
Numerical methods for the Navier-
Stokes equations

Hans Petter Langtangen1,2

1Center for Biomedical Computing, Simula Research Laboratory
2Department of Informatics, University of Oslo

Dec 6, 2012

Note: PRELIMINARY VERSION (expect lots of typos!)

Contents

1 The physical and mathematical problem 2

1.1 The Navier-Stokes equations . 2

1.2 Derivation . 2

1.3 Boundary conditions . 4

2 The classical splitting method 4

2.1 A simple, naive approach . 4

2.2 A working scheme . 5

2.3 Boundary conditions . 6

2.4 Spatial discretization by the finite element method 7

2.5 Stress formulations . 9

2.6 Increasing the implicitness . 9

3 Methods based on slight compressibility 10

4 Fully implicit formulation 11

5 Applications 12

List of exercises

Project 1 Symmetry boundary conditions p. ??

1

1 The physical and mathematical problem

Fluid flow is one of the most common physical phenomena in nature and techno-
logical devices. Examples include atmospheric flows (”weather”), global ocean
currents, air flow around a car, breathing, and circulation of blood, to men-
tion a few. The focus in the forthcoming text is on a subset of flows without
turbulence, where the flow can be considered as incompressible, and where the
fluid’s viscosity is constant. (Actually, the model to be discussed can be used
for turbulence, in principle, but the computations are very heavy.)

1.1 The Navier-Stokes equations

For incompressible flow, the key unknowns are the pressure field p(xxx, t) and the
velocity field uuu(xxx, t). These quantities are governed by the a momentum balance
equation,

uuut + (uuu · ∇)uuu = −1

%
∇p+ ν∇2uuu+ fff, (1)

and a mass balance equation

∇ · uuu = 0 . (2)

Equations (1) and (2) are known as Navier-Stokes equations for incompressible
flow. The parameter % is the fluid density, ν is the (kinematic) viscosity, and
fff denotes body forces such as gravity. Geophysical applications often need to
incorporate the Coriolis and centrifugal forces in fff . The Navier-Stokes equations
are to be solved in a spatial domain Ω for t ∈ (0, T].

1.2 Derivation

The derivation of the Navier-Stokes equations contains some equations that are
useful for alternative formulations of numerical methods, so we shall briefly
recover the steps to arrive at (1) and (2). We start with the general momentum
balance equation for a continuum (arising from Newton’s second law of motion),

%
Du

dt
= ∇ · σσσ + %fff, (3)

where σσσ is the stress tensor and the operator D/dt is the material derivative,

Duuu

dt
= uuut + (uuu · ∇)uuu, (4)

here denoting acceleration. Therefore, %Duuu/dt is density (”mass”) times accel-
eration, while the terms on the right-hand side are the forces that induce the
motion uuu: the internal stresses σσσ and the external body forces fff .

The other fundamental equation for a fluid is that of mass conservation,
called the continuity equation. It has the general form

2

%t +∇ · (%uuu) = 0, (5)

which can be rewritten as

∇ · uuu =
1

%

D%

dt
.

An incompressible flow is defined as a flow where each fluid particle maintains
its density. Since D%

dt is the rate of change of % of a fluid particle, incompressible

flow means D%
dt = 0 and hence ∇ ·uuu = 0. The latter is the most useful equation

in a PDE system for incompressible flow since it involves the unknown velocity
uuu.

Different types of fluids will have different relations between the motion uuu
and the internal stresses σσσ. A Newtonian fluid has an isotropic, linear relation
between uuu and σσσ:

σσσ = −pIII + µ(∇uuu+ (∇uuu)T), (6)

where III is the identity tensor, and µ is the dynamic viscosity (µ = %ν). The
relation (6) assumes incompressible flow. Inserting (6) in (3) gives (1) after
dividing by %, using ∇ · (pIII) = ∇p, and calculating ∇ · (∇uuu+ (∇uuu)T) as ∇2uuu+
∇(∇·uuu) = ∇2uuu. The vector operations involving the nabla operator are easiest
performed by using index or dyadic notation, but the derivation of the particular
terms is not important for the forthcoming text.

Some numerical methods apply the ∇ · σσσ = −∇p +∇ · (∇uuu + (∇uuu)T) form
in (1):

uuut + (uuu · ∇)uuu =
1

%
∇ · σσσ + fff, (7)

or

uuut + (uuu · ∇)uuu = −1

%
∇p+ ν∇ · (∇uuu+ (∇uuu)T) + fff . (8)

Other formulations add a %t term to the continuity equation, usually by
assuming slight compressibility. Then % = %(p) and we have

%t =
∂%

∂p
pt .

It is common to evaluate ∂%/∂p for some fixed reference value %0 so that 1/c2 =
∂%/∂p can be treated as a constant. The parameter c is the speed of sound in
the fluid. The equation of continuity is in such cases often written as

pt + c2∇ · uuu = 0, (9)

where we have used the simplification ∇(%uuu) = %0∇uuu for a slightly incompress-
ible fluid and divided the original equation by %0.

3

1.3 Boundary conditions

The incompressible Navier-Stokes equations need three scalar conditions on the
velocity components or the stress vector at each point on the boundary. The
boundary conditions can be classified as follows.

• Dirichlet conditions: components of uuu are known.

• Neumann conditions:

– Stress condition: components of σσσ ·nnn are prescribed.

– Outflow or symmetry condition: ∂uuu/∂n = 0 (or components of this
vector are zero).

We have here introduce the notion of Dirichlet and Neumann conditions us-
ing similarities with Laplace and Poisson problems (i.e., whether the condition
regards the unknown itself or its derivative).

A combination of velocity and stress boundary conditions at a point is pos-
sible. For example, at a symmetry boundary we set the normal velocity to be
zero.

2 The classical splitting method

The earliest and still the most widely applied numerical method for the incom-
pressible Navier-Stokes equations is based on splitting the PDE system into
simpler components for which we can apply standard discretization methods.
Such a strategy is known as operator splitting.

2.1 A simple, naive approach

The equation (1) looks similar to a convection-diffusion equation. The simplest
possible numerical method for such equations applies an explicit Forward Euler
scheme in time. It is therefore tempting to advance (1) in time using a standard
Forward Euler discretization:

uuun+1 − uuun

∆t
+ (uuun · ∇)uuun = −1

%
∇pn + ν∇2uuun + fffn, (10)

which yields an explicit formula for uuun+1:

uuun+1 = uuun −∆t(uuun · ∇)uuun − ∆t

%
∇pn + ∆t ν∇2uuun + ∆tfffn . (11)

There are two fundamental problems with this method:

• the new uuun+1 will in general not satisfy (2), i.e., ∇ · uuun+1 6= 0,

• there is no strategy for computing pn+1.

4

We may say that the incompressible Navier-Stokes equations are difficult to
solve numerically because of the incompressibility constraint ∇ · uuu = 0 and the
pressure term ∇p.

2.2 A working scheme

Intuitively speaking, the fulfillment∇·uuun+1 requires us to have ”more unknowns
to play with” when advancing (1). The idea is to basically use the Forward Euler
scheme, but evaluate the pressure term at the new time level n+ 1:

uuun+1 = uuun −∆t(uuun · ∇)uuun − ∆t

%
∇pn+1 + ∆t ν∇2uuun + ∆tfffn . (12)

We must also require

∇ · uuun+1 = 0 . (13)

The equations (12)-(13) constitute 3+1 coupled PDEs for the 3+1 unknowns
uuun+1 and pn+1.

The method for solving (12)-(13) is based on a splitting idea where we first
propagate the velocity from old values to some intermediate velocity uuu∗, us-
ing (12). Then we enforce the incompressibility constraint (13) to compute a
correction to uuu∗ and also the new pressure pn+1.

A plain Forward Euler discretization of (1), but with a weight β on the ∇pn
term, reads

uuu∗ = uuun −∆t(uuun · ∇)uuun − β∆t

%
∇pn + ∆t ν∇2uuun + ∆tfffn (14)

The intermediate velocity uuu∗ does not fulfill the incompressibility constraint
(13), but we seek a correction δuuu,

uuun+1 = uuu∗ + δuuu, (15)

such that ∇ · uuun+1 = 0. Since δuuu = uuun+1 − uuu∗, we can subtract (14) from (12)
to find δuuu.

δuuu = uuun+1 − uuu∗ = −∆t

%
∇Φ . (16)

The quantity Φ is introduced as a kind of pressure change:

Φ = pn+1 − βpn . (17)

Inserting δuuu in the incompressibility constraint,

∇ · (uuu∗ + δuuu) = 0,

or equivalently,
∇ · δuuu = −∇ · uuu∗,

5

results in

∇2Φ =
%

∆t
∇ · uuu∗, (18)

since ∇ · ∇Φ = ∇2Φ.
As soon as Φ is computed from the Poisson equation (18), we can calculate

uuun+1 = uuu∗ − ∆t

%
∇Φ, (19)

and

pn+1 = Φ + βpn . (20)

The solution algorithm at a time level then consists of the following steps:

1. Compute the intermediate velocity uuu∗ from (14).

2. Solve the Poisson equation (18) for Φ.

3. Update the velocity from (19).

4. Update the pressure from (20).

Remarks. The literature is full of papers and books with methods equivalent
or almost equivalent to the scheme above. Many schemes apply β = 0 and
replace Φ by pn+1.

2.3 Boundary conditions

What boundary conditions should we assign to uuu∗ when solving (14)? A stan-
dard choice is to apply the same boundary conditions as those specified for uuu. It
follows that δuuu = 0 on the boundary where uuu is subject to Dirichlet conditions.
We let ∂ΩD,u denote the part of the boundary ∂Ω with Dirichlet conditions,
while ∂ΩN,u denotes the boundary where Neumann conditions involving ∂uuu/∂n
apply.

The boundary condition on the pressure in the original incompressible Navier-
Stokes equations is simply to prescribe p at a single point, potentially as a
function of time. However, when solving the Poisson equation (18) we need
Dirichlet or Neumann boundary conditions for Φ (the pressure change) on the
whole boundary. Sometimes the pressure is prescribed at an inlet or outlet
boundary, which then yields a Dirichlet condition for Φ = pn+1 − βpn. At the
boundaries where uuu is subject to Dirichlet conditions, uuu∗ has the same condi-
tions, and δuuu = 0, which implies ∇Φ = 0. In particular, ∂Φ/∂n = 0, and
homogeneous Neumann conditions are therefore used on such boundaries when
solving the Poisson equation for Φ. Also, at symmetry boundaries, ∂Φ/∂n = 0.
At an inlet boundary, a pressure gradient in the flow direction is often known,
say as f(t), implying that we can compute ∂Φ/∂n = −(f(tn+1)− βf(tn)).

6

We let ∂ΩD,Φ be the part of the boundary where Φ is subject to Dirich-
let conditions, while ∂ΩN,p is the remaining part where Neumann conditions
involving ∂Φ/∂n are assigned.

2.4 Spatial discretization by the finite element method

The equations to be solved, (14), (18), (19), and (20), are of two types: explicit
updates (approximations a la u = f) and the Poisson equation. We introduce
a vector test function vvv(u) ∈ V (u) for the vector equations (14) and (19), and a
scalar test function v(Φ) ∈ V (Φ) for the Poisson equation and the update (20).
Modulo nonzero Dirichlet conditions, we seek uuu∗,uuun+1 ∈ V (u) and pn+1 ∈ V (Φ).

The variational form of a vector equation like (14) is derived by taking the
inner product of the equation and vvv(u). The Laplace term is integrated by parts,
as usual, but this time vectors are involved. The relevant rule takes the form∫

Ω

(∇2uuu) · vvv dx = −
∫

Ω

∇uuu : ∇v dx+

∫
∂Ω

∂uuu

∂n
· vvv ds,

where ∇uuu : ∇vvv means the inner tensor product : AAA : BBB =
∑

j

∑
j AijBij (when

AAA has elements Ai,j and BBB has elements Bi,j . Alternatively, we may say that
AAA : BBB is simply the scalar product of the tensorsAAA andBBB when these are viewed
as vectors (of length 9 instead of tensors of dimension 3 × 3 in 3D problems).
The normal derivative has the usual definition: ∂uuu/∂n = nnn · ∇uuu.

The
∫

Ω
∇pn ·vvv(u) dx integral can also be a candidate for integrated by parts,

if desired. The relevant rule reads∫
Ω

∇p · vvv dx = −
∫

Ω

p∇ · vvv dx+

∫
∂Ω

pnnn · vvv ds .

We use such an integration by parts below. The advantage is that we get a
boundary integral involving pnnn, which is advantageous if we want to set a con-
dition on p, especially at an outflow boundary, but also on an inflow boundary.

For notational simplicity and close correspondence to computer code, we
introduce the subscript 1 on quantities from the previous time level n and drop
any superscript n+ 1 for quantities to be computed at the new time level. The
resulting variational form can be written as

∫
Ω

(
uuu∗ · vvv(u) + ∆t((uuu1 · ∇)∇uuu1) · vvv(u) − ∆t

%
p∇ · vvv(u)+

∆t ν∇uuu1 : ∇vvv(u) −∆tf1

)
dx =

∫
∂ΩN,u

(
ν
∂uuu

∂n
− pnnn

)
· vvv(u) ds, (21)

∀vvv(u) ∈ V (u). The variational form corresponding to the Poisson equation be-
comes

7

∫
Ω

∇Φ · ∇v(Φ) dx = − %

∆t

∫
Ω

∇ ·uuu∗ v(Φ) dx+

∫
∂ΩN,p

∂Φ

∂n
v(Φ) ds, ∀v(Φ) ∈ V (Φ) .

(22)
The variational form for the velocity update (19) is based on taking the inner

product of vvv(u) and (19):∫
Ω

uuu · vvv(u) dx =

∫
Ω

(uuu∗ − ∆t

%
∇Φ) · vvv(u) dx, ∀vvv(u) ∈ V (u) . (23)

Note that this is the same form as in a vector approximation problem: ap-
proximate a given vector field fff by a uuu, where the components of uuu are scalar
finite element functions. Also note that uuu in (23) is actually uuun+1, but that the
superscript is dropped since we do not use that in an implementation.

The pressure update has the variational form∫
Ω

pv(Φ) dx =

∫
Ω

(Φ + βp1)v(Φ) dx, ∀v(Φ) ∈ V (Φ) . (24)

(Also here, p denotes pn+1 and p1 is pn.)
The splitting method presented above allows flexible choices of elements for

uuu and p. In the early days of the finite element method for incompressible flow,
fully implicit formulations were used and these require the uuu element to be of one
polynomial degree higher than the p element. This restriction does not apply
to the splitting scheme, so one may, e.g., choose P1 elements for the velocity
components and the pressure.

Remark on boundary integrals. The boundary integral in (21) comes into
play at element faces on the boundary if the nodes on a face are not subject to
Dirichlet conditions. As for scalar PDEs, Dirichlet conditions either mean that
vvv = 0 on that part of the boundary, or the element matrix and vector (or the
global coefficient matrix and right-hand side) are manipulated to enforce known
values of the unknown such that any boundary integral is erased and replaced
by the boundary value.

The boundary integral most often applies to inflow and outflow boundaries
x = const where we assume unidirectional flow, uuu = uiii. Because of ∇ · uuu = 0
we have ∂uuu/∂x = ∂uuu/∂n = 0 and p = const. Very often, the boundary integral
in (21) is zero, because we apply it to an outflow boundary where we have
∂uuu/∂n = 0 and then we fix the pressure at p = 0. Note that in the original
Navier-Stokes equations, p enters just through ∇p so a boundary condition at
one point is necessary to uniquely determine p (otherwise p is known up to a
free additive constant). At inflow boundaries, uuu is either known, which implies
that the boundary integral does not apply, or we have ∂uuu/∂n = 0 and p = p0.
In this latter case, the boundary integral involves an integration of pnnn · vvv.

The boundary integral involving ∂Φ/∂n is usually omitted since we apply
the condition ∂Φ/∂n = 0, see Section 2.3.

8

2.5 Stress formulations

As mentioned in Section 1.2, we may exchange the ν∇2uuu term in (1) with a
stress term %−1∇ · σσσ, where σσσ is given by (6). Occasionally, the ∇ · σσσ term is
advantageous, because integration by parts of

∫
Ω
∇·σσσ ·vvv(u) dx gives a boundary

integral with the stress vector σσσ·nnn. This is convenient when boundary conditions
are formulated in terms of stresses.

2.6 Increasing the implicitness

The explicit scheme (14) resembles the same stability problems as when a For-
ward Euler scheme is applied to the diffusion equation. However, there is also
a convection term uuu · ∇uuu that reduces the time step restrictions. The stability
criterion reads

∆t ≤ h2

2ν + Uh
, (25)

where h is the minimum element size and U is a characteristic size of the veloc-
ity. The term 2ν stems from the viscous (Laplace) term while Uh arises from
the convection term in the Navier-Stokes equations. Which of the term that
dominates in the denominator therefore depends on whether viscous forces or
convection is important in the equation.

Treating the viscosity term ν∇2uuu implicitly helps greatly on the stability
properties of the scheme for uuu∗. We may, for example, apply a Backward Euler
scheme. Instead of (12) we then have

uuun+1 = uuun −∆t(uuun+1 · ∇)uuun+1 − ∆t

%
∇pn+1 + ∆t ν∇2uuun+1 + ∆tfffn+1,

(26)

∇ · uuun+1 = 0 . (27)

An intermediate velocity can be computed from the first equation if we replace
pn+1 by βpn as done earlier:

uuu∗ = uuun −∆t(uuu∗ · ∇)uuu∗ − β∆t

%
pn+1 + ∆t ν∇2uuu∗ + ∆tfffn+1

To simplify the nonlinearity in (uuu∗ · ∇)uuu∗ we may use an old value in the con-
vective velocity:

(uuu∗ · ∇)uuu∗ ≈ (uuun · ∇)uuu∗ . (28)

This approximation is essentially one Picard iteration using un as initial guess.
The intermediate velocity uuu∗ is now governed by a linear problem

uuu∗ = uuun −∆t(uuun · ∇)uuu∗ − β∆t

%
∇pn + ∆t ν∇2uuu∗ + ∆tfffn+1

9

The correction δuuu = uuun+1 − uuu∗ becomes

δuuu = ∆t((uuun+1 · ∇)uuun+1 − (uuun · ∇)uuu∗)− ∆t

%
∇Φ + ∆t ν(∇2(uuun+1 − uuu∗) .

Under the assumption that uuu∗ is close to uuun+1, we may drop the terms involving
uuun+1 − uuu∗ and just keep the ∇Φ term. Then

δuuu = uuun+1 − uuu∗ = −∆t

%
∇Φ,

as before, and the incompressibility constraint ∇ · δuuu = −∇ · uuu∗ gives ∇2Φ =
%

∆t∇ · uuu
∗.

The algorithm becomes the same as for a Forward Euler discretization, ex-
cept that (14) is replaced by (2.6).

3 Methods based on slight compressibility

By allowing a slight compressibility we can replace the problematic constraint
∇·uuu by an evolution equation (9) for p. Essentially, we then have two evolution
equations for uuu and p:

uuut = −(uuu · ∇)uuu− 1

%
∇p+ ν∇2uuu+ fff, (29)

pt = −c2∇ · uuu . (30)

The simplest method is a Forward Euler scheme:

uuun+1 = uuun −∆t(uuun · ∇)uuun − ∆t

%
∇pn + ∆t ν∇2uuun + ∆tfffn, (31)

pn+1 = pn −∆tc2∇ · uuun . (32)

The major problem with this scheme is the stability constraint, which is dictated
by the c parameter (velocity of sound): ∆t ∼ 1/c. Usually, c is taken as a tuning
parameter and values much less than the speed of sound may give solutions with
acceptable compressibility.

Any other explicit scheme, say a 2nd- or 4th-order Runge-Kutta method, is
easily applied. Implicit schemes are of course also possible, but then one has to
solve linear systems, and the original formulation with a true incompressibility
constraint ∇ · uuu = 0 is not more complicated and usually preferred. In general,
the method based on slight compressibility and explicit time integration becomes
computationally very heavy and is not competitive unless one can use a c value
much lower than the speed of sound.

10

4 Fully implicit formulation

Early attempts to use the finite element method to solve the Navier-Stokes
equations were based on fully implicit formulations. This is easily derived by
applying a Backward Euler scheme to the system (1)-(2):

uuun − uuun−1

∆t
+ (uuun · ∇)uuun = −1

%
∇pn + ν∇2uuun + fffn,

∇ · uuun = 0

We introduce the test functions vvv(u) ∈ V (u) for the momentum balance equation
and seek uuun+1 ∈ V (u) (or more precisely, the part of uuun+1 without nonzero
Dirichlet conditions). We seek p ∈ V (p) and use v(p ∈ V (p as test function for
the continuity equation. We may write the system of PDEs as

Lu(uuun, pn,uuun−1) = 0,

∇ · uuun = 0 .

A variational formulation can be based on treating the two equations separately,

∫
Ω

Lu(uuun, pn,uuun−1) · vvv(u) dx = 0,∫
Ω

∇ · uuunv(p) dx = 0,

or we may use an inner product of the two equations (Lu,∇ · uuu) and the test
vector (vvv(u), v(p)):∫

Ω

(
Lu(uuun, pn,uuun−1) · vvv(u) +∇ · uuunv(p)

)
dx = 0 .

To minimize the distance between code and mathematics, we introduce new
symbols: uuu for uuun, uuu1 for uuun−1, and p for pn. Integrating the pressure and
viscous terms by parts yields

∫
Ω

(
uuu · vvv(u) + ∆t((uuu · ∇)∇uuu) · vvv(u) − ∆t

%
p∇ · vvv(u)+

∆t ν∇uuu · ∇vvv(u) −∆tf
)

dx+

∫
∂ΩN,u

(
ν
∂uuu

∂n
− pnnn

)
· vvv(u) ds+∫

Ω

∇ · uuu v(p) dx = 0 . (33)

This is nothing but a coupled, nonlinear equation system for uuu and p. Inserting
finite element expansions for uuu and p yields discrete equations that can be
written in matrix form as

11

Mu+ ∆tC(u)u = −∆t

%
Lp+ νKp+ f, (34)

LTu = 0, (35)

where M is the usual mass matrix, but here for a vector function, u collects
all coefficients for the uuu field, C(u) is a matrix arising from the convection
term (uuu · ∇)uuu, L is a matrix arising from the p∇ · vvv(u) term, K is the matrix
corresponding to the Laplace operator (acting on a vector), and f is a vector
of the source terms arising from fff . The nonlinearity is typically handled by a
Newton method.

The simplified system arising from dropping the time derivative and the
convection term (uuu · ∇)uuu can be analyzed. It turns out that only certain com-
binations of V (u) and V (p) can guarantee a stable solution. The polynomials in
V (u) must be (at least) one degree higher than those in V (p). For example, one
may use P2 elements for uuu and P1 elements for p. This combination is known
as the famous Taylor-Hood element. Numerical experimentation indicates that
the same stability restriction on the combination of spaces is also important
for the fully nonlinear Navier-Stokes equations when solved by a fully implicit
method. The splitting into simpler systems, as shown in Section 2.2, introduces
further approximations that stabilize the problem such that the same type of
element can be used for velocity components and pressure.

The splitting method is much more widely used than the fully implicit formu-
lation. Although the latter is more robust and much better suited for stationary
flow, it is also involves much heavier computations. In each Newton iteration,
a linear system involving all the coefficients in uuu and p must be solved, and it is
non-trivial to construct efficient iterative solution methods (especially precon-
ditioners).

5 Applications

Figure 1 exemplifies the boundary conditions for flow in a channel between two
infinite plates. This flow configuration is assumed to be stationary, uuut = 0, and
a simple analytical solution can be found in this particular case.

Note that the numerical solution method described above requires a time-
dependent problem. Stationary problems must be simulated by starting with
some initial condition and letting the flow develop toward the stationary solution
as t→∞.

The velocity field in channel flow is symmetric with respect to the center
line. It is therefore sufficient to calculate the flow in half the channel. Figure 2
displays the computational domain and the relevant boundary conditions.

Figure 3 depicts a more complex flow geometry, leading to a more com-
plex velocity field. The boundary conditions are, however, similar to those for
channel flow.

12

ux =1

ux =uy =0

ux =uy =0

ux
n

=0

p=p0

uy

n
=0

uy =0

Figure 1: Flow in a channel.

ux =1

ux =uy =0

uy =0,
ux
n

=0

ux
n

=0

p=p0

uy

n
=0

uy =0

Figure 2: Flow in a half a channel with a symmetry line.

The boundary conditions in Figure 4 are not listed in the figure because there
are multiple options. The inflow boundary must have a prescribed velocity uuu,
and on the cylinder we must have uuu = 0. On the remaining three boundaries
we have some freedom in what to assign. At the outflow one typically sets
∂uuu/∂n = 0 and fix the pressure at one value. Alternatively, one may apply
a stress-free condition σσσ · nnn = 0, which implicitly also sets the pressure. On
the boundaries AB and DC there is more freedom. The weakest condition is
∂uuu/∂n = 0, assuming that the boundary is far enough away from the cylinder
such that the flow field changes very little. Some prefer to set σσσ · nnn = 0 here
instead. A stronger condition is to require uy = 0 and ∂ux/∂n = 0. However,
uy = 0 requires the boundary to be far away from the cylinder.

13

ux =1

ux =uy =0

uy =0,
ux
n

=0

ux
n

=0

p=p0

uy

n
=0

uy =0

Figure 3: Flow over a backward facing step.

A

C

B

D

Figure 4: Flow around a cylinder.

14

Index

boundary conditions
Navier-Stokes, 4

continuity equation, 2

incompressible flow, 2

mass balance equation, 2
momentum equation, 2

Navier-Stokes equations, 2
Newtonian fluid, 3

operator splitting, 4

stress-velocity relation, 3

Taylor-Hood element, 12

15

	The physical and mathematical problem
	The Navier-Stokes equations
	Derivation
	Boundary conditions

	The classical splitting method
	A simple, naive approach
	A working scheme
	Boundary conditions
	Spatial discretization by the finite element method
	Stress formulations
	Increasing the implicitness

	Methods based on slight compressibility
	Fully implicit formulation
	Applications

