
    u, t = solver(I, V, m, c, s, F, dt, T)
    num_periods = empirical_freq_and_amplitude(u, t)
```

```
if num_periods <= 15:
    figure()
    visualize(u, t)
else:
    visualize_front(u, t, window_width, savefig)
show()
```

The program vib.py contains the above code snippets and can solve the model problem (53). As a demo of vib.py, we consider the case $I=1, V=0, m=1, c=0.03, s(u)=\sin (u)$, $F(t)=3 \cos (4 t), \Delta t=0.05$, and $T=140$. The relevant command to run is

Terminal> python vib.py --s 'sin(u)' --F '3*cos(4*t)' --c 0.03

This results in a moving window following the function ${ }^{14}$ on the screen. Figure 11 shows a part of the time series.

Figure 11: Damped oscillator excited by a sinusoidal function.

6.8 A staggered Euler-Cromer scheme for the generalized model

The model
${ }^{14}$ http://tinyurl.com/k3sdbuv/pub/mov-vib/vib_generalized_dt0.05/index.html

$$
\begin{equation*}
m u^{\prime \prime}+f\left(u^{\prime}\right)+s(u)=F(t), \quad u(0)=I, u^{\prime}(0)=V, t \in(0, T] \tag{67}
\end{equation*}
$$

can be rewritten as a first-order ODE system

$$
\begin{align*}
u^{\prime} & =v \tag{68}\\
v^{\prime} & =m^{-1}(F(t)-f(v)-s(u)) \tag{69}
\end{align*}
$$

It is natural to introduce a staggered mesh (see Section 5.4) and seek u at mesh points t_{n} (the numerical value is denoted by u^{n}) and v between mesh points at $t_{n+1 / 2}$ (the numerical value is denoted by $v^{n+\frac{1}{2}}$. A centered difference approximation to (68)-(69) can then be written in operator notation as

$$
\begin{align*}
& {\left[D_{t} u=v\right]^{n-\frac{1}{2}}} \tag{70}\\
& {\left[D_{t} v=m^{-1}(F(t)-f(v)-s(u))\right]^{n}} \tag{71}
\end{align*}
$$

Written out,

$$
\begin{align*}
\frac{u^{n}-u^{n-1}}{\Delta t} & =v^{n-\frac{1}{2}} \tag{72}\\
\frac{v^{n+\frac{1}{2}}-v^{n-\frac{1}{2}}}{\Delta t} & =m^{-1}\left(F^{n}-f\left(v^{n}\right)-s\left(u^{n}\right)\right) \tag{73}
\end{align*}
$$

With linear damping, $f(v)=b v$, we can use an arithmetic mean for $f\left(v^{n}\right): f\left(v^{n}\right) \approx=\frac{1}{2}\left(f\left(v^{n-\frac{1}{2}}\right)+\right.$ $f\left(v^{n+\frac{1}{2}}\right)$). The system (72)-(73) can then be solved with respect to the unknowns u^{n} and $v^{n+\frac{1}{2}}$:

$$
\begin{align*}
u^{n} & =u^{n-1}+\Delta t v^{n-\frac{1}{2}} \tag{74}\\
v^{n+\frac{1}{2}} & =\left(1+\frac{b}{2 m} \Delta t\right)^{-1}\left(v^{n-\frac{1}{2}}+\Delta t m^{-1}\left(F^{n}-\frac{1}{2} f\left(v^{n-\frac{1}{2}}\right)-s\left(u^{n}\right)\right)\right) \tag{75}
\end{align*}
$$

In case of quadratic damping, $f(v)=b|v| v$, we can use a geometric mean: $f\left(v^{n}\right) \approx$ $b\left|v^{n-\frac{1}{2}}\right| v^{n+\frac{1}{2}}$. Inserting this approximation in (72)-(73) and solving for the unknowns u^{n} and $v^{n+\frac{1}{2}}$ results in

$$
\begin{align*}
u^{n} & =u^{n-1}+\Delta t v^{n-\frac{1}{2}} \tag{76}\\
v^{n+\frac{1}{2}} & =\left(1+\frac{b}{m}\left|v^{n-\frac{1}{2}}\right| \Delta t\right)^{-1}\left(v^{n-\frac{1}{2}}+\Delta t m^{-1}\left(F^{n}-s\left(u^{n}\right)\right)\right) \tag{77}
\end{align*}
$$

The initial conditions are derived at the end of Section 5.4:

$$
\begin{align*}
u^{0} & =I \tag{78}\\
v^{\frac{1}{2}} & =V-\frac{1}{2} \Delta t \omega^{2} I \tag{79}
\end{align*}
$$

7 Exercises and Problems

Problem 1: Use linear/quadratic functions for verification

Consider the ODE problem

$$
u^{\prime \prime}+\omega^{2} u=f(t), \quad u(0)=I, u^{\prime}(0)=V, t \in(0, T] .
$$

Discretize this equation according to $\left[D_{t} D_{t} u+\omega^{2} u=f\right]^{n}$.
a) Derive the equation for the first time step $\left(u^{1}\right)$.
b) For verification purposes, we use the method of manufactured solutions (MMS) with the choice of $u_{\mathrm{e}}(x, t)=c t+d$. Find restrictions on c and d from the initial conditions. Compute the corresponding source term f by term. Show that $\left[D_{t} D_{t} t\right]^{n}=0$ and use the fact that the $D_{t} D_{t}$ operator is linear, $\left[D_{t} D_{t}(c t+d)\right]^{n}=c\left[D_{t} D_{t} t\right]^{n}+\left[D_{t} D_{t} d\right]^{n}=0$, to show that u_{e} is also a perfect solution of the discrete equations.
c) Use sympy to do the symbolic calculations above. Here is a sketch of the program vib_undamped_verify_mms.p

```
import sympy as sp
V, t, I, W, dt = sp.symbols('V t I w dt') # global symbols
f = None # global variable for the source term in the ODE
def ode_source_term(u):
    """Return the terms in the ODE that the source term
    must balance, here u', + w**2*u.
    u is symbolic Python function of t."""
    return sp.diff(u(t), t, t) + w**2*u(t)
def residual_discrete_eq(u):
    """Return the residual of the discrete eq. with u inserted."""
    R = ...
    R =turn sp.simplify(R)
def residual_discrete_eq_step1(u):
    """Return the residual of the discrete eq. at the first
    step with u inserted."""
    R = ...
    return sp.simplify(R)
def DtDt(u, dt):
    """Return 2nd-order finite difference for u_tt.
    u is a symbolic Python function of t.
    """
    return ...
def main(u):
    """
    Given some chosen solution u (as a function of t, implemented
    as a Python function), use the method of manufactured solutions
    to compute the source term f, and check if u also solves
    the discrete equations.
    """
    print '==== Testing exact solution: %s ====, % u
    print "Initial conditions u(0)=%s, u'(0)=%s:" % \
        (u(t).subs(t, 0), sp.diff(u(t), t).subs(t, 0))
    # Method of manufactured solution requires fitting f
```

```
    global f # source term in the ODE
    f = sp.simplify(ode_lhs(u))
    # Residual in discrete equations (should be 0)
    print 'residual step1:', residual_discrete_eq_step1(u)
    print 'residual:', residual_discrete_eq(u)
def linear():
    main(lambda t: V*t + I)
if __name__ == '__main__':
    linear()
```

Fill in the various functions such that the calls in the main function works.
d) The purpose now is to choose a quadratic function $u_{\mathrm{e}}=b t^{2}+c t+d$ as exact solution. Extend the sympy code above with a function quadratic for fitting f and checking if the discrete equations are fulfilled. (The function is very similar to linear.)
e) Will a polynomial of degree three fulfill the discrete equations?
f) Implement a solver function for computing the numerical solution of this problem.
g) Write a nose test for checking that the quadratic solution is computed to correctly (too machine precision, but the round-off errors accumulate and increase with T) by the solver function.

Filenames: vib_undamped_verify_mms.pdf, vib_undamped_verify_mms.py.

Exercise 2: Show linear growth of the phase with time

Consider an exact solution $I \cos (\omega t)$ and an approximation $I \cos (\tilde{\omega} t)$. Define the phase error as time lag between the peak I in the exact solution and the corresponding peak in the approximation after m periods of oscillations. Show that this phase error is linear in m. Filename: vib_phase_error_growth.pdf.

Exercise 3: Improve the accuracy by adjusting the frequency

According to (18), the numerical frequency deviates from the exact frequency by a (dominating) amount $\omega^{3} \Delta t^{2} / 24>0$. Replace the w parameter in the algorithm in the solver function in vib_undamped.py by w* (1-(1./24) $\mathrm{w}_{\mathrm{w} * * 2 * \mathrm{dt} * * 2 \text { and test how this adjustment in the }}$ numerical algorithm improves the accuracy (use $\Delta t=0.1$ and simulate for 80 periods, with and without adjustment of ω).

Filename: vib_adjust_w.py.

Exercise 4: See if adaptive methods improve the phase error

Adaptive methods for solving ODEs aim at adjusting Δt such that the error is within a userprescribed tolerance. Implement the equation $u^{\prime \prime}+u=0$ in the Odespy ${ }^{15}$ software. Use the example from Section ?? in [1]. Run the scheme with a very low tolerance (say 10^{-14}) and for a long time, check the number of time points in the solver's mesh (len(solver.t_all)),

[^12]and compare the phase error with that produced by the simple finite difference method from Section 1.2 with the same number of (equally spaced) mesh points. The question is whether it pays off to use an adaptive solver or if equally many points with a simple method gives about the same accuracy. Filename: vib_undamped_adaptive.py.

Exercise 5: Use a Taylor polynomial to compute u^{1}

As an alternative to the derivation of (8) for computing u^{1}, one can use a Taylor polynomial with three terms for u^{1} :

$$
u\left(t_{1}\right) \approx u(0)+u^{\prime}(0) \Delta t+\frac{1}{2} u^{\prime \prime}(0) \Delta t^{2}
$$

With $u^{\prime \prime}=-\omega^{2} u$ and $u^{\prime}(0)=0$, show that this method also leads to (8). Generalize the condition on $u^{\prime}(0)$ to be $u^{\prime}(0)=V$ and compute u^{1} in this case with both methods. Filename: vib_first_step.pdf.

Exercise 6: Find the minimal resolution of an oscillatory function

Sketch the function on a given mesh which has the highest possible frequency. That is, this oscillatory "cos-like" function has its maxima and minima at every two grid points. Find an expression for the frequency of this function, and use the result to find the largest relevant value of $\omega \Delta t$ when ω is the frequency of an oscillating function and Δt is the mesh spacing. Filename: vib_largest_wdt.pdf.

Exercise 7: Visualize the accuracy of finite differences for a cosine function

We introduce the error fraction

$$
E=\frac{\left[D_{t} D_{t} u\right]^{n}}{u^{\prime \prime}\left(t_{n}\right)}
$$

to measure the error in the finite difference approximation $D_{t} D_{t} u$ to $u^{\prime \prime}$. Compute E for the specific choice of a cosine/sine function of the form $u=\exp (i \omega t)$ and show that

$$
E=\left(\frac{2}{\omega \Delta t}\right)^{2} \sin ^{2}\left(\frac{\omega \Delta t}{2}\right)
$$

Plot E as a function of $p=\omega \Delta t$. The relevant values of p are $[0, \pi]$ (see Exercise 6 for why $p>\pi$ does not make sense). The deviation of the curve from unity visualizes the error in the approximation. Also expand E as a Taylor polynomial in p up to fourth degree (use, e.g., sympy). Filename: vib_plot_fd_exp_error.py.

Exercise 8: Verify convergence rates of the error in energy

We consider the ODE problem $u^{\prime \prime}+\omega^{2} u=0, u(0)=I, u^{\prime}(0)=V$, for $t \in(0, T]$. The total energy of the solution $E(t)=\frac{1}{2}\left(u^{\prime}\right)^{2}+\frac{1}{2} \omega^{2} u^{2}$ should stay constant. The error in energy can be computed as explained in Section 5.2.

Make a nose test in a file test_error_conv.py, where code from vib_undamped.py is imported, but the convergence_rates and test_convergence_rates functions are copied and modified to also incorporate computations of the error in energy and the convergence rate of this error. The expected rate is 2 . Filename: test_error_conv.py.

Exercise 9: Use linear/quadratic functions for verification

This exercise is a generalization of Problem 1 to the extended model problem (53) where the damping term is either linear or quadratic. Solve the various subproblems and see how the results and problem settings change with the generalized ODE in case of linear or quadratic damping. By modifying the code from Problem 1, sympy will do most of the work required to analyze the generalized problem. Filename: vib_verify_mms.py.

Exercise 10: Use an exact discrete solution for verification

Write a nose test function in a separate file that employs the exact discrete solution (19) to verify the implementation of the solver function in the file vib_undamped.py. Just import solver and make functions for the exact discrete solution and the nose test. Filename: vib_verify_discrete_omega.py.

Exercise 11: Use analytical solution for convergence rate tests

The purpose of this exercise is to perform convergence tests of the problem (53) when $s(u)=\omega^{2} u$ and $F(t)=A \sin \phi t$. Find the complete analytical solution to the problem in this case (most textbooks on mechanics list the various elements you need to write down the exact solution). Modify the convergence_rate function from the vib_undamped.py program to perform experiments with the extended model. Verify that the error is of order Δt^{2}. Filename: vib_conv_rate.py.

Exercise 12: Investigate the amplitude errors of many solvers

Use the program vib_undamped_odespy.py from Section 5.1 and the amplitude estimation from the amplitudes function in the vib_undamped.py file (see Section 3.4) to investigate how well famous methods for 1st-order ODEs can preserve the amplitude of u in undamped oscillations. Test, for example, the 3rd- and 4th-order Runge-Kutta methods (RK3, RK4), the Crank-Nicolson method (CrankNicolson), the 2nd- and 3rd-order Adams-Bashforth methods (AdamsBashforth2, AdamsBashforth3), and a 2nd-order Backwards scheme (Backward2Step). The relevant governing equations are listed in Section 22. Filename: vib_amplitude_errors.py.

Exercise 13: Minimize memory usage of a vibration solver

The program vib. py ${ }^{16}$ store the complete solution $u^{0}, u^{1}, \ldots, u^{N_{t}}$ in memory, which is convenient for later plotting. Make a memory minimizing version of this program where only the last three u^{n+1}, u^{n}, and u^{n-1} values are stored in memory. Write each computed (t_{n+1}, u^{n+1}) pair to file. Visualize the data in the file (a cool solution is to read one line at a time and plot the u value using the line-by-line plotter in the visualize_front_ascii function - this technique makes it trivial to visualize very long time simulations). Filename: vib_memsave.py.

Exercise 14: Implement the solver via classes

Reimplement the vib.py program using a class Problem to hold all the physical parameters of the problem, a class Solver to hold the numerical parameters and compute the solution, and a class Visualizer to display the solution.

[^13]Hint. Use the ideas and examples from Section ?? and ?? in [1]. More specifically, make a superclass Problem for holding the scalar physical parameters of a problem and let subclasses implement the $s(u)$ and $F(t)$ functions as methods. Try to call up as much existing functionality in vib.py as possible.

Filename: vib_class.py.

Exercise 15: Show equivalence between schemes

Show that the schemes from Sections 1.2, 5.3, and 5.4 are all equivalent. Filename: vib_scheme_equivalence.pdf.

Exercise 16: Interpret $\left[D_{t} D_{t} u\right]^{n}$ as a forward-backward difference

Show that the difference $\left[D_{t} D_{t} u\right]^{n}$ is equal to $\left[D_{t}^{+} D_{t}^{-} u\right]^{n}$ and $\left.D_{t}^{-} D_{t}^{+} u\right]^{n}$. That is, instead of applying a centered difference twice one can alternatively apply a mixture forward and backward differences. Filename: vib_DtDt_fw_bw.pdf.

Exercise 17: Use the forward-backward scheme with quadratic damping

We consider the generalized model with quadratic damping, expressed as a system of two first-order equations as in Section 6.8:

$$
\begin{aligned}
u^{\prime} & =v \\
v^{\prime} & =\frac{1}{m}(F(t)-\beta|v| v-s(u))
\end{aligned}
$$

However, contrary to what is done in Section 6.8, we want to apply the idea of the forwardbackward discretization in Section 5.3. Express the idea in operator notation and write out the scheme. Unfortunately, the backward difference for the v equation creates a nonlinearity $\left|v^{n+1}\right| v^{n}$. To linearize this nonlinearity, use the known value v^{n} inside the absolute value factor, i.e., $\left|v^{n+1}\right| v^{n} \approx\left|v^{n}\right| v^{n+1}$. Show that the resulting scheme is equivalent to the one in Section 6.8 for some time level $n \geq 1$.

What we learn from this exercise is that the first-order differences and the linearization trick play together in "the right way" such that the scheme is as good as when we (in Section 6.8) carefully apply centered differences and a geometric mean on a staggered mesh to achieve secondorder accuracy. There is a difference in the handling of the initial conditions, though, as explained at the end of Section 5.3. Filename: vib_gen_bwdamping.pdf.

Exercise 18: Use a backward difference for the damping term

As an alternative to discretizing the damping terms βu^{\prime} and $\beta\left|u^{\prime}\right| u^{\prime}$ by centered differences, we may apply backward differences:

$$
\begin{array}{ll}
{\left[u^{\prime}\right]^{n}} & \approx\left[D_{t}^{-} u\right]^{n}, \\
& \quad\left[\left|u^{\prime}\right| u^{\prime}\right]^{n}
\end{array} \quad \approx\left[\left|D_{t}^{-} u\right| D_{t}^{-} u\right]^{n}=\left|\left[D_{t}^{-} u\right]^{n}\right|\left[D_{t}^{-} u\right]^{n} .
$$

The advantage of the backward difference is that the damping term is evaluated using known values u^{n} and u^{n-1} only. Extend the vib.py ${ }^{17}$ code with a scheme based on using backward

[^14]differences in the damping terms. Add statements to compare the original approach with centered difference and the new idea launched in this exercise. Perform numerical experiments to investigate how much accuracy that is lost by using the backward differences.

Filename: vib_gen_bwdamping.pdf.

References

[1] H. P. Langtangen. Introduction to computing with finite difference methods. Web document, Simula Research Laboratory and University of Oslo, 2013.

Index

argparse (Python module), 34
ArgumentParser (Python class), 34
averaging
geometric, 31
centered difference, 3
energy principle, 22
error
global, 15
finite differences
centered, 3
forced vibrations, 30
forward-backward Euler-Cromer scheme, 26
frequency (of oscillations), 3
geometric mean, 31
Hz (unit), 3
making movies, 10
mechanical energy, 22
mechanical vibrations, 3
mesh
finite differences, 3
mesh function, 3
nonlinear restoring force, 30
nonlinear spring, 30
oscillations, 3
period (of oscillations), 3
stability criterion, 16
staggered Euler-Cromer scheme, 27
staggered mesh, 27
vibration ODE, 3

[^0]: ${ }^{1}$ http://en.wikipedia.org/wiki/Velocity_Verlet

[^1]: ²http://tinyurl.com/jvzzcfn/vib/vib_undamped.py

[^2]: ${ }^{3}$ http://code.google.com/p/scitools

[^3]: ${ }^{4}$ http://tinyurl.com/jvzzcfn/vib/vib_empirical_analysis.py

[^4]: ${ }^{5}$ http://www.wolframalpha.com

[^5]: ${ }^{6}$ http://tinyurl.com/jvzzcfn/vib/vib_plot_freq.py

[^6]: ${ }^{7}$ http://www.wolframalpha.com/input/?i=\% $282 \% 2 \mathrm{Fx} \% 29 *$ asin $\% 28 \mathrm{w} * \mathrm{x} \% 2 \mathrm{~F} 2 \% 29+\mathrm{as}+\mathrm{x}-\% 3 \mathrm{E} 0$

[^7]: ${ }^{8}$ http://www.wolframalpha.com

[^8]: ${ }^{9}$ https://github.com/hplgit/odespy
 ${ }^{10}$ http://tinyurl.com/jvzzcfn/vib/vib_undamped_odespy.py

[^9]: ${ }^{11}$ http://en.wikipedia.org/wiki/Semi-implicit_Euler_method

[^10]: ${ }^{12}$ http://tinyurl.com/jvzzcfn/vib/vib_undamped_staggered.py

[^11]: ${ }^{13}$ http://tinyurl.com/jvzzcfn/vib/vib.py

[^12]: ${ }^{15}$ https://github.com/hplgit/odespy

[^13]: ${ }^{16}$ http://tinyurl.com/jvzzcfn/vib/vib.py

[^14]: ${ }^{17}$ http://tinyurl.com/jvzzcfn/vib/vib.py

