
Nonlinear differential equation problems

Hans Petter Langtangen1,2

1Center for Biomedical Computing, Simula Research Laboratory
2Department of Informatics, University of Oslo

Dec 14, 2013

Note: VERY PRELIMINARY VERSION (expect typos and mathematical errors)

Contents

1 Basic examples using the logistic equation 3
1.1 Linearization by explicit time discretization . 3
1.2 Exact solution of nonlinear equations . 4
1.3 Linearization . 5
1.4 Picard iteration . 5
1.5 Linearization by a geometric mean . 6
1.6 Newton’s method . 7
1.7 Relaxation . 8
1.8 Implementation and experiments . 8
1.9 Generalization to a general nonlinear ODE . 10

2 Systems of nonlinear algebraic equations 11
2.1 Picard iteration . 11
2.2 Newton’s method . 12
2.3 Stopping criteria . 13
2.4 Example: A nonlinear ODE model from epidemiology 14

3 Linearization at the differential equation level 15
3.1 Explicit time integration . 15
3.2 Picard iteration . 15
3.3 Newton’s method . 16

4 Discretization of nonlinear differential equations 18
4.1 Finite difference discretizations . 18
4.2 Finite element discretizations . 20
4.3 The group finite element method . 21
4.4 Numerical integration of nonlinear terms . 22
4.5 Finite element discretization of a variable coefficient Laplace term 23
4.6 Picard iteration defined from the variational form 25
4.7 Newton’s method defined from the variational form 25

5 Multi-dimensional PDE problems 27
5.1 Finite element discretization . 27
5.2 Finite difference discretization . 29
5.3 Continuation methods . 30

6 Exercises 31

2

List of Exercises and Problems

Problem 1 Determine if equations are nonlinear or not p. 31
Problem 2 Linearize a nonlinear vibration ODE p. 31
Exercise 3 Find the sparsity of the Jacobian p. 32
Exercise 4 Newton’s method for linear problems p. 32
Exercise 5 Differentiate a highly nonlinear term p. 32
Problem 6 Discretize a 1D problem with a nonlinear coefficient ... p. 32
Problem 7 Linearize a 1D problem with a nonlinear coefficient ... p. 32
Problem 8 Finite differences for the 1D Bratu problem p. 33
Problem 9 Integrate functions of finite element expansions ... p. 33
Problem 10 Finite elements for the 1D Bratu problem p. 34
Problem 11 Derive the Newton system from a variational ... p. 35
Problem 12 Derive algebraic equations for nonlinear 1D ... p. 35
Problem 13 Investigate a 1D problem with a continuation ... p. 36

3

In a linear differential equation all terms involving the unknown functions are linear in the
unknown functions or their derivatives. Linear here means that the unknown function or a
derivative of it is multiplied by a number or a known function. All other differential equations
are non-linear. The easiest way to see if an equation is nonlinear is to spot nonlinear terms where
the unknown functions or their derivatives are multiplied by each other. For example, in

u′(t) = −a(t)u(t) + b(t),

the terms involving the unknown function u are linear: u′ contains the derivative of the unknown
function multiplied by unity, and au contains the unknown function multiplied by a known
function. However,

u′(t) = u(t)(1− u(t)),

is nonlinear because of the term −u2 where the unknown function is multiplied by itself. Also

∂u

∂t
+ u

∂u

∂x
= 0,

is nonlinear because of the term uux where the unknown function appears in a product with itself
or one if its derivatives. Another example of a nonlinear equation is

u′′ + sin(u) = 0,

because sin(u) contains products of u,

sin(u) = u− 1

3
u3 + . . .

A series of forthcoming examples will explain who to tackle nonlinear differential equations
with various techniques.

1 Basic examples using the logistic equation

Consider the (scaled) logistic equation

u′(t) = u(t)(1− u(t)) . (1)

This is a nonlinear differential equation which will be solved by different strategies in the following.
A time discretization of (1) will either lead to a linear algebraic equation or a nonlinear algebraic
equation at each time level. In the former case, the time discretization method transforms the
nonlinear ODE into linear subproblems at each time level, and the solution is straightforward to
find. However, when the time discretization leads to nonlinear algebraic equations, we cannot
(except in very rare cases) solve these without turning to approximate, iterative solution methods

1.1 Linearization by explicit time discretization

A Forward Euler method to solve (1) results in

un+1 − un

∆t
= un(1− un),

which is a linear algebraic equation for the unknown value un+1. Therefore, the nonlinearity in
the original equation poses no difficulty in the discrete algebraic equation. Any other explicit

4

scheme in time will also give only linear algebraic equations to solve. For example, a typical
2nd-order Runge-Kutta method for (1) reads,

u∗ = un + ∆tun(1− un),

un+1 = un + ∆t
1

2
(un(1− un) + u∗(1− u∗))) .

The first step is linear in the unknown u∗. Then u∗ is computed and known in the next step,
which is linear in the unknown un+1 .

1.2 Exact solution of nonlinear equations

Switching to a Backward Euler scheme for (1),

un − un−1

∆t
= un(1− un), (2)

results in a nonlinear algebraic equation for the unknown value un. The equation is of quadratic
type:

∆t(un)2 + (1−∆t)un − un−1 = 0 .

We shall now introduce a shorter and often cleaner notation for nonlinear algebraic equation that
appear at a given time level. The notation gets rid of the superscript that indicates the time
level and is motivated by how we will program the solution method for the algebraic equation,
especially in more advanced partial differential equation problems. The unknown in the algebraic
equation is denoted by u, while u1 is the value of the unknown at the previous time level (in
general u` is the value of the unknown ` levels back in time). The quadratic equation for the
unknown un in (2) can then be written

F (u) = ∆tu2 + (1−∆t)u− u1 = 0, (3)

and the solution is

u =
1

2∆t

(
−1−∆t±

√
(1−∆t)2 − 4∆tu1

)
. (4)

Here we encounter a fundamental challenge with nonlinear algebraic equations: the equation
may have more than one solution. How do we pick the right solution? In the present simple
case we can expand the square root in a series in ∆t and truncate after the linear term since the
Backward Euler scheme will introduce an error proportional to ∆t anyway. Using sympy we find
the following Taylor series expansions of the roots:

>>> import sympy as sp
>>> dt, u_1, u = sp.symbols(’dt u_1 u’)
>>> r1, r2 = sp.solve(dt*u**2 + (1-dt)*u - u_1, u) # find roots
>>> r1
(dt - sqrt(dt**2 + 4*dt*u_1 - 2*dt + 1) - 1)/(2*dt)
>>> r2
(dt + sqrt(dt**2 + 4*dt*u_1 - 2*dt + 1) - 1)/(2*dt)
>>> print r1.series(dt, 0, 2)
-1/dt + 1 - u_1 + dt*(u_1**2 - u_1) + O(dt**2)
>>> print r2.series(dt, 0, 2)
u_1 + dt*(-u_1**2 + u_1) + O(dt**2)

We see that the r1 root, corresponding to a minus sign in front of the square root in (4), behaves
as 1/∆t and will therefore blow up as ∆t→ 0! Only the r2 root is of relevance in this case.

5

1.3 Linearization

When the time integration of an ODE results in a nonlinear algebraic equation, we must normally
find its solution by defining a sequence of linear equations and hope that the solutions of these
linear equations converge to the desired solution of the nonlinear algebraic equation. Usually this
means solving the linear equation repeatedly in an iterative fashion. Sometimes the nonlinear
equation is just approximated by a linear equation and no iteration is carried out.

Constructing a linear equation from a nonlinear one requires linearization of each nonlinear
term. This can be done manually as in Picard iteration, or fully algorithmically as in Newton’s
method. Examples will best illustrate how to linearize nonlinear problems.

1.4 Picard iteration

Let us write (3) in a more compact form

F (u) = au2 + bu+ c = 0,

with a = ∆t, b = 1 −∆t, and c = −u1. Let u− an available approximation of the unknown u.
Then we can linearize the term u2 by writing u−u. The resulting equation, F̂ (u) = 0, is linear
and hence easy to solve:

F (u) ≈ F̂ (u) = au−u+ bu+ c = 0 .

Since the equation F̂ = 0 is only approximate, the solution u does not equal the exact solution
ue of the exact equation F (ue) = 0, but we can hope that u is closer to ue than u− is, and hence
it makes sense to repeat the procedure, i.e., set u− = u and solve F̂ (u) = 0 again.

The idea of turning a nonlinear equation into a linear one by using an approximation u− of u
in nonlinear terms is a widely used approach that goes under many names: fixed-point iteration,
the method of successive substitutions, nonlinear Richardson iteration, and Picard iteration. We
will stick to the latter name.

Picard iteration for solving the nonlinear equation arising from the Backward Euler discretiza-
tion of the logistic equation can be written as

u = − c

au− + b
, u− ← u .

The iteration is started with the value of the unknown at the previous time level: u− = u1.

Some prefer an explicit iteration counter as superscript in the mathematical notation. Let uk

be the computed approximation to the solution in iteration k. In iteration k + 1 we want to solve

aukuk+1 + buk+1 + c = 0 ⇒ uk+1 = − c

auk + b
, k = 0, 1, . . .

However, we will normally apply a mathematical notation in our final formulas that is as close as
possible to what we aim to write in a computer code and then we want to omit the k superscript
in u.

Stopping criteria. The iteration method can typically be terminated when the change in the
solution is smaller than a tolerance εu:

|u− u−| ≤ εu,

6

or when the residual in the equation is sufficiently small (εr),

|F (u)| = |au2 + bu+ c| < εr .

With εr = 10−7 we seldom need more than about 5 iterations when solving this logistic equation.

A single Picard iteration. Instead of iterating until a stopping criterion is fulfilled, one may
iterate a specific number of times. Just one Picard iteration is popular as this corresponds to the
intuitive idea of approximating a nonlinear term like (un)2 by un−1un. That is, one just applies
a known value for the unknown at the previous time level in nonlinear terms. The corresponding
time discretization reads

un − un−1

∆t
= un(1− un−1) . (5)

This is obviously an approximation and does not correspond to a ”pure” finite difference method
where the equation is sampled at a point and derivatives replaced by differences. The best
interpretation of the scheme (5) is a Backward Euler difference combined with a single Picard
iteration at each time level, using the value at the previous time level as start for the Picard
iteration.

1.5 Linearization by a geometric mean

We consider now a Crank-Nicolson discretization of (1). This means that the time derivative is
approximated by a centered difference,

[Dtu = u(1− u)]n+ 1
2 ,

written out as

un+1 − un

∆t
= un+ 1

2 − (un+ 1
2)2 . (6)

The term un+ 1
2 is normally approximated by an arithmetic mean,

un+ 1
2 ≈ 1

2
(un + un+1),

such that the scheme involves the unknown function only at the time levels where we actually
compute it. The same arithmetic mean applied to the nonlinear term gives

(un+ 1
2)2 ≈ 1

4
(un + un+1)2,

which is nonlinear in the unknown un+1. However, using a geometric mean for (un+ 1
2)2 is a way

of linearizing the nonlinear term in (6):

(un+ 1
2)2 ≈ unun+1 .

The linearized scheme for un+1 now reads

un+1 − un

∆t
=

1

2
(un + un+1) + unun+1,

which can readily be solved:

7

un+1 =
1 + 1

2∆t

1 + ∆tun − 1
2∆t

un .

This scheme can be coded directly, and since there is no nonlinear algebraic equation to solve by
methods for those kind of problems we skip the simplified notation (u for un+1 and u1 for un).

The geometric mean approximation is often very effective to deal with quadratic nonlinearities.
Both the arithmetic and geometric mean approximations have truncation errors of order ∆t2 and
are therefore compatible with the truncation error of the centered difference approximation for
U ′ in the Crank-Nicolson method.

Applying the operator notation for the means, the linearized Crank-Nicolson scheme for the
logistic equation can be compactly expressed as

[Dtu = ut + u2
t,g

]n+ 1
2 .

Remark. If we use an arithmetic instead of a geometric mean for the nonlinear term in (6),
we end up with a nonlinear term (un+1)2. The term can be linearized as unun+1 in a Picard
iteration approach. Observe that the geometric mean avoids any iteration.

1.6 Newton’s method

The Backward Euler scheme (2) for the logistic equation leads to a nonlinear algebraic equation
(3). Now we write any nonlinear algebraic equation in the general and compact form

F (u) = 0 .

Newton’s method linearizes this equation by approximating F (u) by its Taylor series expansion
around a computed value u− and keeping only the linear part:

F (u) = F (u−) + F ′(u−)(u− u−) +
1

2
F ′′(u−)(u− u−)2 + · · ·

≈ F (u−) + F ′(u−)(u− u−) = F̂ (u) .

The linear equation F̂ (u) = 0 has the solution

u = u− −
F (u−)

F ′(u−)
.

Expressed with an iteration index on the unknown, Newton’s method takes on the more familiar
mathematical form

uk+1 = uk − F (uk)

F ′(uk)
, k = 0, 1, . . .

Application of Newton’s method to the logistic equation discretized by the Backward Euler
method is straightforward as we have

F (u) = au2 + bu+ c, a = ∆t, b = 1−∆t, c = −u1,

and then

F ′(u) = 2au+ b .

8

The iteration method becomes

u = u− +
au2
− + bu− + c

2au− + b
, u− ← u . (7)

At each time level, we start the iteration by setting u− = u1. Stopping criteria as listed for the
Picard iteration can be used also for Newton’s method.

An alternative mathematical form, where we write out a, b, and c, and use a time level counter
n and an iteration counter k, takes the form

un,k+1 = un,k +
∆t(un,k)2 + (1−∆t)un,k − un−1

2∆tun,k + 1−∆t
, un,0 = un−1, k = 0, 1, . . . (8)

The implementation is much closer to (7) than to (8), but the latter is better aligned with the
established mathematical notation used in the literature.

1.7 Relaxation

One iteration in Newton’s method or Picard iteration consists of solving a linear problem F̂ (u) = 0.
Sometimes convergence problems arise because the new solution u of F̂ (u) = 0 is ”too far away”
from the previously computed solution u−. A remedy is to introduce a relaxation, meaning that
we first solve F̂ (u∗) = 0 for a suggested value u∗ and then we take u as a weighted mean of what
we had, u−, and what our linearized equation F̂ = 0 suggests, u∗:

u = ωu∗ + (1− ω)u− .

The parameter ω is known as a relaxation parameter, and a choice ω < 1 may prevent divergent
iterations.

Relaxation in Newton’s method can be directly incorporated in the basic iteration formula:

u = u− − ω
F (u−)

F ′(u−)
.

1.8 Implementation and experiments

The program logistic.py1 contains implementations of all the methods described above. Below
is an extract of the file showing how the Picard and Newton methods are implemented for a
Backward Euler discretization of the logistic equation.

def BE_logistic(u0, dt, Nt, choice=’Picard’, eps_r=1E-3, omega=1):
u = np.zeros(Nt+1)
u[0] = u0
for n in range(1, Nt+1):

a = dt; b = 1 - dt; c = -u[n-1]
if choice == ’Picard’:

def F(u):
return a*u**2 + b*u + c

u_ = u[n-1]
k = 0
while abs(F(u_)) > eps_r:

u_ = omega*(-c/(a*u_ + b)) + (1-omega)*u_
k += 1

1http://tinyurl.com/jvzzcfn/nonlin/logistic.py

9

http://tinyurl.com/jvzzcfn/nonlin/logistic.py

u[n] = u_
elif choice == ’Newton’:

def F(u):
return a*u**2 + b*u + c

def dF(u):
return 2*a*u + b

u_ = u[n-1]
k = 0
while abs(F(u_)) > eps_r:

u_ = u_ - F(u_)/dF(u_)
k += 1

u[n] = u_
return u

The Crank-Nicolson method utilizing a linearization based on the geometric mean gives a
simpler algorithm:

def CN_logistic(u0, dt, N):
u = np.zeros(N+1)
u[0] = u0
for n in range(0,N):

u[n+1] = (1 + 0.5*dt)/(1 + dt*u[n] - 0.5*dt)*u[n]
return u

Experiments with this program reveal the relative performance of the methods as summarized
in the table below. The Picard and Newton columns reflect the typical number of iterations with
these methods before the curve starts to flatten out and the number of iterations is significantly
reduced since the solution of the nonlinear algebraic equation is very close to the starting value
for the iterations (the solution at the previous time level). Increasing ∆t moves the starting
value further away from the solution of the nonlinear equation and one expects an increase in
the number of iterations. Picard iteration is very much more sensitive to the size of ∆t than
Newton’s method. The tolerance εr in residual-based stopping criterion takes on a low and high
value in the experiments.

∆t εr Picard Newton
0.2 10−7 5 2
0.2 10−3 2 1
0.4 10−7 12 3
0.4 10−3 4 2
0.8 10−7 58 3
0.8 10−3 4 2

Remark. The simple Crank-Nicolson method with a geometric mean for the quadratic nonlin-
earity gives visually more accurate solutions than the Backward Euler discretization. Even with
a tolerance of εr = 10−3, all the methods for treating the nonlinearities in the Backward Euler
discretization gives graphs that cannot be distinguished. So for accuracy in this problem, the
time discretization is much more crucial than εr. Ideally, one should estimate the error in the
time discretization, as the solution progresses, and set εr accordingly.

10

1.9 Generalization to a general nonlinear ODE

Let us see how the various methods in the previous sections can be applied to the more generic
model

u′ = f(u, t), (9)

where f is a nonlinear function of u.

Explicit time discretization. Explicit ODE methods like the Forward Euler scheme, Runge-
Kutta methods, Adams-Bashforth methods all evaluate f at time levels where u is already
computed, so nonlinearities in f do not pose any difficulties.

Backward Euler discretization. Approximating u′ by a backward difference leads to a
Backward Euler scheme, which can be written as

F (un) = un −∆tf(un, tn)− un−1 = 0,

or alternatively

F (u) = u−∆tf(u, tn)− u1 = 0 .

A simple Picard iteration, not knowing anything about the nonlinear structure of f , must
approximate f(u, tn) by f(u−, tn):

F̂ (u) = u−∆tf(u−, tn)− u1 .

The iteration starts with u− = u1 and proceeds with repeating

u∗ = ∆tf(u−, tn) + u1, u = ωu∗ + (1− ω)u−, u− ← u,

until a stopping criterion is fulfilled.
Newton’s method requires the computation of the derivative

F ′(u) = 1−∆t
∂f

∂u
(u, tn) .

Starting with the solution at the previous time level, u− = u1, we can just use the standard
formula

u = u− − ω
F (u−)

F ′(u−)
= u−ω

u1 + ∆tf(u,tn)

1−∆t ∂∂uf(u,tn)
.

The geometric mean trick cannot be used unless we know that f has a special structure with
quadratic expressions in u.

Crank-Nicolson discretization. The standard Crank-Nicolson scheme with arithmetic mean
approximation of f takes the form

un+1 − un

∆t
=

1

2
(f(un+1, tn+1) + f(un, tn)) .

Introducing u for the unknown un+1 and u1 for un, we can write the scheme as a nonlinear
algebraic equation

11

F (u) = u− u1 −∆t
1

2
f(u, tn+1)−∆t

1

2
f(u1, tn) = 0 .

A Picard iteration scheme must in general employ the linearization,

F̂ (u) = u− u1 −∆t
1

2
f(u−, tn+1)−∆t

1

2
f(u1, tn),

while Newton’s method can apply the general formula, but we need to derive

F ′(u) = 1− 1

2
∆t

∂f

∂u
(u, tn+1) .

2 Systems of nonlinear algebraic equations

Implicit time discretization methods for a system of ODEs, or a PDE, lead to systems of nonlinear
algebraic equations, written compactly as

F (u) = 0,

where u is a vector of unknowns u = (u0, . . . , uN), and F is a vector function: F = (F0, . . . , FN).
Sometimes the equation system has a special structure because of the underlying problem, e.g.,

A(u)u = b(u),

with A(u) as an (N+1)×(N+1) matrix function of u and b as a vector function: b = (b0, . . . , bN).
We shall next explain how Picard iteration and Newton’s method can be applied to systems

like F (u) = 0 and A(u)u = b(u). The exposition has a focus on ideas and practical computations.
More theoretical considerations, including quite general results on convergence properties of these
methods, can be found in Kelley [1].

2.1 Picard iteration

We cannot apply Picard iteration to nonlinear equations unless there is some special structure.
For the commonly arising case A(u)u = b(u) we can linearize the product A(u)u to A(u−)u and
b(u) as b(u−). That is, we use the most previously computed approximation in A and b to arrive
at a linear system for u:

A(u−)u = b(u−) .

A relaxed iteration takes the form

A(u−)u∗ = b(u−), u = ωu∗ + (1− ω)u− .

In other words, we solve a system of nonlinear algebraic equations as a sequence of linear systems.

Algorithm for relaxed Picard iteration.

Given A(u)u = b(u) and an initial guess u−, iterate until convergence:

1. solve A(u−)u∗ = b(u−) with respect to u∗

2. u = ωu∗ + (1− ω)u−

3. u− ← u

12

2.2 Newton’s method

The natural starting point for Newton’s method is the general nonlinear vector equation F (u) = 0.
As for a scalar equation, the idea is to approximate F around a known value u− by a linear
function F̂ , calculated from the first two terms of a Taylor expansion of F . In the multi-variate
case these two terms become

F (u−) + J(u−) · (u− u−),

where J is the Jacobian of F , defined by

Ji,j =
∂Fi
∂uj

.

So, the original nonlinear system is approximated by

F̂ (u) = F (u−) + J(u−) · (u− u−) = 0,

which is linear in u and can be solved in a two-step procedure: first solve Jδu = −F (u−) with
respect to the vector δu and then update u = u− + δu. A relaxation parameter can easily be
incorporated:

u = ω(u− + δu) + (1− ω)u− = ω− + ωδu .

Algorithm for Newton’s method.

Given F (u) = 0 and an initial guess u−, iterate until convergence:

1. solve Jδu = −F (u−) with respect to δu

2. u = u− + ω)δu

3. u− ← u

For the special system with structure A(u)u = b(u),

Fi =
∑
k

Ai,k(u)uk − bi(u),

and

Ji,j =
∑
k

∂Ai,k
∂uj

uk +Ai,j −
∂bi
∂uj

. (10)

We realize that the Jacobian needed in Newton’s method consists of A(u−) as in the Picard
iteration plus two additional terms arising from the differentiation. Using the notation A′(u)
for ∂A/∂u (a quantity with three indices: ∂Ai,k/∂uj), and b′(u) for ∂b/∂u (a quantity with two
indices: ∂bi/∂uj), we can write the linear system to be solved as

(A+A′u+ b′)δu = −Au+ b,

13

or

(A(u−) +A′(u−)u− + b′(ui))δu = −A(u−)u− + b(u−) .

Rearranging the terms demonstrates the difference from the system solved in each Picard iteration:

A(u−)(u− + δu)− b(u−)︸ ︷︷ ︸
Picard system

+ γ(A′(u−)u− + b′(ui))δu = 0 .

Here we have inserted a parameter γ such that γ = 0 gives the Picard system and γ = 1 gives
the Newton system. Such a parameter can be handy in software to easily switch between the
methods.

2.3 Stopping criteria

Let || · || be the standard Eucledian vector norm. Four termination criteria are much in use:

• Absolute change in solution: ||u− u−|| ≤ εu

• Relative change in solution: ||u− u−|| ≤ εu||u0||, where u0 denotes the start value of u− in
the iteration

• Absolute residual: ||F (u)|| ≤ εr

• Relative residual: ||F (u)|| ≤ εr||F (u0)||

To prevent divergent iterations to run forever, one terminates the iterations when the current
number of iterations k exceeds a maximum value kmax.

The relative criteria are most used since they are not sensitive to the characteristic size of u.
Nevertheless, the relative criteria can be misleading when the initial start value for the iteration
is very close to the solution, since an unnecessary reduction in the error measure is enforced. In
such cases the absolute criteria work better. It is common to combine the absolute and relative
measures of the size of the residual, as in

||F (u)|| ≤ εrr||F (u0)||+ εra, (11)

where εrr is the tolerance in the relative criterion and εra is the tolerance in the absolute criterion.
With a very good initial guess for the iteration (typically the solution of a differential equation at
the previous time level), the term ||F (u0)|| is small and εra is the dominating tolerance. Otherwise,
εrr||F (u0)|| and the relative criterion dominates.

With the change in solution as criterion we can formulate and combined absolute and relative
measure of the change in the solution:

||δu|| ≤ εur||u0||+ εua, (12)

The ultimate termination criterion, combining the residual and the change in solution tests
with a test on the maximum number of iterations allow, can be expressed as

||F (u)|| ≤ εrr||F (u0)||+ εra or ||δu|| ≤ εur||u0||+ εua or k > kmax . (13)

14

2.4 Example: A nonlinear ODE model from epidemiology

The simplest model spreading of a disease, such as a flu, takes the form of a 2× 2 ODE system

S′ = −βSI, (14)

I ′ = βSI − νI, (15)

where S(t) is the number of people who can get ill (susceptibles) and I(t) is the number of people
who are ill (infected). The constants β > 0 and ν > 0 must be given along with initial conditions
S(0) and I(0).

Implicit time discretization. A Crank-Nicolson scheme leads to a 2× 2 system of nonlinear
algebraic equations in the unknowns Sn+1 and In+1:

Sn+1 − Sn

∆t
= −β[SI]n+ 1

2 ≈ −β
2

(SnIn + Sn+1In+1), (16)

In+1 − In

∆t
= β[SI]n+ 1

2 − νIn+ 1
2 ≈ β

2
(SnIn + Sn+1In+1)− ν

2
(In + In+1) . (17)

Introducing S for Sn+1, S1 for Sn, I for In+1, I1 for In, we can rewrite the system as

FS(S, I) = S − S1 +
1

2
∆tβ(S1I1 + SI) = 0, (18)

FI(S, I) = I − I1 −
1

2
∆tβ(S1I1 + SI)− 1

2
∆tν(I1 + I) = 0 . (19)

A Picard iteration. We assume that we have approximations S− and I− to S and I. A way
of linearizing the only nonlinear term SI is to write I−S in the FS = 0 equation and S−I in the
FI = 0 equation, which also decouples the equations. Solving the resulting linear equations with
respect to the unknowns S and I gives

S =
S1 − 1

2∆tβS1I1

1 + 1
2∆tβI−

,

I =
I1 + 1

2∆tβS1I1

1− 1
2∆tβS− + ν

.

The solutions S and I are stored in S− and I− and a new iteration is carried out.

Newton’s method. The nonlinear system (18)-(19) can be written as F (u) = 0 with F =
(FS , FI) and u = (S, I). The Jacobian becomes

J =

 ∂
∂SFS

∂
∂IFS

∂
∂SFI

∂
∂IFI

 =

 1 + 1
2∆tβI 1

2∆tβ

− 1
2∆tβS 1− 1

2∆tβI − 1
2∆tν

 .

The Newton system to be solved in each iteration is then

15

(
1 + 1

2∆tβI−
1
2∆tβS−

− 1
2∆tβS− 1− 1

2∆tβI− − 1
2∆tν

)(
δS
δI

)
=(

S− − S1 + 1
2∆tβ(S1I1 + S−I−)

I− − I1 − 1
2∆tβ(S1I1 + S−I−)− 1

2∆tν(I1 + I−)

)

Remark. For this particular system explicit time integration methods work very well. The 4-th
order Runge-Kutta method is an excellent balance between high accuracy, high efficiency, and
simplicity.

3 Linearization at the differential equation level

The attention is now turned to nonlinear partial differential equations (PDEs) and application of
the techniques explained for ODEs. The model problem is a nonlinear diffusion equation

∂u

∂t
= ∇ · (α(u)∇u) + f(u), x ∈ Ω, t ∈ (0, T], (20)

−α(u)
∂u

∂n
= g, x ∈ ∂ΩN , t ∈ (0, T], (21)

u = u0, x ∈ ∂ΩD, t ∈ (0, T] . (22)

Our aim is to discretize the problem in time and then present techniques for linearizing the
time-discrete PDE problem ”at the PDE level” such that we transform the nonlinear stationary
PDE problems at each time level into a sequence of linear PDE problems, which can be solved
using any method for linear PDEs. This strategy avoids the solution systems of nonlinear algebraic
equations. In Section 4 we shall take the opposite (and more common) approach: discretize
the nonlinear problem in time and space first, and then solve the resulting nonlinear algebraic
equations at each time level by the methods of Section 2.

3.1 Explicit time integration

The nonlinearities in the PDE are trivial to deal with if we choose an explicit time integration
method for (20), such as the Forward Euler method:

D+
t u = ∇ · (α(u)∇u) + f(u)]n,

which leads to a linear equation in the unknown un+1:

un+1 − un

∆t
= ∇ · (α(un)∇un) + f(un) .

3.2 Picard iteration

A Backward Euler scheme for (20) reads

D−t u = ∇ · (α(u)∇u) + f(u)]n .

Written out,

16

un − un−1

∆t
= ∇ · (α(un)∇un) + f(un) (23)

This is a nonlinear, stationary PDE for the unknown function un(x). We introduce a Picard
iteration with k as iteration counter. A typical linearization of the ∇·α(un)∇un term in iteration
k + 1 is to use the previously computed un,k approximation in the diffusion coefficient: α(un,k).
The nonlinear source term is treated similarly: f(un,k). The unknown function un,k+1 then fulfills
the linear PDE

un,k+1 − un−1

∆t
= ∇ · (α(un,k)∇un,k+1) + f(un,k) . (24)

The initial guess for the Picard iteration at this time level can be taken as the solution at the
previous time level: un,0 = un−1.

We can alternatively apply the notation where u corresponds to the unknown we want to
solve for, i.e., un,k+1 above, let u− be the most recently computed value, un,k above, and let u1

denote the unknown function at the previous time level, un−1 above. The PDE to be solved in a
Picard iteration then looks like

u− u1

∆t
= ∇ · (α(u−)∇u) + f(u−) . (25)

At the beginning of the iteration we start with the value from the previous time level: u− = u1.

3.3 Newton’s method

At time level n we have to solve the stationary PDE (23), this time with Newton’s method.
Normally, Newton’s method is defined for systems of algebraic equations, but the idea of the
method can be applied at the PDE level too.

Let un,k be an approximation to un. We seek a better approximation on the form

un = un,k + δu . (26)

The idea is to insert (26) in (23), Taylor expand the nonlinearities and only keep the terms that
are linear in δu. Then we can solve a linear PDE for the correction δu and use (26) to find a new
approximation un,k+1 = un,k + δu to un.

Inserting (26) in (23) gives

un,k + δu− un−1

∆t
= ∇ · (α(un,k + δu)∇(un,k + δu)) + f(un,k + δu) (27)

We can Taylor expand α(un,k + δu) and f(un,k + δu):

α(un,k + δu) = α(un,k) +
dα

du
(un,k)δu+O(δu2) ≈ α(un,k) + α′(un,k)δu,

f(un,k + δu) = f(un,k) +
df

du
(un,k)δu+O(δu2) ≈ f(un,k) + f ′(un,k)δu .

Inserting the linear approximations of α and f in (27) results in

17

un,k + δu− un−1

∆t
= ∇ · (α(un,k)∇un,k) + f(um,k)+

∇ · (α(un,k)∇δu) +∇ · (α′(un,k)δu∇un,k)+

∇ · (α′(un,k)δu∇δu) + f ′(un,k)δu (28)

The term α′(un,k)δu∇δu is O(δu2) and therefore omitted. Reorganizing the equation gives a
PDE for δu that we can write in short form as

δF (δu;un,k) = −F (un,k),

where

F (un,k) =
un,k − un−1

∆t
−∇ · (α(un,k)∇un,k) + f(un,k), (29)

δF (δu;un,k) = − 1

∆t
δu+∇ · (α(un,k)∇δu)+

∇ · (α′(un,k)δu∇un,k) + f ′(un,k)δu . (30)

Note that δF is a linear function of δu, and F contains only terms that are known, such that the
PDE for δu is indeed linear.

The form δF = −F resembles the Newton system Jδu = −F for systems of algebraic equations,
with δF as Jδu. The unknown vector in a linear system of algebraic equations enters the system
as a matrix-vector product (Jδu), while at the PDE level we have a linear differential operator
instead (δF).

We can rewrite the PDE for δu in a slightly different way too if we define un,k + δu as un,k+1.

un,k+1 − un−1

∆t
= ∇ · (α(un,k)∇un,k+1) + f(un,k)+

∇ · (α′(un,k)δu∇un,k) + f ′(un,k)δu . (31)

Note that the first line is the same PDE as arise in the Picard iteration, while the remaining
terms arise from the differentiations that are an inherent ingredient in Newton’s method.

For coding we want to introduce u− for un,k and u1 for un−1. The formulas for F and δF are
then

F (u−) =
u− − u1

∆t
−∇ · (α(u−)∇u−) + f(u−), (32)

δF (δu;u−) = − 1

∆t
δu+∇ · (α(u−)∇δu)+

∇ · (α′(u−)δu∇u−) + f ′(u−)δu . (33)

The form that orders the PDE as the Picard iteration terms plus the Newton method’s derivative
terms becomes

u− u1

∆t
= ∇ · (α(u−)∇u) + f(u−)+

∇ · (α′(u−)δu∇u−) + f ′(u−)δu . (34)

18

4 Discretization of nonlinear differential equations

Section 3 presents methods for linearizing time-discrete PDEs directly prior to discretization
in space. We can alternatively carry out the discretization in space and of the time-discrete
nonlinear PDE problem and get a system of nonlinear algebraic equations, which can be solved
by Picard iteration or Newton’s method as presented in Section 2. This latter approach will now
be described in detail.

We shall work with the 1D problem

− (α(u)u′)′ + au = f(u), x ∈ (0, L), α(u(0))u′(0) = C, u(L) = 0 . (35)

This problem is of the same nature as those arising from implicit time integration of a nonlinear
diffusion PDE as outlined in Section 3.2 (set a = 1/∆t and let f(u) incorporate the nonlinear
source term as well as known terms with the time-dependent unknown function at the previous
time level).

4.1 Finite difference discretizations

Discretization. The nonlinearity in the differential equation (35) poses no more difficulty than
a variable coefficient, as in (α(x)u′)′. We can therefore use a standard approach to discretizing
the Laplace term with a variable coefficient:

[−DxαDxu+ au = f]i .

Writing this out for a uniform mesh with points xi = i∆x, i = 0, . . . , Nx, leads to

− 1

∆x2

(
αi+ 1

2
(ui+1 − ui)− αi− 1

2
(ui − ui−1)

)
+ aui = f(ui) . (36)

This equation is valid at all the mesh points i = 0, 1, . . . , Nx− 1. At i = Nx we have the Dirichlet
condition ui = 0. The only difference from the case with (α(x)u′)′ and f(x) is that now α and f
are functions of u and not only on x: (α(u(x))u′)′ and f(u(x)).

The quantity αi+ 1
2
, evaluated between two mesh points, needs a comment. Since α depends

on u and u is only known at the mesh points, we need to express αi+ 1
2

in terms of ui and ui+1.
For this purpose we use an arithmetic mean, although a harmonic mean is also common in this
context if α features large jumps. There are two choices of arithmetic means:

αi+ 1
2
≈ α(

1

2
(ui + ui+1) = [α(ux)]i+

1
2 , (37)

αi+ 1
2
≈ 1

2
(α(ui) + α(ui+1)) = [α(u)

x
]i+

1
2 (38)

Equation (36) with the latter approximation then looks like

− 1

2∆x2
((α(ui) + α(ui+1))(ui+1 − ui)− (α(ui−1) + α(ui))(ui − ui−1))

+ aui = f(ui), (39)

or written more compactly,

[−Dxα
xDxu+ au = f]i .

19

At mesh point i = 0 we have the boundary condition α(u)u′ = C, which is discretized by

[α(u)D2xu = C]0,

meaning

α(u0)
u1 − u−1

2∆x
= C . (40)

The fictitious value u−1 can be eliminated with the aid of (39) for i = 0. Formally, (39) should
be solved with respect to ui−1 and that value (for i = 0) should be inserted in (40), but it is
algebraically much easier to do it the other way around. Alternatively, one can use a ghost
cell [−∆x, 0] and update the u−1 value in the ghost cell according to (40) after every Picard
or Newton iteration. Such an approach means that we use a known u−1 value in (39) from the
previous iteration.

Solution of algebraic equations. The nonlinear algebraic equations (39) are of the form
A(u)u = b(u) with

Ai,i =
1

2∆x2
(−α(ui−1) + 2α(ui)− α(ui+1)) + a,

Ai,i−1 = − 1

2∆x2
(α(ui−1) + α(ui)),

Ai,i+1 = − 1

2∆x2
(α(ui) + α(ui+1)),

bi = f(ui) .

The matrix A(u) is tridiagonal: Ai,j = 0 for j > 1 + 1 and j < i− 1. The obvious Picard iteration
scheme is to use previously computed values of ui in A(u) and b(u), as described more in detail
in Section 2.

Newton’s method requires computation of the Jacobian. Here it means that we need to
differentiate F (u) = A(u)u− b(u) with respect to u0, u1, . . . , uNx−1. Nonlinear equation number
i has the structure

Fi = Ai,i−1(ui−1, ui)ui−1 +Ai,i(ui−1, ui, ui+1)ui +Ai,i+1(ui, ui+1)ui+1 − bi(ui) .

The Jacobian becomes

20

Ji,i =
∂Fi
∂ui

=
∂Ai,i−1

∂ui
ui−1 +

∂Ai,i
∂ui

ui −
∂bi
∂ui

+Ai,i +
∂Ai,i+1

∂ui
ui+1 −

∂bi
∂ui

=
1

2∆x2
(−α′(ui)ui−1 + 2α′(ui)ui + (−α(ui−1) + 2α(ui)− α(ui+1)))+

a− 1

2∆x2
α′(ui)ui+1)− b′(ui),

Ji,i−1 =
∂Fi
∂ui−1

=
∂Ai,i−1

∂ui−1
ui−1 +Ai−1,i +

∂Ai,i
∂ui−1

ui −
∂bi
∂ui−1

=
1

2∆x2
(−α′(ui−1)ui−1 − (α(ui−1) + α(ui)) + α′(ui−1)ui),

Ji,i+1 =
∂Ai,i+1

∂ui−1
ui+1 +Ai+1,i +

∂Ai,i
∂ui+1

ui −
∂bi
∂ui+1

=
1

2∆x2
(−α′(ui+1)ui+1 − (α(ui) + α(ui+1)) + α′(ui+1)ui) . .

The explicit expression for nonlinear equation number i, Fi(u0, u1, . . .), arises from moving all
terms in (39) to the left-hand side. Then we have Ji,j and Fi (modulo the boundary conditions)
and can implement Newton’s method.

We have seen, and can see from the present example, that the linear system in Newton’s
method contains all the terms present in the system that arises in the Picard iteration method.
The extra terms in Newton’s method can be multiplied by a factor such that it is easy to program
one linear system and set this factor to 0 or 1 to generate the Picard or Newton system.

4.2 Finite element discretizations

For the finite element discretization we first need to derive the variational problem. Let V be
an appropriate function space with basis functions {ψi}i∈Is . Because of the Dirichlet condition
at x = L we require ψi(L) = 0, i ∈ Is. Using Galerkin’s method, we multiply the differential
equation by any v ∈ V and integrate terms with second-order derivatives by parts:∫ L

0

α(u)u′v′ dx+

∫ L

0

auv dx =

∫ L

0

f(u)v dx+ [α(u)u′v]L0 , ∀v ∈ V .

The Neumann condition at the boundary x = 0 is inserted in the boundary term:

[α(u)u′v]L0 = α(u(L))u′(L)v(L)− α(u(0))u′(0)v(0) = 0− Cv(0) = −Cv(0) .

The variational problem is then: find u ∈ V such that∫ L

0

α(u)u′v′ dx+

∫ L

0

auv dx =

∫ L

0

f(u)v dx− Cv(0), ∀v ∈ V . (41)

To derive the algebraic equations we also demand the above equations to hold for v = ψi, i ∈ Is,
and we set u =

∑
j∈Is cjψj . The result is

∑
j∈Is

(∫ L

0

α(
∑
k∈Is

ckψk)ψ′jψ
′
i dx

)
cj =

∫ L

0

f(
∑
k∈Is

ckψk)ψi dx− Cψi(0), i ∈ Is . (42)

21

Remark. Fundamental integration problem Methods that use the Galerkin or weighted residual
principle face a fundamental difficulty in nonlinear problems: how can we integrate a terms like∫ L

0
α(
∑
k ckψk)ψ′iψ

′
j dx and

∫ L
0
f(
∑
k ckψk)ψi dx when we do not know the ck coefficients in the

argument of the α function? We can resort to numerical integration, provided an approximate∑
k ckψk can be used for the argument u in f and α. If we want to derive the structure of the

nonlinear algebraic equations, we need to apply numerical integration based on the nodes only
and/or the group finite element method.

4.3 The group finite element method

Finite element notation. Let us simplify the model problem for a while and set a = 0, α = 1,
f(u) = u2, and have Dirichlet conditions at both ends such that we get a very simple nonlinear
problem −u′′ = u2. The variational form is then∫ L

0

u′v′ dx =

∫ L

0

u2v dx, ∀v ∈ V .

The term with u′v′ is well known so the only new feature is the term
∫
u2v dx.

Introduction of finite element basis functions ϕi means setting

ψi = ϕν(i), i ∈ Is,

where degree of freedom number ν(j) in the mesh corresponds to unknown number j. When the
degrees of freedom are just the function values at nodes, we have that cj = u(xν(j)) = uν(j), i.e.,
the value of u at node number ν(j). The finite element expansion for u is now

u =
∑
j∈Ib

Ujϕj +
∑
j∈Is

ϕν(j)uν(j),

with the Uj quantities being prescribed Dirichlet values at some nodes with numbers in the
index Ib. Instead of the ν(j) indices in the sum

∑
j∈Is ϕν(j)uν(j), we just write

∑
j ϕjuj . This

is possible by saying that j runs over a transformed index set: {ν(0), ν(1), . . . , ν(N)}. In the
following we drop the boundary term

∑
j Ujϕj and write u =

∑
j ϕjuj . The replacement of cj by

uj as explained is motivated by simpler interpretation of the nonlinear algebraic equations as a
finite difference scheme.

Integrating nonlinear functions. Consider the term
∫
u2v dx in the variational formulation

with v = ϕi and u =
∑
k ϕkuk: ∫ L

0

(
∑
k

ukϕk)2ϕi dx .

Evaluating this integral for P1 elements (see Problem 9) results in the expression

h

12
(u2
i−1 + 2ui(ui−1 + ui+1) + 6u2

i + u2
i+1,

to be compared with the simple value u2
i that would arise in a finite difference discretization.

More complicated f(u) functions give rise to much more lengthy expressions, if it is possible to
carry out the integral symbolically.

22

Finite element approximation of functions of u. Since we already expand u as
∑
j ϕjuj

we may use the same approximation for nonlinearities. That is, any function can be expanded as
a sum of basis functions times the function values. In particular,

f(u) ≈
∑
j∈Ib

ϕjf(uj) +
∑
j

ψj(x)f(uj),

where the first sum contain f values at the boundary where u has Dirichlet conditions and the
other sum is over the node values j where u is unknown. However, for f there is no reason two
have two summations as we do not need to distinguish between the nodes where u are known or
unknown. Therefore, we can collapse the two sums into one (over all nodes, j = 0, . . . , Nn) and
write

f(u) ≈
Nn∑
j=0

ϕj(x)f(uj) . (43)

This approximation is known as the group finite element method or the product approximation
technique.

The principal advantage of the group finite element method is for deriving the symbolic form
of difference equations in nonlinear problems. The symbolic form is useful for comparing finite
element and finite difference equations of nonlinear differential equation problems. Computer
programs will always integrate

∫
f(u)ϕi dx numerically by using an existing approximation of u

in f(u) such that the integrand can be sampled at any spatial point.

Application. Let use the group finite element method to derive the terms in the difference
equation corresponding to f(u) in the differential equation. We have∫ L

0

f(u)ϕi dx ≈
∫ L

0

(
∑
j

ϕjf(uj))ϕi dx =
∑
j

(∫ L

0

ϕiϕj dx

)
f(uj) .

We recognize this expression as the mass matrix M , arising from
∫
ϕiϕj dx, times the vector

f = (f(u0), f(u1), . . . ,): Mf . The associated terms in the difference equations are

h

6
(f(ui−1) + 4f(ui) + f(ui+1)) .

Occasionally, we want to interpret this expression in terms of finite differences and then a rewrite
of this expression is convenient:

h

6
(f(ui−1) + 4f(ui) + f(ui+1)) = h[f(u)− h2

6
DxDxf(u)]i .

We may lump the mass matrix through integration with the Trapezoidal rule. In that case the
f(u) term in the differential equation gives rise to a single term hf(ui), just as in the finite
difference method.

4.4 Numerical integration of nonlinear terms

Let us reconsider a term
∫
f(u)v dx as treated in the previous section, but now we want to

integrate this term numerically. Such an approach can lead to easy-to-interpret formulas if we
apply a numerical integration rule that samples the integrand at the node points.

The term in question takes the form

23

∫ L

0

f(
∑
k

ukϕk)ϕi dx .

Evaluation of the integrand at a node x` leads to a collapse of the sum
∑
k ukϕk to one term

because ∑
k

ukϕk(x`) = u` .

f(
∑
k

uk ϕk(x`)︸ ︷︷ ︸
δk`

)ϕi(x`)︸ ︷︷ ︸
δi`

= f(u`)δi`,

where we have used the Kronecker delta δij = 0 if i 6= j and δij = 1 if i = j.
Considering the Trapezoidal rule for integration, we have

∫ L

0

f(
∑
k

ukϕk)(x)ϕi(x) dx ≈ h
Nn∑
`=0

f(u`)δi` − C = hf(ui) .

The term C contains the evaluations of the integrand at the ends with weight 1
2 , needed to make

a true Trapezoidal rule. The answer hf(ui) must therefore be multiplied by 1
2 if i = 0 or i = Nn.

(C = h
2 f(u0)ϕi(0) + h

2 f(uNn
)ϕi(L).)

One can easily use the Trapezoidal rule on the reference cell and assemble the contributions.
It is a bit more work in this context, but working on the reference cell is safer as that approach is
guaranteed to handle discontinuous derivatives of finite element functions correctly.

The conclusion is that it suffices to use the Trapezoidal rule if one wants to derive the
difference equations in the finite element method and make them similar to those arising in the
finite difference method. The Trapezoidal rule has sufficient accuracy for P1 elements, but for P2
elements one should turn to Simpson’s rule.

4.5 Finite element discretization of a variable coefficient Laplace term

Turning back to the model problem (35), it remains to calculate the contribution of the (αu′)′ and
boundary terms to the difference equations. The integral in the variational form corresponding to
(αu′)′ is ∫ L

0

α(
∑
k

ckψk)ψ′iψ
′
j dx .

Numerical integration utilizing a value of
∑
k ckψk from a previous iteration must in general be

used to compute the integral. Now our aim is to integrate symbolically, as much as we can, to
obtain some insight into how the finite element method approximates this term.

To be able to derive symbolic expressions, we either turn to the group finite element method
or numerical integration in the node points. Finite element basis functions ϕi are used, we set
α(u) ≈

∑
k α(uk)ϕk, and then we write∫ L

0

α(
∑
k

ckϕk)ϕ′iϕ
′
j dx ≈

∑
k

(

∫ L

0

ϕkϕ
′
iϕ
′
j dx︸ ︷︷ ︸

Li,j,k

)α(uk) =
∑
k

Li,j,kα(uk) .

24

Further calculations are now easiest to carry out in the reference cell. With P1 elements we
can compute Li,j,k for the two k values that are relevant on the reference cell. Turning to local
indices, one gets

L
(e)
r,s,t =

1

2h

(
1 −1
−1 1

)
, t = 0, 1,

where r, s, t = 0, 1 are indices over local degrees of freedom in the reference cell (i = q(e, r),

j = q(e, s), and k = q(e, t)). The sum
∑
k Li,j,kα(uk) at the cell level becomes

∑1
t=0 L

(e)
r,s,tα(ũt),

where ũt is u(xq(e,t)), i.e., the value of u at local node number t in cell number e. The element
matrix becomes

1

2
(α(ũ0) + α(ũ1))

1

h

(
1 −1
−1 1

)
. (44)

As usual, we employ a left-to-right numbering of cells and nodes. Row number i in the global
matrix gets contributions from the first row of the element matrix in cell i − 1 and the last
row of the element matrix in cell i. In cell number i− 1 the sum α(ũ0) + α(ũ1) corresponds to
α(ui−1) + α(ui). The same becomes α(ui) + α(ui+1) in cell number i. We can with this insight
assemble the contributions to row number i in the global matrix:

1

2h
(−(α(ui−1) + α(ui)), α(ui−1) + 2α(ui) + α(ui+1), α(ui) + α(ui+1)) .

Multiplying by the vector of unknowns ui results in

− 1

h
(
1

2
(α(ui) + α(ui+1))(ui+1 − ui)−

1

2
(α(ui−1) + α(ui))(ui − ui−1)), (45)

which is nothing but the standard finite difference discretization of −(α(u)u′)′ with an arithmetic
mean of α(u) (and a factor h because of the integration in the finite element method).

Instead of using the group finite element method and exact integration we can turn to the

Trapezoidal rule for computing
∫ L

0
α(
∑
k ukϕk)ϕ′iϕ

′
j dx, again at the cell level since that is most

convenient:

∫ 1

−1

α(

1∑
t=0

ũtϕ̃t)
2

h

dϕ̃r
dX

2

h

dϕ̃s
dX

h

2
dX =

1

2h
(−1)r(−1)s

∫ 1

−1

α(

1∑
t=0

utϕ̃t(X))dX

≈ 1

2h
(−1)r(−1)sα(

1∑
t=0

ϕ̃t(−1)ũt) + α(

1∑
t=0

ϕ̃t(1)ũt) =
1

2h
(−1)r(−1)s(α(ũ0) + α(ũ1)) . (46)

The element matrix in (46) is identical to the one in (44), showing that the group finite element
method and Trapezoidal integration are equivalent with a standard finite discretization of a
nonlinear Laplace term (α(u)u′)′ using an arithmetic mean for α: [DxxDxu]i.

We might comment on integration in the physical coordinate system too. The common
Trapezoidal rule in Section 4.4 cannot be used to integrate derivatives like ϕ′i, because the formula
is derived under the assumption of a continuous integrand. One must instead use the more basic
version of the Trapezoidal rule where all the trapezoids are summed up. This is straightforward,
but I think it is even more straightforward to apply the Trapezoidal rule on the reference cell and
assemble the contributions.

The term
∫
auv dx in the variational form is linear and gives these terms in the algebraic

equations:

25

ah

6
(ui−1 + 4ui + ui+1) = ah[u− h2

6
DxDxu]i .

The final term in the variational form is the Neumann condition at the boundary: Cv(0) = Cϕi(0).
With a left-to-right numbering only i = 0 will give a contribution Cv(0) = Cδi0 (since ϕi(0) 6= 0
only for i = 0).

Summary.

For the equation

−(α(u)u′)′ + au = f(u),

P1 finite elements results in difference equations where

• the term −(α(u)u′)′ becomes −h[Dxα(u)
x
Dxu]i if the group finite element method or

Trapezoidal integration is applied,

• f(u) becomes hf(ui) with Trapezoidal integration or the ”mass matrix” representation
h[f(u)− h

6DxDxf(u)]i if computed by a group finite element method,

• au leads to the ”mass matrix” form ah[u− h
6DxDxu]i.

As we now have explicit expressions for the nonlinear difference equations also in the finite
element method, a Picard or Newton method can be defined as shown for the finite difference
method. Nevertheless, the general situation is that we have not assembled finite difference-style
equations by hand and the linear system in the Picard or Newton method must therefore be
defined directly through the variational form, as shown next.

4.6 Picard iteration defined from the variational form

We address again the problem (35) with the corresponding variational form (41). Our aim is to
define a Picard iteration based on this variational form without any attempt to compute integrals
symbolically as in the previous three sections. The idea in Picard iteration is to use a previously
computed u value in the nonlinear functions α(u) and f(u). Let u− be the available approximation
to u from the previous iteration. The linearized variational form for Picard iteration is then∫ L

0

(α(u−)u′v′ + auv) dx =

∫ L

0

f(u−)v dx− Cv(0), ∀v ∈ V . (47)

This is a linear problem a(u, v) = L(v) with bilinear and linear forms

a(u, v) =

∫ L

0

(α(u−)u′v′ + auv) dx, L(v) =

∫ L

0

f(u−)v dx− Cv(0) .

The associated linear system is computed the standard way. Technically, we are back to solving
−(α(x)u′)′ + au = f(x).

4.7 Newton’s method defined from the variational form

Application of Newton’s method to the nonlinear variational form (41) arising from the problem
(35) requires identification of the nonlinear algebraic equations Fi(c0, . . . , cN) = 0, i ∈ Is, and
the Jacobian Ji,j = ∂Fi/∂cj for i, j ∈ Is.

26

The equations Fi = 0 follows from the variational form∫ L

0

(α(u)u′v′ + auv) dx =

∫ L

0

f(u)v dx− Cv(0), ∀v ∈ V,

by choosing v = ψi, i ∈ Is, and setting u =
∑
j∈Is cjψj , maybe with a boundary function to

incorporate Dirichlet conditions.
With v = ψi we have

Fi =

∫ L

0

(α(u)u′ψ′i + auψi − f(u)ψi) dx+ Cψi(0) = 0, i ∈ Is . (48)

In the differentiations leading to the Jacobian we will frequently use the results

∂u

∂cj
=

∂

∂cj

∑
k

ckψk = ψj ,
∂u′

∂cj
=

∂

∂cj

∑
k

ckψ
′
k = ψ′j .

The derivation of the Jacobian goes as

Ji,j =
∂Fi
∂cj

=

∫ L

0

∂

∂cj
(α(u)u′ψ′i + auψi − f(u)ψi) dx

=

∫ L

0

((α′(u)
∂u

∂cj
u′ + α(u)

∂u′

∂cj
)ψ′i + a

∂u

∂cj
ψi − f ′(u)

∂u

∂cj
ψi) dx

=

∫ L

0

((α′(u)ψju
′ + α(u)ψ′jψ

′
i + aψjψi − f ′(u)ψjψi) dx

=

∫ L

0

(α′(u)u′ψ′iψj + α(u)ψ′iψ
′
j + (a− f(u))ψiψj) dx (49)

When calculating the right-hand side vector Fi and the coefficient matrix Ji,j in the linear
system to be solved in each Newton iteration, one must use a previously computed u, denoted by
u−, for the u in (48) and (51). With this notation we have

Fi =

∫ L

0

(
α(u−)u′−ψ

′
i + (a− f(u−))ψi

)
dx− Cψi(0), i ∈ Is, (50)

Ji,j =

∫ L

0

(α′(u−)u′−ψ
′
iψj + α(u−)ψ′iψ

′
j + (a− f(u−))ψiψj) dx, i, j ∈ Is . (51)

These expressions can be used for any basis {ψi}i∈Is . Choosing finite element functions for ψi,
one will normally want to compute the integral contribution cell by cell, working in a reference
cell. To this end, we restrict the integration to one cell and transform the cell to [−1, 1]. The
formulas (50) and (51) then change to

F̃ (e)
r =

∫ 1

−1

(
α(ũ−)ũ′−ϕ̃

′
r + (a− f(ũ−))ϕ̃r

)
det J dX − Cϕ̃r(0), (52)

J̃ (e)
r,s =

∫ 1

−1

(α′(ũ−)ũ′−ϕ̃
′
rϕ̃s + α(ũ−)ϕ̃′rϕ̃

′
s + (a− f(ũ−))ϕ̃rϕ̃s) detJ dX, (53)

27

with r, s ∈ Id runs over the local degrees of freedom. In the above formulas, ũ−(X) =
∑
r c̃−rϕ̃r(X)

is the finite element expansion of u− over the current cell.
Many finite element programs require the user to provide Fi and Ji,j . Some programs, like

FEniCS2, are capable of automatically deriving Ji,j if Fi is specified.

Dirichlet conditions. Incorporation of the Dirichlet values by assembling contributions from
all degrees of freedom and then modifying the linear system can be obviously be applied to Picard
iteration as that method involves a standard linear system. In the Newton system, however, the
unknown is a correction δu to the solution. Dirichlet conditions are implemented by inserting
them in the initial guess u− for the Newton iteration and implementing δui = 0 for all known
degrees of freedom. The manipulation of the linear system follows exactly the algorithm in the
linear problems, the only difference being that the known values are zero.

5 Multi-dimensional PDE problems

5.1 Finite element discretization

The derivation of Fi and Ji,j in the 1D model problem is easily generalized to multi-dimensional
problems. For example, Backward Euler discretization of the PDE

ut = ∇ · (α(u)∇u) + f(u), (54)

gives the nonlinear time-discrete PDEs

un −∆t∇ · (α(un)∇un) + f(un) = un−1,

or with un simply as u and un−1 as u1,

u−∆t∇ · (α(un)∇u)−∆tf(u) = u1 .

The variational form, assuming homogeneous Neumann conditions for simplicity, becomes∫
Ω

(uv + ∆tα(u)∇u · ∇v −∆tf(u)v − u1v) dx . (55)

The nonlinear algebraic equations follow from setting v = ψi and using the representation
u =

∑
k ckψk, which we just write as

Fi =

∫
Ω

(uψi + ∆tα(u)∇u · ∇ψi −∆tf(u)ψi − u1ψi) dx . (56)

Picard iteration needs a linearization where we use the most recent approximation u− to u in α
and f :

Fi ≈ F̂i =

∫
Ω

(uψi + ∆tα(u−)∇u · ∇ψi −∆tf(u−)ψi − u1ψi) dx . (57)

The equations F̂i = 0 are now linear and we can easily derive a linear system for the unknown
coefficients {ci}i∈Is by inserting u =

∑
j cjψj .

In Newton’s method we need to evaluate Fi with the known value u− for u:

2http://fenicsproject.org

28

http://fenicsproject.org

Fi ≈ F̂i =

∫
Ω

(u−ψi + ∆tα(u−)∇u− · ∇ψi −∆tf(u−)ψi − u1ψi) dx . (58)

The Jacobian is obtained by differentiating (56) and using ∂u/∂cj = ψj :

Ji,j =
∂Fi
∂cj

=

∫
Ω

(ψjψi + ∆tα′(u)ψj∇u · ∇ψi + ∆tα(u)∇ψj · ∇ψi−

∆tf ′(u)ψjψi) dx . (59)

The evaluation of Ji,j as the coefficient matrix in the linear system in Newton’s method applies
the known approximation u− for u:

Ji,j =

∫
Ω

(ψjψi + ∆tα′(u−)ψj∇u− · ∇ψi + ∆tα(u−)∇ψj · ∇ψi−

∆tf ′(u−)ψjψi) dx . (60)

Hopefully, these example also show how convenient the notation with u and u− is: the unknown
to be computed is always u and linearization by inserting known (previously computed) values
is a matter of adding an underscore. One can take great advantage of this quick notation in
software [2].

Non-homogeneous Neumann conditions. A natural physical flux condition for the PDE
(54) takes the form of a non-homogeneous Neumann condition

− α(u)
∂u

∂n
= g, x ∈ ∂ΩN , (61)

where g is a prescribed function and ∂ΩN is a part of the boundary of the domain Ω. From
integrating

∫
Ω
∇ · (α∇u) dx by parts, we get a boundary term∫

∂ΩN

α(u)
∂u

∂u
v ds . (62)

Inserting the condition (61) into this term results in an integral over prescribed values: −
∫
∂ΩN

gv ds.

The nonlinearity in the α(u) coefficient condition (61) therefore does not contribute with a non-
linearity in the variational form.

Robin conditions. Heat conduction problems often apply a kind of Newton’s cooling law, also
known as a Robin condition, at the boundary:

− α(u)
∂u

∂u
= hT (u)(u− Ts(t)), x ∈ ∂ΩR, (63)

where hT (u) is a heat transfer coefficient between the body (Ω) and its surroundings, Ts is the
temperature of the surroundings, and ∂ΩR is a part of the boundary where this Robin condition
applies. The boundary integral (62) now becomes∫

∂ΩR

hT (u)(u− Ts(T))v ds,

29

by replacing α(u)∂u/∂u by hT (u − Ts). Often, hT (u) can be taken as constant, and then the
boundary term is linear in u, otherwise it is nonlinear and contributes to the Jacobian in a
Newton method. Linearization in a Picard method will typically use a known value in hT , but
keep the u in u− Ts as unknown: hT (u−)(u− Ts(t)).

5.2 Finite difference discretization

A typical diffusion equation

ut = ∇ · (α(u)∇u) + f(u),

can be discretized by (e.g.) a Backward Euler scheme, which in 2D can be written

[D−t u = Dxα
xDxu+Dyα

yDyu+ f(u)]ni,j .

We do not dive into details of boundary conditions now. Dirichlet and Neumann conditions are
handled as in linear diffusion problems.

Writing the scheme out, putting the unknown values on the left-hand side and known values
on the right-hand side, and introducing ∆x = ∆y = h to save some writing, one gets

uni,j −
∆t

h2
(
1

2
(α(uni,j) + α(uni+1,j))(u

n
i+1,j − uni,j)

− 1

2
(α(uni−1,j) + α(uni,j))(u

n
i,j − uni−1,j)

+
1

2
(α(uni,j) + α(uni,j+1))(uni,j+1 − uni,j)

− 1

2
(α(uni,j−1) + α(uni,j))(u

n
i,j − uni−1,j−1))−∆tf(uni,j) = un−1

i,j

This defines a nonlinear algebraic system A(u)u = b(u). A Picard iteration applies old values u−
in α and f , or equivalently, old values for u in A(u) and b(u). The result is a linear system of the
same type as those arising from ut = ∇ · (α(x)∇u) + f(x, t).

Newton’s method is as usual more involved. We first define the nonlinear algebraic equations
to be solved, drop the superscript n, and introduce u1 for un−1:

Fi,j = uni,j −
∆t

h2
(

1

2
(α(uni,j) + α(uni+1,j))(u

n
i+1,j − uni,j)−

1

2
(α(uni−1,j) + α(uni,j))(u

n
i,j − uni−1,j)+

1

2
(α(uni,j) + α(uni,j+1))(uni,j+1 − uni,j)−

1

2
(α(uni,j−1) + α(uni,j))(u

n
i,j − uni−1,j−1))−

∆tf(uni,j)− un−1
i,j = 0 .

It is convenient to work with two indices i and j in 2D finite difference discretizations, but it
complicates the derivation of the Jacobian, which then gets four indices. The left-hand expression
of an equation Fi,j = 0 is to be differentiated with respect to each of the unknowns ur,s (short
for unr,s), r ∈ Ix, s ∈ Iy,

Ji,j,r,s =
∂Fi,j
∂ur,s

.

30

Given i and j, only a few r and s indices give nonzero contribution since Fi,j contains ui±1,j ,
ui,j±1, and ui,j . Therefore, Ji,j,r,s is very sparse and we can set up the left-hand side of the
Newton system as

Ji,j,r,sδur,s = Ji,j,i,jδui,j + Ji,j,i−1,jδui−1,j + Ji,j,i+1,jδui+1,j + Ji,j,i,j−1δui,j−1

+ Ji,j,i,j+1δui,j+1

The specific derivatives become

Ji,j,i−1,j =
∂Fi,j
∂ui−1,j

=
∆t

h2
(α′(ui−1,j)(ui,j − ui−1,j) + α(ui−1,j)(−1))

Ji,j,i+1,j =
∂Fi,j
∂ui+1,j

=
∆t

h2
(−α′(ui+1,j)(ui+1,j − ui,j)− α(ui−1,j))

Ji,j,i,j−1 =
∂Fi,j
∂ui,j−1

=
∆t

h2
(α′(ui,j−1)(ui,j − ui,j−1) + α(ui,j−1)(−1))

Ji,j,i,j+1 =
∂Fi,j
∂ui,j+1

=
∆t

h2
(−α′(ui,j+1)(ui,j+1 − ui,j)− α(ui,j−1))

The Ji,j,i,j entry has a few more terms. Inserting u− for u in the J formula and then forming
Jδu = −F gives the linear system to be solved in each Newton iteration.

5.3 Continuation methods

Picard iteration or Newton’s method may diverge when solving PDEs with severe nonlinearities.
Relaxation with ω < 1 may help, but in highly nonlinear problems it can be necessary to
introduce a continuation parameter Λ in the problem: Λ = 0 gives a version of the problem
that is easy to solve, while Λ = 1 is the target problem. The idea is then to increase Λ in steps,
Λ0 = 0,Λ1 < · · · < Λn = 1, and use the solution from the problem with Λi−1 as initial guess for
the iterations in the problem corresponding to Λi.

The continuation method is easiest to understand through an example. Suppose we intend to
solve

−∇ · (||∇u||q∇u) = f,

which is an equation modeling the flow of a non-Newtonian fluid through i channel or pipe.
For q = 0 we have the Poisson equation (corresponding to a Newtonian fluid) and the problem
is linear. A typical value for pseudo-plastic fluids may be qn = −0.8. We can introduce the
continuation parameter Λ ∈ [0, 1] such that q = qnΛ. Let {Λ`}n`=0 be the sequence of Λ values in
[0, 1], with corresponding q values {q`}n`=0. We can then solve a sequence of problems

31

−∇ ·
(
||∇u||q`∇u

`
)

= f, ` = 0, . . . , n,

where the initial guess for iterating on u` is the previously computed solution u`−1. If a particular
Λ` leads to convergence problems, one may try a smaller increase in Λ: Λ∗ = 1

2 (Λ`−1 + Λ`), and
repeat halving the step in Λ until convergence is reestablished.

6 Exercises

Problem 1: Determine if equations are nonlinear or not

Classify each term in the following equations as linear or nonlinear. Assume that a and b are
unknown numbers and that u and v are unknown functions. All other symbols are known
quantities.

1. b2 = 1

2. a+ b = 1, a− 2b = 0

3. mu′′ + β|u′|u′ + cu = F (t)

4. ut = αuxx

5. utt = c2∇2u

6. ut = ∇ · (α(u)∇u) + f(x, y)

7. ut + f(u)x = 0

8. ut + u · ∇u = −∇p+ r∇2u, ∇ · u = 0 (u is a vector field)

9. u′ = f(u, t)

10. ∇2u = λeu

Problem 2: Linearize a nonlinear vibration ODE

Consider a nonlinear vibration problem

mu′′ + bu′|u′|+ s(u) = F (t), (64)

where m > 0 is a constant, b ≥ 0 is a constant, s(u) a possibly nonlinear function of u, and F (t)
is a prescribed function. Such models arise from Newton’s second law of motion in mechanical
vibration problems where s(u) is a spring or restoring force, mu′′ is mass times acceleration, and
bu′|u′| models water or air drag.

Approximate u′′ by a centered finite difference DtDtu, and use a centered difference Dtu for
u′ as well. Observe then that s(u) does not contribute to making the resulting algebraic equation
at a time level nonlinear. Use a geometric mean to linearize the quadratic nonlinearity arising
from the term bu′|u′|.

32

Exercise 3: Find the sparsity of the Jacobian

Consider a typical nonlinear Laplace term like ∇·α(u)∇u discretized by centered finite differences.
Explain why the Jacobian corresponding to this term has the same sparsity pattern as the matrix
associated with the corresponding linear term α∇2u.

Hint. Set up the unknowns that enter the difference stencil and find the sparsity of the Jacobian
that arise from the stencil.

Filename: nonlin_sparsity_Jacobian.pdf.

Exercise 4: Newton’s method for linear problems

Suppose we have a linear system F (u) = Au− b = 0. Apply Newton’s method to this system,
and show that the method converges in one iteration. Filename: nonlin_Newton_linear.pdf.

Exercise 5: Differentiate a highly nonlinear term

The operator ∇ · (α(u)∇u) with α(u) = ||∇u||q appears in several physical problems, especially
flow of Non-Newtonian fluids. In a Newton method one has to carry out the differentiation
∂α(u)/∂cj , for u =

∑
k ckψk. Show that

∂

∂uj
||∇u||q = q||∇u||q−2∇u · ∇ψj .

Filename: nonlin_differentiate.pdf.

Problem 6: Discretize a 1D problem with a nonlinear coefficient

We consider the problem

((1 + u2)u′)′ = 1, x ∈ (0, 1), u(0) = u(1) = 0 . (65)

a) Discretize (65) by a centered finite difference method on a uniform mesh.

b) Discretize (65) by a finite element method with P1 of equal length. Use the Trapezoidal
method to compute all integrals. Set up the resulting matrix system.

Filename: nonlin_1D_coeff_discretize.pdf.

Problem 7: Linearize a 1D problem with a nonlinear coefficient

We have a two-point boundary value problem

((1 + u2)u′)′ = 1, x ∈ (0, 1), u(0) = u(1) = 0 . (66)

a) Construct a Picard iteration method for (66) without discretizing in space.

b) Apply Newton’s method to (66) without discretizing in space.

c) Discretize (66) by a centered finite difference scheme. Construct a Picard method for the
resulting system of nonlinear algebraic equations.

33

d) Discretize (66) by a centered finite difference scheme. Define the system of nonlinear algebraic
equations, calculate the Jacobian, and set up Newton’s method for solving the system.

Filename: nonlin_1D_coeff_linearize.pdf.

Problem 8: Finite differences for the 1D Bratu problem

We address the so-called Bratu problem

u′′ + λeu = 0, x ∈ (0, 1), u(0) = u(1) = 0, (67)

where λ is a given parameter and u is a function of x. This is a widely used model problem for
studying numerical methods for nonlinear differential equations. The problem (67) has an exact
solution

u(x) = −2 ln

(
cosh((x− 1

2)θ/2)

cosh(θ/4)

)
,

where θ solves

θ =
√

2λ cosh(θ/4) .

There are two solutions of (67) for 0 < λ < λc and no solution for λ > λc. For λ = λc there is
one unique solution. The critical value λc solves

1 =
√

2λc
1

4
sinh(θ(λc)/4) .

A numerical value is λc = 3.513830719.

a) Discretize (67) by a centered finite difference method.

b) Set up the nonlinear equations Fi(u0, u1, . . . , uNx
) = 0 from a). Calculate the associated

Jacobian.
Filename: nonlin_1D_Bratu_fd.pdf.

Problem 9: Integrate functions of finite element expansions

We shall investigate integrals on the form∫ L

0

f(
∑
k

ukϕk(x))ϕi(x) dx, (68)

where ϕi(x) are P1 finite element basis functions and uk are unknown coefficients, more precisely
the values of the unknown function u at nodes xk. We introduce a node numbering that goes
from left to right and also that all cells have the same length h. Given i, the integral only gets
contributions from [xi−1, xi+1]. On this interval ϕk(x) = 0 for k < i− 1 and k > i+ 1, so only
three basis functions will contribute:∑

k

ukϕk(x) = ui−1ϕi−1(x) + uiϕi(x) + ui+1ϕi+1(x) .

The integral (68) now takes the simplified form

34

∫ xi+1

xi−1

f(ui−1ϕi−1(x) + uiϕi(x) + ui+1ϕi+1(x))ϕi(x) dx .

Split this integral in two integrals over cell L (left), [xi−1, xi], and cell R (right), [xi, xi+1]. Over
cell L, u simplifies to ui−1ϕi−1 + uiϕi (since ϕi+1 = 0 on this cell), and over cell R, u simplifies
to uiϕi + ui+1ϕi+1. Make a sympy program that can compute the integral and write it out as a
difference equation. Give the f(u) formula on the command line. Try out f(u) = u2, sinu, expu.

Hint. Introduce symbols u_i, u_im1, and u_ip1 for ui, ui−1, and ui+1, respectively, and similar
symbols for xi, xi−1, and xi+1. Find formulas for the basis functions on each of the two cells, make
expressions for u on the two cells, integrate over each cell, expand the answer and simplify. You
can make LATEX code and render it via http://latex.codecogs.com. Here are some appropriate
Python statements for the latter purpose:

from sympy import *
...
expr_i holdes the integral as a sympy expression
latex_code = latex(expr_i, mode=’plain’)
Replace u_im1 sympy symbol name by latex symbol u_{i-1}
latex_code = latex_code.replace(’im1’, ’{i-1}’)
Replace u_ip1 sympy symbol name by latex symbol u_{i+1}
latex_code = latex_code.replace(’ip1’, ’{i+1}’)
Escape (quote) latex_code so it can be sent as HTML text
import cgi
html_code = cgi.escape(latex_code)
Make a file with HTML code for displaying the LaTeX formula
f = open(’tmp.html’, ’w’)
Include an image that can be clicked on to yield a new
page with an interactive editor and display area where the
formula can be further edited
text = """
<a href="http://www.codecogs.com/eqnedit.php?latex=%(html_code)s"
target="_blank">
<img src="http://latex.codecogs.com/gif.latex?%(html_code)s"
title="%(latex_code)s"/>

""" % vars()
f.write(text)
f.close()

The formula is displayed by loading tmp.html into a web browser.

Filename: fu_fem_int.py.

Problem 10: Finite elements for the 1D Bratu problem

We address the same 1D Bratu problem as described in Problem 8.

a) Discretize (10) by a finite element method using a uniform mesh with P1 elements. Use a
group finite element method for the eu term.

b) Set up the nonlinear equations Fi(u0, u1, . . . , uNx) = 0 from a). Calculate the associated
Jacobian.

Filename: nonlin_1D_Bratu_fe.pdf.

35

http://latex.codecogs.com

Problem 11: Derive the Newton system from a variational form

We study the multi-dimensional heat conduction PDE

%c(T)Tt = ∇ · (k(T)∇T)

in a spatial domain Ω, with a nonlinear Robin boundary condition

−k(T)
∂T

∂n
= h(T)(T − Ts(t)),

at the boundary ∂Ω. The primary unknown is the temperature T , % is the density of the solid
material, c(T) is the heat capacity, k(T) is the heat conduction, h(T) is a heat transfer coefficient,
and Ts(T) is a possibly time-dependent temperature of the surroundings.

a) Use a Backward Euler or Crank-Nicolson time discretization and derive the variational form
for the spatial problem to be solved at each time level.

b) Define a Picard iteration method from the variational form at a time level.

c) Derive expressions for the matrix and the right-hand side of the equation system that arises
from applying Newton’s method to the variational form at a time level.

d) Apply the Backward Euler or Crank-Nicolson scheme in time first. Derive a Newton method
at the PDE level. Make a variational form of the resulting PDE at a time level.

Filename: nonlin_heat_Newton.pdf.

Problem 12: Derive algebraic equations for nonlinear 1D heat conduc-
tion

Consider a 1D heat conduction PDE

%c(T)Tt = (k(T)Tx)x,

where % is the density of the solid material, c(T) is the heat capacity, T is the temperature, and
k(T) is the heat conduction coefficient.

Use a uniform finite element mesh, P1 elements, and the group finite element method to
derive the algebraic equations arising from the heat conduction PDE

a) Discretize the PDE by a finite difference method. Use either a Backward Euler or Crank-
Nicolson scheme in time.

b) Derive the matrix and right-hand side of a Newton method applied to the discretized PDE.

Filename: nonlin_1D_heat_PDE.pdf.

36

Problem 13: Investigate a 1D problem with a continuation method

Flow of a pseudo-plastic power-law fluid between two flat plates can be modeled by

d

dx

(
µ0

∣∣∣∣dudx
∣∣∣∣n−1

du

dx

)
= −β, u′(0) = 0, u(H) = 0,

where β > 0 and µ0 > 0 are constants. A target value of n may be n = 0.2.

a) Formulate a Picard iteration method directly for the differential equation problem.

b) Perform a finite difference discretization of the problem in each Picard iteration. Implement
a solver that can compute u on a mesh. Verify that the solver gives an exact solution for n = 1
on a uniform mesh regardless of the cell size.

c) Given a sequence of decreasing n values, solve the problem for each n using the solution
for the previous n as initial guess for the Picard iteration. This is called a continuation method.
Experiment with n = (1, 0.6, 0.2) and n = (1, 0.9, 0.8, . . . , 0.2) and make a table of the number of
Picard iterations versus n.

d) Derive a Newton method at the differential equation level and discretize the resulting linear
equations in each Newton iteration with the finite difference method.

e) Investigate if Newton’s method has better convergence properties than Picard iteration, both
in combination with a continuation method.

References

[1] C. T. Kelley. Iterative Methods for Linear and Nonlinear Equations. SIAM, 1995.

[2] M. Mortensen, H. P. Langtangen, and G. N. Wells. A FEniCS-based programming framework
for modeling turbulent flow by the Reynolds-averaged Navier-Stokes equations. Advances in
Water Resources, 34(9), 2011.

37

Index

continuation method, 30, 36

fixed-point iteration, 5

group finite element method, 21

latex.codecogs.com web site, 33
linearization

explicit time integration, 3
fixed-point iteration, 5
Picard iteration, 5
successive substitutions, 5

online rendering of LATEX formulas, 33

Picard iteration, 5
product approximation technique, 21

relaxation (nonlinear equations), 8

single Picard iteration technique, 6
stopping criteria (nonlinear problems), 5, 13
successive substitutions, 5

38

	Basic examples using the logistic equation
	Linearization by explicit time discretization
	Exact solution of nonlinear equations
	Linearization
	Picard iteration
	Linearization by a geometric mean
	Newton's method
	Relaxation
	Implementation and experiments
	Generalization to a general nonlinear ODE

	Systems of nonlinear algebraic equations
	Picard iteration
	Newton's method
	Stopping criteria
	Example: A nonlinear ODE model from epidemiology

	Linearization at the differential equation level
	Explicit time integration
	Picard iteration
	Newton's method

	Discretization of nonlinear differential equations
	Finite difference discretizations
	Finite element discretizations
	The group finite element method
	Numerical integration of nonlinear terms
	Finite element discretization of a variable coefficient Laplace term
	Picard iteration defined from the variational form
	Newton's method defined from the variational form

	Multi-dimensional PDE problems
	Finite element discretization
	Finite difference discretization
	Continuation methods

	Exercises

