Truncat ion EI‘I‘OI‘ AnaIYSiS 5 Truncation errors in wave equations

5.1 Linear wave equation in 1D
5.2 Finding correction termso
5.3 Extension to variable coefficients
5.4 1D wave equation on a staggered mesh

Hans Petter Langtangen!:2 : ona
5.5 Linear wave equation in 2D/3D L.

LCenter for Biomedical Computing, Simula Research Laboratory

2Department of Informatics, University of Oslo 6 Truncation errors in diffusion equations

6.1 Linear diffusion equationin 1D
6.2 Linear diffusion equation in 2D/3D
Dec 12, 2013 6.3 A nonlinear diffusion equationin2D

7 Exercises

WARNING: Preliminary version (expect typos!)

Jontents
Overview of truncation error analysis 4
1.1 Abstract problem setting 4
1.2 FError measureso 5

Truncation errors in finite difference formulas 6
2.1 Example: The backward difference for «/(t) 6
2.2 Example: The forward difference for w/(¢t) 7
2.3 Example: The central difference for «/(¢) 8
2.4 Overview of leading-order error terms in finite difference formulas 8

0

2.5 Software for computing truncation errors. 1

Truncation errors in exponential decay ODE 11
3.1 Truncation error of the Forward Euler scheme 11
3.2 Truncation error of the Crank-Nicolson scheme 12
3.3 Truncation error of the f-rule 13
3.4 Using symbolic software 13
3.5 Empirical verification of the truncation error 14
3.6 Increasing the accuracy by adding correction terms 17
3.7 Extension to variable coefficients 21
3.8 Exact solutions of the finite difference equations 21
3.9 Computing truncation errors in nonlinear problems 22
Truncation errors in vibration ODEs 23
4.1 Linear model without damping 23
4.2 Model with damping and nonlinearity 26
4.3 Extension to quadratic damping 27
4.4 The general model formulated as first-order ODEs 28

ist of Exercises

Exercise
Exercise
Exercise
Exercise
Exercise
Exercise
Exercise
Exercise
Exercise
Exercise
Exercise
Exercise

© 00 O UL W N+

—_ =
=)

12

Truncation error of a weighted mean

Simulate the error of a weighted mean

Verify a truncation error formula

Truncation error of the Backward Euler scheme
Empirical estimation of truncation errors
Correction term for a Backward Euler scheme
Verify the effect of correction terms

Truncation error of the Crank-Nicolson scheme
Truncation error of v’ = f(u,t)

Truncation error of [DDyu]™

Investigate the impact of approximating u'(0) ...
Investigate the accuracy of a simplified scheme ...

VTV TTVTYT T

37
37
37
37
38
38
38
38
39
39
39
40

Purpose.

Truncation error analysis provides a widely applicable framework fo
lyzing the accuracy of finite difference schemes. This type of analysi
also be used for finite element and finite volume methods if the dis
equations are written in finite difference form. The result of the an
is an asymptotic estimate of the error in the scheme on the form
where h is a discretization parameter (At, Az, etc.), r is a number, k
as the convergence rate, and C is a constant, typically dependent o
derivatives of the exact solution.

Knowing r gives understanding of the accuracy of the scheme. But n
even more important, a powerful verification method for computer
is to check that the empirically observed convergence rates in experii
coincide with the theoretical value of r found from truncation error an

The analysis can be carried out by hand, by symbolic software, an
numerically. All three methods will be illustrated. From examinin
symbolic expressions of the truncation error we can add correction ter
the differential equations in order to increase the numerical accuracy

In general, the term truncation error refers to the discrepancy the
from performing a finite number of steps to approximate a process with i
many steps. The term is used in a number of contexts, including tru
of infinite series, finite precision arithmetic, finite differences, and dif
equations. We shall be concerned with computing truncation errors a:
finite difference formulas and in finite difference discretizations of dift
equations.

1 Overview of truncation error analysis

1.1 Abstract problem setting

Consider an abstract differential equation

L(u) =0,

where £(u) is some formula involving the unknown u and its derivativ
example is L(u) = /' (t) + a(t)u(t) — b(t), where a and b are contants or fi
of time. We can discretize the differential equation and obtain a corres
discrete model, here written as

La(u)=0.

The solution u of this equation is the numerical solution. To disting
numerical solution from the exact solution of the differential equation |
we denote the latter by ue and write the differential equation and its
counterpart as

L(ue) =0,
La(u)=0.

iitial and/or boundary conditions can usually be left out of the truncation error
nalysis and are omitted in the following.

The numerical solution u is in a finite difference method computed at a collec-
on of mesh points. The discrete equations represented by the abstract equation
A(u) = 0 are usually algebraic equations involving u at some neighboring mesh
oints.

.2 Error measures

key issue is how accurate the numerical solution is. The ultimate way of
ddressing this issue would be to compute the error ue — u at the mesh points.
his is usually extremely demanding. In very simplified problem settings we
1ay, however, manage to derive formulas for the numerical solution u, and
1erefore closed form expressions for the error ue — u. Such special cases can
rovide considerable insight regarding accuracy and stability, but the results are
stablished for special problems.

The error ue —u can be computed empirically in special cases where we know
e- Such cases can be constructed by the method of manufactured solutions,
here we choose some exact solution ue = v and fit a source term f in the
overning differential equation L£(ue) = f such that ue = v is a solution (i.e., f =
(v)). Assuming an error model of the form Ch", where h is the discretization
arameter, such as At or Ax, one can estimate the convergence rate r. This is a
idely applicable procedure, but the valididity of the results is, strictly speaking,
ed to the chosen test problems.

Another error measure is to ask to what extent the exact solution we fits the
iscrete equations. Clearly, ue is in general not a solution of L (u) = 0, but we
an define the residual

R = EA(ue),

nd investigate how close R is to zero. A small R means intuitively that the
iscrete equations are close to the differential equation, and then we are tempted
» think that 4™ must also be close to ue(ty,).

The residual R is known as the truncation error of the finite difference scheme
a(u) = 0. It appears that the truncation error is relatively straightforward
» compute by hand or symbolic software without specializing the differential
quation and the discrete model to a special case. The resulting R is found
3 a power series in the discretization parameters. The leading-order terms
1 the series provide an asymptotic measure of the accuracy of the numerical
>lution method (as the discretization parameters tend to zero). An advantage
f truncation error analysis compared empricial estimation of convergence rates
¢ detailed analysis of a special problem with a mathematical expression for the

numerical solution, is that the truncation error analysis reveals the a
of the various building blocks in the numerical method and how each 1
block impacts the overall accuracy. The analysis can therefore be used t
building blocks with lower accuracy than the others.

Knowing the truncation error or other error measures is important for
tion of programs by empirically establishing convergence rates. The fortl
text will provide many examples on how to compute truncation errors f
difference discretizations of ODEs and PDEs.

2 Truncation errors in finite difference forn

The accuracy of a finite difference formula is a fundamental issue when disc
differential equations. We shall first go through a particular example i
and thereafter list the truncation error in the most common finite di
approximation formulas.

2.1 Example: The backward difference for ()

Consider a backward finite difference approximation of the first-order de

u':

ul — un—l

At
Here, 4™ means the value of some function u(t) at a point ¢,, and [L
the discrete derivative of u(t) at t = t,. The discrete derivative comput
finite difference is not exactly equal to the derivative u'(t,). The erro
approximation is

[D; u]™ = ol (ty,) .

R" = [D;u]™ —u/(t,) .

The common way of calculating R™ is to

1. expand u(t) in a Taylor series around the point where the deri
evaluated, here ¢,

2. insert this Taylor series in (2), and
3. collect terms that cancel and simplify the expression.

The result is an expression for R™ in terms of a power series in At. The ¢
is commonly referred to as the truncation error of the finite difference
The Taylor series formula often found in calculus books takes the fc

1 our application, we expand the Taylor series around the point where the finite
ifference formula approximates the derivative. The Taylor series of u™ at t,
simply u(t,), while the Taylor sereis of u"~* at t,, must employ the general
rmula,

Wt 1) = ult— Aty =3 Zl"flt“ (£2)(—AD)’

=0

1
= u(ty) —u'(t,) At + 5u”(tn)At2 + O(AF?),

here O(At?) means a power-series in At where the lowest power is At3. We
ssume that At is small such that AtP > At? if p is smaller than ¢. The details
f higher-order terms in At are therefore not of much interest. Inserting the
aylor series above in the left-hand side ofl (2) gives rise to some algebra:

u(tn) —u(tn-1)

Dy u)” = (t,) = AL — ' (t,)
u(ty) — (u(ty) — W/ (ta) At + Lu (t,) A + O(A))
= —u tn)
At
1
— —iu”(tn)At + O(At?)),
hich is, according to (2), the truncation error:
1
R" = —iu”(tn)At +O(A)). (3)

he dominating term for small At is —%u”(tn)At, which is proportional to At,
nd we say that the truncation error is of first order in At.

.2 Example: The forward difference for /()
/e can analyze the approximation error in the forward difference

n+1 n

n U —u
U/(tn) ~ [Dju] = At ’
y writing

R" = [Dfu]™ — /' (t,),

1

nd expanding 4™t in a Taylor series around t,,,

1
U(tnir) = ulty) + ' (tn) At + 5u”(zﬁn)At? + O(AF).

he result becomes 1
R= 5u”(tn)At +O(A),

10owing that also the forward difference is of first order.

2.3 Example: The central difference for /()
For the central difference approximation,

UTH_% _ un—%

W' (tn) = [Deu]", [Dy]" = At ;

we write

R" = [Du]™ — v/ (tn),

and expand u(thr%) and u(t,,_1/2) in Taylor series around the point ¢
the derivative is evaluated. We have

1 1 1
u(tny 1) =ulty) + u’(tn)iAt + Eu”(tn)(iAt)Z-i-
l "

1 3 i m 1 4
U () (GO0 + ™ () (S A1)+
1 1
mu“”(tn)(im)5 + O(AtY),
1 1 1
U(ty_1/2) =u(ty) — u'(tn)§At + 5u”(t,L)(§A7f)2—
1 " 1 3 1 "t 1 4
Z ZA il ZALA -
st () (GAN + ™ (1) (5 A1)
1 1
ﬁulu//(tn)(§At>5 4 O(AtG)

Now,

1 1
Wtny1) = ultn_12) = u'(tn) At + ﬂu’”(tn)At?’ + %u'”"(tn)AtS +C

By collecting terms in [Dyu]™ — u(t,) we find the truncation error to b

R — 21—4u”'(tn)At2 oA,

with only even powers of At. Since R ~ At? we say the centered differe:
second order in At.

2.4 Overview of leading-order error terms in finite
ence formulas

Here we list the leading-order terms of the truncation errors associat
several common finite difference formulas for the first and second deriv

un+% _ unfé
[Deu]" = = (ta) + R, (5)
1
R" = ﬂu’”(tn)At2 +O(AY) (6)
un+1 _ un,fl
[.thu]n = T = U/(tn) + Rn7 (7)
1
R" = 6u”’(tn)At2 +O(A) (8)
n n—1
— U —u n
[DFu)" = = u/(ta) + R, ©)
1
R" = _§u”(tn)At + O(AP) (10)
n un+1 _ un "
[D}fu]™ = Ry = o (t,) + R”, (11)
R — %u”(tn)At +O(AR) (12)
M n-+0 un+1 —u" / n—+60
(Do) ? = S = (tnso) + R, (13)
RO — %(1 — 20)u” (ts) AL — %((1 0 — P (ts0) AL + O(AL)
(14)
3u™ — 4yl 42
1327 n _ — / n l
(D3] e W/ (tn) + R, (15)
1
R" = —gu’”(tn)At2 + O(AP) (16)
n un+& 472u" +7un—1 n
[DyDyu]™ = A =" (t,) + R", (17)
R" = %u/m(tn)AtZ 4 O(At4) (18)

It will also be convenient to have the truncation errors for various means or
verages. The weighted arithmetic mean leads to

[Et’o]m'e = 0u" + (1 — 0)u" = u(tnie) + R, (19)

R0 — %u”(tn+9)At20(1 —0)+ O(A. (20)

he standard arithmetic mean follows from this formula when 6 = 1/2. Expressed
t point ¢, we get

1

@) = S) = () + R, (21)
R = G (AP + gu ()AL +O(A). (22)

The geometric mean also has an error O(At?):

[ﬁt,g}n _ un—%un-k% _ (un)Q + Rn,

1 1
R" = =20/ () A + Ju(tn)u” (8) A + O(AE)

The harmonic mean is also second-order accurate:

[ﬂt,h}n — " = - 2 — Rn+%’
Tt 1
w2 w2
1/(tn)2 2, 1, 2
"= — At? + = (tp) At .
Tty S T gw)

2.5 Software for computing truncation errors

We can use sympy to aid calculations with Taylor series. The derivat:
be defined as symbols, say D3f for the 3rd derivative of some functic
truncated Taylor series can then be written as £ + D1f*h + D2fxh**2
following class takes some symbol £ for the function in question and mal
of symbols for the derivatives. The __call__ method computes the s

form of the series truncated at num_terms terms.

import sympy as sp

class TaylorSeries:

"""Class for symbolic Taylor series."""

def __init__(self, f, num_terms=4):
self.f = £
self.N = num_terms
Introduce symbols for the derivatives
self.df = [f]
for i in range(1l, self.N+1):

self.df.append(sp.Symbol (°D%d%s’ % (i, f.name)))

def __call__(self, h):
"""Return the truncated Taylor series at x+h."""
terms = self.f
for i in range(1l, self.N+1):

terms += sp.Rational(l, sp.factorial(i))*self.df[i]*h

return terms

We may, for example, use this class to compute the truncation errc

Forward Euler finite difference formula:

>>> from truncation_errors import TaylorSeries

>>> from sympy import *

>>> u, dt = symbols(’u dt’)

>>> u_Taylor = TaylorSeries(u, 4)

>>> u_Taylor(dt)

Diu*dt + D2u*dt*#2/2 + D3uxdt**3/6 + D4uxdt**4/24 + u

10

»>> FE = (u_Taylor(dt) - u)/dt

>>> FE

Diuxdt + D2uxdt**2/2 + D3uxdt**3/6 + DAuxdt**4/24)/dt
>>> simplify(FE)

Ylu + D2uxdt/2 + D3u*xdt**2/6 + DAuxdt**3/24

he truncation error consists of the terms after the first one (u').

The module file trunc/truncation_errors.py' contains another class Diff0p
ith symbolic expressions for most of the truncation errors listed in the previous
:ction. For example:

>>> from truncation_errors import DiffOp

>>> from sympy import *

>>> u = Symbol(’u’)

>>> diffop = DiffOp(u, independent_variable=’t’)

>>> diffop[’geometric_mean’]

-Dluk*2+dt**2/4 - DilukD3uxdt**4/48 + D2uk*2xdt**4/64 + ...

>>> diffop[’Dtm’]

Diu + D2u*dt/2 + D3u*dt**2/6 + D4uxdt**3/24

>>> >>> diffop.operator_names()

[’geometric_mean’, ’harmonic_mean’, ’Dtm’, ’D2t’, ’DtDt’,
’weighted_arithmetic_mean’, ’Dtp’, ’Dt’]

he indexing of diffop applies names that correspond to the operators: Dtp for
)", Dtm for D; , Dt for Dy, D2t for Dy, DtDt for D;D;.

, Truncation errors in exponential decay ODE

/e shall now compute the truncation error of a finite difference scheme for a
ifferential equation. Our first problem involves the following the linear ODE
10deling exponential decay,

() = —au(t) . (27)

.1 Truncation error of the Forward Euler scheme

/e begin with the Forward Euler scheme for discretizing (27):

[Dfu = —au]™. (28)

he idea behind the truncation error computation is to insert the exact solution
e of the differential equation problem (27) in the discrete equations (28) and
nd the residual that arises because ue does not solve the discrete equations.
1stead, wue solves the discrete equations with a residual R™:

[D ue + aue = R]™. (29)
rom (11)-(12) it follows that

(D} ue]™ = wl(t) + %ug(tn)At +Lo(AR),

lhttp://tinyurl.com/jvzzcfn/trunc/truncation_errors.py

11

which inserted in (29) results in
1 ,
ub(tn) + 5u’e’(tn)At + O(At?) + aue(t,) = R™.

Now, u}(t,) + aug = 0 since ue solves the differential equation. The re
terms constitute the residual:

R = %ug(tn)At +O(AR) .

This is the truncation error R™ of the Forward Euler scheme.

Because R™ is proportional to At, we say that the Forward Euler
is of first order in At. However, the truncation error is just one error r
and it is not equal to the true error vy — u™. For this simple model j
we can compute a range of different error measures for the Forwar
scheme, including the true error u? — «™, and all of them have dominatir
proportional to At.

3.2 Truncation error of the Crank-Nicolson scheme
For the Crank-Nicolson scheme,

[Diu = —au]""'%,

we compute the truncation error by inserting the exact solution of the O
adding a residual R,

[Diue + atis’ = R]"+% .
The term [Dyue]™"2 is easily computed from (5)-(6) by replacing n wit
in the formula,
1 1
[Dee] ™% = (b) + 57 (4 1)1 + O(At*)
The arithmetic mean is related to u(t, , 1) by (21)-(22) so

; 1
lati6' "2 = ult, 1) + gu”(tn)At2 ++O(AY).

Inserting these expressions in (32) and observing that ug(t, 1) + aue
because ue(t) solves the ODE v/ (t) = —au(t) at any point ¢, we find th

51 e
Here, the truncation error is of second order because the leading term
proportional to At2.
At this point it is wise to redo some of the computations above to e
the truncation error of the Backward Euler scheme, see Exercise 4.

Rt — (() + éu"(tn)> A2 + O(AH)

12

.3 Truncation error of the 6-rule

/e may also compute the truncation error of the -rule,
[Dyu = —au?]"+?.

lur computational task is to find R"t? in

[Dyue + aug”? = R]" 0.

rom (13)-(14) and (19)-(20) we get expressions for the terms with ue. Using
12t ul(tnro) + ate(tnrg) = 0, we end up with

R0 :(% — 0)ug (tny0) AL + %9(1 — O)ul (tnso) AL+
1 2 " 2 3
1 o
5 (6% =6 3)u (taso) A + O(AF) (34)

or § = 1/2 the first-order term vanishes and the scheme is of second order,
hile for 6 # 1/2 we only have a first-order scheme.

.4 Using symbolic software

he previously mentioned truncation_error module can be used to automate
1e Taylor series expansions and the process of collecting terms. Here is an
xample on possible use:

irom truncation_error import DiffOp
irom sympy import *

lef decay():
u, a = symbols(’u a’)
diffop = DiffOp(u, independent_variable=’t’,
num_terms_Taylor_series=3)
diffop.D(1) # symbol for du/dt
Diu + a*u # define ODE

Diu
ODE

Define schemes

FE = diffop[’Dtp’] + a*u
CN = diffop[’Dt’] + axu
BE = diffop[’Dtm’] + a*u

theta = diffop[’barDt’] + axdiffop[’weighted_arithmetic_mean’]
theta = sm.simplify(sm.expand(theta))
Residuals (truncation errors)
R = {"FE’: FE-0DE, ’BE’: BE-ODE, ’CN’: CN-ODE,
’theta’: theta-O0DE}
return R

he returned dictionary becomes

decay: {
’BE’: D2uxdt/2 + D3u*xdt**2/6,
’FE’: -D2u*dt/2 + D3u*dt**2/6,
’CN’: D3uxdt**2/24,

13

’theta’: -D2u*axdt**2xtheta**2/2 + D2u*axdt**2*xtheta/2 -
D2uxdt*theta + D2u*xdt/2 + D3uxa*dt**3*theta**3/3 -
D3u*axdt**3*xtheta**2/2 + D3u*axdt**3*theta/6 +

) D3uxdt**2*theta**2/2 - D3uxdt**2*theta/2 + D3u*xdt*A

The results are in correspondence with our hand-derived expressions.

3.5 Empirical verification of the truncation error

The task of this section is to demonstrate how we can compute the trv
error R numerically. For example, the truncation error of the Forwar
scheme applied to the decay ODE v = —ua is

R"™ = [D} ue + aue]™ .

If we happen to know the exact solution wue(t), we can easily evaluate i
the above formula.

To estimate how R varies with the discretization parameter At, wl
been our focus in the previous mathematical derivations, we first m
assumption that R = C'At" for appropriate constants C' and r and small
At. The rate r can be estimated from a series of experiments where At i
Suppose we have m experiments (At;, R;), i =0,...,m — 1. For two con
experiments (At;_1, R;_1) and (At;, R;), a corresponding r;_1 can be es
by

_ IIl(Ri_l/Ri)
o ln(Ati_l/Ati)’

fori=1,...,m — 1. Note that the truncation error R; varies through tl
0 (36) is to be applied pointwise. A complicating issue is that R; and R,
to different meshes. Pointwise comparisons of the truncation error at a
point in all meshes therefore requires any computed R to be restricte
coarsest mesh and that all finer meshes contain all the points in the
mesh. Suppose we have Ny intervals in the coarsest mesh. Inserting a suy
n in (36), where n counts mesh points in the coarsest mesh, n =0, ...,
to the formula

Ti—1

il ln(Atl;l/Ati) '
Experiments are most conveniently defined by Ny and a number of refis
m. Suppose each mesh have twice as many cells N; as the previous one

N; =2'Ny, At; =TN;*,

where [0, T is the total time interval for the computations. Suppose the cc
R; values on the mesh with N; intervals are stored in an array R[i] (R
list of arrays, one for each mesh). Restricting this R; function to the .
mesh means extracting every N; /Ny point and is done as follows:

14

stride = N[i]/N_O
t[i] = R[i][::stridel

he quantity R[i] [n] now corresponds to R.
In addition to estimating r for the pointwise values of R = CAt", we may
l[so consider an integrated quantity on mesh ¢,

N; z T
Rio= (a6 3 (R0 ~ / Ri(t)dt. (38)
n=0 0
he sequence Ry ;, 1 =0,...,m — 1, is also expected to behave as CAt", with

1e same r as for the pointwise quantity R, as At — 0.
The function below computes the R; and R;; quantities, plots them and
»mpares with the theoretically derived truncation error (R_a) if available.

import numpy as np
import scitools.std as plt

lef estimate(truncation_error, T, N_O, m, makeplot=True):
nnn
Compute the truncation error in a problem with one independent
variable, using m meshes, and estimate the convergence
rate of the truncation error.

The user-supplied function truncation_error(dt, N) computes
the truncation error on a uniform mesh with N intervals of
length dt::

R, t, R_a = truncation_error(dt, N)

where R holds the truncation error at points in the array t,
and R_a are the corresponding theoretical truncation error
values (None if not available).

The truncation_error function is run on a series of meshes
with 2*%*i*N_O intervals, i=0,1,...,m-1.

The values of R and R_a are restricted to the coarsest mesh.
and based on these data, the convergence rate of R (pointwise)
and time-integrated R can be estimated empirically.

N = [2**i*N_0 for i in range(m)]

R_I = np.zeros(m) # time-integrated R values on various meshes
R = [None] *m # time series of R restricted to coarsest mesh
R_a = [None]*m # time series of R_a restricted to coarsest mesh

dt = np.zeros(m)
legends_R = []; legends_R_a = [] # all legends of curves

for i in range(m):
dt[i] = T/float(N[il)
R[i], t, R_a[i] = truncation_error(dt[i], N[i])
R_I[i] = np.sqrt(dt[i]*np.sum(R[i]**2))

if i ==
t_coarse = t # the coarsest mesh

stride N[i]l/N_O
i] [::stridel # restrict to coarsest mesh
R_a[il [::stride]

if makeplot:
plt.figure(1)
plt.plot(t_coarse, R[i], log=’y’)
legends_R.append (’N=%d’ % N[i])
plt.hold(’on’)

plt.figure(2)

plt.plot(t_coarse, R_al[i]l - R[i], log=’y’)
plt.hold(’on’)

legends_R_a.append (’N=%d’ % N[i])

if makeplot:
plt.figure(1)
plt.xlabel(’time’)
plt.ylabel(’pointwise truncation error’)
plt.legend(legends_R)
plt.savefig(’R_series.png’)
plt.savefig(’R_series.pdf’)
plt.figure(2)
plt.xlabel(’time’)
plt.ylabel(’pointwise error in estimated truncation error
plt.legend(legends_R_a)
plt.savefig(’R_error.png’)
plt.savefig(’R_error.pdf’)

Convergence rates

r_R_I = convergence_rates(dt, R_I)

print ’R integrated in time; r:’,

print ’> °.join([’%.1f’ % r for r in r_R_I])

R = np.array(R) # two-dim. numpy array

r_R = [convergence_rates(dt, R[:,n])[-1]
for n in range(len(t_coarse))]

The first makeplot block demonstrates how to build up two figures in
using plt.figure(i) to create and switch to figure number i. Figure 1
start at 1. A logarithmic scale is used on the y axis since we expect
as a function of time (or mesh points) is exponential. The reason is 1
theoretical estimate (30) contains u/, which for the present model goes 1
Taking the logarithm makes a straight line.

The code follows closely the previously stated mathematical formulas,
statements for computing the convergence rates might deserve an expl
The generic help function convergence_rate(h, E) computes and retu
i=1,...,m—1from (37), given At; in h and R} in E:

def convergence_rates(h, E):
from math import log
r = [log(E[i]/E[i-1])/log(n[i]l/h[i-1])
for i in range(1l, len(h))]
return r

Calling r_R_I = convergence_rates(dt, R_I) computes the seqt
rates rg, 71, ..., "m_2 for the model R; ~ At", while the statements

16

? = np.array(R) # two-dim. numpy array
:_R = [convergence_rates(dt, R[:,n]) [-1]
for n in range(len(t_coarse))]

»mpute the final rate r,,_o for R™ ~ At" at each mesh point ¢, in the coarsest
1esh. This latter computation deserves more explanation. Since R[i] [n] holds
1e estimated truncation error R} on mesh ¢, at point ¢,, in the coarsest mesh,
[:,n] picks out the sequence R} for i =0,...,m — 1. The convergence_rate
inction computes the rates at ¢,,, and by indexing [-1] on the returned array
'om convergence_rate, we pick the rate r,,_2, which we believe is the best
stimation since it is based on the two finest meshes.

The estimate function is available in a module trunc_empir.py?. Let us
pply this function to estimate the truncation error of the Forward Euler scheme.
/e need a function decay_FE(dt, N) that can compute (35) at the points in a
1esh with time step dt and N intervals:

import numpy as np
import trunc_empir

lef decay_FE(dt, N):

= float(dt)

np.linspace(0, N*dt, N+1)

= I*np.exp(-a*t) # exact solution, I and a are global
u_e # naming convention when writing up the scheme

dt
t
u_
u
R = np.zeros(N)

nmnon

for n in range(0, N):
R[n] = (uln+1] - uln])/dt + a*uln]

Theoretical expression for the trunction error
R_a = 0.5%I*(-a)#**2*np.exp(-axt)*dt

return R, t[:-1], R_a[:-1]

if __name__ == ’__main__’:
I =1; a=2 # global variables needed in decay_FE

trunc_empir.estimate(decay_FE, T=2.5, N_0=6, m=4, makeplot=True)

The estimated rates for the integrated truncation error Ry become 1.1, 1.0,
nd 1.0 for this sequence of four meshes. All the rates for R™, computed as
_R, are also very close to 1 at all mesh points. The agreement between the
1eoretical formula (30) and the computed quantity (ref(35)) is very good, as
lustrated in Figures 1 and 2. The program trunc_decay_FE.py® was used to
erform the simulations and it can easily be modified to test other schemes (see
lso Exericse 5).

.6 Increasing the accuracy by adding correction terms

‘ow we ask the question: can we add terms in the differential equation that
an help increase the order of the truncation error? To be precise, let us revisit

2http://tinyurl.com/jvzzcfn/trunc/trunc_empir.py
3http://tinyurl.com/jvzzcfn/trunc/trunc_decay_FE.py

17

pointwise truncation error

0.0 0.5 1.0 1.5 2.0 2.5
time

Figure 1: Estimated truncation error at mesh points for different me

the Forward Euler scheme for v/ = —au, insert the exact solution ue, i1
residual R, but also include new terms C:

[D} ue + aue = C + R]™.

Inserting the Taylor expansions for [D; ue]™ and keeping terms up to 3:
in At gives the equation

1 7

1 1
5l (tn)At — gu’e”(tn)At2 + —ul (t,) AL + O(At*) = C™ + R"

24 ¢
Can we find C™ such that R" is O(At?)? Yes, by setting

1
c" = 5ug(tn)At,

we manage to cancel the first-order term and
1
= 6u’e”(tn)At2 +O(At?).

The correction term C™ introduces %Atu” in the discrete equati
we have to get rid of the derivative u”. One idea is to approximate
second-order accurate finite difference formula, u” ~ (u"+! — 2u™ + 4™
but this introduces an additional time level with «”~!. Another approz
rewrite u” in terms of u’ or u using the ODE:

RTL

18

10°

(=
o
[

=
(=}
[}

=
(=}
@

h
¥

pointwise error in estimated truncation error
=
oy
.

0.0 0.5 1.0 1.5 2.0 2.5
time

igure 2: Difference between theoretical and estimated truncation error at mesh
oints for different meshes.

v =—-au = U =—au=—a(-au)=du.

his means that we can simply set C" = %aQAtu". We can then either solve
1e discrete equation

1
[Dfu = —au + §a2Atu]", (40)

¢ we can equivalently discretize the perturbed ODE

1
v =—au, a=a(l— EaAt), (41)

y a Forward Euler method. That is, we replace the original coefficient a by the
erturbed coefficient a. Observe that a — a as At — 0.
The Forward Euler method applied to (41) results in

[Dfu=—a(l - %aAt)u]” .

/e can control our computations and verify that the truncation error of the
‘heme above is indeed O(At?).

Another way of revealing the fact that the perturbed ODE leads to a more
ccurate solution is to look at the amplification factor. Our scheme can be
ritten as

19

"t = Ay, A=1-aAt= 1—p+%p2, p = aAt,

The amplification factor A as a function of p = aAt is seen to be the fir
terms of the Taylor series for the exact amplification factor e . The]
Euler scheme for u = —au gives only the first two terms 1 — p of the Tayl
for e7P. That is, using a increases the order of the accuracy in the ampl
factor.

Instead of replacing v’ by a?u, we use the relation v’ = —au’ an
term f%aAtu’ in the ODE:

1 1
u = —au — iaAtu' = (1 + 2aAt> u = —au.

Using a Forward Euler method results in

1 n+l _ . n
(1 + QCLAt) % = _aun7

which after some algebra can be written as

1— LaAt
= f“

un+1 n

This is the same formula as the one arising from a Crank-Nicolson scheme
to v = —au! It now recommended to do Exercise 6 and repeat the abo
to see what kind of correction term is needed in the Backward Euler sc
make it second order.

The Crank-Nicolson scheme is a bit more challenging to analyze,
ideas and techniques are the same. The discrete equation reads

[Dyu = —au]™*2,

and the truncation error is defined through

[Dyue + atig’ = C + R]"t2,

where we have added a correction term. We need to Taylor expand k

discrete derivative and the arithmetic mean with aid of (5)-(6) and (%
respectively. The result is

1 "

7t (Lo)AL + O(ALY) + gug’(1sn+%)At2 +O(AtY) =C™3 + R

8

The goal now is to make C"*2 cancel the At? terms:

1
oty — e (b)AL + %ug(tn)AtZ .

20

sing v/ = —au, we have that v = a?u, and we find that v = —a3u. We can
1erefore solve the perturbed ODE problem

1

12
y the Crank-Nicolson scheme and obtain a method that is of fourth order
1 At. Exercise 7 encourages you to implement these correction terms and
alculate empirical convergence rates to verify that higher-order accuracy is
ideed obtained in real computations.

a’At?),

v =—au, a=a(l

.7 Extension to variable coefficients

et us address the decay ODE with variable coefficients,

u'(t) = —a(t)u(t) +b(t),

iscretized by the Forward Euler scheme,

[Dfu = —au + b)™. (42)
he truncation error R is as always found by inserting the exact solution ue(t)
1 the discrete scheme:

[D}f ue + aue — b= R]"™. (43)
sing (11)-(12),

() — %ug(tn)At +O(A) + alty)ue(tn) — b(tn) = R™ .

ecause of the ODE,

ué(tn) + a(tn)ue(tn) — b(tn) =0,

) we are left with the result

! 1
R" = —Eug(tn)At + O(At?). (44)
/e see that the variable coefficients do not pose any additional difficulties in this
ise. Exercise 8 takes the analysis above one step further to the Crank-Nicolson
‘heme.

.8 Exact solutions of the finite difference equations

‘aving a mathematical expression for the numerical solution is very valuable in
rogram verification since we then know the exact numbers that the program
1uld produce. Looking at the various formulas for the truncation errors in
1)-(6) and (25)-(26) in Section 2.4, we see that all but two of the R expressions
ontains a second or higher order derivative of ue. The exceptions are the

21

geometric and harmonic means where the truncation error involves ul, a
ue in case of the harmonic mean. So, apart from these two means, cho:
to be a linear function of ¢, ue = ct + d for constants ¢ and d, will m
truncation error vanish since u = 0. Consqeuently, the truncation er
finite difference scheme will be zero since the various approximations u
all be exact. This means that the linear solution is an exact solutios
discrete equations.

In a particular differential equation problem, the reasoning above
used to determine if we expect a linear ue to fulfill the discrete equati
actually prove that this is true, we can either compute the truncation er
see that it vanishes, or we can simply insert ue(t) = ct + d in the sche
see that it fulfills the equations. The latter method is usually the sim
will often be necessary to add some source term to the ODE in order to
linear solution.

Many ODEs are discretized by centered differences. From Sectior
see that all the centered difference formulas have truncation errors ir
uZ’ or higher-order derivatives. A quadratic solution, e.g., uq(t) = 2 -
will then make the truncation errors vanish. This observation can
to test if a quadratic solution will fulfill the discrete equations. Note
quadratic solution will not obey the equations for a Crank-Nicolson sct
u' = —au + b because the approximation applies an arithmetic mean
involves a truncation error with u/.

3.9 Computing truncation errors in nonlinear prob]

The general nonlinear ODE

u' = f(u7 t);

can be solved by a Crank-Nicolson scheme

[Dtu’ = ?t}n-k% .

The truncation error is as always defined as the residual arising when i
the exact solution ue in the scheme:

(D, — F' = R™3 .

Using (21)-(22) for ?t results in

Ztintl 1 n n
[z = §(f(ue»tn)+f(ue+17tn+1))
n+i 1
:f(ue+2,tn+%)+§ug(tn+%)At2+O(At4).

With (5)-(6) the discrete equations (47) lead to

22

1 1 1
’e(tn+%)+ﬂugl(tn+%)Atz—f(uz+27tn+%)_§u”(tn+%)At2+O(At4) = Rn+% .

. n+3 .
ince ug(tm_%) — flue 2, tn_,_%) = 0, the truncation error becomes

1 1
Rtz — (ﬂug'(tn+%) — gu"(tn+%))At2 .

he computational techniques worked well even for this nonlinear ODE.

Truncation errors in vibration ODEs

.1 Linear model without damping

he next example on computing the truncation error involves the following ODE
v vibration problems:

u”(t) + wu(t) = 0. (48)

ere, w is a given constant.

'he truncation error of a centered finite difference scheme. Using a
;andard, second-ordered, central difference for the second-order derivative time,
e have the scheme

[D:Dyu + w?u = 0]™. (49)

Inserting the exact solution ue in this equation and adding a residual R so
1at ue can fulfill the equation results in

[D:Dsue + w?ue = R)™. (50)

o calculate the truncation error R™, we use (17)-(18), i.e.,

1
[DtDtUe]n = ’U,g(tn) + Eug"(tn)At2,

nd the fact that u(t) + w?ue(t) = 0. The result is

R = %ug”(tn)AtQ +O(AY. (51)

23

The truncation error of approximating v/(0). The initial condit
(48) are u(0) = I and u/(0) = V. The latter involves a finite difference
mation. The standard choice

[Dgtu = V]O,

where u ™! is eliminated with the aid of the discretized ODE for n = 0,
a centered difference with an O(At?) truncation error given by (7)-(:
simpler choice

[Dj_u = V]Ov

is based on a forward difference with a truncation error O(At). A
question is if this initial error will impact the order of the scheme throug]
simulation. Exercise 11 asks you to quickly perform an experiment to inv
this question.

Truncation error of the equation for the first step. We have shc
the truncation error of the difference used to approximate the initial cc
u'(0) = 0 is O(At?), but can also investigate the difference equation -
the first step. In a truncation error setting, the right way to view this €
is not to use the initial condition [Dyu = V]° to express u=! = u! -
in order to eliminate u~! from the discretized differential equation,

other way around: the fundamental equation is the discretized initial c
[Daru = V]° and we use the discretized ODE [D;D; + w?u = 0]° to el
u~! in the disretized initial condition. From [DyD; + w?u = 0]° we hav

ul =200 —ul — AtPw?i®,
which inserted in [Dosu = V1]° gives
ul —uf
At

The first term can be recognized as a forward difference such that the ¢
can be written in operator notation as

1
+ §w2Atu0 =V.

1
[Dffu + isztu =V,
The truncation error is defined as
1
[D; ue + inAtue -V =R].
Using (11)-(12) with one more term in the Taylor series, we get that
1 1 1
ug(0) + Eug(O)At + éug’(O)At2 + O(A) + §w2Atue(0) -V=r

Now, u(0) =V and u(0) = —w?ue(0) so we get

24

1
R" = cul (0)AF + O(AF).

There is another way of analyzing the discrete initial condition, because
iminating v~! via the discretized ODE can be expressed as

[Daosu + At(DyDyu — w?u) = V]°. (53)

/riting out (53) shows that the equation is equivalent to (52). The truncation
-ror is defined by

[Daostie + At(Dy;Dyue — w?ue) =V + R]°.

eplacing the difference via (7)-(8) and (17)-(18), as well as using u,(0) =V
nd ul(0) = —w?ue(0), gives

R" = é u" (0) At + O(AE?).

‘'omputing correction terms. The idea of using correction terms to increase
1e order of R™ can be applied as described in Section 3.6. We look at

[DyDsue + w?ue = C + R]",

nd observe that C™ must be chosen to cancel the At? term in R™. That is,

1
Cn — 1 ////(tn)AtQ

o get rid of the 4th-order derivative we can use the differential equation:

" = —w*, which implies 4/ = w*u. Adding the correction term to the ODE

sults in

u” 4+ w?(1 - 2At2)u =0. (54)

olving this equation by the standard scheme

[D;Dyu + w?(1 — —w?At*)u = 0],

12

ill result in a scheme with trunction error O(At?).

We can use another set of arguments to justify that (54) leads to a higher-order
1ethod. Mathematical analysis of the scheme (49) reveals that the numerical
equency @ is (approximately as At — 0)

w(l +5; wrAt?).

me can therefore attempt to replace w in the ODE by a slightly smaller w since
1e numerics will make it larger:

25

[+ (w1 — —w?At?))?u=0.

24
Expanding the squared term and omitting the higher-order term A

exactly the ODE (54). Experiments show that «™ is computed to 4th
At.

4.2 Model with damping and nonlinearity
The model (48) can be extended to include damping fu’, a nonlinear r
(spring) force s(u), and some known excitation force F(t):

mu” + Bu’ + s(u) = F(t).

The coefficient m usually represents the mass of the system. This gc
equation can by discretized by centered differences:

[mD¢Diu + BDou + s(u) = F]™.
The exact solution ue fulfills the discrete equations with a residual terr

[mD;Dyue + SDorue + s(ue) = F + R]™
Using (17)-(18) and (7)-(8) we get

[mDyDyue + BDaue]™ = mup (t,) + Bug(tn)+

(e + fue)) A + o(ar

Combining this with the previous equation, we can collect the terms
muy (tn) + Bub(tn) + wue(ts) + s(ue(ty)) — F™,

and set this sum to zero because ue solves the differential equation. We
with the truncation error

B
U

R" = (m u////(tn) + 6

o, Vitn)) A+ 0(ar)

so the scheme is of second order.
According to (58), we can add correction terms

n m 6 /// 2
0 = (Tt aa) + Fut'(t)) A2

to the right-hand side of the ODE to obtain a fourth-order scheme. E
expressing u”” and u"’ in terms of lower-order derivatives is now harder
the differential equation is more complicated:

26

"

(F' — pu” — &' (u)u'),

1
T m
u//// — %(F” _ /Bu”/ _ S//(u)(u/)2 _ Sl(u)u”)7

1 1
_ %(F// _ 6E(F/ _ 61,&// _ s/(u)u/) _ S//(u)(u/)2 _ S/(u)u//) .

; is not impossible to discretize the resulting modified ODE, but it is up to
ebate whether correction terms are feasible and the way to go. Computing with
smaller At is usually always possible in these problems to achieve the desired
scuracy.

.3 Extension to quadratic damping
1stead of the linear damping term Bu’ in (55) we now consider quadratic
amping S|u’|u’:
mu” + Bl |u” + s(u) = F(t). (59)
centered difference for u’ gives rise to a nonlinearity, which can be linearized
sing a geometric mean: [Ju/|v/]" ~ |[u/]"2|[w/]"*2. The resulting scheme
ecomes
[mD, D)™ + B|[Dyu)™ 2 |[Dyu]™ 2 + s(u™) = F™. (60)

he truncation error is defined through

[mDy Dyue]” + B|[Dytte]" ™ ?|[Dyue]™ 2 + s(ul?) — F" = R™. (61)

We start with expressing the truncation error of the geometric mean. Ac-
rrding to (23)-(24),

1 1
Dyue]"” *|[Dyuel™* = [| Dyue| Deue]" = ' () A%+ Ju(tnu” (1) A +O(AL).

‘sing (5)-(6) for the Dyu, factors results in

1 1
| Dytie| Dyuie)™ = |uly + ﬁug’(tn)At2 + O(AHY)|(ul, + ﬁug/(tn)At2 + O(AtY)

/e can remove the absolute value since it essentially gives a factor 1 or -1 only.
‘alculating the product, we have the leading-order terms

1

[Dyue Dyue)™ = (uh(tn))? + Eue(tn)u'e”(tn)At2 +O(AY).

With

27

mID,Dye]” = mug (t) + T30t () A + O(ALY),

and using the differential equation on the form mu” + B(u’)? + s(u) -
end up with

R" = (%ug”(tn) + %ue(tn)ug’(tn))At2 +0O(AtY).
This result demonstrates that we have second-order accuracy also with q
damping. The key elements that lead to the second-order accuracy is 1

difference approximations are O(At2?) and the geometric mean approxin
also of O(At?).

4.4 The general model formulated as first-order OL

The second-order model (59) can be formulated as a first-order system,

!/

u =,
o = % (F(t) — Blofv — s(u)) .

The system (62)-(62) can be solved either by a forward-backward sche
centered scheme on a staggered mesh.

The forward-backward scheme. The discretization is based on the
stepping (62) forward in time and then using a backward difference in (¢
the recently computed (and therefore known) w:

[D}fu = v]™,
(Do = ()~ flofo — s(u))]"*".

The term |v|v gives rise to a nonlinearity [v"*!|v"*!, which can be lines
|om vt

[D?—’LL = v]n’
[D; o] = %(F(tnﬂ) — Bl o™ — s(u).

Each ODE will have a truncation error when inserting the exact solu
and ve in (64)-(65):

[D:'_Ue = Ve + Ru}nv

(D70l = - (Pltn1) = Bloe(tn) ve(tns1) — s(ue(ta) + R

28

pplication of (11)-(12) and (9)-(10) in (68) and (69), respectively, gives

ulb(ty) + %ug(tn)At + O(At?) = vo(tn) + R?, (70)
Ultni1) — 508 (tns)) A+ O(AR) = L (Fltnin) — Blue(ta)lveltnsn)+
S(ute(tsn)) + B2 (71)

ince ug, = ve, (70) gives

1
R = §u’c’(tn)At +O(AP).
1 (71) we can collect the terms that constitute the ODE, but the damping term
as the wrong form. Let us drop the absolute value in the damping term for

mplicity. Adding a substracting the right form v™+'v"*! helps:

Ve(tnt1) — %(F(tnﬂ) — Bve(tng1)ve(tny1) + s(ue(tny1))+
(Bue(tn)ve(tnr1) — Bve(tnr1)ve(tnt1))),

hich reduces to

i
et 1 elt) = el 1)) = 2wl (D7 0 A

_ %Ue(tm(vg(tnﬂ)m + —%Ug'(thrl)At"'O(At?’)) .
/e end with R? and R™"! as O(At), simply because all the building blocks in
1e schemes (the forward and backward differences and the linearization trick)
re only first-order accurate. However, this analysis is misleading: the building
locks play together in a way that makes the scheme second-order accurate. This
shown by considering an alternative, yet equivalent, formulation of the above
‘heme.

. centered scheme on a staggered mesh. We now introduce a staggered
iesh where we seek u at mesh points ¢, and v at points ¢, 1 in between the u
oints. The staggered mesh makes it easy to formulate centered differences in
1e system (62)-(62):

1

[Dyu = v]"" 2, (72)
[Dew = —(F(t) ~ Blolo — s(u))]". (73)

. . _1 1
he term |[v"|v™ causes trouble since v™ is not computed, only v~ 2 and v""z.
‘sing geometric mean, we can express [v"|v™ in terms of known quantities:

"v™ & [v" 2 [p" 2. We then have

29

[Dtu]n_% = Un_%7
1
(D)™ = = (F(t,) — Blo"~ 2 [o"* % — s(u™)).
m

The truncation error in each equation fulfills

[Dtuc]n7% = Uc(tn,%) + R27§7
1
[Deve]” = — (F(tn) = Blve(tn_y)lve(tniy) = s(u™)) + Ry

The truncation error of the centered differences is given by (5)-(6),
geometric mean approximation analysis can be taken from (23)-(24).
results lead to

1 n—=x
Ue(tn—y) + 5ue (bae)AL + O(ALY) = ve(t,,_y) + Ru” 2,

and
Ve(tn) = %(F(tn) = Blve(tn)|ve(tn) + O(AL?) = s(u™)) + Ry .

The ODEs fulfilled by ue and ve are evident in these equations, and we
second-order accuracy for the truncation error in both equations:

RI7F — O(Af?), R"=O(Af).

Comparing (74)-(75) with (66)-(67), we can hopefully realize the
schemes are equivalent (which becomes clear when we implement bot
obvious advantage with the staggered mesh approach is that we can all
use second-order accurate building blocks and in this way concince o
that the resulting scheme has an error of O(A#?).

5 Truncation errors in wave equations

5.1 Linear wave equation in 1D

The standard, linear wave equation in 1D for a function u(z,t) reads

Pu 0%

W:C@"’_Jc(mﬂf)a $E(0,L),tE(O,T],
where ¢ is the constant wave velocity of the physical medium [0, L]. The ¢
can also be more compactly written as

Ut = CQsz +f7 T e (07L)7 te (07T}a

Centered, second-order finite differences are a natural choice for discreti
derivatives, leading to

30

[D¢Dyu = 2Dy Dyu + f]1 (78)

Inserting the exact solution ue(z,t) in (78) makes this function fulfill the
juation if we add the term R:

[DyDyue = 2Dy Dyue + f + R)? (79)

Our purpose is to calculate the truncation error R. From (17)-(18) we have
1at

1
ﬁue,tttt($i7 tn)At2 + O(At4),

hen we use a notation taking into account that wue is a function of two variables
nd that derivatives must be partial derivatives. The notation ue; means
2 2

Ue /Ot

The same formula may also be applied to the x-derivative term:

[DeDyueli” = et (i tn) +

1
u‘e xmxm(mza n)Am + O(Ax)

[DyDyte]i = te za (i, tn) + 12

quation (81) now becomes

1
Eue,rrrr (xia tn)Ax2 + f(xlv tn)+

O(At*, Az*) + R?.

1
Ue, 1t T Eue et (T, n)At2 = Cte,zz +c2

ecause U fulfills the partial differential equation (PDE) (77), the first, third,

nd fifth terms cancel out, and we are left with

1 1
R:L 12“8 tttt('rla t’rL)At2 2 12ue,zzzz (xi7 tn)AxQ + O(At47 A$4), (80)

1owing that the scheme (78) is of second order in the time and space mesh

acing.

.2 Finding correction terms

'an we add correction terms to the PDE and increase the order of R} in (80)7
he starting point is

[DiDsue = *DyDyuc + f +C + R]? (81)

rom the previous analysis we simply get (80) again, but now with C:

1 1
R} +C = T3, vt (T4, 1) AL — C2Eue,wwww (25, tn) Az + O(At*, Az?) . (82)

31

The idea is to let C* cancel the At? and Az? terms to make R? = O(Au

i = ﬁue,tttt(wi,tn)At2 - CQE

Essentially, it means that we add a new term

Ue,zxzrx (J?i, tn)Am2 .

1
C= T (uttttAt —C uzzzzAx)

to the right-hand side of the PDE. We must either discretize these 41
derivatives directly or rewrite them in terms of lower-order derivatives v
aid of the PDE. The latter approach is more feasible. From the PDE
that

02,0

g 27
ot? Ox?

SO

2 -2
Utttt = C Ugxtt, Ugzpzx = C Uttza -

Assuming u is smooth enough that u,,1t = Ustes, these relations lead t
1
C = E((CQAT‘:Q — A$2)uxx)tt .
A natural discretization is
1 ,
C = 55l 2At? — Ax?)[D,D,D;Dyu?

Writing out [DzDthDtu]? as [Dy Dy (D Dyu)|? gives

n+1 n n—1
L (ugyy = 2uiyy +uiy _o
At? Az?
_ 1 1
U;L-‘rl _ 2U7’ + u;L 1 N u;l-i- _ 2“1 L + uﬂ
Az? Az?
Now the unknown values u?jll, u?“ and u} 11 are coupled, and we mu

a tridiagonal system to find them. This is in principle straightforwarc
results in an implicit finite difference schemes, while we had a convenient
scheme without the correction terms.

5.3 Extension to variable coefficients

Now we address the variable coefficient version of the linear 1D wave e

Pu 0 ou
92 " o (“w)%) :

or written more compactly as

32

he discrete counterpart to this equation, using arithmetic mean for A\ and
antered differences, reads
[D;Dyu = DX Dyu)? . (84)

he truncation error is the residual R in the equation

[D;Dyue = DX’ Dyt + R]7 (85)
he difficulty in the present is how to compute the truncation error of the term
DA Dyl

We start by writing out the outer operator:
(Du3 Dyue]l = —— (" D]
x xWel; — A.’L‘ x We
7ith the aid of (5)-(6) and (21)-(22) we have

= WDzue]?,%) : (86)

n
i1
it+3

[Datiel?, y = te(wey g) + %ue,m(x%,)AL + O(Ab),
iy = Awigy) + é)\”(azi+%)Agg2 +O(Ah),
N Douel?yy = (M s) + é)\”(a:H%)Am? +O(ATY) %
(e,a(Tiy1,tn) + Q%Ue,zzz(xiJr%,tn)sz + O(Azt))
= A e (T)+ AT) 5w (i 4) A+
e (E14 g N (10 A + O(A)
= Dteu]l) + Gl Ad? + O(Ac),

here we have introduced the short form

1 1
:,‘+% = (ﬂue@m(xﬂé,tn))\((xH%) + UQ’I(xH%’tn)g)\”(xHé))Aﬁ .

imilarly, we find that
N Dyuel™ 1 = Mue]? 1 + G 1 Ax® + O(Az?).

1serting these expressions in the outer operator (86) results in

33

<~ 1 ~T ~T
(DA Dyueli = Az(P\ DIUQ];LJr% -[A DIUGHZ%)
1 n n n n
= E([}\ue’wh_"_% + Gi+%A‘r2 — [)\Ue7x]i_% — Gi_%Al‘Q +

= [Doducg]! + [DoGI} Az® + O(Ax?).

The reason for O(Az*) in the remainder is that there are coefficients
of this term, say HAz*, and the subtraction and division by Az re
[D,H|*Ax*.

We can now use (5)-(6) to express the D, operator in [DyAue,
derivative and a truncation error:

0 1
[Dyue)7 = %)\(xi)ue@(xi,tn) + ﬂ(/\ue,z)mz (25, tn) Az + O(A

Expressions like [D,G]? Az? can be treated in an identical way,

1
[D.G]? Az? = Gy (x4, tn)Ax? + ﬂsz(:ci,tn)Ax‘l +O(Az?).

There will be a number of terms with the Az? factor. We lump th
into O(Az?). The result of the truncation error analysis of the spatial d¢
is therefore summarized as

[DIXszue]? = %A(mi)ue@(xi, tn) + O(Az?).

After having treated the [D;Dyue|? term as well, we achieve

1
R;ﬂ = O(AIQ) + Eu&tttt(x,—, tn)At2 .

The main conclusion is that the scheme is of second-order in time an
also in this variable coefficient case. The key ingredients for second o
the centered differences and the arithmetic mean for \: all those buildin
feature second-order accuracy.

5.4 1D wave equation on a staggered mesh

5.5 Linear wave equation in 2D /3D
The two-dimensional extension of (76) takes the form
Pu (82u 0%u

e @+87y2>+f(%yat)> (z,y) € (0,L) x (0, H), t € (0,

where now ¢(z,y) is the constant wave velocity of the physical medium
[0, H]. In the compact notation, the PDE (87) can be written

34

Ut = 02(ux$ + uyy) + f(x,y,t), (m,y) € (07L) X (07 H)’ te (O’T]v (88)

1 2D, while the 3D version reads

Ut = CQ(’Usz + uyy + uzz) + f(zv Y, z, t)v (89)

v (z,y,2) € (0,L) x (0,H) x (0,B) and t € (0,T].
Approximating the second-order derivatives by the standard formulas (17)-
8) yields the scheme

[D:Dyu = cZ(DmDmu + DyDyu) + f]f],c . (90)

he truncation error is found from

[D;Dyue = ¢*(DyDyue + DyDyue) + f + R]™. (91)

he calculations from the 1D case can be repeated to the terms in the y and z
irections. Collecting terms that fulfill the PDE, we end up with

1 1
RZJJ‘? = [Eue,ttttAt2 - CQE (ue,IIIIA'z.Q + ue,yyyyAx2 + Ue,zzzzAZ2)}Zj,k+
(92)
O(AtY Azt Ayt Azt .

» Truncation errors in diffusion equations

.1 Linear diffusion equation in 1D

he standard, linear, 1D diffusion equation takes the form

2
% :a%+f(mvt)a T € (07L)a te (OaT]’ (93)
here e > 0 is the constant diffusion coefficient. A more compact form of the
iffusion equation is u; = g, + f.
The spatial derivative in the diffusion equation, au,x, is commonly discretized
3 [DyDyu]?. The time-derivative, however, can be treated by a variety of
iethods.

'he Forward Euler scheme in time. Let us start with the simple Forward
uler scheme:

[Dfu = aD,Dyu+ f]".

he truncation error arises as the residual R when inserting the exact solution
o in the discrete equations:

35

[D/ ue = aDyDyue + f + R]I".

Now, using (11)-(12) and (17)-(18), we can transform the difference oper
derivatives:

1
3 te (tn) At + O(AF?) = e o (Ti, tn)+
%u(w tn)AZ? + O(Azb) + f(wi,t,) + R} .

uC,t ('riy tn) +

The terms ue¢(x;,ty) — Qe wa (@i, tn) — f(24,t,) vansih because ue so
PDE. The truncation error then becomes

1
R} = Steu(tn) At + O(AL?) — %“mz(ﬂc tn)Aa? + O(Az?)

The Crank-Nicolson scheme in time. The Crank-Nicolson method
of using a centered difference for u; and an arithmetic average of the wu,

n+% o 1

n+l
[Dei ™ = a3 ([DeDg? + [DaDpuli 4 £

The equation for the truncation error is

1
nt
(2

1 ntl nal
[Druel; " * = a3 ([DeDyuel? + [DeDueli™) + £ % + R}

i .

To find the truncation error, we start by expressing the arithmetic av
terms of values at time ¢, 1. According to (21)-(22),

1

8 [Dm Dwue7tt}?+% At2+(

1 ntl
5([DxDer]?+[DxDxuew+l) = [DocDmue]i+2+

With (17)-(18) we can express the difference operator D,D,u in ter
derivative:

+1 1
[DLDLUG]ZL = ue,:l;:l;(xi7tn+%) + Eue,wwww(xiv tn+%)Ax2 + O(A.Z

The error term from the arithmetic mean is similarly expanded,

1 nt+l 1
gD Datic o] VN Sliettaa(Ti, by 1)AL + O(APAa?)
The time derivative is analyzed using (5)-(6):

o+ 1 1
(Dl = e (xs, toys) + ﬂue,ttt(fl’m toy)AL + O(ALY).

36

Summing up all the contributions and notifying that

Uet(-rza n+1)*auemm(mu n+i)Jrf(mu n+i)

1e truncation error is given by

1

n+s 1 L
R = S Ue TT(IH n+)At + ue.mmmm(xh n+)A.’IJ +

v 8 12
1
o e wt (@it 1 L)AL + +O(Az?) + O(AtY) + O(A2 Ax?)

.2 Linear diffusion equation in 2D /3D

.3 A nonlinear diffusion equation in 2D
Exercises

xercise 1: Truncation error of a weighted mean

lerive the truncation error of the weighted mean in (19)-(20).

[int. Expand u?*! and u? around #, 4.
Filename: trunc_weighted_mean.pdf.

xercise 2: Simulate the error of a weighted mean

/e consider the weighted mean
te(tn) = Oul ™ 4 (1 — O)ul .

hoose some specific function for wue(t) and compute the error in this approxima-
on for a sequence of decreasing At = t,, 1 —t, and for § = 0,0.25,0.5,0.75, 1.
ssuming that the error equals C'At", for some constants C' and r, compute r for
1e two smallest At values for each choice of # and compare with the truncation
ror (19)-(20). Filename: trunc_theta_avg.py.

xercise 3: Verify a truncation error formula

et up a numerical experiment as explained in Section 3.5 for verifying the
rmulas (15)-(16). Filename: trunc_backward_2level.py.

xercise 4: Truncation error of the Backward Euler scheme

lerive the truncation error of the Backward Euler scheme for the decay ODE
" = —qu with constant a. Extend the analysis to cover the variable-coefficient
ase v’ = —a(t)u + b(t). Filename: trunc_decay_BE.py.

37

Exercise 5: Empirical estimation of truncation errors

Use the ideas and tools from Section 3.5 to estimate the rate of the
tion error of the Backward Euler and Crank-Nicolson schemes applie
exponential decay model v’ = —au, u(0) = I.

Hint. In the Backward Euler scheme, the truncation error can be es

at mesh points n = 1,..., N, while the truncation error must be es

at midpoints tn+%, n = 0,...,N — 1 for the Crank-Nicolson schem

truncation_error(dt, N) function to be supplied to the estimate i

needs to carefully implement these details and return the right t array s

t[i] is the time point corresponding to the quantities R[i] and R_a[i
Filename: trunc_decay_BNCN.py.

Exercise 6: Correction term for a Backward Euler sc

Consider the model v/ = —au, u(0) = I. Use the ideas of Section 3.6 t

correction term to the ODE such that the Backward Euler scheme applie

perturbed ODE problem is of second order in At. Find the amplificatio
Filename: trunc_decay_BE_corr.pdf.

Exercise 7: Verify the effect of correction terms

The program decay_convrate.py* solves ' = —au, u(0) = I, by the 6-
computes convergence rates. Copy this file and adjust a in the solver :
such that it incorporates correction terms. Run the program to ver
the error from the Forward and Backward Euler schemes with pertur
O(At?), while the error arising from the Crank-Nicolson scheme with pe
a is O(At%). Filename: trunc_decay_corr_verify.py.

Exercise 8: Truncation error of the Crank-Nicolson s«

The variable-coeflicient ODE v’ = —a(¢t)u+b(t) can be discretized in two
ways by the Crank-Nicolson scheme, depending on whether we use aver
a and b or compute them at the midpoint ¢, 1:

[Diu = —au’ + b]"
[Diuw = —au + 3]” 2

Compute the truncation error in both cases. Filename: trunc_decay_CN_

4http://tinyurl.com/jvzzctn/decay/decay_convrate.py

38

xercise 9: Truncation error of v’ = f(u,t)

‘onsider the general nonlinear first-order scalar ODE

how that the truncation error in the Forward Euler scheme,
[Dfu = f(u,t)]",

nd in the Backward Euler scheme,
[Dy w = f(u,t)]",

oth are of first order, regardless of what f is.
Showing the order of the truncation error in the Crank-Nicolson scheme,

[Deuw = f(u,)]"*2,

somewhat more involved: Taylor expand u?, u?*1, f(ul, t,), and f(ul2tL t,.1)
round ¢, 41 and use that

df _of ., 0f

=—u + =.
dt Ou ot

'heck that the derived truncation error is consistent with previous results for

1e case f(u,t) = —au. Filename: trunc_nonlinear_ODE.pdf.

xercise 10: Truncation error of [D;D,u|"

lerive the truncation error of the finite difference approximation (17)-(18) to
1e second-order derivative. Filename: trunc_d2u.pdf.

xercise 11: Investigate the impact of approximating «'(0)

ection 4.1 describes two ways of discretizing the initial conditon «/(0) = V for
vibration model u” + w?u = 0: a centered difference [Dasu = V]° or a forward
ifference [D; u = V]°. The program vib_undamped.py® solves u” + w?u = 0
ith [Dasu = 0] and features a function convergence_rates for computing the
rder of the error in the numerical solution. Modify this program such that it
oplies the forward difference [D;"u = 0]° and report how this simpler and more

»nvenient approximation impacts the overall convergence rate of the scheme.

ilename: trunc_vib_ic_fw.py.

Shttp://tinyurl.com/jvzzcfn/vib/vib_undamped. py

39

Exercise 12: Investigate the accuracy of a simplified s«
Consider the ODE

mu” + Blu |u' + s(u) = F(t).

The term |u'|u’ quickly gives rise to nonlinearities and complicates the
Why not simply apply a backward difference to this term such that
involves known values? That is, we propose to solve

[mD:Du + 8| Dy u|Dy u+ s(u) = F|™.

Drop the absolute value for simplicity and find the truncation error of the
Perform numerical experiments with the scheme and compared with
based on centered differences. Can you illustrate the accuracy loss visuall
computations, or is the asymptotic analysis here mainly of theoretical i
Filename: trunc_vib_bw_damping.pdf.

40

ndex

yrrection terms, 17
ecay ODE, 11

nite differences
backward, 6
centered, 8
forward, 7

‘uncation error
Backward Euler scheme, 6
correction terms, 17
Crank-Nicolson scheme, 8
Forward Euler scheme, 7
general, 4
table of formulas, 8

srification, 21

