
Finite difference methods for vibration problems

Hans Petter Langtangen1,2

1Center for Biomedical Computing, Simula Research Laboratory
2Department of Informatics, University of Oslo

Dec 14, 2013

Note: PRELIMINARY VERSION (expect typos)

Contents

1 Finite difference discretization 3

1.1 A basic model for vibrations . 3

1.2 A centered finite difference scheme . 3

2 Implementation 5

2.1 Making a solver function . 5

2.2 Verification . 7

3 Long time simulations 8

3.1 Using a moving plot window . 8

3.2 Making a movie file . 10

3.3 Using a line-by-line ascii plotter . 11

3.4 Empirical analysis of the solution . 11

4 Analysis of the numerical scheme 13

4.1 Deriving an exact numerical solution . 13

4.2 Exact discrete solution . 14

4.3 The global error . 15

4.4 Stability . 16

4.5 About the accuracy at the stability limit . 17

5 Alternative schemes based on 1st-order equations 18

5.1 Standard methods for 1st-order ODE systems . 19

5.2 Enegy considerations . 22

5.3 The Euler-Cromer method . 26

5.4 The Euler-Cromer scheme on a staggered mesh 27

5.5 Implementation of the scheme on a staggered mesh 28

6 Generalization: damping, nonlinear spring, and external excitation 30
6.1 A centered scheme for linear damping . 30
6.2 A centered scheme for quadratic damping . 31
6.3 A forward-backward discretization of the quadratic damping term 32
6.4 Implementation . 32
6.5 Verification . 33
6.6 Visualization . 34
6.7 User interface . 34
6.8 A staggered Euler-Cromer scheme for the generalized model 35

7 Exercises and Problems 37

2

List of Exercises and Problems

Problem 1 Use linear/quadratic functions for verification ... p. 37
Exercise 2 Show linear growth of the phase with time p. 38
Exercise 3 Improve the accuracy by adjusting the frequency ... p. 38
Exercise 4 See if adaptive methods improve the phase ... p. 38
Exercise 5 Use a Taylor polynomial to compute u1 p. 39
Exercise 6 Find the largest relevant value of ω∆t p. 39
Exercise 7 Visualize the accuracy of finite differences p. 39
Exercise 8 Verify convergence rates of the error in energy ... p. 39
Exercise 9 Use linear/quadratic functions for verification ... p. 40
Exercise 10 Use an exact discrete solution for verification ... p. 40
Exercise 11 Use analytical solution for convergence rate ... p. 40
Exercise 12 Investigate the amplitude errors of many solvers ... p. 40
Exercise 13 Minimize memory usage of a vibration solver p. 40
Exercise 14 Implement the solver via classes p. 40
Exercise 15 Show equivalence between schemes p. 41
Exercise 16 Interpret [DtDtu]n as a forward-backward ... p. 41
Exercise 17 Use the forward-backward scheme with quadratic ... p. 41
Exercise 18 Use a backward difference for the damping ... p. 41

3

Vibration problems lead to differential equations with solutions that oscillates in time, typically
in a damped or undamped sinusoidal fashion. Such solutions put certain demands on the numerical
methods compared to other phenomena whose solutions are monotone. Both the frequency and
amplitude of the oscillations need to be accurately handled by the numerical schemes. Most
of the reasoning and specific building blocks introduced in the fortcoming text can be reused
to construct sound methods for partial differential equations of wave nature in multiple spatial
dimensions.

1 Finite difference discretization

Much of the numerical challenges with computing oscillatory solutions in ODEs and PDEs can be
captured by the very simple ODE u′′ + u = 0 and this is therefore the starting point for method
development, implementation, and analysis.

1.1 A basic model for vibrations

A system that vibrates without damping and external forcing can be described by ODE problem

u′′ + ω2u = 0, u(0) = I, u′(0) = 0, t ∈ (0, T] . (1)

Here, ω and I are given constants. The exact solution of (1) is

u(t) = I cos(ωt) . (2)

That is, u oscillates with constant amplitude I and angular frequency ω. The corresponding
period of oscillations (i.e., the time between two neighboring peaks in the cosine function) is
P = 2π/ω. The number of periods per second is f = ω/(2π) and measured in the unit Hz. Both
f and ω are referred to as frequency, but ω may be more precisely named angular frequency,
measured in rad/s.

In vibrating mechanical systems modeled by (1), u(t) very often represents a position or a
displacement of a particular point in the system. The derivative u′(t) then has the interpretation
of the point’s velocity, and u′′(t) is the associated acceleration. The model (1) is not only
applicable to vibrating mechanical systems, but also to oscillations in electrical circuits.

1.2 A centered finite difference scheme

To formulate a finite difference method for the model problem (1) we follow the four steps from
Section ?? in [1].

Step 1: Discretizing the domain. The domain is discretized by introducing a uniformly
partitioned time mesh in the present problem. The points in the mesh are hence tn = n∆t,
n = 0, 1, . . . , Nt, where ∆t = T/Nt is the constant length of the time steps. We introduce a mesh
function un for n = 0, 1, . . . , Nt, which approximates the exact solution at the mesh points. The
mesh function will be computed from algebraic equations derived from the differential equation
problem.

Step 2: Fulfilling the equation at discrete time points. The ODE is to be satisfied at
each mesh point:

u′′(tn) + ω2u(tn) = 0, n = 1, . . . , Nt . (3)

4

Step 3: Replacing derivatives by finite differences. The derivative u′′(tn) is to be replaced
by a finite difference approximation. A common second-order accurate approximation to the
second-order derivative is

u′′(tn) ≈ un+1 − 2un + un−1

∆t2
. (4)

Inserting (4) in (3) yields

un+1 − 2un + un−1

∆t2
= −ω2un . (5)

We also need to replace the derivative in the initial condition by a finite difference. Here we
choose a centered difference, whose accuracy is similar to the centered difference we used for u′′:

u1 − u−1

2∆t
= 0 . (6)

Step 4: Formulating a recursive algorithm. To formulate the computational algorithm,
we assume that we have already computed un−1 and un such that un+1 is the unknown value,
which we can readily solve for:

un+1 = 2un − un−1 −∆t2ω2un . (7)

The computational algorithm is simply to apply (7) successively for n = 1, 2, . . . , Nt − 1. This
numerical scheme sometimes goes under the name Störmer’s method or Verlet integration1.

Computing the first step. We observe that (7) cannot be used for n = 0 since the computation
of u1 then involves the undefined value u−1 at t = −∆t. The discretization of the initial condition
then come to rescue: (6) implies u−1 = u1 and this relation can be combined with (7) for n = 1
to yield a value for u1:

u1 = 2u0 − u1 −∆t2ω2u0,

which reduces to

u1 = u0 − 1

2
∆t2ω2u0 . (8)

Exercise 5 asks you to perform an alternative derivation and also to generalize the initial condition
to u′(0) = V 6= 0.

The computational algorithm. The steps for solving (1) becomes

1. u0 = I

2. compute u1 from (8)

3. for n = 1, 2, . . . , Nt − 1:

(a) compute un+1 from (7)

The algorithm is more precisely expressed directly in Python:

1http://en.wikipedia.org/wiki/Velocity Verlet

5

t = linspace(0, T, Nt+1) # mesh points in time
dt = t[1] - t[0] # constant time step
u = zeros(Nt+1) # solution

u[0] = I
u[1] = u[0] - 0.5*dt**2*w**2*u[0]
for n in range(1, Nt):

u[n+1] = 2*u[n] - u[n-1] - dt**2*w**2*u[n]

Remark.
In the code, we use w as the symbol for ω. The reason is that this author prefers w for
readability and comparison with the mathematical ω instead of the full word omega as
variable name.

Operator notation. We may write the scheme using the compact difference notation (see
Section ?? in [1]). The difference (4) has the operator notation [DtDtu]n such that we can write:

[DtDtu+ ω2u = 0]n . (9)

Note that [DtDtu]n means applying a central difference with step ∆t/2 twice:

[Dt(Dtu)]n =
[Dtu]n+ 1

2 − [Dtu]n−
1
2

∆t

which is written out as

1

∆t

(
un+1 − un

∆t
− un − un−1

∆t

)
=
un+1 − 2un + un−1

∆t2
.

The discretization of initial conditions can in the operator notation be expressed as

[u = I]0, [D2tu = 0]0, (10)

where the operator [D2tu]n is defined as

[D2tu]n =
un+1 − un−1

2∆t
. (11)

2 Implementation

2.1 Making a solver function

The algorithm from the previous section is readily translated to a complete Python function for
computing (returning) u0, u1, . . . , uNt and t0, t1, . . . , tNt

, given the input I, ω, ∆t, and T :

from numpy import *
from matplotlib.pyplot import *
from vib_empirical_analysis import minmax, periods, amplitudes

def solver(I, w, dt, T):
"""
Solve u’’ + w**2*u = 0 for t in (0,T], u(0)=I and u’(0)=0,
by a central finite difference method with time step dt.
"""

6

dt = float(dt)
Nt = int(round(T/dt))
u = zeros(Nt+1)
t = linspace(0, Nt*dt, Nt+1)

u[0] = I
u[1] = u[0] - 0.5*dt**2*w**2*u[0]
for n in range(1, Nt):

u[n+1] = 2*u[n] - u[n-1] - dt**2*w**2*u[n]
return u, t

A function for plotting the numerical and the exact solution is also convenient to have:

def exact_solution(t, I, w):
return I*cos(w*t)

def visualize(u, t, I, w):
plot(t, u, ’r--o’)
t_fine = linspace(0, t[-1], 1001) # very fine mesh for u_e
u_e = exact_solution(t_fine, I, w)
hold(’on’)
plot(t_fine, u_e, ’b-’)
legend([’numerical’, ’exact’], loc=’upper left’)
xlabel(’t’)
ylabel(’u’)
dt = t[1] - t[0]
title(’dt=%g’ % dt)
umin = 1.2*u.min(); umax = -umin
axis([t[0], t[-1], umin, umax])
savefig(’vib1.png’)
savefig(’vib1.pdf’)
savefig(’vib1.eps’)

A corresponding main program calling these functions for a simulation of a given number of
periods (num_periods) may take the form

I = 1
w = 2*pi
dt = 0.05
num_periods = 5
P = 2*pi/w # one period
T = P*num_periods
u, t = solver(I, w, dt, T)
visualize(u, t, I, w, dt)

Adjusting some of the input parameters on the command line can be handy. Here is a
code segment using the ArgumentParser tool in the argparse module to define option value
(--option value) pairs on the command line:

import argparse
parser = argparse.ArgumentParser()
parser.add_argument(’--I’, type=float, default=1.0)
parser.add_argument(’--w’, type=float, default=2*pi)
parser.add_argument(’--dt’, type=float, default=0.05)
parser.add_argument(’--num_periods’, type=int, default=5)
a = parser.parse_args()
I, w, dt, num_periods = a.I, a.w, a.dt, a.num_periods

A typical execution goes like

Terminal> python vib_undamped.py --num_periods 20 --dt 0.1

7

Computing u′. In mechanical vibration applications one is often interested in computing the
velocity v(t) = u′(t) after u(t) has been computed. This can be done by a central difference,

v(tn) = u′(tn) ≈ vn =
un+1 − un−1

2∆t
= [D2tu]n . (12)

This formula applies for all inner mesh points, n = 1, . . . , Nt − 1. For n = 0 we have that v(0)
is given by the initial condition on u′(0), and for n = Nt we can use a one-sided, backward
difference: vn = [D−t u]n.

Appropriate vectorized Python code becomes

v = np.zeros_like(u)
v[1:-1] = (u[2:] - u[:-2])/(2*dt) # internal mesh points
v[0] = V # Given boundary condition u’(0)
v[-1] = (u[-1] - u[-2])/dt # backward difference

2.2 Verification

Manual calculation. The simplest type of verification, which is also instructive for under-
standing the algorithm, is to compute u1, u2, and u3 with the aid of a calculator and make
a function for comparing these results with those from the solver function. We refer to the
test_three_steps function in the file vib_undamped.py2 for details.

Testing very simple solutions. Constructing test problems where the exact solution is
constant or linear helps initial debugging and verification as one expects any reasonable numerical
method to reproduce such solutions to machine precision. Second-order accurate methods will
often also reproduce a quadratic solution. Here [DtDtt

2]n = 2, which is the exact result. A
solution u = t2 leads to u′′+ω2u = 2+(ωt)2 6= 0. We must therefore add a source in the equation:
u′′ + ω2u = f to allow a solution u = t2 for f = (ωt)2. By simple insertion we can show that
the mesh function un = t2n is also a solution of the discrete equations. Problem 1 asks you to
carry out all details with showing that linear and quadratic solutions are solutions of the discrete
equations. Such results are very useful for debugging and verification.

Checking convergence rates. Empirical computation of convergence rates, as explained in
Section ?? in [1], yields a good method for verification. The function below

• performs m simulations with halved time steps: 2−i∆t, i = 0, . . . ,m− 1,

• computes the L2 norm of the error, E =
√

2−i∆t
∑Nt−1

n=0 (un − ue(tn))2 in each case,

• estimates the convergence rates ri based on two consecutive experiments (∆ti−1, Ei−1) and
(∆ti, Ei), assuming Ei = C∆trii and Ei−1 = C∆trii−1. From these equations it follows that
ri−1 = ln(Ei−1/Ei)/ ln(∆ti−1/∆ti), for i = 1, . . . ,m− 1.

All the implementational details appear below.

2http://tinyurl.com/jvzzcfn/vib/vib undamped.py

8

def convergence_rates(m, num_periods=8):
"""
Return m-1 empirical estimates of the convergence rate
based on m simulations, where the time step is halved
for each simulation.
"""
w = 0.35; I = 0.3
dt = 2*pi/w/30 # 30 time step per period 2*pi/w
T = 2*pi/w*num_periods
dt_values = []
E_values = []
for i in range(m):

u, t = solver(I, w, dt, T)
u_e = exact_solution(t, I, w)
E = sqrt(dt*sum((u_e-u)**2))
dt_values.append(dt)
E_values.append(E)
dt = dt/2

r = [log(E_values[i-1]/E_values[i])/
log(dt_values[i-1]/dt_values[i])
for i in range(1, m, 1)]

return r

The returned r list has its values equal to 2.00, which is in excellent agreement with what is
expected from the second-order finite difference approximation [DtDtu]n and other theoretical
measures of the error in the numerical method. The final r[-1] value is a good candidate for a
unit test:

def test_convergence_rates():
r = convergence_rates(m=5, num_periods=8)
Accept rate to 1 decimal place
nt.assert_almost_equal(r[-1], 2.0, places=1)

The complete code appears in the file vib_undamped.py.

3 Long time simulations

Figure 1 shows a comparison of the exact and numerical solution for ∆t = 0.1, 0.05 and w = 2π.
From the plot we make the following observations:

• The numerical solution seems to have correct amplitude.

• There is a phase error which is reduced by reducing the time step.

• The total phase error grows with time.

By phase error we mean that the peaks of the numerical solution have incorrect positions
compared with the peaks of the exact cosine solution. This effect can be understood as if also the
numerical solution is on the form I cos ω̃t, but where ω̃ is not exactly equal to ω. Later, we shall
mathematically quantify this numerical frequency ω̃.

3.1 Using a moving plot window

In vibration problems it is often of interest to investigate the system’s behavior over long time
intervals. Errors in the phase may then show up as crucial. Let us investigate long time

9

0 1 2 3 4 5
t

1.0

0.5

0.0

0.5

1.0

u

dt=0.1

numerical
exact

0 1 2 3 4 5
t

1.0

0.5

0.0

0.5

1.0

u

dt=0.05

numerical
exact

Figure 1: Effect of halving the time step.

series by introducing a moving plot window that can move along with the p most recently
computed periods of the solution. The SciTools3 package contains a convenient tool for this:
MovingPlotWindow. Typing pydoc scitools.MovingPlotWindow shows a demo and description
of usage. The function below illustrates the usage and is invoked in the vib_undamped.py code
if the number of periods in the simulation exceeds 10:

def visualize_front(u, t, I, w, savefig=False):
"""
Visualize u and the exact solution vs t, using a
moving plot window and continuous drawing of the
curves as they evolve in time.
Makes it easy to plot very long time series.
"""
import scitools.std as st
from scitools.MovingPlotWindow import MovingPlotWindow

P = 2*pi/w # one period
umin = 1.2*u.min(); umax = -umin
plot_manager = MovingPlotWindow(

window_width=8*P,
dt=t[1]-t[0],
yaxis=[umin, umax],
mode=’continuous drawing’)

for n in range(1,len(u)):
if plot_manager.plot(n):

s = plot_manager.first_index_in_plot
st.plot(t[s:n+1], u[s:n+1], ’r-1’,

t[s:n+1], I*cos(w*t)[s:n+1], ’b-1’,
title=’t=%6.3f’ % t[n],
axis=plot_manager.axis(),
show=not savefig) # drop window if savefig

if savefig:
filename = ’tmp_vib%04d.png’ % n
st.savefig(filename)
print ’making plot file’, filename, ’at t=%g’ % t[n]

plot_manager.update(n)

Running

3http://code.google.com/p/scitools

10

Terminal> python vib_undamped.py --dt 0.05 --num_periods 40

makes the simulation last for 40 periods of the cosine function. With the moving plot window we
can follow the numerical and exact solution as time progresses, and we see from this demo that
the phase error is small in the beginning, but then becomes more prominent with time. Running
vib_undamped.py with ∆t = 0.1 clearly shows that the phase errors become significant even
earlier in the time series and destroys the solution.

3.2 Making a movie file

The visualize_front function stores all the plots in files whose names are numbered: tmp_vib0000.png,
tmp_vib0001.png, tmp_vib0002.png, and so on. From these files we may make a movie. The
Flash format is popular,

Terminal> avconv -r 12 -i tmp_vib%04d.png -vcodec flv movie.flv

The avconv program can be replaced by the ffmpeg program in the above command if desired.
The -r option should come first and describes the number of frames per second in the movie.
The -i option describes the name of the plot files. Other formats can be generated by changing
the video codec and equipping the movie file with the right extension:

Format Codec and filename
Flash -vcodec flv movie.flv

MP4 -vcodec libx64 movie.mp4

Webm -vcodec libvpx movie.webm

Ogg -vcodec libtheora movie.ogg

The movie file can be played by some video player like vlc, mplayer, gxine, or totem, e.g.,

Terminal> vlc movie.webm

A web page can also be used to play the movie. Today’s standard is to use the HTML5 video

tag:

<video autoplay loop controls
width=’640’ height=’365’ preload=’none’>

<source src=’movie.webm’ type=’video/webm; codecs="vp8, vorbis"’>
</video>

Caution: number the plot files correctly.

To ensure that the individual plot frames are shown in correct order, it is important to
number the files with zero-padded numbers (0000, 0001, 0002, etc.). The printf format %04d
specifies an integer in a field of width 4, padded with zeros from the left. A simple Unix
wildcard file specification like tmp_vib*.png will then list the frames in the right order. If

11

the numbers in the filenames were not zero-padded, the frame tmp_vib11.png would appear
before tmp_vib2.png in the movie.

3.3 Using a line-by-line ascii plotter

Plotting functions vertically, line by line, in the terminal window using ascii characters only is a
simple, fast, and convenient visualization technique for long time series (the time arrow points
downward). The tool scitools.avplotter.Plotter makes it easy to create such plots:

def visualize_front_ascii(u, t, I, w, fps=10):
"""
Plot u and the exact solution vs t line by line in a
terminal window (only using ascii characters).
Makes it easy to plot very long time series.
"""
from scitools.avplotter import Plotter
import time
P = 2*pi/w
umin = 1.2*u.min(); umax = -umin

p = Plotter(ymin=umin, ymax=umax, width=60, symbols=’+o’)
for n in range(len(u)):

print p.plot(t[n], u[n], I*cos(w*t[n])), \
’%.1f’ % (t[n]/P)

time.sleep(1/float(fps))

if __name__ == ’__main__’:
main()

The call p.plot returns a line of text, with the t axis marked and a symbol + for the first function
(u) and o for the second function (the exact solution). Here we append this text a time counter
reflecting how many periods the current time point corresponds to. A typical output (ω = 2π,
∆t = 0.05) looks like this:

| o+ 14.0
| + o 14.0
| + o 14.1
| + o 14.1
| + o 14.2
+| o 14.2

+ | 14.2
+ o | 14.3

+ o | 14.4
+ o | 14.4
+o | 14.5
o + | 14.5
o + | 14.6

o + | 14.6
o + | 14.7

o | + 14.7
| + 14.8
| o + 14.8
| o + 14.9
| o + 14.9
| o+ 15.0

3.4 Empirical analysis of the solution

For oscillating functions like those in Figure 1 we may compute the amplitude and frequency (or
period) empirically. That is, we run through the discrete solution points (tn, un) and find all

12

maxima and minima points. The distance between two consecutive maxima (or minima) points
can be used as estimate of the local period, while half the difference between the u value at a
maximum and a nearby minimum gives an estimate of the local amplitude.

The local maxima are the points where

un−1 < un > un+1, n = 1, . . . , Nt − 1, (13)

and the local minima are recognized by

un−1 > un < un+1, n = 1, . . . , Nt − 1 . (14)

In computer code this becomes

def minmax(t, u):
minima = []; maxima = []
for n in range(1, len(u)-1, 1):

if u[n-1] > u[n] < u[n+1]:
minima.append((t[n], u[n]))

if u[n-1] < u[n] > u[n+1]:
maxima.append((t[n], u[n]))

return minima, maxima

Note that the returned objects are list of tuples.

Let (ti, ei), i = 0, . . . ,M − 1, be the sequence of all the M maxima points, where ti is the
time value and ei the corresponding u value. The local period can be defined as pi = ti+1 − ti.
With Python syntax this reads

def periods(maxima):
p = [extrema[n][0] - maxima[n-1][0]

for n in range(1, len(maxima))]
return np.array(p)

The list p created by a list comprehension is converted to an array since we probably want to
compute with it, e.g., find the corresponding frequencies 2*pi/p.

Having the minima and the maxima, the local amplitude can be calculated as the difference
between two neighboring minimum and maximum points:

def amplitudes(minima, maxima):
a = [(abs(maxima[n][1] - minima[n][1]))/2.0

for n in range(min(len(minima),len(maxima)))]
return np.array(a)

The code segments are found in the file vib_empirical_analysis.py4.

Visualization of the periods p or the amplitudes a it is most conveniently done with just a
counter on the horizontal axis, since a[i] and p[i] correspond to the i-th amplitude estimate
and the i-th period estimate, respectively. There is no unique time point associated with either
of these estimate since values at two different time points were used in the computations.

In the analysis of very long time series, it is advantageous to compute and plot p and a instead
of u to get an impression of the development of the oscillations.

4http://tinyurl.com/jvzzcfn/vib/vib empirical analysis.py

13

4 Analysis of the numerical scheme

4.1 Deriving an exact numerical solution

After having seen the phase error grow with time in the previous section, we shall now quantify
this error through mathematical analysis. The key tool in the analysis will be to establish an
exact solution of the discrete equations. The difference equation (7) has constant coefficients and
is homogeneous. The solution is then un = CAn, where A is some number to be determined from
the differential equation and C is determined from the initial condition (C = I). Recall that
n in un is a superscript labeling the time level, while n in An is an exponent. With oscillating
functions as solutions, the algebra will be considerably simplified if we seek an A on the form

A = eiω̃∆t,

and solve for the numerical frequency ω̃ rather than A. Note that i =
√
−1 is the imaginary

unit. (Using a complex exponential function gives simpler arithmetics than working with a sine
or cosine function.) We have

An = eiω̃∆t n = eiω̃t = cos(ω̃t) + i sin(ω̃t) .

The physically relevant numerical solution can be taken as the real part of this complex expression.

The calculations goes as

[DtDtu]n =
un+1 − 2un + un−1

∆t2

= I
An+1 − 2An +An−1

∆t2

= I
exp (iω̃(t+ ∆t))− 2 exp (iω̃t) + exp (iω̃(t−∆t))

∆t2

= I exp (iω̃t)
1

∆t2
(exp (iω̃(∆t)) + exp (iω̃(−∆t))− 2)

= I exp (iω̃t)
2

∆t2
(cosh(iω̃∆t)− 1)

= I exp (iω̃t)
2

∆t2
(cos(ω̃∆t)− 1)

= −I exp (iω̃t)
4

∆t2
sin2(

ω̃∆t

2
)

The last line follows from the relation cosx−1 = −2 sin2(x/2) (try cos(x)-1 in wolframalpha.com5

to see the formula).

The scheme (7) with un = Ieiω∆̃t n inserted now gives

− Ieiω̃t 4

∆t2
sin2(

ω̃∆t

2
) + ω2Ieiω̃t = 0, (15)

which after dividing by Ieiω̃t results in

4

∆t2
sin2(

ω̃∆t

2
) = ω2 . (16)

5http://www.wolframalpha.com

14

The first step in solving for the unknown ω̃ is

sin2(
ω̃∆t

2
) =

(
ω∆t

2

)2

.

Then, taking the square root, applying the inverse sine function, and multiplying by 2/∆t, results
in

ω̃ = ± 2

∆t
sin−1

(
ω∆t

2

)
. (17)

The first observation of (17) tells that there is a phase error since the numerical frequency
ω̃ never equals the exact frequency ω. But how good is the approximation (17)? That is, what
is the error ω − ω̃ or ω̃/ω? Taylor series expansion for small ∆t may give an expression that is
easier to understand than the complicated function in (17):

>>> from sympy import *
>>> dt, w = symbols(’dt w’)
>>> w_tilde_e = 2/dt*asin(w*dt/2)
>>> w_tilde_series = w_tilde_e.series(dt, 0, 4)
>>> print w_tilde_series
w + dt**2*w**3/24 + O(dt**4)

This means that

ω̃ = ω

(
1 +

1

24
ω2∆t2

)
+O(∆t4) . (18)

The error in the numerical frequency is of second-order in ∆t, and the error vanishes as ∆t→ 0.
We see that ω̃ > ω since the term ω3∆t2/24 > 0 and this is by far the biggest term in the series
expansion for small ω∆t. A numerical frequency that is too large gives an oscillating curve that
oscillates too fast and therefore ”lags behind” the exact oscillations, a feature that can be seen in
the plots.

Figure 2 plots the discrete frequency (17) and its approximation (18) for ω = 1 (based on the
program vib_plot_freq.py6). Although ω̃ is a function of ∆t in (18), it is misleading to think of
∆t as the important discretization parameter. It is the product ω∆t that is the key discretization
parameter. This quantity reflects the number of time steps per period of the oscillations. To see
this, we set P = NP ∆t, where P is the length of a period, and NP is the number of time steps
during a period. Since P and ω are related by P = 2π/ω, we get that ω∆t = 2π/NP , which
shows that ω∆t is directly related to NP .

The plot shows that at least NP ∼ 25 − 30 points per period are necessary for reasonable
accuracy, but this depends on the length of the simulation (T) as the total phase error due to the
frequency error grows linearly with time (see Exercise 2).

4.2 Exact discrete solution

Perhaps more important than the ω̃ = ω +O(∆t2) result found above is the fact that we have an
exact discrete solution of the problem:

un = I cos (ω̃n∆t) , ω̃ =
2

∆t
sin−1

(
ω∆t

2

)
. (19)

We can then compute the error mesh function

6http://tinyurl.com/jvzzcfn/vib/vib plot freq.py

15

0 5 10 15 20 25 30 35
no of time steps per period

1.0

1.1

1.2

1.3

1.4

1.5

1.6

nu
m

er
ic

al
 fr

eq
ue

nc
y

exact discrete frequency
2nd-order expansion

Figure 2: Exact discrete frequency and its second-order series expansion.

en = ue(tn)− un = I cos (ωn∆t)− I cos (ω̃n∆t) . (20)

In particular, we can use this expression to show convergence of the numerical scheme, i.e., en → 0
as ∆t→ 0. We have that

lim
∆t→0

ω̃ = lim
∆t→0

2

∆t
sin−1

(
ω∆t

2

)
= ω,

by L’Hopital’s rule or simply asking (2/x)*asin(w*x/2) as x->0 in WolframAlpha7. Therefore,
ω̃ → ω, and the two terms in en cancel each other in the limit ∆t→ 0.

The error mesh function is ideal for verification purposes (and you are encouraged to make a
test based on (19) in Exercise 10).

4.3 The global error

To achieve more analytical insight into the nature of the global error, we can Taylor expand the
error mesh function. Since ω̃ contains ∆t in the denominator we use the series expansion for ω̃
inside the cosine function:

7http://www.wolframalpha.com/input/?i=%282%2Fx%29*asin%28w*x%2F2%29+as+x-%3E0

16

>>> dt, w, t = symbols(’dt w t’)
>>> w_tilde_e = 2/dt*asin(w*dt/2)
>>> w_tilde_series = w_tilde_e.series(dt, 0, 4)
>>> # Get rid of O() term
>>> w_tilde_series = sum(w_tilde_series.as_ordered_terms()[:-1])
>>> w_tilde_series
dt**2*w**3/24 + w
>>> error = cos(w*t) - cos(w_tilde_series*t)
>>> error.series(dt, 0, 6)
dt**2*t*w**3*sin(t*w)/24 + dt**4*t**2*w**6*cos(t*w)/1152 + O(dt**6)
>>> error.series(dt, 0, 6).as_leading_term(dt)
dt**2*t*w**3*sin(t*w)/24

This means that the leading order global (true) error at a point t is proportional to ω3t∆t2. Setting
t = n∆t and replacing sin(ωt) by its maximum value 1, we have the analytical leading-order
expression

en =
1

24
nω3∆t3,

and the `2 norm of this error can be computed as

||en||2`2 = ∆t

Nt∑

n=0

1

242
n2ω6∆t6 =

1

242
ω6∆t7

Nt∑

n=0

n2 .

The sum
∑Nt

n=0 n
2 is approximately equal to 1

3N
3
t . Replacing Nt by T/∆t and taking the square

root gives the expression

||en||`2 =
1

24

√
T 3

3
ω3∆t2,

which shows that also the integrated error is proportional to ∆t2.

4.4 Stability

Looking at (19), it appears that the numerical solution has constant and correct amplitude, but
an error in the frequency (phase error). However, there is another error that is more serious,
namely an unstable growing amplitude that can occur of ∆t is too large.

We realize that a constant amplitude demands ω̃ to be a real number. A complex ω̃ is
indeed possible if the argument x of sin−1(x) has magnitude larger than unity: |x| > 1 (type
asin(x) in wolframalpha.com8 to see basic properties of sin−1(x)). A complex ω̃ can be written
ω̃ = ω̃r + iω̃i. Since sin−1(x) has a negative imaginary part for x > 1, ω̃i < 0, it means that
exp (iωt̃) = exp (−ω̃it) exp (iω̃rt) will lead to exponential growth in time because exp (−ω̃it) with
ω̃i < 0 has a positive exponent.

We do not tolerate growth in the amplitude and we therefore have a stability criterion arising
from requiring the argument ω∆t/2 in the inverse sine function to be less than one:

ω∆t

2
≤ 1 ⇒ ∆t ≤ 2

ω
. (21)

With ω = 2π, ∆t > π−1 = 0.3183098861837907 will give growing solutions. Figure 3 displays
what happens when ∆t = 0.3184, which is slightly above the critical value: ∆t = π−1 + 9.01 ·10−5.

8http://www.wolframalpha.com

17

Figure 3: Growing, unstable solution because of a time step slightly beyond the stability limit.

4.5 About the accuracy at the stability limit

An interesting question is whether the stability condition ∆t < 2/ω is unfortunate, or more
precisely: would it be meaningful to take larger time steps to speed up computations? The answer
is a clear no. At the stability limit, we have that sin−1 ω∆t/2 = sin−1 1 = π/2, and therefore
ω̃ = π/∆t. (Note that the approximate formula (18) is very inaccurate for this value of ∆t as it
predicts ω̃ = 2.34/pi, which is a 25 percent reduction.) The corresponding period of the numerical
solution is P̃ = 2π/ω̃ = 2∆t, which means that there is just one time step ∆t between a peak and
a through in the numerical solution. This is the shortest possible wave that can be represented in
the mesh. In other words, it is not meaningful to use a larger time step than the stability limit.

Also, the phase error when ∆t = 2/ω is severe: Figure 4 shows a comparison of the numerical
and analytical solution with ω = 2π and ∆t = 2/ω = π−1. Already after one period, the numerical
solution has a through while the exact solution has a peak (!). The error in frequency when ∆t
is at the stability limit becomes ω − ω̃ = ω(1− π/2) ≈ −0.57ω. The corresponding error in the
period is P − P̃ ≈ 0.36P . The error after m periods is then 0.36mP . This error has reach half a
period when m = 1/(2 · 0.36) ≈ 1.38, which theoretically confirms the observations in Figure 4
that the numerical solution is a through ahead of a peak already after one and a half period.

Summary.

From the accuracy and stability analysis we can draw three important conclusions:

18

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
t

1.0

0.5

0.0

0.5

1.0

u
dt=0.31831

numerical
exact

Figure 4: Numerical solution with ∆t exactly at the stability limit.

1. The key parameter in the formulas is p = ω∆t. The period of oscillations is P = 2π/ω,
and the number of time steps per period is NP = P/∆t. Therefore, p = ω∆t = 2πNP ,
showing that the critical parameter is the number of time steps per period. The
smallest possible NP is 2, showing that p ∈ (0, π].

2. Provided p ≤ 2, the amplitude of the numerical solution is constant.

3. The numerical solution exhibits a relative phase error ω̃/ω ≈ 1 + 1
24p

2. This error leads
to wrongly displaced peaks of the numerical solution, and the error in peak location
grows linearly with time (see Exercise 2).

5 Alternative schemes based on 1st-order equations

A standard technique for solving second-order ODEs is to rewrite them as a system of first-order
ODEs and then apply the vast collection of methods for first-order ODE systems. Given the
second-order ODE problem

u′′ + ω2u = 0, u(0) = I, u′(0) = 0,

we introduce the auxiliary variable v = u′ and express the ODE problem in terms of first-order
derivatives of u and v:

19

u′ = v, (22)

v′ = −ω2u . (23)

The initial conditions become u(0) = I and v(0) = 0.

5.1 Standard methods for 1st-order ODE systems

The Forward Euler scheme. A Forward Euler approximation to our 2× 2 system of ODEs
(22)-(23) becomes

[D+
t u = v]n, [D+

t v = −ω2u]n, (24)

or written out,

un+1 = un + ∆tvn, (25)

vn+1 = vn −∆tω2un . (26)

Let us briefly compare this Forward Euler method with the centered difference scheme for the
second-order differential equation. We have from (25) and (26) applied at levels n and n− 1 that

un+1 = un + ∆tvn = un + ∆t(vn−1 −∆tω2un−1 .

Since from (25)

vn−1 =
1

∆t
(un − un−1),

it follows that

un+1 = 2un − un−1 −∆t2ω2un−1,

which is very close to the centered difference scheme, but the last term is evaluated at tn−1

instead of tn. This difference is actually crucial for the accuracy of the Forward Euler method
applied to vibration problems.

The Backward Euler scheme. A Backward Euler approximation the ODE system is equally
easy to write up in the operator notation:

[D−t u = v]n+1, (27)

[D−t v = −ωu]n+1 . (28)

This becomes a coupled system for un+1 and vn+1:

un+1 −∆tvn+1 = un, (29)

vn+1 + ∆tω2un+1 = vn . (30)

20

The Crank-Nicolson scheme. The Crank-Nicolson scheme takes this form in the operator
notation:

[Dtu = vt]n+ 1
2 , (31)

[Dtv = −ωut]n+ 1
2 . (32)

Writing the equations out shows that is also a coupled system:

un+1 − 1

2
∆tvn+1 = un +

1

2
∆tvn, (33)

vn+1 +
1

2
∆tω2un+1 = vn − 1

2
∆tω2un . (34)

Comparison of schemes. We can easily compare methods like the ones above (and many
more!) with the aid of the Odespy9 package. Below is a sketch of the code.

import odespy
import numpy as np

def f(u, t, w=1):
u, v = u # u is array of length 2 holding our [u, v]
return [v, -w**2*u]

def run_solvers_and_plot(solvers, timesteps_per_period=20,
num_periods=1, I=1, w=2*np.pi):

P = 2*np.pi/w # duration of one period
dt = P/timesteps_per_period
Nt = num_periods*timesteps_per_period
T = Nt*dt
t_mesh = np.linspace(0, T, Nt+1)

legends = []
for solver in solvers:

solver.set(f_kwargs={’w’: w})
solver.set_initial_condition([I, 0])
u, t = solver.solve(t_mesh)

There is quite some more code dealing with plots also, and we refer to the source file vib_

undamped_odespy.py10 for details. Observe that keyword arguments in f(u,t,w=1) can be
supplied through a solver parameter f_kwargs (dictionary).

Specification of the Forward Euler, Backward Euler, and Crank-Nicolson schemes is done like
this:

solvers = [
odespy.ForwardEuler(f),
Implicit methods must use Newton solver to converge
odespy.BackwardEuler(f, nonlinear_solver=’Newton’),
odespy.CrankNicolson(f, nonlinear_solver=’Newton’),
]

The vib_undamped_odespy.py program makes two plots of the computed solutions with the
various methods in the solvers list: one plot with u(t) versus t, and one phase plane plot where

9https://github.com/hplgit/odespy
10http://tinyurl.com/jvzzcfn/vib/vib undamped odespy.py

21

v is plotted against u. That is, the phase plane plot is the curve (u(t), v(t)) parameterized by t.
Analytically, u = I cos(ωt) and v = u′ = −ωI sin(ωt). The exact curve (u(t), v(t)) is therefore an
ellipse, which often looks like a circle in a plot if the axes are automatically scaled. The important
feature, however, is that exact curve (u(t), v(t)) is closed and repeats itself for every period. Not
all numerical schemes are capable to do that, meaning that the amplitude instead shrinks or
grows with time.

The Forward Euler scheme in Figure 5 has a pronounced spiral curve, pointing to the fact
that the amplitude steadily grows, which is also evident in Figure 6. The Backward Euler scheme
has a similar feature, except that the spriral goes inward and the amplitude is significantly
damped. The changing amplitude and the sprial form decreases with decreasing time step. The
Crank-Nicolson scheme looks much more accurate. In fact, these plots tell that the Forward and
Backward Euler schemes are not suitable for solving our ODEs with oscillating solutions.

2 1 0 1 2 3
u(t)

10

5

0

5

10

15

v
(t

)

Time step: 0.05

ForwardEuler
BackwardEuler
MidpointImplicit
exact

1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
u(t)

8

6

4

2

0

2

4

6

8

10

v
(t

)

Time step: 0.025

ForwardEuler
BackwardEuler
MidpointImplicit
exact

Figure 5: Comparison of classical schemes in the phase plane.

0.0 0.2 0.4 0.6 0.8 1.0
t

2

1

0

1

2

3

u

Time step: 0.05

ForwardEuler
BackwardEuler
MidpointImplicit
exact

0.0 0.2 0.4 0.6 0.8 1.0
t

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

u

Time step: 0.025

ForwardEuler
BackwardEuler
MidpointImplicit
exact

Figure 6: Comparison of classical schemes.

We may run two popular standard methods for first-order ODEs, the 2nd- and 4th-order
Runge-Kutta methods, to see how they perform. Figures 7 and 8 show the solutions with larger
∆t values than what was used in the previous two plots.

22

1.5 1.0 0.5 0.0 0.5 1.0 1.5
u(t)

8

6

4

2

0

2

4

6

8

v
(t

)

Time step: 0.1

RK2
RK4
exact

1.5 1.0 0.5 0.0 0.5 1.0 1.5
u(t)

8

6

4

2

0

2

4

6

8

v
(t

)

Time step: 0.05

RK2
RK4
exact

Figure 7: Comparison of Runge-Kutta schemes in the phase plane.

0.0 0.2 0.4 0.6 0.8 1.0
t

1.5

1.0

0.5

0.0

0.5

1.0

1.5

u

Time step: 0.1

RK2
RK4
exact

0.0 0.2 0.4 0.6 0.8 1.0
t

1.5

1.0

0.5

0.0

0.5

1.0

1.5
u

Time step: 0.05

RK2
RK4
exact

Figure 8: Comparison of Runge-Kutta schemes.

The visual impression is that the 4th-order Runge-Kutta method is very accurate, under all
circumstances in these tests, and the 2nd-order scheme suffer from amplitude errors unless the
time step is very small.

The corresponding results for the Crank-Nicolson scheme are shown in Figures 9 and 10. It is
clear that the Crank-Nicolson scheme outperforms the 2nd-order Runge-Kutta method. Both
schemes have the same order of accuracy O(∆t2), but their differences in the accuracy that
matters in a real physical application is very clearly pronounced in this example. Exercise 12
invites you to investigate how

5.2 Enegy considerations

The observations of various methods in the previous section can be better interpreted if we
compute an quantity reflecting the total energy of the system. It turns out that this quantity,

E(t) =
1

2
(u′)2 +

1

2
ω2u2,

23

1.0 0.5 0.0 0.5 1.0
u(t)

8

6

4

2

0

2

4

6

8

v
(t

)

Time step: 0.1

MidpointImplicit
exact

1.5 1.0 0.5 0.0 0.5 1.0 1.5
u(t)

8

6

4

2

0

2

4

6

8

v
(t

)

Time step: 0.05

MidpointImplicit
exact

Figure 9: Long-time behavior of the Crank-Nicolson scheme in the phase plane.

0 2 4 6 8 10
t

1.0

0.5

0.0

0.5

1.0

u

Time step: 0.1

MidpointImplicit
exact

0 2 4 6 8 10
t

1.5

1.0

0.5

0.0

0.5

1.0

1.5

u

Time step: 0.05

MidpointImplicit
exact

Figure 10: Long-time behavior of the Crank-Nicolson scheme.

is constant for all t. Checking that E(t) really remains constant brings evidence that the numerical
computations are sound. Such energy measures, when they exist, are much used to check numerical
simulations.

Derivation of the energy expression. We starting multiplying

u′′ + ω2u = 0,

by u′ and integrating from 0 to T :

∫ T

0

u′′u′dt+

∫ T

0

ω2uu′dt = 0 .

Observing that

u′′u′ =
d

dt

1

2
(u′)2, uu′ =

d

dt

1

2
u2,

we get

24

∫ T

0

(
d

dt

1

2
(u′)2 +

d

dt

1

2
ω2u2)dt = E(T)− E(0),

where we have introduced the energy measure E(t)

E(t) =
1

2
(u′)2 +

1

2
ω2u2 . (35)

The important result from this derivation is that the total energy is constant:

E(t) = const .

Remark on the energy expression.

The quantity E(t) derived above is physically not the energy of a vibrating mechanical
system, but the energy per unit mass. To see this, we start with Newton’s second law
F = ma (F is the sum of forces, m is the mass of the system, and a is the acceleration).
The displacement u is related to a through a = u′′. With a spring force as the only force we
have F = −ku, where k is a spring constant measuring the stiffness of the spring. Newton’s
second law then implies the differential equation

−ku = mu′′ ⇒ mu′′ + ku = 0 .

This equation of motion can be turned into an energy balance equation by finding the work
done by each term during a time interval [0, T]. To this end, we multiply the equation by
du = u′dt and integrate:

∫ T

0

muu′dt+

∫ T

0

kuu′dt = 0 .

The result is

E(t) = Ek(t) + Ep(t) = 0,

where

Ek(t) =
1

2mv2, v = u′, (36)

is the kinetic energy of the system,

Ep(t) =
1

2
ku2 (37)

is the potential energy, and the sum E(t) is the total energy. The derivation demonstrates
the famous energy principle that any change in the kinetic energy is due to a change in
potential energy and vice versa.

The equation mu′′ + ku = 0 can be divided by m and written as u′′ + ω2u = 0 for
ω =

√
k/m. The energy expression E(t) = 1

2 (u′)2 + 1
2ω

2u2 derived earlier is then simply the
true physical total energy 1

2m(u′)2 + 1
2k

2u2 divided by m, i.e., total energy per unit mass.

Example. Analytically, we have u(t) = I cosωt, if u(0) = I and u′(0) = 0, so we can easily
check that the evolution of the energy E(t) is constant:

25

E(t) =
1

2
I2(−ω sinωt)2 +

1

2
ω2I2 cos2 ωt =

1

2
ω2(sin2 ωt+ cos2 ωt) =

1

2
ω2 .

Discrete total energy. The total energy E(t) can be computed as soon as un is available.
Using (u′)n ≈ [D2tu

n] we have

En =
1

2
([D2tu]n)2 +

1

2
ω2(un)2 .

The errors involved in En get a contribution O(∆t2) from the difference approximation of u′ and
a contribution from the numerical error in un. With a second-order scheme for computing un,
the overall error in En is expected to be O(∆t2).

An error measure based on total energy. The error in total energy, as a mesh function,
can be computed by

enE =
1

2

(
un+1 − un−1

2∆t

)2

+
1

2
ω2(un)2 − E(0), n = 1, . . . , Nt − 1, (38)

where

E(0) =
1

2
V 2 +

1

2
ω2I2,

if u(0) = I and u′(0) = V . A useful norm can be the maximum absolute value of enE :

||enE ||`∞ = max
1≤n<Nt

|enE | .

The corresponding Python implementation takes the form

import numpy as np and compute u, t
dt = t[1]-t[0]
E = 0.5*((u[2:] - u[:-2])/(2*dt))**2 + 0.5*w**2*u[1:-1]**2
E0 = 0.5*V**2 + 0.5**w**2*I**2
e_E = E - E0
e_E_norm = np.abs(e_E).max()

The convergence rates of the quantity e_E_norm can be used for verification. The value of
e_E_norm is also useful for comparing schemes through their ability to preserve energy. Below
is a table demonstrating the error in total energy for various schemes. We clearly see that the
Crank-Nicolson and 4th-order Runge-Kutta schemes are superior to the 2nd-order Runge-Kutta
method and even more superior to the Forward and Backward Euler schemes.

26

Method T ∆t max |enE |
Forward Euler 1 0.05 1.113 · 102

Forward Euler 1 0.025 3.312 · 101

Backward Euler 1 0.05 1.683 · 101

Backward Euler 1 0.025 1.231 · 101

Runge-Kutta 2nd-order 1 0.1 8.401
Runge-Kutta 2nd-order 1 0.05 9.637 · 10−1

Crank-Nicolson 1 0.05 9.389 · 10−1

Crank-Nicolson 1 0.025 2.411 · 10−1

Runge-Kutta 4th-order 1 0.1 2.387
Runge-Kutta 4th-order 1 0.05 6.476 · 10−1

Crank-Nicolson 10 0.1 3.389
Crank-Nicolson 10 0.05 9.389 · 10−1

Runge-Kutta 4th-order 10 0.1 3.686
Runge-Kutta 4th-order 10 0.05 6.928 · 10−1

5.3 The Euler-Cromer method

While the 4th-order Runge-Kutta method and the a centered Crank-Nicolson scheme work well
for the first-order formulation of the vibration model, both were inferior to the straightforward
centered difference scheme for the second-order equation u′′ + ω2u = 0. However, there is a
similarly successful scheme available for the first-order system u′ = v, v′ = −ω2u, to be presented
next.

Forward-backward discretization. The idea is to apply a Forward Euler discretization to
the first equation and a Backward Euler discretization to the second. In operator notation this is
stated as

[D+
t u = v]n, (39)

[D−t v = −ωu]n+1 . (40)

We can write out the formulas and collect the unknowns on the left-hand side:

un+1 = un + ∆tvn, (41)

vn+1 = vn −∆tω2un+1 . (42)

We realize that un+1 can be computed from (41) and then vn+1 from (42) using the recently
computed value un+1 on the right-hand side.

The scheme (41)-(42) goes under several names: Forward-backward scheme, Semi-implicit
Euler method11, symplectic Euler, semi-explicit Euler, Newton-Störmer-Verlet, and Euler-Cromer.
We shall stick to the latter name. Since both time discretizations are based on first-order difference
approximation, one may think that the scheme is only of first-order, but this is not true: the use
of a forward and then a backward difference make errors cancel so that the overall error in the
scheme is O(∆t2). This is explaned below.

11http://en.wikipedia.org/wiki/Semi-implicit Euler method

27

Equivalence with the scheme for the second-order ODE. We may eliminate the vn

variable from (41)-(42). From (42) we have vn = vn−1 −∆tω2un, which can be inserted in (41)
to yield

un+1 = un + ∆tvn−1 −∆t2ω2un. (43)

The vn−1 quantity can be expressed by un and un−1 using (41):

vn−1 =
un − un−1

∆t
,

and when this is inserted in (43) we get

un+1 = 2un − un−1 −∆t2ω2un, (44)

which is nothing but the centered scheme (7)! The previous analysis of this scheme then also
applies to the Euler-Cromer method. That is, the amplitude is constant, given that the stability
criterion is fulfilled, but there is always a phase error (18).

The initial condition u′ = 0 means u′ = v = 0. Then v0 = 0, and (41) implies u1 = u0, while
(42) says v1 = −ω2u0. This approximation, u1 = u0, corresponds to a first-order Forward Euler
discretization of the initial condition u′(0) = 0: [D+

t u = 0]0. Therefore, the Euler-Cromer scheme
will start out differently and not exactly reproduce the solution of (7).

5.4 The Euler-Cromer scheme on a staggered mesh

The Forward and Backward Euler schemes used in the Euler-Cromer method are both non-
symmetric, but their combination yields a symmetric method since the resulting scheme is
equivalent with a centered (symmetric) difference scheme for u′′ + ω2u = 0. The symmetric
nature of the Euler-Cromer scheme is much more evident if we introduce a staggered mesh in
time where u is sought at integer time points tn and v is sought at tn+1/2 between two u points.

The unknowns are then u1, v3/2, u2, v5/2, and so on. We typically use the notation un and vn+ 1
2

for the two unknown mesh functions.
On a staggered mesh it is natural to use centered difference approximations, expressed in

operator notation as

[Dtu = v]n+ 1
2 , (45)

[Dtv = −ωu]n+1 . (46)

Writing out the formulas gives

un+1 = un + ∆tvn+ 1
2 , (47)

vn+ 3
2 = vn+ 1

2 −∆tω2un+1 . (48)

Of esthetic reasons one often writes these equations at the previous time level to replace the 3
2 by

1
2 in the left-most term in the last equation,

un = un−1 + ∆tvn−
1
2 , (49)

vn+ 1
2 = vn−

1
2 −∆tω2un . (50)

28

Such a rewrite is only mathematical cosmetics. The important thing is that this centered scheme
has exactly the same computational structure as the forward-backward scheme. We shall use
the names forward-backward Euler-Cromer and staggered Euler-Cromer to distinguish the two
schemes.

We can eliminate the v values and get back the centered scheme based on the second-order
differential equation, so all these three schemes are equivalent. However, they differ somewhat in
the treatment of the initial conditions.

Suppose we have u(0) = I and u′(0) = v(0) = 0 as mathematical initial conditions. This
means u0 = I and

v(0) ≈ 1

2
(v−

1
2 + v

1
2) = 0, ⇒ v−

1
2 = −v 1

2 .

Using the discretized equation (50) for n = 0 yields

v
1
2 = v−

1
2 −∆tω2I,

and eliminating v−
1
2 = −v 1

2 results in v
1
2 = − 1

2∆tω2I and

u1 = u0 − 1

2
∆t2ω2I,

which is exactly the same equation for u1 as we had in the centered scheme based on the second-
order differential equation (and hence corresponds to a centered difference approximation of the
initial condition for u′(0)). The conclusion is that a staggered mesh is fully equivalent with that
scheme, while the forward-backward version gives a slight deviation in the computation of u1.

We can redo the derivation of the initial conditions when u′(0) = V :

v(0) ≈ 1

2
(v−

1
2 + v

1
2) = V, ⇒ v−

1
2 = 2V − v 1

2 .

Using this v−
1
2 in

v
1
2 = v−

1
2 −∆tω2I,

then gives v
1
2 = V − 1

2∆tω2I. The general initial conditions are therefore

u0 = I, (51)

v
1
2 = V − 1

2
∆tω2I . (52)

5.5 Implementation of the scheme on a staggered mesh

The algorithm goes like this:

1. Set the initial values (51) and (52).

2. For n = 1, 2, . . .:

(a) Compute un from (49).

(b) Compute vn+ 1
2 from (50).

29

Implementation with integer indices. Translating the schemes (49) and (50) to computer

code faces the problem of how to store and access vn+ 1
2 , since arrays only allow integer indices

with base 0. We must then introduce a convention: v1+ 1
2 is stored in v[n] while v1− 1

2 is stored
in v[n-1]. We can then write the algorithm in Python as

def solver(I, w, dt, T):
dt = float(dt)
Nt = int(round(T/dt))
u = zeros(Nt+1)
v = zeros(Nt+1)
t = linspace(0, Nt*dt, Nt+1) # mesh for u
t_v = t + dt/2 # mesh for v

u[0] = I
v[0] = 0 - 0.5*dt*w**2*u[0]
for n in range(1, Nt+1):

u[n] = u[n-1] + dt*v[n-1]
v[n] = v[n-1] - dt*w**2*u[n]

return u, t, v, t_v

Note that the return u and v together with the mesh points such that the complete mesh function
for u is described by u and t, while v and t_v represents the mesh function for v.

Implementation with half-integer indices. Some prefer to see a closer relationship between
the code and the mathematics for the quantities with half-integer indices. For example, we would
like to replace the updating equation for v[n] by

v[n+half] = v[n-half] - dt*w**2*u[n]

This is easy to do if we could be sure that n+half means n and n-half means n-1. A possible
solution is to define half as a special object such that an integer plus half results in the integer,
while an integer minus half equals the integer minus 1. A simple Python class may realize the
half object:

class HalfInt:
def __radd__(self, other):

return other

def __rsub__(self, other):
return other - 1

half = HalfInt()

The __radd__ function is invoked for all expressions n+half (”right add” with self as half and
other as n). Similarly, the __rsub__ function is invoked for n-half and results in n-1.

Using the half object, we can implement the algorithms in an even more readable way:

def solver(I, w, dt, T):
"""
Solve u’=v, v’ = - w**2*u for t in (0,T], u(0)=I and v(0)=0,
by a central finite difference method with time step dt.
"""
dt = float(dt)
Nt = int(round(T/dt))
u = zeros(Nt+1)
v = zeros(Nt+1)
t = linspace(0, Nt*dt, Nt+1) # mesh for u

30

t_v = t + dt/2 # mesh for v

u[0] = I
v[0+half] = 0 - 0.5*dt*w**2*u[0]
for n in range(1, Nt+1):

print n, n+half, n-half
u[n] = u[n-1] + dt*v[n-half]
v[n+half] = v[n-half] - dt*w**2*u[n]

return u, t, v, t_v

Verification of this code is easy as we can just compare the computed u with the u produced by
the solver function in vib_undamped.py (which solves u′′+ω2u = 0 directly). The values should
coincide to machine precision since the two numerical methods are mathematically equivalent.
We refer to the file vib_undamped_staggered.py12 for the details of a nose test that checks this
property.

6 Generalization: damping, nonlinear spring, and external
excitation

We shall now generalize the simple model problem from Section 1 to include a possibly nonlinear
damping term f(u′), a possibly nonlinear spring (or restoring) force s(u), and some external
excitation F (t):

mu′′ + f(u′) + s(u) = F (t), u(0) = I, u′(0) = V, t ∈ (0, T] . (53)

We have also included a possibly nonzero initial value of u′(0). The parameters m, f(u′), s(u),
F (t), I, V , and T are input data.

There are two main types of damping (friction) forces: linear f(u′) = bu, or quadratic
f(u′) = bu′|u′|. Spring systems often feature linear damping, while air resistance usually gives
rise to quadratic damping. Spring forces are often linear: s(u) = cu, but nonlinear versions are
also common, the most famous is the gravity force on a pendulum that acts as a spring with
s(u) ∼ sin(u).

6.1 A centered scheme for linear damping

Sampling (53) at a mesh point tn, replacing u′′(tn) by [DtDtu]n, and u′(tn) by [D2tu]n results in
the discretization

[mDtDtu+ f(D2tu) + s(u) = F]n, (54)

which written out means

m
un+1 − 2un + un−1

∆t2
+ f(

un+1 − un−1

2∆t
) + s(un) = Fn, (55)

where Fn as usual means F (t) evaluated at t = tn. Solving (55) with respect to the unknown
un+1 gives a problem: the un+1 inside the f function makes the equation nonlinear unless f(u′)
is a linear function, f(u′) = bu′. For now we shall assume that f is linear in u′. Then

m
un+1 − 2un + un−1

∆t2
+ b

un+1 − un−1

2∆t
+ s(un) = Fn, (56)

12http://tinyurl.com/jvzzcfn/vib/vib undamped staggered.py

31

which gives an explicit formula for u at each new time level:

un+1 = (2mun + (
b

2
∆t−m)un−1 + ∆t2(Fn − s(un)))(m+

b

2
∆t)−1 . (57)

For the first time step we need to discretize u′(0) = V as [D2tu = V]0 and combine with (57)
for n = 0. The discretized initial condition leads to

u−1 = u1 − 2∆tV, (58)

which inserted in (57) for n = 0 gives an equation that can be solved for u1:

u1 = u0 + ∆t V +
∆t2

2m
(−bV − s(u0) + F 0) . (59)

6.2 A centered scheme for quadratic damping

When f(u′) = bu′|u′|, we get a quadratic equation for un+1 in (55). This equation can straight-
forwardly be solved, but we can also avoid the nonlinearity by performing an approximation that
is within other numerical errors that we have already committed by replacing derivatives with
finite differences.

The idea is to reconsider (53) and only replace u′′ by DtDtu, giving

[mDtDtu+ bu′|u′|+ s(u) = F]n, (60)

Here, u′|u′| is to be computed at time tn. We can introduce a geometric mean, defined by

(w2)n ≈ wn− 1
2wn+ 1

2 ,

for some quantity w depending on time. The error in the geometric mean approximation is
O(∆t2), the same as in the approximation u′′ ≈ DtDtu. With w = u′ it follows that

[u′|u′|]n ≈ u′(tn +
1

2
)|u′(tn −

1

2
)| .

The next step is to approximate u′ at tn±1/2, but here a centered difference can be used:

u′(tn+1/2) ≈ [Dtu]n+ 1
2 , u′(tn−1/2) ≈ [Dtu]n−

1
2 . (61)

We then get

[u′|u′|]n ≈ [Dtu]n+ 1
2 |[Dtu]n−

1
2 | = un+1 − un

∆t

|un − un−1|
∆t

. (62)

The counterpart to (55) is then

m
un+1 − 2un + un−1

∆t2
+ b

un+1 − un
∆t

|un − un−1|
∆t

+ s(un) = Fn, (63)

which is linear in un+1. Therefore, we can easily solve with respect to un+1 and achieve the
explicit updating formula

un+1 =
(
m+ b|un − un−1|

)−1×
(
2mun −mun−1 + bun|un − un−1|+ ∆t2(Fn − s(un))

)
. (64)

32

In the derivation of a special equation for the first time step we run into some trouble: inserting
(58) in (64) for n = 0 results in a complicated nonlinear equation for u1. By thinking differently
about the problem we can easily get away with the nonlinearity again. We have for n = 0 that
b[u′|u′|]0 = bV |V |. Using this value in (60) gives

[mDtDtu+ bV |V |+ s(u) = F]0 . (65)

Writing this equation out and using (58) results in the special equation for the first time step:

u1 = u0 + ∆tV +
∆t2

2m

(
−bV |V | − s(u0) + F 0

)
. (66)

6.3 A forward-backward discretization of the quadratic damping term

The previous section first proposed to discretize the quadratic damping term |u′|u′ using centered
differences: [|D2t|D2tu]n. As this gives rise to a nonlinearity in un+1, it was instead proposed to
use a geometric mean combined with centered differences. But there are other alternatives. To
get rid of the nonlinearity in [|D2t|D2tu]n, one can think differently: apply a backward difference
to |u′|, such that the term involves known values, and apply a forward difference to u′ to make
the term linear in the unknown un+1. With mathematics,

[β|u′|u′]n ≈ β|[D−t u]n|[D+
t u]n = β

∣∣∣∣
u−un−1

∆t

∣∣∣∣
un+1 − un

∆t
.

The forward and backward differences have both an error proportional to ∆t so one may think
the discretization above leads to a first-order scheme. However, by looking at the formulas, we
realize that the forward-backward differences result in exactly the same scheme as when we used
a geometric mean and centered differences. Therefore, the forward-backward differences act in
a symmetric way and actually produce a second-order accurate discretization of the quadratic
damping term.

6.4 Implementation

The algorithm arising from the methods in Sections 6.1 and 6.2 is very similar to the undamped
case in Section 1.2. The difference is basically a question of different formulas for u1 and un+1.
This is actually quite remarkable. The equation (53) is normally impossible to solve by pen and
paper, but possible for some special choices of F , s, and f . On the contrary, the complexity of
the nonlinear generalized model (53) versus the simple undamped model is not a big deal when
we solve the problem numerically!

The computational algorithm takes the form

1. u0 = I

2. compute u1 from (59) if linear damping or (66) if quadratic damping

3. for n = 1, 2, . . . , Nt − 1:

(a) compute un+1 from (57) if linear damping or (64) if quadratic damping

Modifying the solver function for the undamped case is fairly easy, the big difference being
many more terms and if tests on the type of damping:

33

def solver(I, V, m, b, s, F, dt, T, damping=’linear’):
"""
Solve m*u’’ + f(u’) + s(u) = F(t) for t in (0,T],
u(0)=I and u’(0)=V,
by a central finite difference method with time step dt.
If damping is ’linear’, f(u’)=b*u, while if damping is
’quadratic’, f(u’)=b*u’*abs(u’).
F(t) and s(u) are Python functions.
"""
dt = float(dt); b = float(b); m = float(m) # avoid integer div.
Nt = int(round(T/dt))
u = zeros(Nt+1)
t = linspace(0, Nt*dt, Nt+1)

u[0] = I
if damping == ’linear’:

u[1] = u[0] + dt*V + dt**2/(2*m)*(-b*V - s(u[0]) + F(t[0]))
elif damping == ’quadratic’:

u[1] = u[0] + dt*V + \
dt**2/(2*m)*(-b*V*abs(V) - s(u[0]) + F(t[0]))

for n in range(1, Nt):
if damping == ’linear’:

u[n+1] = (2*m*u[n] + (b*dt/2 - m)*u[n-1] +
dt**2*(F(t[n]) - s(u[n])))/(m + b*dt/2)

elif damping == ’quadratic’:
u[n+1] = (2*m*u[n] - m*u[n-1] + b*u[n]*abs(u[n] - u[n-1])

+ dt**2*(F(t[n]) - s(u[n])))/\
(m + b*abs(u[n] - u[n-1]))

return u, t

The complete code resides in the file vib.py13.

6.5 Verification

Constant solution. For debugging and initial verification, a constant solution is often very
useful. We choose ue(t) = I, which implies V = 0. Inserted in the ODE, we get F (t) = s(I) for
any choice of f . Since the discrete derivative of a constant vanishes (in particular, [D2tI]n = 0,
[DtI]n = 0, and [DtDtI]n = 0), the constant solution also fulfills the discrete equations. The
constant should therefore be reproduced to machine precision.

Linear solution. Now we choose a linear solution: ue = ct+ d. The initial condition u(0) = I
implies d = I, and u′(0) = V forces c to be V . Inserting ue = V t + I in the ODE with linear
damping results in

0 + bV + s(V t+ I) = F (t),

while quadratic damping requires the source term

0 + b|V |V + s(V t+ I) = F (t) .

Since the finite difference approximations used to compute u′ all are exact for a linear function, it
turns out that the linear ue is also a solution of the discrete equations. Exercise 9 asks you to
carry out all the details.

13http://tinyurl.com/jvzzcfn/vib/vib.py

34

Quadratic solution. Choosing ue = bt2 +V t+ I, with b arbitrary, fulfills the initial conditions
and fits the ODE if F is adjusted properly. The solution also solves the discrete equations with
linear damping. However, this quadratic polynomial in t does not fulfill the discrete equations
in case of quadratic damping, because the geometric mean used in the approximation of this
term introduces an error. Doing Exercise 9 will reveal the details. One can fit Fn in the discrete
equations such that the quadratic polynomial is reproduced by the numerical method (to machine
precision).

6.6 Visualization

The functions for visualizations differ significantly from those in the undamped case in the
vib_undamped.py program because we in the present general case do not have an exact solution
to include in the plots. Moreover, we have no good estimate of the periods of the oscillations
as there will be one period determined by the system parameters, essentially the approximate
frequency

√
s′(0)/m for linear s and small damping, and one period dictated by F (t) in case the

excitation is periodic. This is, however, nothing that the program can depend on or make use of.
Therefore, the user has to specify T and the window width in case of a plot that moves with the
graph and shows the most recent parts of it in long time simulations.

The vib.py code contains several functions for analyzing the time series signal and for
visualizing the solutions.

6.7 User interface

The main function has substantial changes from the vib_undamped.py code since we need to
specify the new data c, s(u), and F (t). In addition, we must set T and the plot window width
(instead of the number of periods we want to simulate as in vib_undamped.py). To figure out
whether we can use one plot for the whole time series or if we should follow the most recent part
of u, we can use the plot_empricial_freq_and_amplitude function’s estimate of the number
of local maxima. This number is now returned from the function and used in main to decide on
the visualization technique.

def main():
import argparse
parser = argparse.ArgumentParser()
parser.add_argument(’--I’, type=float, default=1.0)
parser.add_argument(’--V’, type=float, default=0.0)
parser.add_argument(’--m’, type=float, default=1.0)
parser.add_argument(’--c’, type=float, default=0.0)
parser.add_argument(’--s’, type=str, default=’u’)
parser.add_argument(’--F’, type=str, default=’0’)
parser.add_argument(’--dt’, type=float, default=0.05)
parser.add_argument(’--T’, type=float, default=140)
parser.add_argument(’--damping’, type=str, default=’linear’)
parser.add_argument(’--window_width’, type=float, default=30)
parser.add_argument(’--savefig’, action=’store_true’)
a = parser.parse_args()
from scitools.std import StringFunction
s = StringFunction(a.s, independent_variable=’u’)
F = StringFunction(a.F, independent_variable=’t’)
I, V, m, c, dt, T, window_width, savefig, damping = \

a.I, a.V, a.m, a.c, a.dt, a.T, a.window_width, a.savefig, \
a.damping

u, t = solver(I, V, m, c, s, F, dt, T)
num_periods = empirical_freq_and_amplitude(u, t)

35

if num_periods <= 15:
figure()
visualize(u, t)

else:
visualize_front(u, t, window_width, savefig)

show()

The program vib.py contains the above code snippets and can solve the model problem (53).
As a demo of vib.py, we consider the case I = 1, V = 0, m = 1, c = 0.03, s(u) = sin(u),
F (t) = 3 cos(4t), ∆t = 0.05, and T = 140. The relevant command to run is

Terminal> python vib.py --s ’sin(u)’ --F ’3*cos(4*t)’ --c 0.03

This results in a moving window following the function14 on the screen. Figure 11 shows a part
of the time series.

0 10 20 30 40 50 60
t

1.0

0.5

0.0

0.5

1.0

u

dt=0.05

Figure 11: Damped oscillator excited by a sinusoidal function.

6.8 A staggered Euler-Cromer scheme for the generalized model

The model
14http://tinyurl.com/k3sdbuv/pub/mov-vib/vib generalized dt0.05/index.html

36

mu′′ + f(u′) + s(u) = F (t), u(0) = I, u′(0) = V, t ∈ (0, T], (67)

can be rewritten as a first-order ODE system

u′ = v, (68)

v′ = m−1 (F (t)− f(v)− s(u)) . (69)

It is natural to introduce a staggered mesh (see Section 5.4) and seek u at mesh points tn (the
numerical value is denoted by un) and v between mesh points at tn+1/2 (the numerical value

is denoted by vn+ 1
2). A centered difference approximation to (68)-(69) can then be written in

operator notation as

[Dtu = v]n−
1
2 , (70)

[Dtv = m−1 (F (t)− f(v)− s(u))]n . (71)

Written out,

un − un−1

∆t
= vn−

1
2 , (72)

vn+ 1
2 − vn− 1

2

∆t
= m−1 (Fn − f(vn)− s(un)) . (73)

With linear damping, f(v) = bv, we can use an arithmetic mean for f(vn): f(vn) ≈= 1
2 (f(vn−

1
2)+

f(vn+ 1
2)). The system (72)-(73) can then be solved with respect to the unknowns un and vn+ 1

2 :

un = un−1 + ∆tvn−
1
2 , (74)

vn+ 1
2 =

(
1 +

b

2m
∆t

)−1(
vn−

1
2 + ∆tm−1

(
Fn − 1

2
f(vn−

1
2)− s(un)

))
. (75)

In case of quadratic damping, f(v) = b|v|v, we can use a geometric mean: f(vn) ≈
b|vn− 1

2 |vn+ 1
2 . Inserting this approximation in (72)-(73) and solving for the unknowns un and

vn+ 1
2 results in

un = un−1 + ∆tvn−
1
2 , (76)

vn+ 1
2 = (1 +

b

m
|vn− 1

2 |∆t)−1
(
vn−

1
2 + ∆tm−1 (Fn − s(un))

)
. (77)

The initial conditions are derived at the end of Section 5.4:

u0 = I, (78)

v
1
2 = V − 1

2
∆tω2I . (79)

37

7 Exercises and Problems

Problem 1: Use linear/quadratic functions for verification

Consider the ODE problem

u′′ + ω2u = f(t), u(0) = I, u′(0) = V, t ∈ (0, T] .

Discretize this equation according to [DtDtu+ ω2u = f]n.

a) Derive the equation for the first time step (u1).

b) For verification purposes, we use the method of manufactured solutions (MMS) with the
choice of ue(x, t) = ct+ d. Find restrictions on c and d from the initial conditions. Compute the
corresponding source term f by term. Show that [DtDtt]

n = 0 and use the fact that the DtDt

operator is linear, [DtDt(ct+ d)]n = c[DtDtt]
n + [DtDtd]n = 0, to show that ue is also a perfect

solution of the discrete equations.

c) Use sympy to do the symbolic calculations above. Here is a sketch of the program vib_undamped_verify_mms.py:

import sympy as sp
V, t, I, w, dt = sp.symbols(’V t I w dt’) # global symbols
f = None # global variable for the source term in the ODE

def ode_source_term(u):
"""Return the terms in the ODE that the source term
must balance, here u’’ + w**2*u.
u is symbolic Python function of t."""
return sp.diff(u(t), t, t) + w**2*u(t)

def residual_discrete_eq(u):
"""Return the residual of the discrete eq. with u inserted."""
R = ...
return sp.simplify(R)

def residual_discrete_eq_step1(u):
"""Return the residual of the discrete eq. at the first
step with u inserted."""
R = ...
return sp.simplify(R)

def DtDt(u, dt):
"""Return 2nd-order finite difference for u_tt.
u is a symbolic Python function of t.
"""
return ...

def main(u):
"""
Given some chosen solution u (as a function of t, implemented
as a Python function), use the method of manufactured solutions
to compute the source term f, and check if u also solves
the discrete equations.
"""
print ’=== Testing exact solution: %s ===’ % u
print "Initial conditions u(0)=%s, u’(0)=%s:" % \

(u(t).subs(t, 0), sp.diff(u(t), t).subs(t, 0))

Method of manufactured solution requires fitting f

38

global f # source term in the ODE
f = sp.simplify(ode_lhs(u))

Residual in discrete equations (should be 0)
print ’residual step1:’, residual_discrete_eq_step1(u)
print ’residual:’, residual_discrete_eq(u)

def linear():
main(lambda t: V*t + I)

if __name__ == ’__main__’:
linear()

Fill in the various functions such that the calls in the main function works.

d) The purpose now is to choose a quadratic function ue = bt2 + ct + d as exact solution.
Extend the sympy code above with a function quadratic for fitting f and checking if the discrete
equations are fulfilled. (The function is very similar to linear.)

e) Will a polynomial of degree three fulfill the discrete equations?

f) Implement a solver function for computing the numerical solution of this problem.

g) Write a nose test for checking that the quadratic solution is computed to correctly (too
machine precision, but the round-off errors accumulate and increase with T) by the solver

function.
Filenames: vib_undamped_verify_mms.pdf, vib_undamped_verify_mms.py.

Exercise 2: Show linear growth of the phase with time

Consider an exact solution I cos(ωt) and an approximation I cos(ω̃t). Define the phase error as
time lag between the peak I in the exact solution and the corresponding peak in the approx-
imation after m periods of oscillations. Show that this phase error is linear in m. Filename:
vib_phase_error_growth.pdf.

Exercise 3: Improve the accuracy by adjusting the frequency

According to (18), the numerical frequency deviates from the exact frequency by a (dominating)
amount ω3∆t2/24 > 0. Replace the w parameter in the algorithm in the solver function
in vib_undamped.py by w*(1 - (1./24)*w**2*dt**2 and test how this adjustment in the
numerical algorithm improves the accuracy (use ∆t = 0.1 and simulate for 80 periods, with and
without adjustment of ω).

Filename: vib_adjust_w.py.

Exercise 4: See if adaptive methods improve the phase error

Adaptive methods for solving ODEs aim at adjusting ∆t such that the error is within a user-
prescribed tolerance. Implement the equation u′′ + u = 0 in the Odespy15 software. Use the
example from Section ?? in [1]. Run the scheme with a very low tolerance (say 10−14) and
for a long time, check the number of time points in the solver’s mesh (len(solver.t_all)),

15https://github.com/hplgit/odespy

39

and compare the phase error with that produced by the simple finite difference method from
Section 1.2 with the same number of (equally spaced) mesh points. The question is whether it
pays off to use an adaptive solver or if equally many points with a simple method gives about the
same accuracy. Filename: vib_undamped_adaptive.py.

Exercise 5: Use a Taylor polynomial to compute u1

As an alternative to the derivation of (8) for computing u1, one can use a Taylor polynomial with
three terms for u1:

u(t1) ≈ u(0) + u′(0)∆t+
1

2
u′′(0)∆t2

With u′′ = −ω2u and u′(0) = 0, show that this method also leads to (8). Generalize the
condition on u′(0) to be u′(0) = V and compute u1 in this case with both methods. Filename:
vib_first_step.pdf.

Exercise 6: Find the minimal resolution of an oscillatory function

Sketch the function on a given mesh which has the highest possible frequency. That is, this
oscillatory ”cos-like” function has its maxima and minima at every two grid points. Find an
expression for the frequency of this function, and use the result to find the largest relevant value
of ω∆t when ω is the frequency of an oscillating function and ∆t is the mesh spacing. Filename:
vib_largest_wdt.pdf.

Exercise 7: Visualize the accuracy of finite differences for a cosine func-
tion

We introduce the error fraction

E =
[DtDtu]n

u′′(tn)

to measure the error in the finite difference approximation DtDtu to u′′. Compute E for the
specific choice of a cosine/sine function of the form u = exp (iωt) and show that

E =

(
2

ω∆t

)2

sin2(
ω∆t

2
) .

Plot E as a function of p = ω∆t. The relevant values of p are [0, π] (see Exercise 6 for why
p > π does not make sense). The deviation of the curve from unity visualizes the error in the
approximation. Also expand E as a Taylor polynomial in p up to fourth degree (use, e.g., sympy).
Filename: vib_plot_fd_exp_error.py.

Exercise 8: Verify convergence rates of the error in energy

We consider the ODE problem u′′ + ω2u = 0, u(0) = I, u′(0) = V , for t ∈ (0, T]. The total
energy of the solution E(t) = 1

2 (u′)2 + 1
2ω

2u2 should stay constant. The error in energy can be
computed as explained in Section 5.2.

Make a nose test in a file test_error_conv.py, where code from vib_undamped.py is im-
ported, but the convergence_rates and test_convergence_rates functions are copied and
modified to also incorporate computations of the error in energy and the convergence rate of this
error. The expected rate is 2. Filename: test_error_conv.py.

40

Exercise 9: Use linear/quadratic functions for verification

This exercise is a generalization of Problem 1 to the extended model problem (53) where the
damping term is either linear or quadratic. Solve the various subproblems and see how the results
and problem settings change with the generalized ODE in case of linear or quadratic damping.
By modifying the code from Problem 1, sympy will do most of the work required to analyze the
generalized problem. Filename: vib_verify_mms.py.

Exercise 10: Use an exact discrete solution for verification

Write a nose test function in a separate file that employs the exact discrete solution (19)
to verify the implementation of the solver function in the file vib_undamped.py. Just im-
port solver and make functions for the exact discrete solution and the nose test. Filename:
vib_verify_discrete_omega.py.

Exercise 11: Use analytical solution for convergence rate tests

The purpose of this exercise is to perform convergence tests of the problem (53) when s(u) = ω2u
and F (t) = A sinφt. Find the complete analytical solution to the problem in this case (most text-
books on mechanics list the various elements you need to write down the exact solution). Modify
the convergence_rate function from the vib_undamped.py program to perform experiments
with the extended model. Verify that the error is of order ∆t2. Filename: vib_conv_rate.py.

Exercise 12: Investigate the amplitude errors of many solvers

Use the program vib_undamped_odespy.py from Section 5.1 and the amplitude estimation from
the amplitudes function in the vib_undamped.py file (see Section 3.4) to investigate how well
famous methods for 1st-order ODEs can preserve the amplitude of u in undamped oscillations.
Test, for example, the 3rd- and 4th-order Runge-Kutta methods (RK3, RK4), the Crank-Nicolson
method (CrankNicolson), the 2nd- and 3rd-order Adams-Bashforth methods (AdamsBashforth2,
AdamsBashforth3), and a 2nd-order Backwards scheme (Backward2Step). The relevant governing
equations are listed in Section 22. Filename: vib_amplitude_errors.py.

Exercise 13: Minimize memory usage of a vibration solver

The program vib.py16 store the complete solution u0, u1, . . . , uNt in memory, which is convenient
for later plotting. Make a memory minimizing version of this program where only the last three
un+1, un, and un−1 values are stored in memory. Write each computed (tn+1, u

n+1) pair to file.
Visualize the data in the file (a cool solution is to read one line at a time and plot the u value
using the line-by-line plotter in the visualize_front_ascii function - this technique makes it
trivial to visualize very long time simulations). Filename: vib_memsave.py.

Exercise 14: Implement the solver via classes

Reimplement the vib.py program using a class Problem to hold all the physical parameters of
the problem, a class Solver to hold the numerical parameters and compute the solution, and a
class Visualizer to display the solution.

16http://tinyurl.com/jvzzcfn/vib/vib.py

41

Hint. Use the ideas and examples from Section ?? and ?? in [1]. More specifically, make a
superclass Problem for holding the scalar physical parameters of a problem and let subclasses
implement the s(u) and F (t) functions as methods. Try to call up as much existing functionality
in vib.py as possible.

Filename: vib_class.py.

Exercise 15: Show equivalence between schemes

Show that the schemes from Sections 1.2, 5.3, and 5.4 are all equivalent. Filename: vib_scheme_equivalence.pdf.

Exercise 16: Interpret [DtDtu]
n as a forward-backward difference

Show that the difference [DtDtu]n is equal to [D+
t D
−
t u]n and D−t D

+
t u]n. That is, instead of

applying a centered difference twice one can alternatively apply a mixture forward and backward
differences. Filename: vib_DtDt_fw_bw.pdf.

Exercise 17: Use the forward-backward scheme with quadratic damping

We consider the generalized model with quadratic damping, expressed as a system of two first-order
equations as in Section 6.8:

u′ = v,

v′ =
1

m
(F (t)− β|v|v − s(u)) .

However, contrary to what is done in Section 6.8, we want to apply the idea of the forward-
backward discretization in Section 5.3. Express the idea in operator notation and write out
the scheme. Unfortunately, the backward difference for the v equation creates a nonlinearity
|vn+1|vn. To linearize this nonlinearity, use the known value vn inside the absolute value factor,
i.e., |vn+1|vn ≈ |vn|vn+1. Show that the resulting scheme is equivalent to the one in Section 6.8
for some time level n ≥ 1.

What we learn from this exercise is that the first-order differences and the linearization trick
play together in ”the right way” such that the scheme is as good as when we (in Section 6.8)
carefully apply centered differences and a geometric mean on a staggered mesh to achieve second-
order accuracy. There is a difference in the handling of the initial conditions, though, as explained
at the end of Section 5.3. Filename: vib_gen_bwdamping.pdf.

Exercise 18: Use a backward difference for the damping term

As an alternative to discretizing the damping terms βu′ and β|u′|u′ by centered differences, we
may apply backward differences:

[u′]n ≈ [D−t u]n,

[|u′|u′]n ≈ [|D−t u|D−t u]n = |[D−t u]n|[D−t u]n .

The advantage of the backward difference is that the damping term is evaluated using known
values un and un−1 only. Extend the vib.py17 code with a scheme based on using backward

17http://tinyurl.com/jvzzcfn/vib/vib.py

42

differences in the damping terms. Add statements to compare the original approach with centered
difference and the new idea launched in this exercise. Perform numerical experiments to investigate
how much accuracy that is lost by using the backward differences.

Filename: vib_gen_bwdamping.pdf.

References

[1] H. P. Langtangen. Introduction to computing with finite difference methods. Web document,
Simula Research Laboratory and University of Oslo, 2013.

43

Index

argparse (Python module), 34
ArgumentParser (Python class), 34
averaging

geometric, 31

centered difference, 3

energy principle, 22
error

global, 15

finite differences
centered, 3

forced vibrations, 30
forward-backward Euler-Cromer scheme, 26
frequency (of oscillations), 3

geometric mean, 31

Hz (unit), 3

making movies, 10
mechanical energy, 22
mechanical vibrations, 3
mesh

finite differences, 3
mesh function, 3

nonlinear restoring force, 30
nonlinear spring, 30

oscillations, 3

period (of oscillations), 3

stability criterion, 16
staggered Euler-Cromer scheme, 27
staggered mesh, 27

vibration ODE, 3

44

