Nonlinear differential equation problems

Hans Petter Langtangen'?

!Center for Biomedical Computing, Simula Research Laboratory
2Department of Informatics, University of Oslo

Dec 14, 2013

Note: VERY PRELIMINARY VERSION (expect typos and mathe-

1atical errors)

Jontents

Basic examples using the logistic equation

1.1 Linearization by explicit time discretization
1.2 Exact solution of nonlinear equations
1.3 Linearization oo
1.4 Picard iteration Lo
1.5 Linearization by a geometricmean
1.6 Newton’s method
1.7 Relaxation. Lo
1.8 Implementation and experiments
1.9 Generalization to a general nonlinear ODE

Systems of nonlinear algebraic equations

2.1 Picard iteration L Lo
2.2 Newton’smethod
2.3 Stopping criteria Lo
2.4 Example: A nonlinear ODE model from epidemiology

Linearization at the differential equation level

3.1 Explicit time integration Lo
3.2 Picard iteration Lo
3.3 Newton’smethod

Discretization of nonlinear differential equations

4.1 Finite difference discretizations
4.2 Finite element discretizations
4.3 The group finite element method
4.4 Numerical integration of nonlinear terms

—_
O © 00 O DU

10
12

13
14
14
15
16

18
18
18
19

4.5 Finite element discretization of a variable coefficient Laplace t
4.6 Picard iteration defined from the variational form
4.7 Newton’s method defined from the variational form

5 Multi-dimensional PDE problems
5.1 Finite element discretization
5.2 Finite difference discretization
5.3 Continuation methods

6 Exercises

ist of Exercises and Problems

Problem
Problem
Exercise
Exercise
Exercise
Problem
Problem
Problem
Problem
Problem
Problem
Problem
Problem

Determine if equations are nonlinear or not
Linearize a nonlinear vibration ODE

Find the sparsity of the Jacobian

Newton’s method for linear problems
Differentiate a highly nonlinear term

Discretize a 1D problem with a nonlinear coefficient ...
Linearize a 1D problem with a nonlinear coefficient ...

Finite differences for the 1D Bratu problem
Integrate functions of finite element expansions ...
Finite elements for the 1D Bratu problem

Derive the Newton system from a variational ...
Derive algebraic equations for nonlinear 1D ...
Investigate a 1D problem with a continuation ...

TTUTVTYTTOT VTV TTCTT

36
37
37
37
37
38
38
38
39
40
40
41
42

In a linear differential equation all terms involving the unknown fi
are linear in the unknown functions or their derivatives. Linear here me:
the unknown function or a derivative of it is multiplied by a number or :
function. All other differential equations are non-linear. The easiest way
an equation is nonlinear is to spot nonlinear terms where the unknown fi
or their derivatives are multiplied by each other. For example, in

/' (t) = —a(t)u(t) + b(t),

the terms involving the unknown function u are linear: ' contains the de
of the unknown function multiplied by unity, and au contains the u
function multiplied by a known function. However,

W (1) = u(t) (1~ u(t)),

is nonlinear because of the term —u? where the unknown function is m
by itself. Also

ou n ou 0
s =
ot Ox ’
is nonlinear because of the term wu, where the unknown function ap)

a product with itself or one if its derivatives. Another example of a n
equation is

v’ +sin(u) = 0,
because sin(u) contains products of w,

1 .
sin(u):ufgu‘ng...

A series of forthcoming examples will explain who to tackle nonline:
ential equations with various techniques.

1 Basic examples using the logistic equatic

Consider the (scaled) logistic equation

u'(8) = u(t) (1 — ult)).

This is a nonlinear differential equation which will be solved by different st
in the following. A time discretization of (1) will either lead to a linear a
equation or a nonlinear algebraic equation at each time level. In the
case, the time discretization method transforms the nonlinear ODE int
subproblems at each time level, and the solution is straightforward
However, when the time discretization leads to nonlinear algebraic equat
cannot (except in very rare cases) solve these without turning to appre
iterative solution methods

.1 Linearization by explicit time discretization

Forward Euler method to solve (1) results in

= un(l - un)7

At
hich is a linear algebraic equation for the unknown value u"*!. Therefore, the
onlinearity in the original equation poses no difficulty in the discrete algebraic
juation. Any other explicit scheme in time will also give only linear algebraic
juations to solve. For example, a typical 2nd-order Runge-Kutta method for
) reads,

u =u" + Atu"(l - un)7
1
utl = "+ At§ (u"(1 —u") +u™ (1 —u"))) .

he first step is linear in the unknown u*. Then u* is computed and known in
1e next step, which is linear in the unknown u™*! .

.2 Exact solution of nonlinear equations

witching to a Backward Euler scheme for (1),

u — un—l

At

ssults in a nonlinear algebraic equation for the unknown value ™. The equation
of quadratic type:

=u"(1 —u"), (2)

At(u™)? + (1 — At)u™ —u"t =0.

/e shall now introduce a shorter and often cleaner notation for nonlinear
lgebraic equation that appear at a given time level. The notation gets rid
f the superscript that indicates the time level and is motivated by how we
ill program the solution method for the algebraic equation, especially in more
dvanced partial differential equation problems. The unknown in the algebraic
juation is denoted by w, while u; is the value of the unknown at the previous
me level (in general u, is the value of the unknown ¢ levels back in time). The
uadratic equation for the unknown ™ in (2) can then be written

F(u) = Atu® + (1 — At)u —ug =0, (3)
nd the solution is
we (—1—Ati \/(l—At)2—4Atu1) . (4)
2At

‘ere we encounter a fundamental challenge with nonlinear algebraic equations:

1e equation may have more than one solution. How do we pick the right

solution? In the present simple case we can expand the square root in
in At and truncate after the linear term since the Backward Euler sche
introduce an error proportional to At anyway. Using sympy we find the f
Taylor series expansions of the roots:

>>> import sympy as sp

>>> dt, u_l, u = sp.symbols(’dt u_1 u’)

>>> rl, r2 = sp.solve(dt*ux*2 + (1-dt)*u - u_1, u) # find roots
>>> ri

(dt - sqrt(dt**2 + 4xdt*xu_1 - 2xdt + 1) - 1)/(2xdt)
>>> r2

(dt + sqrt(dt**2 + 4xdtxu_1 - 2xdt + 1) - 1)/(2xdt)
>>> print ril.series(dt, 0, 2)

-1/dt + 1 - u_1 + dt*(u_1%*2 - u_1) + 0(dt**2)

>>> print r2.series(dt, 0, 2)

u_1l + dtx(-u_1**2 + u_1) + 0(dt**2)

We see that the rl root, corresponding to a minus sign in front of the
root in (4), behaves as 1/At and will therefore blow up as At — 0! Onl
root is of relevance in this case.

1.3 Linearization

When the time integration of an ODE results in a nonlinear algebraic e
we must normally find its solution by defining a sequence of linear ec
and hope that the solutions of these linear equations converge to the
solution of the nonlinear algebraic equation. Usually this means soly
linear equation repeatedly in an iterative fashion. Sometimes the n
equation is just approximated by a linear equation and no iteration is
out.

Constructing a linear equation from a nonlinear one requires linea
of each nonlinear term. This can be done manually as in Picard itera
fully algorithmically as in Newton’s method. Examples will best illustr
to linearize nonlinear problems.

1.4 Picard iteration

Let us write (3) in a more compact form

F(u)=au® + bu+c =0,

with a = At, b=1— At, and ¢ = —uy. Let u_ an available approximatic
unknown u. Then we can linearize the term u? by writing u_u. The r
equation, F'(u) = 0, is linear and hence easy to solve:

Flu)~ F(u) = au_u+bu+c=0.

Since the equation F=0is only approximate, the solution u does not e
exact solution ue of the exact equation F(ue) = 0, but we can hope t

oser to ue than u_ is, and hence it makes sense to repeat the procedure, i.e.,
st u_ = u and solve F(u) = 0 again.

The idea of turning a nonlinear equation into a linear one by using an
pproximation u_ of u in nonlinear terms is a widely used approach that goes
nder many names: fized-point iteration, the method of successive substitutions,
onlinear Richardson iteration, and Picard iteration. We will stick to the latter
ame.

Picard iteration for solving the nonlinear equation arising from the Backward
uler discretization of the logistic equation can be written as

c
u= s U_ — u.
he iteration is started with the value of the unknown at the previous time level:
— =Ui.

Some prefer an explicit iteration counter as superscript in the mathematical
otation. Let u* be the computed approximation to the solution in iteration k.
1 iteration k 4+ 1 we want to solve

c
adbuF Tt bt =0 = W= —— k=0,1,...
au® +b
‘owever, we will normally apply a mathematical notation in our final formulas
1at is as close as possible to what we aim to write in a computer code and then
e want to omit the k superscript in w.

topping criteria. The iteration method can typically be terminated when
1e change in the solution is smaller than a tolerance €,:

|u—u_| < €u,

t when the residual in the equation is sufficiently small (e,.),
|F(u)| = |au® + bu+c| < €.

7ith €, = 10~7 we seldom need more than about 5 iterations when solving this
gistic equation.

. single Picard iteration. Instead of iterating until a stopping criterion is
filled, one may iterate a specific number of times. Just one Picard iteration is
opular as this corresponds to the intuitive idea of approximating a nonlinear
orm like (u™)? by ™~ 'u™. That is, one just applies a known value for the
nknown at the previous time level in nonlinear terms. The corresponding time
iscretization reads

n __ unfl

At

. = u"(1—u"Y). (5)

This is obviously an approximation and does not correspond to a ”pur
difference method where the equation is sampled at a point and derx
replaced by differences. The best interpretation of the scheme (5) is a B.
Euler difference combined with a single Picard iteration at each time lew
the value at the previous time level as start for the Picard iteration.

1.5 Linearization by a geometric mean

We consider now a Crank-Nicolson discretization of (1). This means {
time derivative is approximated by a centered difference,

[Diu = u(l — u)]"*2,
written out as
— "t ()2
A7 (u""3)
The term u"*2 is normally approximated by an arithmetic mean,

"t & %(u” +u™),

such that the scheme involves the unknown function only at the time leve
we actually compute it. The same arithmetic mean applied to the n
term gives

(un+%)2 ~ i(un +Un+1)2,

which is nonlinear in the unknown u"*!. However, using a geometric n
1
(u™*2)? is a way of linearizing the nonlinear term in (6):

(u"2)2 &

The linearized scheme for «*t! now reads
n+l _ . n 1
u < u _ §(un + un+1) + unun+l7
which can readily be solved:
1
un+1 _ 1+ EAt n

1+ Atur — LAt"

This scheme can be coded directly, and since there is no nonlinear a
equation to solve by methods for those kind of problems we skip the si
notation (u for ™! and wu; for u™).

The geometric mean approximation is often very effective to de
quadratic nonlinearities. Both the arithmetic and geometric mean apg
tions have truncation errors of order At? and are therefore compatil

1e truncation error of the centered difference approximation for U’ in the
rank-Nicolson method.

Applying the operator notation for the means, the linearized Crank-Nicolson
‘heme for the logistic equation can be compactly expressed as

[Dyu =7t +u2 7|+3 .

temark. If we use an arithmetic instead of a geometric mean for the nonlinear
srm in (6), we end up with a nonlinear term (u™*1)2. The term can be linearized
s u"u" ! in a Picard iteration approach. Observe that the geometric mean
voids any iteration.

.6 Newton’s method

he Backward Euler scheme (2) for the logistic equation leads to a nonlinear
lgebraic equation (3). Now we write any nonlinear algebraic equation in the
aneral and compact form

F(u)=0.

‘ewton’s method linearizes this equation by approximating F'(u) by its Taylor
ries expansion around a computed value u_ and keeping only the linear part:

=
&
I
=
<
L
+
!
=
L
=
\
S
L
+

U=U- — —57—~ -

F'(u-)

xpressed with an iteration index on the unknown, Newton’s method takes on
1e more familiar mathematical form

k+1 _ k _ F(u")
F'(uk)’
Application of Newton’s method to the logistic equation discretized by the
ackward Euler method is straightforward as we have

U k=0,1,...

Fu)=au*+bu+c, a=At b=1—At, c=—u,
ad then

F'(u) = 2au +b.

he iteration method becomes

au? +bu_ +c
U=U_+———, U_ < U.
2au_ +b
At each time level, we start the iteration by setting u_ = uy. Stopping

as listed for the Picard iteration can be used also for Newton’s method
An alternative mathematical form, where we write out a, b, and ¢, ai
time level counter n and an iteration counter k, takes the form

At(u"’k)Q + (1 _ At)u"’k —ynt 0
2Atumk 41 — At ’

un7k+1 _ un,k+

The implementation is much closer to (7) than to (8), but the latter i
aligned with the established mathematical notation used in the literatt

1.7 Relaxation

One iteration in Newton’s method or Picard iteration consists of solving
problem F (u) = 0. Sometimes convergence problems arise because -
solution u of F'(u) = 0 is "too far away” from the previously computed
u_. A remedy is to introduce a relaxation, meaning that we first solve F'
for a suggested value u* and then we take u as a weighted mean of what
u_, and what our linearized equation F' = 0 suggests, u*:

u=wu"+ (1 —w)u_.

The parameter w is known as a relazation parameter, and a choice w <
prevent divergent iterations.

Relaxation in Newton’s method can be directly incorporated in tl
iteration formula:

1.8 Implementation and experiments

The program logistic.py' contains implementations of all the metl
scribed above. Below is an extract of the file showing how the Picard and
methods are implemented for a Backward Euler discretization of the
equation.

def BE_logistic(uO, dt, Nt, choice=’Picard’, eps_r=1E-3, omega=1)
u = np.zeros(Nt+1)
ul[0] = u0
for n in range(1l, Nt+1):
a=dt; b=1-dt; ¢ = -uln-1]
if choice == ’Picard’:

Ihttp://tinyurl.com/jvzzcfn/nonlin/logistic.py

10

def F(u):
return axu*x*2 + b*u + c
u_ = ul[n-1]
k=0
while abs(F(u_)) > eps_r:
u_ = omegax(-c/(a*u_ + b)) + (1-omega)*u_
k += 1
uln] = u_
elif choice == ’Newton’:
def F(u):
return axu*x*2 + b*u + c
def dF(u):
return 2*a*xu + b
u_ = u[n-1]
k=0

while abs(F(u_)) > eps_r:
u_ = u_ - F(u_)/dF(u.)
k += 1
uln] = u_
return u

The Crank-Nicolson method utilizing a linearization based on the geometric
lean gives a simpler algorithm:

lef CN_logistic(u0O, dt, N):
u = np.zeros(N+1)
ul0] = u0
for n in range(O,N):
u[n+1] = (1 + 0.5*%dt)/(1 + dt*u[n] - 0.5%dt)*ul[n]
return u

Experiments with this program reveal the relative performance of the methods
3 summarized in the table below. The Picard and Newton columns reflect the
pical number of iterations with these methods before the curve starts to flatten
ut and the number of iterations is significantly reduced since the solution of the
onlinear algebraic equation is very close to the starting value for the iterations
he solution at the previous time level). Increasing At moves the starting value
irther away from the solution of the nonlinear equation and one expects an
icrease in the number of iterations. Picard iteration is very much more sensitive
> the size of At than Newton’s method. The tolerance ¢, in residual-based
;opping criterion takes on a low and high value in the experiments.

At € Picard Newton

02 1077 5 2
02 1073 2 1
0.4 1077 12 3
04 1073 4 2
0.8 1077 58 3
0.8 1073 4 2

11

Remark. The simple Crank-Nicolson method with a geometric mear
quadratic nonlinearity gives visually more accurate solutions than the B.
Euler discretization. Even with a tolerance of €, = 1073, all the met]
treating the nonlinearities in the Backward Euler discretization gives gra:
cannot be distinguished. So for accuracy in this problem, the time discre
is much more crucial than €,. Ideally, one should estimate the error in t
discretization, as the solution progresses, and set €, accordingly.

1.9 Generalization to a general nonlinear ODE

Let us see how the various methods in the previous sections can be ap
the more generic model

u/::f(u7t%
where f is a nonlinear function of w.
Explicit time discretization. Explicit ODE methods like the Forwa
scheme, Runge-Kutta methods, Adams-Bashforth methods all evalue

time levels where u is already computed, so nonlinearities in f do not
difficulties.

Backward Euler discretization. Approximating u’ by a backward d
leads to a Backward Euler scheme, which can be written as

F(u™) =u" — Atf(u™,t,) —u""1 =0,
or alternatively

Fu) =u— Atf(u,t,) —us =0.

A simple Picard iteration, not knowing anything about the nonlinear st
of f, must approximate f(u,t,) by f(u—_,t,):

F(u)=u— Atf(u_,ty,) —uy .
The iteration starts with u_ = u; and proceeds with repeating
' =Atf(u_yty) Fu, u=wu 4+ (l—w)u_, u_ + u,

until a stopping criterion is fulfilled.
Newton’s method requires the computation of the derivative

of
F'(u)=1- At%(u, tn) .
Starting with the solution at the previous time level, u_ = u1, we can

the standard formula

12

Flu.) un + AL (ut)

TYF o) T T A flut,)

U="mu_—

The geometric mean trick cannot be used unless we know that f has a special
sructure with quadratic expressions in u.

srank-Nicolson discretization. The standard Crank-Nicolson scheme with
rithmetic mean approximation of f takes the form

un+1 _ Un 1
—ar = oM) + f(u").

ritroducing u for the unknown u™*! and u; for u”, we can write the scheme as
nonlinear algebraic equation

1 1
Flu)=u—u; — Atif(u,tm_l) — At§f(u1,tn) =0.
Picard iteration scheme must in general employ the linearization,

Flu) ==y = Dt fu o) = At flun,),

hile Newton’s method can apply the general formula, but we need to derive
1. 0f
FI(U) =1- EAt%(u, tn+1) .

. Systems of nonlinear algebraic equations

nplicit time discretization methods for a system of ODEs, or a PDE, lead to
ystems of nonlinear algebraic equations, written compactly as

F(u)=0,
here u is a vector of unknowns u = (ug,...,uy), and F is a vector function:
"= (Fo,...,Fn). Sometimes the equation system has a special structure

ecause of the underlying problem, e.g.,

A(u)u = b(u),

ith A(u) as an (N +1) x (N +1) matrix function of v and b as a vector function:

= (b07"'abN)'

We shall next explain how Picard iteration and Newton’s method can be
pplied to systems like F'(u) = 0 and A(u)u = b(u). The exposition has a focus
n ideas and practical computations. More theoretical considerations, including
uite general results on convergence properties of these methods, can be found
1 Kelley [1].

13

2.1 Picard iteration

We cannot apply Picard iteration to nonlinear equations unless there
special structure. For the commonly arising case A(u)u = b(u) we can]
the product A(u)u to A(u—_)u and b(u) as b(u—). That is, we use tl
previously computed approximation in A and b to arrive at a linear sy:
w:

A(u_)u =b(u_).

A relaxed iteration takes the form

Alu_)u* =bu_), w=wu*+ (1 —-w)u_.
In other words, we solve a system of nonlinear algebraic equations as a s
of linear systems.

Algorithm for relaxed Picard iteration.

Given A(u)u = b(u) and an initial guess u_, iterate until convergenc
1. solve A(u_)u* = b(u_) with respect to u*
2. u=wu*+ (1 —wu_

3. u_ +— u

-

2.2 Newton’s method

The natural starting point for Newton’s method is the general nonlinea
equation F'(u) = 0. As for a scalar equation, the idea is to approximate F
a known value u_ by a linear function F, calculated from the first two -
a Taylor expansion of F. In the multi-variate case these two terms bec

Flus)+J(us) - (u—u_),
where J is the Jacobian of F', defined by

OF;
auj ’

So, the original nonlinear system is approximated by

Jijj =

F(u)=F(u_)+J(u_) (u—u_) =0,
which is linear in v and can be solved in a two-step procedure: fir

Jou = —F(u_) with respect to the vector Ju and then update u = u_
relaxation parameter can easily be incorporated:

u=w(u_ +0u)+(1—wu_ =w_ +wdou.

14

Algorithm for Newton’s method.
Given F(u) =0 and an initial guess u_, iterate until convergence:

1. solve Jou = —F(u_) with respect to du
2. u=u_ +w)du

3. u_ +— u

J
For the special system with structure A(u)u = b(u),
F; = 21417-,7;.3(11)11;c — bi(u),
k
nd
aAi k abi
J 5 zk: 6Uj u + 5] 6Uj (O)

/e realize that the Jacobian needed in Newton’s method consists of A(u_) as
1 the Picard iteration plus two additional terms arising from the differentiation.
sing the notation A’(u) for 0A/d0u (a quantity with three indices: 0A; i /0u;),
nd o' (u) for 9b/0u (a quantity with two indices: 9b;/du;), we can write the
near system to be solved as

(A+Au+b)ou=—Au+b,

(A(u_) + A (u_)u— + b (u;))ou = —A(u_)u_ + blu_).

earranging the terms demonstrates the difference from the system solved in
ach Picard iteration:

Au_)(u_ +6u) = blu_) +vy(A (u_)u_ +b'(u;))du = 0.

Picard system

ere we have inserted a parameter v such that v = 0 gives the Picard system
ad v = 1 gives the Newton system. Such a parameter can be handy in software
» easily switch between the methods.

.3 Stopping criteria

et || - || be the standard Eucledian vector norm. Four termination criteria are
wch in use:

e Absolute change in solution: [[u —u_|| < e,

15

e Relative change in solution: |Ju — u_|| < €,||ug||, where ug den
start value of u_ in the iteration

e Absolute residual: ||F(u)|| < e,

e Relative residual: ||F(u)|] < e.||F(uo)]|

To prevent divergent iterations to run forever, one terminates the it
when the current number of iterations k exceeds a maximum value k.,

The relative criteria are most used since they are not sensitive to t
acteristic size of u. Nevertheless, the relative criteria can be misleadir
the initial start value for the iteration is very close to the solution, ¢
unnecessary reduction in the error measure is enforced. In such cases the
criteria work better. It is common to combine the absolute and relative n
of the size of the residual, as in

IF Il < €[F(uo)ll + €ra,

where €, is the tolerance in the relative criterion and €,, is the toleranc
absolute criterion. With a very good initial guess for the iteration (typic
solution of a differential equation at the previous time level), the term |
is small and €., is the dominating tolerance. Otherwise, €..||F (uo)]|
relative criterion dominates.

With the change in solution as criterion we can formulate and cc
absolute and relative measure of the change in the solution:

oul] < €ur|luoll + €ua,

The ultimate termination criterion, combining the residual and the
in solution tests with a test on the maximum number of iterations allow
expressed as

[IF(u)l] < €rp||[F (o)l + €ra or [[dul] < €ur||uol| + €ua Or k> Fmax -

2.4 Example: A nonlinear ODE model from epidem

The simplest model spreading of a disease, such as a flu, takes the fo
2 x 2 ODE system

S = —BSI,
I'=8SI—vl,
where S(t) is the number of people who can get ill (susceptibles) and I(

number of people who are ill (infected). The constants 5 > 0 and v > 0
given along with initial conditions S(0) and I(0).

16

mplicit time discretization. A Crank-Nicolson scheme leads to a 2 x 2
sstem of nonlinear algebraic equations in the unknowns S™*! and I"*1:

n+l _ Qn .

S - S _ —B[SI]TH_E ~ _g(snln + Sn+1ln+1)’ (16)
n+l _ n 1)

I At I _ B[Sj]n—}—g _ VIn+§ ~ g(sn[rz +Sn+11n+1) _ g(In +In+1) .

(17)

itroducing S for S**L, S for 8™, I for I"t!, I, for I"™, we can rewrite the
/stem as

Fs(S,1)=S— S + %Atb’(SlIl +ST) =0, (18)

1 1
Fi(S.1) =11~ AtB(Siy + SI) = g Atw(Iy +1) = 0. (19)

. Picard iteration. We assume that we have approximations S_ and I_ to
and I. A way of linearizing the only nonlinear term ST is to write I_S in

1e Fis = 0 equation and S_TI in the F; = 0 equation, which also decouples the

juations. Solving the resulting linear equations with respect to the unknowns
and I gives

S — SAIBS I
14 A1
L+ 3At8S. 1
C1-IAtBS_+v’

he solutions S and I are stored in S_ and I_ and a new iteration is carried
ut.

Jlewton’s method. The nonlinear system (18)-(19) can be written as F(u) =
with F' = (Fg, Fr) and u = (S,I). The Jacobian becomes

. 2 Fs ZFs B 1+ IAtBI 1AtB
2P BF —3AtBS 11— SABI — LAt

he Newton system to be solved in each iteration is then

1+ LAtBI 1S 58\
—3AtBS_ 1 — JAIBI_ — Aty 6r)
S_—S1+ %Atﬂ(Slh + Sfff)

I_ -1 — %Atﬁ(slh + Sfff) — %Atl/(fl + I,)

17

Remark. For this particular system explicit time integration metho
very well. The 4-th order Runge-Kutta method is an excellent balance
high accuracy, high efficiency, and simplicity.

3 Linearization at the differential equation
The attention is now turned to nonlinear partial differential equations

and application of the techniques explained for ODEs. The model prob
nonlinear diffusion equation

ou

n V- (a(w)Vu) + f(u), ze, te(0,T],
fa(u)a—n:g, x €0y, te(0,T],
U = ug, ZIEEOQD,tE(O,T}.

Our aim is to discretize the problem in time and then present tec
for linearizing the time-discrete PDE problem ”at the PDE level” st
we transform the nonlinear stationary PDE problems at each time leve
sequence of linear PDE problems, which can be solved using any met
linear PDEs. This strategy avoids the solution systems of nonlinear a
equations. In Section 4 we shall take the opposite (and more common) a
discretize the nonlinear problem in time and space first, and then s
resulting nonlinear algebraic equations at each time level by the met
Section 2.

3.1 Explicit time integration

The nonlinearities in the PDE are trivial to deal with if we choose an
time integration method for (20), such as the Forward Euler method:

Difu=V - (a(u)Vu) + f(u)]",
which leads to a linear equation in the unknown u™*1:

un+1 _ un

A7 =V - (a(u™)Vu™) + f(u").

3.2 Picard iteration
A Backward Euler scheme for (20) reads
D;u=V"(a(u)Vu) + f(u)]".

Written out,

18

u™ — unfl

At

his is a nonlinear, stationary PDE for the unknown function u”(x). We
itroduce a Picard iteration with k as iteration counter. A typical linearization
f the V - a(u™)Vu'™ term in iteration k + 1 is to use the previously computed
nk approximation in the diffusion coefficient: a(u"*). The nonlinear source
srm is treated similarly: f(u™*). The unknown function u™*+1 then fulfills the
near PDE

= V- (a@")Vu") + f(u") (23)

u
At

he initial guess for the Picard iteration at this time level can be taken as the
>lution at the previous time level: u™° = 1.

un,k+1 _ ,,n—1
=V (a(u™F) Va4 fmh). (24)

We can alternatively apply the notation where u corresponds to the unknown
e want to solve for, i.e., u™**! above, let u_ be the most recently computed
alue, u™* above, and let u; denote the unknown function at the previous time
wvel, u" 1 above. The PDE to be solved in a Picard iteration then looks like

U — Uy
At

t the beginning of the iteration we start with the value from the previous time
wvel: u_ = uq.

=V - (a(u_)Vu) + f(u_). (25)

.3 Newton’s method

t time level n we have to solve the stationary PDE (23), this time with Newton’s
iethod. Normally, Newton’s method is defined for systems of algebraic equations,
ut the idea of the method can be applied at the PDE level too.

Let ©™* be an approximation to u™. We seek a better approximation on the
rm

u = u* 4+ Su. (26)

he idea is to insert (26) in (23), Taylor expand the nonlinearities and only
sep the terms that are linear in du. Then we can solve a linear PDE for the

srrection du and use (26) to find a new approximation u™ 1 = u™* 4+ fu to
n

Inserting (26) in (23) gives

un,k + 5u _ un—l

Al =V (a(u™* +5u)V(u™F +6u)) + flu™F +ou) (27)

Je can Taylor expand a(u™* + du) and f(u™* + du):

19

a(u™ + 6u) = a(u™*) + Z%(u"’k)éu + O(0u?) =~ a(u™*) + o/ (u™*k

P 4 du) = F@) + D @r)su - 06u) ~ fr) + it

Inserting the linear approximations of a and f in (27) results in

un,k 4 du — unfl

Al =V (a(u™*)Vu™ k) + flu™*)+

V- (a(u™F)Véu) + V - (o (u™F)suVu™*)+
V- (@ (u™*)6uVéu) + f'(u™*)ou

The term o (u™*)éuVdu is O(6u?) and therefore omitted. Reorganis
equation gives a PDE for du that we can write in short form as

OF (du; u™k) = —F(u™F),

where

n,k umk — gt n,k n,k n,k
) = T () v+),
SF(buyu™r) = fééu + V- (a(u™")Vou)+

V- (o (™) suVu™F) 4+ (™ F)su .

Note that JF is a linear function of du, and F contains only terms {
known, such that the PDE for du is indeed linear.

The form §F = —F resembles the Newton system Jou = —F' for sys
algebraic equations, with 6 F' as Jou. The unknown vector in a linear sy
algebraic equations enters the system as a matrix-vector product (Jdu),
the PDE level we have a linear differential operator instead (0F).

We can rewrite the PDE for du in a slightly different way too if w
u™F 4 u as u™FTL

un,k+1 _ un—l

At =V (a(u™*)Va) 4 f(uh)+
V- (o (u™F)suVu™F) 4+ (™ F)su .

Note that the first line is the same PDE as arise in the Picard iteration, w
remaining terms arise from the differentiations that are an inherent in;
in Newton’s method.

For coding we want to introduce u_ for u™* and u; for u»~'. The {
for F and 0F are then

20

Flus) = =3 = V- (a(u)Vu) 4 f(u-), (32)
SF(dusu_) = —ééu + V- (a(u_)Vou)+
V(o (u)ouVu_) + f/(u_)du. (33)

he form that orders the PDE as the Picard iteration terms plus the Newton
iethod’s derivative terms becomes

o =V (aun) V) + f(us)+
V- (& (u_)ouVu_) + f'(u_)du. (34)

Discretization of nonlinear differential equa-
tions

ection 3 presents methods for linearizing time-discrete PDEs directly prior to

iscretization in space. We can alternatively carry out the discretization in space

nd of the time-discrete nonlinear PDE problem and get a system of nonlinear

lgebraic equations, which can be solved by Picard iteration or Newton’s method

5 presented in Section 2. This latter approach will now be described in detail.
We shall work with the 1D problem

— (a(w)u') +au= f(u), z€(0,L), au(0)u'(0)=C, uw(L)=0. (35)

his problem is of the same nature as those arising from implicit time integration
f a nonlinear diffusion PDE as outlined in Section 3.2 (set a = 1/At and let
(u) incorporate the nonlinear source term as well as known terms with the
me-dependent unknown function at the previous time level).

.1 Finite difference discretizations

liscretization. The nonlinearity in the differential equation (35) poses no
wore difficulty than a variable coefficient, as in («a(x)u’)’. We can therefore use
standard approach to discretizing the Laplace term with a variable coefficient:

[-D,aD,u +au = fl;.

/riting this out for a uniform mesh with points x; = iAz, i =0,..., N, leads
)
1
AL (aH%(uiH — ;) — Oz;%(ui — ui,l)) +au; = fug). (36)
21

This equation is valid at all the mesh points ¢ = 0,1,..., N, — 1. At
we have the Dirichlet condition u; = 0. The only difference from the c:
(a(x)u’) and f(z) is that now « and f are functions of u and not on
(a(u(z))u’)" and f(u(z)).

The quantity o, 1 evaluated between two mesh points, needs a cc
Since « depends on u and u is only known at the mesh points, we need to
Qg1 in terms of u; and wu;+;. For this purpose we use an arithmeti
although a harmonic mean is also common in this context if a featur
jumps. There are two choices of arithmetic means:

(5 + i) = la@)]

O‘i+% ~
1 Tl
@iy~ 5 () + alui)) = [a(u) 72

Equation (36) with the latter approximation then looks like

((a(us) + a(uirr)) (Ui — wi) = (a(ui—1) + a(u))(u; — u;.
+ au; = f(ul)7

"~ 2Ax2

or written more compactly,

[-D,a*Dyu+ au = f];.

At mesh point ¢ = 0 we have the boundary condition a(u)u’ = C, -
discretized by

[a(u) Dagu = Clo,

meaning

20z
The fictitious value u_; can be eliminated with the aid of (39) for i = 0. F
(39) should be solved with respect to w;—; and that value (for ¢ = 0) sk
inserted in (40), but it is algebraically much easier to do it the other way
Alternatively, one can use a ghost cell [-Az, 0] and update the u_;
the ghost cell according to (40) after every Picard or Newton iteratio
an approach means that we use a known u_; value in (39) from the |
iteration.

Solution of algebraic equations. The nonlinear algebraic equatic
are of the form A(u)u = b(u) with

22

1
A= m(—a(uifl) +2a(ui) — a(uit1)) +a,
1
A= _m(a(ui—l) + a(u;)),
1
Aiiv1 = —m(a(ui) + a(uiy1)),
by = f(us) .

he matrix A(u) is tridiagonal: A; ; =0 for j > 141 and j < i —1. The obvious
icard iteration scheme is to use previously computed values of u; in A(u) and
‘u), as described more in detail in Section 2.

Newton’s method requires computation of the Jacobian. Here it means that

e need to differentiate F'(u) = A(u)u — b(u) with respect to ug, u1,...,un,—1.

‘onlinear equation number ¢ has the structure

i = Agim1(Uim1, ws)ui—1 + Ag (Wi, iy Wig1)i + A i1 (Ui, W1) i1 — bi(uy) -

he Jacobian becomes

Jii = gfz — ag25i71u¢,1 + 3({;41;,1 U — ZZZZ +A;;+ ai;il’;:l Uiyl — STZZ
- 2A1$2 (—a/(wi)ui—1 + 20/ (wi)ui + (—e(ui—1) + 2a(u;) — a(uipr)))+
a— ﬁa/(ui)uzﬂrl) = (ui),
- QAlwz (—a/(ui—1)ui—1 — ((ui—1) + a(w;)) + o (ui-1)w),
Jiip1 = %WH + Aipr + %ul - 83?;
= ﬁ(—a/(uzﬂ)uiﬂ = (a(up) + a(uitr)) + o (wip1)uq) - .

he explicit expression for nonlinear equation number 4, F;(ug,u1,...), arises
om moving all terms in (39) to the left-hand side. Then we have J; ; and F;
nodulo the boundary conditions) and can implement Newton’s method.

We have seen, and can see from the present example, that the linear system
1 Newton’s method contains all the terms present in the system that arises
1 the Picard iteration method. The extra terms in Newton’s method can be
wltiplied by a factor such that it is easy to program one linear system and set
1is factor to 0 or 1 to generate the Picard or Newton system.

23

4.2 Finite element discretizations

For the finite element discretization we first need to derive the var
problem. Let V' be an appropriate function space with basis functions {
Because of the Dirichlet condition at x = L we require ¢;(L) =0, i € Z,
Galerkin’s method, we multiply the differential equation by any v €
integrate terms with second-order derivatives by parts:

L L L
/ a(u)u'v' dz +/ auvdr = / fwvde + [a(w)u'v)f, Ve
0 0 0

The Neumann condition at the boundary z = 0 is inserted in the bounda

[a(u)u'v]y = a(u(L))u'(L)v(L) = a(u(0))u’(0)v(0) = 0 — Cv(0) = —C

The variational problem is then: find v € V' such that

L L L
/ a(u)u'v' dz + / auvdr = / f(w)vdz — Cv(0), YveV.
0 0 0

To derive the algebraic equations we also demand the above equations
for v =1);, i € I, and we set u = Zjezs ¢;1;. The result is

L o L
> (/0 a(> extbr) i dﬂU) ¢j :/0 FO erthi)ipi dar— Cepi 0),

JETLs keZs keZs

Remark. Fundamental integration problem Methods that use the Gal
weighted residual principle face a fundamental difficulty in nonlinear p:
how can we integrate a terms like fOL (Y, extr)Pi do and fOL F cn
when we do not know the ¢, coefficients in the argument of the a functi
can resort to numerical integration, provided an approximate >, cxs
used for the argument v in f and a. If we want to derive the structur
nonlinear algebraic equations, we need to apply numerical integration t
the nodes only and/or the group finite element method.

4.3 The group finite element method

Finite element notation. Let us simplify the model problem for a w
set a =0, a = 1, f(u) = u?, and have Dirichlet conditions at both en
that we get a very simple nonlinear problem —u” = u2. The variational

then
L L
/ u'v'dx:/ vvde, YweV.
0 0

24

he term with u/v’ is well known so the only new feature is the term [u?vdu.
Introduction of finite element basis functions ¢; means setting

¢i == (pl/(i)v 1€ -Is7

here degree of freedom number v(j) in the mesh corresponds to unknown
umber j. When the degrees of freedom are just the function values at nodes,
e have that ¢; = u(z,(;)) = (), i.e., the value of u at node number v(j). The
nite element expansion for u is now

u= Z Ujp; + Z Pu(i) U (j)s

JE€Iy JE€Ls

ith the U; quantities being prescribed Dirichlet values at some nodes with
umbers in the index Iy,. Instead of the v/(j) indices in the sum ;7 @u(j)Uu(j),
e just write > . ¢;u;. This is possible by saying that j runs over a transformed
dex set: {v(0),v(1),...,v(N)}. In the following we drop the boundary term
_;j Ujipj and write u = 3, p;u;. The replacement of ¢; by u; as explained is
1otivated by simpler interpretation of the nonlinear algebraic equations as a
nite difference scheme.

ategrating nonlinear functions. Consider the term [wu?vdz in the varia-
onal formulation with v = ¢; and u =", Yruk:

L
/ O uner)*pidz.
0 %

valuating this integral for P1 elements (see Problem 9) results in the expression

h
¢
» be compared with the simple value u? that would arise in a finite difference

iscretization. More complicated f(u) functions give rise to much more lengthy
xpressions, if it is possible to carry out the integral symbolically.

u? |+ 2ui (w1 4 wig) + 6u? + U?H,

inite element approximation of functions of u. Since we already expand

as Y. j$juj We may use the same approximation for nonlinearities. That is,
ny function can be expanded as a sum of basis functions times the function
alues. In particular,

Flw) =Y o flug)+ D (@) f(uy),
JEI, J
here the first sum contain f values at the boundary where u has Dirichlet
onditions and the other sum is over the node values j where u is unknown.
owever, for f there is no reason two have two summations as we do not need
» distinguish between the nodes where u are known or unknown. Therefore, we
an collapse the two sums into one (over all nodes, j =0,..., N,) and write

25

Ny,
Fw) =Y (@) fluy).
Jj=0

This approximation is known as the group finite element method or the
approximation technique.

The principal advantage of the group finite element method is for «
the symbolic form of difference equations in nonlinear problems. The s
form is useful for comparing finite element and finite difference equation:s
linear differential equation problems. Computer programs will always i
J f(u)p; dz numerically by using an existing approximation of u in f(
that the integrand can be sampled at any spatial point.

Application. Let use the group finite element method to derive the 1
the difference equation corresponding to f(u) in the differential equat
have

/ " fupide / L@ pifu)pide =3 (/ * i, dx) flu,

J

We recognize this expression as the mass matrix M, arising from |
times the vector f = (f(uo), f(u1),...,): Mf. The associated term
difference equations are

g(f(ui—l) +4f(ui) + f(uit1)) -

Occasionally, we want to interpret this expression in terms of finite dif
and then a rewrite of this expression is convenient:

S () + 45) + Suig)) = WF () — DD W)

We may lump the mass matrix through integration with the Trapezoi
In that case the f(u) term in the differential equation gives rise to a siny
hf(u;), just as in the finite difference method.

4.4 Numerical integration of nonlinear terms

Let us reconsider a term [f(u)vdz as treated in the previous secti
now we want to integrate this term numerically. Such an approach can
easy-to-interpret formulas if we apply a numerical integration rule that
the integrand at the node points.

The term in question takes the form

L
| 1 weeida.
k

26

valuation of the integrand at a node x, leads to a collapse of the sum >, ugpp
» one term because

Z urpr(we) =
k

f(zk: ug or(20)) pi(we) = f(ue)die,

Oke die

here we have used the Kronecker delta d;; = 0if i # j and 6;; =1 if ¢ = j.
Considering the Trapezoidal rule for integration, we have

/f(zuwk D) da ~ b3 F(ur)be —C =).

£=0

he term C contains the evaluations of the integrand at the ends with weight %,

eeded to make a true Trapezoidal rule. The answer hf(u;) must therefore be
wltiplied by 3 if i = 0 or i = Ny,. (C = 2 f(uo)ei(0) + % f(un,)pi(L).)

One can easily use the Trapezoidal rule on the reference cell and assemble
1e contributions. It is a bit more work in this context, but working on the
sference cell is safer as that approach is guaranteed to handle discontinuous
erivatives of finite element functions correctly.

The conclusion is that it suffices to use the Trapezoidal rule if one wants
» derive the difference equations in the finite element method and make them
milar to those arising in the finite difference method. The Trapezoidal rule
as sufficient accuracy for P1 elements, but for P2 elements one should turn to
impson’s rule.

.5 TFinite element discretization of a variable coefficient
Laplace term

urning back to the model problem (35), it remains to calculate the contribution
f the (aw')" and boundary terms to the difference equations. The integral in
1e variational form corresponding to (au')’ is

L
/0 a(d " ertr)ji da.
k

‘umerical integration utilizing a value of)", ¢yt from a previous iteration
wist in general be used to compute the integral. Now our aim is to integrate
ymbolically, as much as we can, to obtain some insight into how the finite
ement method approximates this term.

To be able to derive symbolic expressions, we either turn to the group finite
ement method or numerical integration in the node points. Finite element
asis functions ¢; are used, we set o(u) = >, o(ur)pr, and then we write

27

k

L
/ a(d crpr) iy da = Z(/ PR da)o Z Lijrale
0 - 0
—_—

Lijk

Further calculations are now easiest to carry out in the reference cell. !
elements we can compute L; ; for the two k values that are relevant
reference cell. Turning to local indices, one gets

@ _ 1 1 -1 _
L?ﬂ,s,t - 2h (-1 1) t*Ov]-a

where 1, s,t = 0,1 are indices over local degrees of freedom in the refere
(t =qle,7), 5 = qle,s), and k = q(e,t)). The sum >, L; jro(uy) at
level becomes Zi:o Lg 3 co(iy), where @ is u(2g4(e,p)), i-€., the value of u

node number ¢ in cell number e. The element matrix becomes

statio) +a@)i (7).

As usual, we employ a left-to-right numbering of cells and nodes. Row
i in the global matrix gets contributions from the first row of the

matrix in cell 7 — 1 and the last row of the element matrix in cell <.
number ¢ — 1 the sum a(ig) + (1) corresponds to a(u;—1) + a(u;). T
becomes a(u;) + a(uit+1) in cell number i. We can with this insight a
the contributions to row number % in the global matrix:

1
2h
Multiplying by the vector of unknowns u; results in

(—(a(ui-1) + a(wi)), alui-1) +2a(u;) + a(uir1), a(uw) +alu

(a(ui) + a(uiv1))(Wit1 — ui) — %(a(ui—l) + a(ui))(ui — ui-1)

N —

(

which is nothing but the standard finite difference discretization of —(,
with an arithmetic mean of «(u) (and a factor h because of the integr
the finite element method).

Instead of using the group finite element method and exact integre

S

can turn to the Trapezoidal rule for computing fOL (D, ukpr)pip; d
at the cell level since that is most convenient:

L AP hdx 27T T 20 L
1 ! ! 1

N — (Vi) = —(=1)"(-1)°
2 > +a(3 RUm) = g (-1 (U

28

he element matrix in (46) is identical to the one in (44), showing that the
roup finite element method and Trapezoidal integration are equivalent with
standard finite discretization of a nonlinear Laplace term (a(u)u’)’ using an
rithmetic mean for «: [D,ZD,ul;.

We might comment on integration in the physical coordinate system too. The
ymmon Trapezoidal rule in Section 4.4 cannot be used to integrate derivatives
ke ¢}, because the formula is derived under the assumption of a continuous
itegrand. One must instead use the more basic version of the Trapezoidal rule
here all the trapezoids are summed up. This is straightforward, but I think it

even more straightforward to apply the Trapezoidal rule on the reference cell
nd assemble the contributions.

The term [auv dz in the variational form is linear and gives these terms in
1e algebraic equations:

h h?
%(ui,1 + 4u; + ui+1) = ah[u — FDQCDQC’U,L .

he final term in the variational form is the Neumann condition at the bound-
ry: Cv(0) = Cp;(0). With a left-to-right numbering only i = 0 will give a
mtribution Cv(0) = Cd;o (since ¢;(0) # 0 only for i = 0).

Summary.
For the equation

—(e(w)u') + au = f(u),
P1 finite elements results in difference equations where
e the term —(a(u)u’)’ becomes —h[D, (u)xDxu]i if the group finite
element method or Trapezoidal integration is applied,
e f(u) becomes hf(u;) with Trapezoidal integration or the ”mass matrix”
representation h[f(u) — 2Dy Dy f(u)); if computed by a group finite
element method,

e au leads to the "mass matrix” form ah[u — %DxDxu}i.

J

As we now have explicit expressions for the nonlinear difference equations
l[so in the finite element method, a Picard or Newton method can be defined
3 shown for the finite difference method. Nevertheless, the general situation

that we have not assembled finite difference-style equations by hand and the
near system in the Picard or Newton method must therefore be defined directly
wrough the variational form, as shown next.

29

4.6 Picard iteration defined from the variational fo:

We address again the problem (35) with the corresponding variational fo
Our aim is to define a Picard iteration based on this variational form witl
attempt to compute integrals symbolically as in the previous three sectic
idea in Picard iteration is to use a previously computed u value in the n
functions a(u) and f(u). Let u_ be the available approximation to u f
previous iteration. The linearized variational form for Picard iteration

L L
/ (a(u_)u'v' + auv) dx = / flu—)vdx — Cv(0), VveV.
0 0

This is a linear problem a(u,v) = L(v) with bilinear and linear forms

L L
alu,v) :/0 (a(u_)u'v" + awv)dz, L(v) :/0 flu—)vdr — Co(

The associated linear system is computed the standard way. Technically
back to solving —(a(z)u’) + au = f(x).

4.7 Newton’s method defined from the variational |

Application of Newton’s method to the nonlinear variational form (41

from the problem (35) requires identification of the nonlinear algebraic e

Fi(co,...,cn) = 0,14 € Z, and the Jacobian J; ; = 0F;/0c; for i,j € T
The equations F; = 0 follows from the variational form

L L
/ (a(u)u'v' + auv)dz = / fwvdz — Cv(0), YveV,
0 0
by choosing v = v, i € Z,, and setting u = EjeIS ¢y, maybe with a b

function to incorporate Dirichlet conditions.
With v = ¢; we have

L
F = / (a(u)u') + aup; — f(u);) dx + Cyp;(0) =0, i€Z,.
0
In the differentiations leading to the Jacobian we will frequently use the

ou 0 B o' 0 ;o
afcj—afcjgckiﬁk—%a afcj—a—q;cwk—wj-

The derivation of the Jacobian goes as

30

OF,

L
o, = / a%m(uw; +augy; — f(u)) de

JLjZI
L , ou , ou’ , ou , ou
:/O (o) g+ () 5! gy —))
L
- / (0 ()by + ()l + atpy — f(u)ebyihs) o

L
- / (of (W) plap; + ()t + (@ — Flu))pits;) de (49)

When calculating the right-hand side vector F; and the coefficient matrix
i,7 in the linear system to be solved in each Newton iteration, one must use a
reviously computed u, denoted by u_, for the u in (48) and (51). With this
otation we have

L
Fi— /0 (alu)t + (a — f(u_))ibs) dz — Co(0), i€, (50)

L
Jij = /O (o (u)ul_pip 4 a(u_)i + (a — f(u))itpy) da, 4,5 € Is .
(51)

hese expressions can be used for any basis {;} iez.- Choosing finite element
inctions for 1;, one will normally want to compute the integral contribution
a1l by cell, working in a reference cell. To this end, we restrict the integration
> one cell and transform the cell to [—1, 1]. The formulas (50) and (51) then
1ange to

1
B = [(@@ g+ (a— f(@)3) det JAX — C3, (0), (52)

-1

1
I = [(@@ 86+ al@)F 7 + (@ - J(@)erp) det T A, (53)
-1
ith r,s € I runs over the local degrees of freedom. In the above formulas,
—(X) =3, c_rpp(X) is the finite element expansion of u_ over the current
a1l

Many finite element programs require the user to provide F; and J; ;. Some
rograms, like FEniCS?, are capable of automatically deriving J; ; if Fj is
secified.

Jirichlet conditions. Incorporation of the Dirichlet values by assembling
»ntributions from all degrees of freedom and then modifying the linear system

2http://fenicsproject.org

31

can be obviously be applied to Picard iteration as that method involves a s
linear system. In the Newton system, however, the unknown is a co
ou to the solution. Dirichlet conditions are implemented by inserting
the initial guess u_ for the Newton iteration and implementing du; =
known degrees of freedom. The manipulation of the linear system follows
the algorithm in the linear problems, the only difference being that the
values are zero.

5 Multi-dimensional PDE problems

5.1 Finite element discretization

The derivation of F; and J; ; in the 1D model problem is easily genere
multi-dimensional problems. For example, Backward Euler discretizatio
PDE

ug = V- (a(u)Vu) + f(u),

gives the nonlinear time-discrete PDEs
u" — AtV - (a(u™)Vu") + fu") = u" 1,
or with 4™ simply as u and u"~! as uy,

u— AtV - (a(u")Vu) — Atf(u) = uy .

The variational form, assuming homogeneous Neumann conditions for si:
becomes

/ (uv + Ata(u)Vu - Vo — At f(u)v — ugv) de .
Q

The nonlinear algebraic equations follow from setting v = 1; and us
representation u =), ¢y, which we just write as

F, = / (w); + Ata(u)Vu - Vapy — At f(u); — ureyy) do .
Q

Picard iteration needs a linearization where we use the most recent approx
u_ towin o and f:

F~F = / (uh; + Ata(u—)Vu - Vb, — Atf(u); —ui;) da.
Q

The equations F; = 0 are now linear and we can easily derive a linear sy
the unknown coefficients {c;},c7 by inserting u =}, ¢;1;.
In Newton’s method we need to evaluate F; with the known value @

32

Fy~F, = /(uJ/Ji + Ata(u_)Vu_ - Vo, — Atf(u_)p; —urp;)de. (58)
Q

he Jacobian is obtained by differentiating (56) and using du/dc; = ;:

OF,
aCj

Jiﬂ' = = /§2(¢le + Ata’(u)%—Vu . quz =+ Ata(u)ij . le—

Atf'(u)ipii) dz. (59)

he evaluation of J; ; as the coefficient matrix in the linear system in Newton’s
iethod applies the known approximation u_ for w:

Jij = /Q(wﬂl)i + At/ (u-);Vu_ - Vih + Ata(u-) Ve - Vip;—

opefully, these example also show how convenient the notation with v and
_ is: the unknown to be computed is always u and linearization by inserting
nown (previously computed) values is a matter of adding an underscore. One
an take great advantage of this quick notation in software [2].

[on-homogeneous Neumann conditions. A natural physical flux condi-
on for the PDE (54) takes the form of a non-homogeneous Neumann condition

ou
_ — =g, € 00y, 61
o)t =g, @ ey (61)
here g is a prescribed function and 0Qy is a part of the boundary of the domain
. From integrating [, V- (aVu)da by parts, we get a boundary term

ou
/GQN a(u)%fu ds. (62)

wserting the condition (61) into this term results in an integral over prescribed
alues: — fBQN gvds. The nonlinearity in the a(u) coefficient condition (61)
1erefore does not contribute with a nonlinearity in the variational form.

tobin conditions. Heat conduction problems often apply a kind of Newton’s
yoling law, also known as a Robin condition, at the boundary:

0
- a(u)a—z = hp(u)(u—Ts(t)), € I, (63)
here hp(u) is a heat transfer coefficient between the body (2) and its sur-
yundings, T is the temperature of the surroundings, and 92y is a part of the

33

boundary where this Robin condition applies. The boundary integral (
becomes

/ h(w)(u — Ty(T))v ds,
O0r

by replacing a(u)du/0u by hr(u — T). Often, hy(u) can be taken as ¢
and then the boundary term is linear in u, otherwise it is nonlinear and con
to the Jacobian in a Newton method. Linearization in a Picard metl
typically use a known value in hp, but keep the u in v — T, as w
ha (u—)(u = T5(t)).

5.2 Finite difference discretization

A typical diffusion equation

ug =V - (a(u)Vu) + f(u),

can be discretized by (e.g.) a Backward Euler scheme, which in 2D
written

[D; u = D& Dyu+ Dya¥ Dyu + f(u)]?] .

We do not dive into details of boundary conditions now. Dirichlet and N
conditions are handled as in linear diffusion problems.

Writing the scheme out, putting the unknown values on the left-he
and known values on the right-hand side, and introducing Az = Ay = h
some writing, one gets

At 1
(A ﬁ(i(a(uﬁj) +aludg) (uiig ; —uiy)

1 n n n n
- 7(a(ui71,j) + a(ui,j))(ui,j - “1:71,3‘)

2
1
+ 5 (auiy) + alu;) (W0 — uiy)
1 n n n n n
- 5(04(%',]'71) + a(ui,j))(ui,j - uifl,jfl)) - Atf(ui,j) = UZL,

This defines a nonlinear algebraic system A(u)u = b(u). A Picard i
applies old values u_ in « and f, or equivalently, old values for v in A
b(u). The result is a linear system of the same type as those arisi
ug =V - (a(x)Vu) + f(z,t).

Newton’s method is as usual more involved. We first define the n

algebraic equations to be solved, drop the superscript n, and introduc
u" L

34

1 n At

i = Ui — ﬁ(
1 1
Q(Q(U?,j) +aluig) (ufyg ; —uiy) — E(O‘(u?fl,j) +a(ui ;) (uf; —uiq j)+
1 n n n n 1 n n n n
§(a(ui,j) + a(ui,jJrl))(ui,jJrl - ui,j) - E(a(ui,jfl) + a(ui,j))(ui,j - uifl,jfl))
Atf(ui';) — uZ;l =0.

. is convenient to work with two indices i and j in 2D finite difference discretiza-
ons, but it complicates the derivation of the Jacobian, which then gets four
wdices. The left-hand expression of an equation F; ; = 0 is to be differentiated
ith respect to each of the unknowns u,. s (short for u;,), r € Z,, s € Z,,

Oy s

Jijrs =

iiven ¢ and j, only a few r and s indices give nonzero contribution since Fj ;
mtains wi+1,j, Ui j+1, and u; j. Therefore, J; ;. s is very sparse and we can set
p the left-hand side of the Newton system as

r —_
igirsOUrs = Jijii j0Ui g + Jijio1,50uim1 + Jijit1,j0Ui1 5 + Jigaj—10ui 51
+ Jiji, 410U 541

he specific derivatives become

8ui,17j
At

= ﬁ(a’(uz‘—l,j)(ui,j —ui—15) + a(ui—1,;)(-1))
6Fi$j

8ui+1)j

At

= ﬁ(—a’(wﬂ,y‘)(u“m‘ =) = a(ui-1;))
3F¢7]’

Ou; -1

At

= ﬁ(a/(ui,;‘fl)(ui,j =i j-1) +afuj-1)(-1))
6F”

i, jy1

At

= ﬁ(—a/(ui,jﬂ)(ui,ﬁl —) = a(uij-1))

Jiji-15 =

Jijit1,5 =

Jijig—1=

Jijig+1 =

he J; ;. ; entry has a few more terms. Inserting u_ for u in the J formula and
1en forming Jdu = —F gives the linear system to be solved in each Newton
eration.

35

5.3 Continuation methods

Picard iteration or Newton’s method may diverge when solving PDEs wit
nonlinearities. Relaxation with w < 1 may help, but in highly nonlinear p
it can be necessary to introduce a continuation parameter A in the
A = 0 gives a version of the problem that is easy to solve, while A = 1is tt
problem. The idea is then to increase A in steps, Ag = 0,A1 < --- < A, -
use the solution from the problem with A;_; as initial guess for the iters
the problem corresponding to A;.

The continuation method is easiest to understand through an e
Suppose we intend to solve

=V - ([[Vul[*Vu) = f,

which is an equation modeling the flow of a non-Newtonian fluid th
channel or pipe. For ¢ = 0 we have the Poisson equation (correspond
Newtonian fluid) and the problem is linear. A typical value for pseudc
fluids may be ¢, = —0.8. We can introduce the continuation parameter A
such that ¢ = gnA. Let {As}}_, be the sequence of A values in [0,
corresponding ¢ values {g¢}}_,. We can then solve a sequence of probl

V- (IVul[fVu’) = f, £=0,...,n,

where the initial guess for iterating on u is the previously computed ;
uf~1. If a particular A, leads to convergence problems, one may try a
increase in A: A, = %(Aé—l + Ay), and repeat halving the step in
convergence is reestablished.

6 Exercises

Problem 1: Determine if equations are nonlinear or

Classify each term in the following equations as linear or nonlinear. Assu
a and b are unknown numbers and that u and v are unknown functic
other symbols are known quantities.

Lb¥=1
2.a+b=1,a—2b=0

3. mu” + Bl |u + cu = F(t)
4. up = 0Ugy

5. ug = c>V2u

6. uy = V- (a(u)Vu) + f(z,y)
7. us+ f(u)s =0

36

8. uy+u-Vu=—-Vp+rViu, V-u=0 (uis a vector field)
9. v = f(u,t)
10. VZu = e*

'roblem 2: Linearize a nonlinear vibration ODE

‘onsider a nonlinear vibration problem

mu’ + bu'|u'| + s(u) = F(t), (64)
here m > 0 is a constant, b > 0 is a constant, s(u) a possibly nonlinear function
fu, and F(t) is a prescribed function. Such models arise from Newton’s second
w of motion in mechanical vibration problems where s(u) is a spring or restoring
rce, mu” is mass times acceleration, and bu/|u’| models water or air drag.

Approximate u” by a centered finite difference D;D;u, and use a centered
ifference Dyu for u’ as well. Observe then that s(u) does not contribute to
1aking the resulting algebraic equation at a time level nonlinear. Use a geometric
1ean to linearize the quadratic nonlinearity arising from the term bu’|u/|.

xercise 3: Find the sparsity of the Jacobian

onsider a typical nonlinear Laplace term like V- a(u)Vu discretized by centered
nite differences. Explain why the Jacobian corresponding to this term has the
ume sparsity pattern as the matrix associated with the corresponding linear
rm aV2u.

[int. Set up the unknowns that enter the difference stencil and find the
arsity of the Jacobian that arise from the stencil.
Filename: nonlin_sparsity_Jacobian.pdf.

xercise 4: Newton’s method for linear problems

uppose we have a linear system F'(u) = Au — b = 0. Apply Newton’s method

> this system, and show that the method converges in one iteration. Filename:

onlin_Newton_linear.pdf.

xercise 5: Differentiate a highly nonlinear term

he operator V - (a(u)Vu) with a(u) = ||Vu||? appears in several physical
roblems, especially flow of Non-Newtonian fluids. In a Newton method one has
» carry out the differentiation da(u)/dc;, for w =", cxthr. Show that

0 _
TUJ_HVUHQ = q||Vul|**Vu - Vi, .

ilename: nonlin_differentiate.pdf.

37

Problem 6: Discretize a 1D problem with a nonlinea:
ficient

We consider the problem
(1+u?)u) =1, x€(0,1), u0)=u(l)=0.
a) Discretize (65) by a centered finite difference method on a uniform

b) Discretize (65) by a finite element method with P1 of equal leng
the Trapezoidal method to compute all integrals. Set up the resulting
system.

Filename: nonlin_1D_coeff_discretize.pdf.

Problem 7: Linearize a 1D problem with a nonlinea
ficient

We have a two-point boundary value problem

(1+uHu') =1, z€(0,1), u(0)=u(l)=0.
a) Construct a Picard iteration method for (66) without discretizing i
b) Apply Newton’s method to (66) without discretizing in space.

c) Discretize (66) by a centered finite difference scheme. Construct ¢
method for the resulting system of nonlinear algebraic equations.

d) Discretize (66) by a centered finite difference scheme. Define the
of nonlinear algebraic equations, calculate the Jacobian, and set up N
method for solving the system.

Filename: nonlin_1D_coeff_linearize.pdf.

Problem 8: Finite differences for the 1D Bratu prob]
We address the so-called Bratu problem

w4+ =0, xe€(0,1), u(0)=u(l)=0,

where A is a given parameter and w is a function of . This is a widely use
problem for studying numerical methods for nonlinear differential eq
The problem (67) has an exact solution

cosh((z — 3)0/2)
u(z) = —2In (005}1(0/24)> ,

38

here 6 solves

0 = V2Xcosh(6/4) .

here are two solutions of (67) for 0 < A < A. and no solution for A > A.. For
= A, there is one unique solution. The critical value \. solves

- \/Ki sinh(6(\.)/4)

numerical value is A\, = 3.513830719.
) Discretize (67) by a centered finite difference method.

) Set up the nonlinear equations F;(ug, u1,...,un,) = 0 from a). Calculate
1e associated Jacobian.
Filename: nonlin_1D_Bratu_fd.pdf.

'roblem 9: Integrate functions of finite element expansions

/e shall investigate integrals on the form

L
/0 F uon () pi(x) do, (68)
k

here ¢;(x) are P1 finite element basis functions and uy, are unknown coefficients,
1ore precisely the values of the unknown function v at nodes x;. We introduce a
ode numbering that goes from left to right and also that all cells have the same
ngth h. Given 4, the integral only gets contributions from [x;—1,z;4+1]. On this
iterval @i (z) =0 for k <i—1and k > i+ 1, so only three basis functions will
mtribute:

D k(@) = wis1pi 1 (@) + wipi () + wip1 i (@)
k

he integral (68) now takes the simplified form

Ti+1
/ fuim1pi-1(z) + uipi(2) + uiv19i+1(2))pi(z) dz .
Ti—1

plit this integral in two integrals over cell L (left), [x;_1, z;], and cell R (right),
5, Zit1]. Over cell L, u simplifies to u;—1pi—1 + u;p; (since ¢;11 = 0 on this
2ll), and over cell R, u simplifies to u;; + w;11¢41. Make a sympy program
1at can compute the integral and write it out as a difference equation. Give
1e f(u) formula on the command line. Try out f(u) = u?, sinu, exp u.

39

Hint. Introduce symbols u_i, u_imi1, and u_ip1 for u;, u;—1, and 1
spectively, and similar symbols for z;, x;—1, and x;4+1. Find formulas
basis functions on each of the two cells, make expressions for v on the t
integrate over each cell, expand the answer and simplify. You can mak
code and render it via http://latex.codecogs.com. Here are some app
Python statements for the latter purpose:

from sympy import *

expr_i holdes the integral as a sympy expression
latex_code = latex(expr_i, mode=’plain’)
Replace u_iml sympy symbol name by latex symbol u_{i-1}

latex_code = latex_code.replace(’im1’, ’{i-1}’)
Replace u_ipl sympy symbol name by latex symbol u_{i+1}
latex_code = latex_code.replace(’ipl’, ’{i+1}’)

Escape (quote) latex_code so it can be sent as HTML text
import cgi
html_code = cgi.escape(latex_code)
Make a file with HTML code for displaying the LaTeX formula
f = open(’tmp.html’, ’w’)
Include an image that can be clicked on to yield a new
page with an interactive editor and display area where the
formula can be further edited
text = nnn
<a href="http://www.codecogs.com/eqnedit.php?latex=/,(html_code)s"
target="_blank">
<img src="http://latex.codecogs.com/gif.latex?’,(html_code)s"
title="%(latex_code)s"/>

nnn % vars()
f.write(text)
f.close()

The formula is displayed by loading tmp.html into a web browser.
Filename: fu_fem_int.py.

Problem 10: Finite elements for the 1D Bratu probl

We address the same 1D Bratu problem as described in Problem 8.

a) Discretize (10) by a finite element method using a uniform mesh
elements. Use a group finite element method for the e term.

b) Set up the nonlinear equations F;(ug, u1,...,un,) =0 from a). C
the associated Jacobian.
Filename: nonlin_1D_Bratu_fe.pdf.

Problem 11: Derive the Newton system from a varia
form

We study the multi-dimensional heat conduction PDE

40

0c(T)Ty =V - (k(T)VT)
1 a spatial domain {2, with a nonlinear Robin boundary condition

oT
on
t the boundary 9€2. The primary unknown is the temperature 7', p is the density
f the solid material, ¢(7T) is the heat capacity, k(7T is the heat conduction, h(T')
a heat transfer coefficient, and T5(7T') is a possibly time-dependent temperature
f the surroundings.

—k(T) 5~ = M(T)(T - T;(1)),

) Use a Backward Euler or Crank-Nicolson time discretization and derive the
ariational form for the spatial problem to be solved at each time level.

) Define a Picard iteration method from the variational form at a time level.

) Derive expressions for the matrix and the right-hand side of the equation
sstem that arises from applying Newton’s method to the variational form at a
me level.

) Apply the Backward Euler or Crank-Nicolson scheme in time first. Derive
Newton method at the PDE level. Make a variational form of the resulting
DE at a time level.

Filename: nonlin_heat_Newton.pdf.

'roblem 12: Derive algebraic equations for nonlinear 1D
eat conduction

‘onsider a 1D heat conduction PDE

QC(T)Tt = (k(T)Tz)z)

here p is the density of the solid material, ¢(T') is the heat capacity, T is the
smperature, and k(T) is the heat conduction coefficient.

Use a uniform finite element mesh, P1 elements, and the group finite element
1ethod to derive the algebraic equations arising from the heat conduction PDE

) Discretize the PDE by a finite difference method. Use either a Backward
uler or Crank-Nicolson scheme in time.

) Derive the matrix and right-hand side of a Newton method applied to the
iscretized PDE.
Filename: nonlin_1D_heat_PDE.pdf.

41

Problem 13: Investigate a 1D problem with a contint
method

Flow of a pseudo-plastic power-law fluid between two flat plates can be

by
d
de Ho

where 8 > 0 and po > 0 are constants. A target value of n may be n =

n—1
du

dz

du
dx

) =8, u(0)=0, u(H)=0,

a) Formulate a Picard iteration method directly for the differential e
problem.

b) Perform a finite difference discretization of the problem in each
iteration. Implement a solver that can compute v on a mesh. Verify {
solver gives an exact solution for n = 1 on a uniform mesh regardless of
size.

c) Given a sequence of decreasing n values, solve the problem for
using the solution for the previous n as initial guess for the Picard it
This is called a continuation method. Experiment with n = (1,0.6,(
n = (1,0.9,0.8,...,0.2) and make a table of the number of Picard it
versus n.

d) Derive a Newton method at the differential equation level and dj
the resulting linear equations in each Newton iteration with the finite d'
method.

e) Investigate if Newton’s method has better convergence properti
Picard iteration, both in combination with a continuation method.

References

[1] C. T. Kelley. Iterative Methods for Linear and Nonlinear Equations
1995.

[2] M. Mortensen, H. P. Langtangen, and G. N. Wells. A FEniCS-ba
gramming framework for modeling turbulent flow by the Reynolds-a
Navier-Stokes equations. Advances in Water Resources, 34(9), 2011

42

ndex

ntinuation method, 36, 42
xed-point iteration, 6
roup finite element method, 25

atex.codecogs.com web site, 39
nearization
explicit time integration, 5
fixed-point iteration, 6
Picard iteration, 6
successive substitutions, 6

aline rendering of ETEX formulas, 39

icard iteration, 6
roduct approximation technique, 25

slaxation (nonlinear equations), 10

ngle Picard iteration technique, 7

;opping criteria (nonlinear problems),
7,15

1ccessive substitutions, 6

