Nonlinear differential equation problems

Hans Petter Langtangen ${ }^{1,2}$

${ }^{1}$ Center for Biomedical Computing, Simula Research Laboratory
${ }^{2}$ Department of Informatics, University of Oslo

$$
\text { Dec 14, } 2013
$$

Note: VERY PRELIMINARY VERSION (expect typos and mathe-ratical errors)
Jontents
Basic examples using the logistic equation 4
1.1 Linearization by explicit time discretization 5
1.2 Exact solution of nonlinear equations 5
1.3 Linearization 6
1.4 Picard iteration 6
1.5 Linearization by a geometric mean 8
1.6 Newton's method 9
1.7 Relaxation 10
1.8 Implementation and experiments 10
1.9 Generalization to a general nonlinear ODE 12
Systems of nonlinear algebraic equations 13
2.1 Picard iteration 14
2.2 Newton's method 14
2.3 Stopping criteria 15
2.4 Example: A nonlinear ODE model from epidemiology 16
Linearization at the differential equation level 18
3.1 Explicit time integration 18
3.2 Picard iteration 18
3.3 Newton's method 19
Discretization of nonlinear differential equations 21
4.1 Finite difference discretizations 21
4.2 Finite element discretizations 24
4.3 The group finite element method 24
4.4 Numerical integration of nonlinear terms 26
4.5 Finite element discretization of a variable coefficient Laplace t
4.6 Picard iteration defined from the variational form
4.7 Newton's method defined from the variational form

5 Multi-dimensional PDE problems
5.1 Finite element discretization
5.2 Finite difference discretization .
5.3 Continuation methods

6 Exercises

ist of Exercises and Problems

Problem 1 Determine if equations are nonlinear or not p. 36
Problem 2 Linearize a nonlinear vibration ODE p. 37
Exercise 3 Find the sparsity of the Jacobian
p. 37

Exercise $4 \quad$ Newton's method for linear problems p. 37
Exercise 5 Differentiate a highly nonlinear term p. 37
Problem 6 Discretize a 1D problem with a nonlinear coefficient ... p. 38
Problem $\quad 7 \quad$ Linearize a 1D problem with a nonlinear coefficient ... \quad p. 38
Problem 8 Finite differences for the 1D Bratu problem p. 38
Problem 9 Integrate functions of finite element expansions ... p. 39
Problem 10 Finite elements for the 1D Bratu problem
Problem 11 Derive the Newton system from a variational ...
p. 40

Problem 12 Derive algebraic equations for nonlinear 1D ...
p. 40
p. 41

Problem - 13 - Invesigate 1D problem with a continut
p. 42

In a linear differential equation all terms involving the unknown ft are linear in the unknown functions or their derivatives. Linear here me: the unknown function or a derivative of it is multiplied by a number or s function. All other differential equations are non-linear. The easiest way an equation is nonlinear is to spot nonlinear terms where the unknown fi or their derivatives are multiplied by each other. For example, in

$$
u^{\prime}(t)=-a(t) u(t)+b(t)
$$

the terms involving the unknown function u are linear: u^{\prime} contains the dt of the unknown function multiplied by unity, and au contains the u function multiplied by a known function. However,

$$
u^{\prime}(t)=u(t)(1-u(t))
$$

is nonlinear because of the term $-u^{2}$ where the unknown function is m by itself. Also

$$
\frac{\partial u}{\partial t}+u \frac{\partial u}{\partial x}=0
$$

is nonlinear because of the term $u u_{x}$ where the unknown function ap] a product with itself or one if its derivatives. Another example of a nı equation is

$$
u^{\prime \prime}+\sin (u)=0
$$

because $\sin (u)$ contains products of u,

$$
\sin (u)=u-\frac{1}{3} u^{3}+\ldots
$$

A series of forthcoming examples will explain who to tackle nonlines ential equations with various techniques.

1 Basic examples using the logistic equatic

Consider the (scaled) logistic equation

$$
u^{\prime}(t)=u(t)(1-u(t)) .
$$

This is a nonlinear differential equation which will be solved by different st in the following. A time discretization of (1) will either lead to a linear a equation or a nonlinear algebraic equation at each time level. In the case, the time discretization method transforms the nonlinear ODE int subproblems at each time level, and the solution is straightforward However, when the time discretization leads to nonlinear algebraic equat cannot (except in very rare cases) solve these without turning to apprc iterative solution methods

. 1 Linearization by explicit time discretization

Forward Euler method to solve (1) results in

$$
\frac{u^{n+1}-u^{n}}{\Delta t}=u^{n}\left(1-u^{n}\right)
$$

hich is a linear algebraic equation for the unknown value u^{n+1}. Therefore, the onlinearity in the original equation poses no difficulty in the discrete algebraic quation. Any other explicit scheme in time will also give only linear algebraic quations to solve. For example, a typical 2nd-order Runge-Kutta method for .) reads,

$$
\begin{aligned}
u^{*} & =u^{n}+\Delta t u^{n}\left(1-u^{n}\right) \\
u^{n+1} & \left.=u^{n}+\Delta t \frac{1}{2}\left(u^{n}\left(1-u^{n}\right)+u^{*}\left(1-u^{*}\right)\right)\right)
\end{aligned}
$$

he first step is linear in the unknown u^{*}. Then u^{*} is computed and known in re next step, which is linear in the unknown u^{n+1}.

. 2 Exact solution of nonlinear equations

witching to a Backward Euler scheme for (1),

$$
\begin{equation*}
\frac{u^{n}-u^{n-1}}{\Delta t}=u^{n}\left(1-u^{n}\right) \tag{2}
\end{equation*}
$$

ssults in a nonlinear algebraic equation for the unknown value u^{n}. The equation of quadratic type:

$$
\Delta t\left(u^{n}\right)^{2}+(1-\Delta t) u^{n}-u^{n-1}=0
$$

le shall now introduce a shorter and often cleaner notation for nonlinear lgebraic equation that appear at a given time level. The notation gets rid f the superscript that indicates the time level and is motivated by how we ill program the solution method for the algebraic equation, especially in more dvanced partial differential equation problems. The unknown in the algebraic quation is denoted by u, while u_{1} is the value of the unknown at the previous me level (in general u_{ℓ} is the value of the unknown ℓ levels back in time). The uadratic equation for the unknown u^{n} in (2) can then be written

$$
\begin{equation*}
F(u)=\Delta t u^{2}+(1-\Delta t) u-u_{1}=0 \tag{3}
\end{equation*}
$$

nd the solution is

$$
\begin{equation*}
u=\frac{1}{2 \Delta t}\left(-1-\Delta t \pm \sqrt{(1-\Delta t)^{2}-4 \Delta t u_{1}}\right) \tag{4}
\end{equation*}
$$

ere we encounter a fundamental challenge with nonlinear algebraic equations: re equation may have more than one solution. How do we pick the right
solution? In the present simple case we can expand the square root in in Δt and truncate after the linear term since the Backward Euler sch introduce an error proportional to Δt anyway. Using sympy we find the f_{f} Taylor series expansions of the roots:

```
>>> import sympy as sp
>>> dt, u_1, u = sp.symbols('dt u_1 u')
>>> r1, r2 = sp.solve(dt*u**2 + (1-dt)*u - u_1, u) # find roots
>>> r1
(dt - sqrt(dt**2 + 4*dt*u_1 - 2*dt + 1) - 1)/(2*dt)
>>> r2
(dt + sqrt(dt**2 + 4*dt*u_1 - 2*dt + 1) - 1)/(2*dt)
>>> print r1.series(dt, 0, 2)
-1/dt + 1 - u_1 + dt*(u_1**2 - u_1) + O(dt**2)
>>> print r2.series(dt, 0, 2)
u_1 + dt*(-u_1**2 + u_1) + 0(dt**2)
```

We see that the r1 root, corresponding to a minus sign in front of the root in (4), behaves as $1 / \Delta t$ and will therefore blow up as $\Delta t \rightarrow 0$! Onl root is of relevance in this case.

1.3 Linearization

When the time integration of an ODE results in a nonlinear algebraic e we must normally find its solution by defining a sequence of linear ec and hope that the solutions of these linear equations converge to the solution of the nonlinear algebraic equation. Usually this means solv linear equation repeatedly in an iterative fashion. Sometimes the ns equation is just approximated by a linear equation and no iteration is out.

Constructing a linear equation from a nonlinear one requires linea of each nonlinear term. This can be done manually as in Picard itera fully algorithmically as in Newton's method. Examples will best illustr to linearize nonlinear problems.

1.4 Picard iteration

Let us write (3) in a more compact form

$$
F(u)=a u^{2}+b u+c=0,
$$

with $a=\Delta t, b=1-\Delta t$, and $c=-u_{1}$. Let u_{-}an available approximatic unknown u. Then we can linearize the term u^{2} by writing $u_{-} u$. The r equation, $\hat{F}(u)=0$, is linear and hence easy to solve:

$$
F(u) \approx \hat{F}(u)=a u_{-} u+b u+c=0
$$

Since the equation $\hat{F}=0$ is only approximate, the solution u does not et exact solution u_{e} of the exact equation $F\left(u_{\mathrm{e}}\right)=0$, but we can hope t
oser to u_{e} than u_{-}is, and hence it makes sense to repeat the procedure, i.e., st $u_{-}=u$ and solve $\hat{F}(u)=0$ again.
The idea of turning a nonlinear equation into a linear one by using an pproximation u_{-}of u in nonlinear terms is a widely used approach that goes nder many names: fixed-point iteration, the method of successive substitutions, onlinear Richardson iteration, and Picard iteration. We will stick to the latter ame.

Picard iteration for solving the nonlinear equation arising from the Backward uler discretization of the logistic equation can be written as

$$
u=-\frac{c}{a u_{-}+b}, \quad u_{-} \leftarrow u
$$

he iteration is started with the value of the unknown at the previous time level: ${ }_{-}=u_{1}$.
Some prefer an explicit iteration counter as superscript in the mathematical otation. Let u^{k} be the computed approximation to the solution in iteration k. 1 iteration $k+1$ we want to solve

$$
a u^{k} u^{k+1}+b u^{k+1}+c=0 \quad \Rightarrow \quad u^{k+1}=-\frac{c}{a u^{k}+b}, \quad k=0,1, \ldots
$$

owever, we will normally apply a mathematical notation in our final formulas lat is as close as possible to what we aim to write in a computer code and then e want to omit the k superscript in u.
topping criteria. The iteration method can typically be terminated when re change in the solution is smaller than a tolerance ϵ_{u} :

$$
\left|u-u_{-}\right| \leq \epsilon_{u}
$$

r when the residual in the equation is sufficiently small $\left(\epsilon_{r}\right)$,

$$
|F(u)|=\left|a u^{2}+b u+c\right|<\epsilon_{r} .
$$

Jith $\epsilon_{r}=10^{-7}$ we seldom need more than about 5 iterations when solving this ,gistic equation.

- single Picard iteration. Instead of iterating until a stopping criterion is ulfilled, one may iterate a specific number of times. Just one Picard iteration is opular as this corresponds to the intuitive idea of approximating a nonlinear arm like $\left(u^{n}\right)^{2}$ by $u^{n-1} u^{n}$. That is, one just applies a known value for the nknown at the previous time level in nonlinear terms. The corresponding time iscretization reads

$$
\begin{equation*}
\frac{u^{n}-u^{n-1}}{\Delta t}=u^{n}\left(1-u^{n-1}\right) \tag{5}
\end{equation*}
$$

This is obviously an approximation and does not correspond to a "pur, difference method where the equation is sampled at a point and der replaced by differences. The best interpretation of the scheme (5) is a Bi Euler difference combined with a single Picard iteration at each time lev the value at the previous time level as start for the Picard iteration.

1.5 Linearization by a geometric mean

We consider now a Crank-Nicolson discretization of (1). This means t time derivative is approximated by a centered difference,

$$
\left[D_{t} u=u(1-u)\right]^{n+\frac{1}{2}}
$$

written out as

$$
\frac{u^{n+1}-u^{n}}{\Delta t}=u^{n+\frac{1}{2}}-\left(u^{n+\frac{1}{2}}\right)^{2}
$$

The term $u^{n+\frac{1}{2}}$ is normally approximated by an arithmetic mean,

$$
u^{n+\frac{1}{2}} \approx \frac{1}{2}\left(u^{n}+u^{n+1}\right)
$$

such that the scheme involves the unknown function only at the time leve we actually compute it. The same arithmetic mean applied to the n , term gives

$$
\left(u^{n+\frac{1}{2}}\right)^{2} \approx \frac{1}{4}\left(u^{n}+u^{n+1}\right)^{2}
$$

which is nonlinear in the unknown u^{n+1}. However, using a geometric n $\left(u^{n+\frac{1}{2}}\right)^{2}$ is a way of linearizing the nonlinear term in (6):

$$
\left(u^{n+\frac{1}{2}}\right)^{2} \approx u^{n} u^{n+1} .
$$

The linearized scheme for u^{n+1} now reads

$$
\frac{u^{n+1}-u^{n}}{\Delta t}=\frac{1}{2}\left(u^{n}+u^{n+1}\right)+u^{n} u^{n+1}
$$

which can readily be solved:

$$
u^{n+1}=\frac{1+\frac{1}{2} \Delta t}{1+\Delta t u^{n}-\frac{1}{2} \Delta t} u^{n}
$$

This scheme can be coded directly, and since there is no nonlinear a equation to solve by methods for those kind of problems we skip the si: notation (u for u^{n+1} and u_{1} for u^{n}).

The geometric mean approximation is often very effective to $d \epsilon$ quadratic nonlinearities. Both the arithmetic and geometric mean app tions have truncation errors of order Δt^{2} and are therefore compatil
ge truncation error of the centered difference approximation for U^{\prime} in the rank-Nicolson method.
Applying the operator notation for the means, the linearized Crank-Nicolson sheme for the logistic equation can be compactly expressed as

$$
\left[D_{t} u=\bar{u}^{t}+{\overline{u^{2}}}^{t, g}\right]^{n+\frac{1}{2}}
$$

Lemark. If we use an arithmetic instead of a geometric mean for the nonlinear rm in (6), we end up with a nonlinear term $\left(u^{n+1}\right)^{2}$. The term can be linearized ; $u^{n} u^{n+1}$ in a Picard iteration approach. Observe that the geometric mean voids any iteration.

. 6 Newton's method

he Backward Euler scheme (2) for the logistic equation leads to a nonlinear lgebraic equation (3). Now we write any nonlinear algebraic equation in the eneral and compact form

$$
F(u)=0 .
$$

ewton's method linearizes this equation by approximating $F(u)$ by its Taylor sries expansion around a computed value u_{-}and keeping only the linear part:

$$
\begin{aligned}
F(u) & =F\left(u_{-}\right)+F^{\prime}\left(u_{-}\right)\left(u-u_{-}\right)+\frac{1}{2} F^{\prime \prime}\left(u_{-}\right)\left(u-u_{-}\right)^{2}+\cdots \\
& \approx F\left(u_{-}\right)+F^{\prime}\left(u_{-}\right)\left(u-u_{-}\right)=\hat{F}(u) .
\end{aligned}
$$

he linear equation $\hat{F}(u)=0$ has the solution

$$
u=u_{-}-\frac{F\left(u_{-}\right)}{F^{\prime}\left(u_{-}\right)}
$$

xpressed with an iteration index on the unknown, Newton's method takes on ne more familiar mathematical form

$$
u^{k+1}=u^{k}-\frac{F\left(u^{k}\right)}{F^{\prime}\left(u^{k}\right)}, \quad k=0,1, \ldots
$$

Application of Newton's method to the logistic equation discretized by the ackward Euler method is straightforward as we have

$$
F(u)=a u^{2}+b u+c, \quad a=\Delta t, b=1-\Delta t, c=-u_{1},
$$

nd then

$$
F^{\prime}(u)=2 a u+b
$$

he iteration method becomes

$$
u=u_{-}+\frac{a u_{-}^{2}+b u_{-}+c}{2 a u_{-}+b}, \quad u_{-} \leftarrow u
$$

At each time level, we start the iteration by setting $u_{-}=u_{1}$. Stopping as listed for the Picard iteration can be used also for Newton's method

An alternative mathematical form, where we write out a, b, and c, al time level counter n and an iteration counter k, takes the form
$u^{n, k+1}=u^{n, k}+\frac{\Delta t\left(u^{n, k}\right)^{2}+(1-\Delta t) u^{n, k}-u^{n-1}}{2 \Delta t u^{n, k}+1-\Delta t}, \quad u^{n, 0}=u^{n-1}, \quad k=$
The implementation is much closer to (7) than to (8), but the latter i aligned with the established mathematical notation used in the literatu

1.7 Relaxation

One iteration in Newton's method or Picard iteration consists of solving problem $\hat{F}(u)=0$. Sometimes convergence problems arise because ${ }^{1}$ solution u of $\hat{F}(u)=0$ is "too far away" from the previously computed u_{-}. A remedy is to introduce a relaxation, meaning that we first solve \hat{F}_{\mid} for a suggested value u^{*} and then we take u as a weighted mean of what u_{-}, and what our linearized equation $\hat{F}=0$ suggests, u^{*} :

$$
u=\omega u^{*}+(1-\omega) u_{-}
$$

The parameter ω is known as a relaxation parameter, and a choice ω < prevent divergent iterations.

Relaxation in Newton's method can be directly incorporated in tl iteration formula:

$$
u=u_{-}-\omega \frac{F\left(u_{-}\right)}{F^{\prime}\left(u_{-}\right)}
$$

1.8 Implementation and experiments

The program logistic. py^{1} contains implementations of all the metl scribed above. Below is an extract of the file showing how the Picard and methods are implemented for a Backward Euler discretization of the equation.
def BE_logistic(u0, dt, Nt, choice='Picard', eps_r=1E-3, omega=1) $u=$ np.zeros (Nt+1)
$u[0]=u 0$
for n in range ($1, \mathrm{Nt}+1$):
$a=d t ; b=1-d t ; c=-u[n-1]$
if choice == 'Picard':

[^0]
def $F(u)$:

return $a * u * * 2+b * u+c$
$\mathrm{u}_{-}=\mathrm{u}[\mathrm{n}-1]$
$\mathrm{k}=0$
while abs $\left(F\left(u_{-}\right)\right)$> eps_r:
$\mathrm{u}_{-}=$omega*(-c/(a*u_ + b)) + (1-omega) u_{-}
$\mathrm{k}+=1$
$\mathrm{u}[\mathrm{n}]=\mathrm{u}_{-}$, ${ }_{\text {if }}$,
def $F(u)$:
return $a * u * * 2+b * u+c$
def $\mathrm{dF}(\mathrm{u})$:
return $2 * a * u+b$
$u_{-}=u[n-1]$
while
while abs $\left(F\left(u_{-}\right)\right)$> eps_r:
$u_{-}=u_{-}-F\left(u_{-}\right) / d F\left(u_{-}\right)$
$u[n]=u_{-}$
return u
The Crank-Nicolson method utilizing a linearization based on the geometric ıean gives a simpler algorithm:

```
lef CN_logistic(u0, dt, N):
    u=np.zeros(N+1)
    u=np.zer
    for n in range(0,N):
    u[n+1] = (1 + 0.5*dt)/(1 + dt*u[n] - 0.5*dt)*u[n]
```

 return u
 Experiments with this program reveal the relative performance of the methods 3 summarized in the table below. The Picard and Newton columns reflect the rpical number of iterations with these methods before the curve starts to flatten ut and the number of iterations is significantly reduced since the solution of the onlinear algebraic equation is very close to the starting value for the iterations he solution at the previous time level). Increasing Δt moves the starting value urther away from the solution of the nonlinear equation and one expects an icrease in the number of iterations. Picard iteration is very much more sensitive , the size of Δt than Newton's method. The tolerance ϵ_{r} in residual-based opping criterion takes on a low and high value in the experiments.

Δt	ϵ_{r}	Picard	Newton
0.2	10^{-7}	5	2
0.2	10^{-3}	2	1
0.4	10^{-7}	12	3
0.4	10^{-3}	4	2
0.8	10^{-7}	58	3
0.8	10^{-3}	4	2

Remark. The simple Crank-Nicolson method with a geometric mean quadratic nonlinearity gives visually more accurate solutions than the B : Euler discretization. Even with a tolerance of $\epsilon_{r}=10^{-3}$, all the metl treating the nonlinearities in the Backward Euler discretization gives gra] cannot be distinguished. So for accuracy in this problem, the time discre is much more crucial than ϵ_{r}. Ideally, one should estimate the error in t discretization, as the solution progresses, and set ϵ_{r} accordingly.

1.9 Generalization to a general nonlinear ODE

Let us see how the various methods in the previous sections can be ap the more generic model

$$
u^{\prime}=f(u, t),
$$

where f is a nonlinear function of u.
Explicit time discretization. Explicit ODE methods like the Forwa: scheme, Runge-Kutta methods, Adams-Bashforth methods all evalué time levels where u is already computed, so nonlinearities in f do not F difficulties.

Backward Euler discretization. Approximating u^{\prime} by a backward d: leads to a Backward Euler scheme, which can be written as

$$
F\left(u^{n}\right)=u^{n}-\Delta t f\left(u^{n}, t_{n}\right)-u^{n-1}=0
$$

or alternatively

$$
F(u)=u-\Delta t f\left(u, t_{n}\right)-u_{1}=0 .
$$

A simple Picard iteration, not knowing anything about the nonlinear st of f, must approximate $f\left(u, t_{n}\right)$ by $f\left(u_{-}, t_{n}\right)$:

$$
\hat{F}(u)=u-\Delta t f\left(u_{-}, t_{n}\right)-u_{1} .
$$

The iteration starts with $u_{-}=u_{1}$ and proceeds with repeating

$$
u^{*}=\Delta t f\left(u_{-}, t_{n}\right)+u_{1}, \quad u=\omega u^{*}+(1-\omega) u_{-}, \quad u_{-} \leftarrow u
$$

until a stopping criterion is fulfilled.
Newton's method requires the computation of the derivative

$$
F^{\prime}(u)=1-\Delta t \frac{\partial f}{\partial u}\left(u, t_{n}\right)
$$

Starting with the solution at the previous time level, $u_{-}=u_{1}$, we can the standard formula

$$
u=u_{-}-\omega \frac{F\left(u_{-}\right)}{F^{\prime}\left(u_{-}\right)}=u_{-} \omega \frac{u_{1}+\Delta t f\left(u, t_{n}\right)}{1-\Delta t \frac{\partial}{\partial u} f\left(u_{,} t_{n}\right)} .
$$

The geometric mean trick cannot be used unless we know that f has a special ructure with quadratic expressions in u.
;rank-Nicolson discretization. The standard Crank-Nicolson scheme with rithmetic mean approximation of f takes the form

$$
\frac{u^{n+1}-u^{n}}{\Delta t}=\frac{1}{2}\left(f\left(u^{n+1}, t_{n+1}\right)+f\left(u^{n}, t_{n}\right)\right)
$$

troducing u for the unknown u^{n+1} and u_{1} for u^{n}, we can write the scheme as nonlinear algebraic equation

$$
F(u)=u-u_{1}-\Delta t \frac{1}{2} f\left(u, t_{n+1}\right)-\Delta t \frac{1}{2} f\left(u_{1}, t_{n}\right)=0 .
$$

Picard iteration scheme must in general employ the linearization,

$$
\hat{F}(u)=u-u_{1}-\Delta t \frac{1}{2} f\left(u_{-}, t_{n+1}\right)-\Delta t \frac{1}{2} f\left(u_{1}, t_{n}\right),
$$

hile Newton's method can apply the general formula, but we need to derive

$$
F^{\prime}(u)=1-\frac{1}{2} \Delta t \frac{\partial f}{\partial u}\left(u, t_{n+1}\right) .
$$

: Systems of nonlinear algebraic equations

nplicit time discretization methods for a system of ODEs, or a PDE, lead to ystems of nonlinear algebraic equations, written compactly as

$$
F(u)=0,
$$

here u is a vector of unknowns $u=\left(u_{0}, \ldots, u_{N}\right)$, and F is a vector function: ${ }^{\prime}=\left(F_{0}, \ldots, F_{N}\right)$. Sometimes the equation system has a special structure ecause of the underlying problem, e.g.,

$$
A(u) u=b(u)
$$

ith $A(u)$ as an $(N+1) \times(N+1)$ matrix function of u and b as a vector function: $=\left(b_{0}, \ldots, b_{N}\right)$.
We shall next explain how Picard iteration and Newton's method can be pplied to systems like $F(u)=0$ and $A(u) u=b(u)$. The exposition has a focus n ideas and practical computations. More theoretical considerations, including uite general results on convergence properties of these methods, can be found , Kelley [1].

2.1 Picard iteration

We cannot apply Picard iteration to nonlinear equations unless there special structure. For the commonly arising case $A(u) u=b(u)$ we can] the product $A(u) u$ to $A\left(u_{-}\right) u$ and $b(u)$ as $b\left(u_{-}\right)$. That is, we use t] previously computed approximation in A and b to arrive at a linear sy: u :

$$
A\left(u_{-}\right) u=b\left(u_{-}\right)
$$

A relaxed iteration takes the form

$$
A\left(u_{-}\right) u^{*}=b\left(u_{-}\right), \quad u=\omega u^{*}+(1-\omega) u_{-} .
$$

In other words, we solve a system of nonlinear algebraic equations as a s of linear systems.

Algorithm for relaxed Picard iteration.

Given $A(u) u=b(u)$ and an initial guess u_{-}, iterate until convergenc

1. solve $A\left(u_{-}\right) u^{*}=b\left(u_{-}\right)$with respect to u^{*}
2. $u=\omega u^{*}+(1-\omega) u_{-}$
3. $u_{-} \leftarrow u$

2.2 Newton's method

The natural starting point for Newton's method is the general nonlinea equation $F(u)=0$. As for a scalar equation, the idea is to approximate F a known value u_{-}by a linear function \hat{F}, calculated from the first two 1 a Taylor expansion of F. In the multi-variate case these two terms bec,

$$
F\left(u_{-}\right)+J\left(u_{-}\right) \cdot\left(u-u_{-}\right),
$$

where J is the Jacobian of F, defined by

$$
J_{i, j}=\frac{\partial F_{i}}{\partial u_{j}}
$$

So, the original nonlinear system is approximated by

$$
\hat{F}(u)=F\left(u_{-}\right)+J\left(u_{-}\right) \cdot\left(u-u_{-}\right)=0
$$

which is linear in u and can be solved in a two-step procedure: fir $J \delta u=-F\left(u_{-}\right)$with respect to the vector δu and then update $u=u_{-}$ relaxation parameter can easily be incorporated:

$$
u=\omega\left(u_{-}+\delta u\right)+(1-\omega) u_{-}=\omega_{-}+\omega \delta u
$$

> Algorithm for Newton's method.
> Given $F(u)=0$ and an initial guess u_{-}, iterate until convergence:
> 1. solve $J \delta u=-F\left(u_{-}\right)$with respect to δu
> 2. $\left.u=u_{-}+\omega\right) \delta u$
> 3. $u_{-} \leftarrow u$

For the special system with structure $A(u) u=b(u)$,

$$
F_{i}=\sum_{k} A_{i, k}(u) u_{k}-b_{i}(u)
$$

nd

$$
\begin{equation*}
J_{i, j}=\sum_{k} \frac{\partial A_{i, k}}{\partial u_{j}} u_{k}+A_{i, j}-\frac{\partial b_{i}}{\partial u_{j}} \tag{10}
\end{equation*}
$$

Ve realize that the Jacobian needed in Newton's method consists of $A\left(u_{-}\right)$as 1 the Picard iteration plus two additional terms arising from the differentiation. sing the notation $A^{\prime}(u)$ for $\partial A / \partial u$ (a quantity with three indices: $\partial A_{i, k} / \partial u_{j}$), nd $b^{\prime}(u)$ for $\partial b / \partial u$ (a quantity with two indices: $\partial b_{i} / \partial u_{j}$), we can write the near system to be solved as

$$
\left(A+A^{\prime} u+b^{\prime}\right) \delta u=-A u+b,
$$

r

$$
\left(A\left(u_{-}\right)+A^{\prime}\left(u_{-}\right) u_{-}+b^{\prime}\left(u_{i}\right)\right) \delta u=-A\left(u_{-}\right) u_{-}+b\left(u_{-}\right) .
$$

earranging the terms demonstrates the difference from the system solved in ъch Picard iteration:

$$
\underbrace{A\left(u_{-}\right)\left(u_{-}+\delta u\right)-b\left(u_{-}\right)}+\gamma\left(A^{\prime}\left(u_{-}\right) u_{-}+b^{\prime}\left(u_{i}\right)\right) \delta u=0 .
$$

$$
\overbrace{\text { Picard system }}
$$

ere we have inserted a parameter γ such that $\gamma=0$ gives the Picard system ad $\gamma=1$ gives the Newton system. Such a parameter can be handy in software , easily switch between the methods.

. 3 Stopping criteria

et $\|\cdot\|$ be the standard Eucledian vector norm. Four termination criteria are such in use:

- Absolute change in solution: $\left\|u-u_{-}\right\| \leq \epsilon_{u}$
- Relative change in solution: $\left\|u-u_{-}\right\| \leq \epsilon_{u}\left\|u_{0}\right\|$, where u_{0} den start value of u_{-}in the iteration
- Absolute residual: $\|F(u)\| \leq \epsilon_{r}$
- Relative residual: $\|F(u)\| \leq \epsilon_{r}\left\|F\left(u_{0}\right)\right\|$

To prevent divergent iterations to run forever, one terminates the it when the current number of iterations k exceeds a maximum value $k_{\text {ma }}$

The relative criteria are most used since they are not sensitive to t acteristic size of u. Nevertheless, the relative criteria can be misleadir the initial start value for the iteration is very close to the solution, s unnecessary reduction in the error measure is enforced. In such cases the : criteria work better. It is common to combine the absolute and relative n of the size of the residual, as in

$$
\|F(u)\| \leq \epsilon_{r r}\left\|F\left(u_{0}\right)\right\|+\epsilon_{r a}
$$

where $\epsilon_{r r}$ is the tolerance in the relative criterion and $\epsilon_{r a}$ is the toleranc absolute criterion. With a very good initial guess for the iteration (typic solution of a differential equation at the previous time level), the term | is small and $\epsilon_{r a}$ is the dominating tolerance. Otherwise, $\epsilon_{r r}\left\|F\left(u_{0}\right)\right\|$ relative criterion dominates.

With the change in solution as criterion we can formulate and cc absolute and relative measure of the change in the solution:

$$
\|\delta u\| \leq \epsilon_{u r}\left\|u_{0}\right\|+\epsilon_{u a}
$$

The ultimate termination criterion, combining the residual and the in solution tests with a test on the maximum number of iterations allow expressed as

$$
\|F(u)\| \leq \epsilon_{r r}\left\|F\left(u_{0}\right)\right\|+\epsilon_{r a} \text { or }\|\delta u\| \leq \epsilon_{u r}\left\|u_{0}\right\|+\epsilon_{u a} \text { or } k>k_{\max } .
$$

2.4 Example: A nonlinear ODE model from epidem

The simplest model spreading of a disease, such as a flu, takes the fo 2×2 ODE system

$$
\begin{aligned}
S^{\prime} & =-\beta S I \\
I^{\prime} & =\beta S I-\nu I
\end{aligned}
$$

where $S(t)$ is the number of people who can get ill (susceptibles) and I (number of people who are ill (infected). The constants $\beta>0$ and $\nu>0$ given along with initial conditions $S(0)$ and $I(0)$.
mplicit time discretization. A Crank-Nicolson scheme leads to a 2×2 rstem of nonlinear algebraic equations in the unknowns S^{n+1} and I^{n+1} :

$$
\begin{align*}
& \frac{S^{n+1}-S^{n}}{\Delta t}=-\beta[S I]^{n+\frac{1}{2}} \approx-\frac{\beta}{2}\left(S^{n} I^{n}+S^{n+1} I^{n+1}\right) \tag{16}\\
& \frac{I^{n+1}-I^{n}}{\Delta t}=\beta[S I]^{n+\frac{1}{2}}-\nu I^{n+\frac{1}{2}} \approx \frac{\beta}{2}\left(S^{n} I^{n}+S^{n+1} I^{n+1}\right)-\frac{\nu}{2}\left(I^{n}+I^{n+1}\right) \tag{17}
\end{align*}
$$

atroducing S for S^{n+1}, S_{1} for S^{n}, I for I^{n+1}, I_{1} for I^{n}, we can rewrite the rstem as

$$
\begin{align*}
& F_{S}(S, I)=S-S_{1}+\frac{1}{2} \Delta t \beta\left(S_{1} I_{1}+S I\right)=0 \tag{18}\\
& F_{I}(S, I)=I-I_{1}-\frac{1}{2} \Delta t \beta\left(S_{1} I_{1}+S I\right)-\frac{1}{2} \Delta t \nu\left(I_{1}+I\right)=0 \tag{19}
\end{align*}
$$

. Picard iteration. We assume that we have approximations S_{-}and I_{-}to and I. A way of linearizing the only nonlinear term $S I$ is to write $I_{-} S$ in re $F_{S}=0$ equation and $S_{-} I$ in the $F_{I}=0$ equation, which also decouples the quations. Solving the resulting linear equations with respect to the unknowns and I gives

$$
\begin{aligned}
& S=\frac{S_{1}-\frac{1}{2} \Delta t \beta S_{1} I_{1}}{1+\frac{1}{2} \Delta t \beta I_{-}} \\
& I=\frac{I_{1}+\frac{1}{2} \Delta t \beta S_{1} I_{1}}{1-\frac{1}{2} \Delta t \beta S_{-}+\nu}
\end{aligned}
$$

he solutions S and I are stored in S_{-}and I_{-}and a new iteration is carried ut.

Jewton's method. The nonlinear system (18)-(19) can be written as $F(u)=$ with $F=\left(F_{S}, F_{I}\right)$ and $u=(S, I)$. The Jacobian becomes

$$
J=\left(\begin{array}{cc}
\frac{\partial}{\partial S} F_{S} & \frac{\partial}{\partial I} F_{S} \\
\frac{\partial}{\partial S} F_{I} & \frac{\partial}{\partial I} F_{I}
\end{array}\right)=\left(\begin{array}{cc}
1+\frac{1}{2} \Delta t \beta I & \frac{1}{2} \Delta t \beta \\
-\frac{1}{2} \Delta t \beta S & 1-\frac{1}{2} \Delta t \beta I-\frac{1}{2} \Delta t \nu
\end{array}\right) .
$$

he Newton system to be solved in each iteration is then

$$
\begin{aligned}
& \left(\begin{array}{cc}
1+\frac{1}{2} \Delta t \beta I_{-} & \frac{1}{2} \Delta t \beta S_{-} \\
-\frac{1}{2} \Delta t \beta S_{-} & 1-\frac{1}{2} \Delta t \beta I_{-}-\frac{1}{2} \Delta t \nu
\end{array}\right)\binom{\delta S}{\delta I}= \\
& \binom{S_{-}-S_{1}+\frac{1}{2} \Delta t \beta\left(S_{1} I_{-}+S_{-} I_{-}\right)}{I_{-}-I_{1}-\frac{1}{2} \Delta t \beta\left(S_{1} I_{1}+S_{-} I_{-}\right)-\frac{1}{2} \Delta t \nu\left(I_{1}+I_{-}\right)}
\end{aligned}
$$

Remark. For this particular system explicit time integration metho very well. The 4 -th order Runge-Kutta method is an excellent balance high accuracy, high efficiency, and simplicity.

3 Linearization at the differential equation

The attention is now turned to nonlinear partial differential equations and application of the techniques explained for ODEs. The model prob nonlinear diffusion equation

$$
\begin{array}{rlrl}
\frac{\partial u}{\partial t} & =\nabla \cdot(\alpha(u) \nabla u)+f(u), & & \boldsymbol{x} \in \Omega, t \in(0, T] \\
-\alpha(u) \frac{\partial u}{\partial n} & =g, & & \boldsymbol{x} \in \partial \Omega_{N}, t \in(0, T] \\
u & =u_{0}, & \boldsymbol{x} \in \partial \Omega_{D}, t \in(0, T]
\end{array}
$$

Our aim is to discretize the problem in time and then present tec for linearizing the time-discrete PDE problem "at the PDE level" su we transform the nonlinear stationary PDE problems at each time levt sequence of linear PDE problems, which can be solved using any met linear PDEs. This strategy avoids the solution systems of nonlinear a equations. In Section 4 we shall take the opposite (and more common) a] discretize the nonlinear problem in time and space first, and then sc resulting nonlinear algebraic equations at each time level by the met Section 2.

3.1 Explicit time integration

The nonlinearities in the PDE are trivial to deal with if we choose an time integration method for (20), such as the Forward Euler method:

$$
\left.D_{t}^{+} u=\nabla \cdot(\alpha(u) \nabla u)+f(u)\right]^{n}
$$

which leads to a linear equation in the unknown u^{n+1} :

$$
\frac{u^{n+1}-u^{n}}{\Delta t}=\nabla \cdot\left(\alpha\left(u^{n}\right) \nabla u^{n}\right)+f\left(u^{n}\right)
$$

3.2 Picard iteration

A Backward Euler scheme for (20) reads

$$
\left.D_{t}^{-} u=\nabla \cdot(\alpha(u) \nabla u)+f(u)\right]^{n}
$$

Written out,

$$
\begin{equation*}
\frac{u^{n}-u^{n-1}}{\Delta t}=\nabla \cdot\left(\alpha\left(u^{n}\right) \nabla u^{n}\right)+f\left(u^{n}\right) \tag{23}
\end{equation*}
$$

his is a nonlinear, stationary PDE for the unknown function $u^{n}(\boldsymbol{x})$. We Itroduce a Picard iteration with k as iteration counter. A typical linearization £ the $\nabla \cdot \alpha\left(u^{n}\right) \nabla u^{n}$ term in iteration $k+1$ is to use the previously computed ${ }^{n, k}$ approximation in the diffusion coefficient: $\alpha\left(u^{n, k}\right)$. The nonlinear source arm is treated similarly: $f\left(u^{n, k}\right)$. The unknown function $u^{n, k+1}$ then fulfills the near PDE

$$
\begin{equation*}
\frac{u^{n, k+1}-u^{n-1}}{\Delta t}=\nabla \cdot\left(\alpha\left(u^{n, k}\right) \nabla u^{n, k+1}\right)+f\left(u^{n, k}\right) . \tag{24}
\end{equation*}
$$

he initial guess for the Picard iteration at this time level can be taken as the slution at the previous time level: $u^{n, 0}=u^{n-1}$.
We can alternatively apply the notation where u corresponds to the unknown e want to solve for, i.e., $u^{n, k+1}$ above, let u_{-}be the most recently computed alue, $u^{n, k}$ above, and let u_{1} denote the unknown function at the previous time vel, u^{n-1} above. The PDE to be solved in a Picard iteration then looks like

$$
\begin{equation*}
\frac{u-u_{1}}{\Delta t}=\nabla \cdot\left(\alpha\left(u_{-}\right) \nabla u\right)+f\left(u_{-}\right) \tag{25}
\end{equation*}
$$

t the beginning of the iteration we start with the value from the previous time :vel: $u_{-}=u_{1}$.

. 3 Newton's method

t time level n we have to solve the stationary PDE (23), this time with Newton's lethod. Normally, Newton's method is defined for systems of algebraic equations, ut the idea of the method can be applied at the PDE level too.
Let $u^{n, k}$ be an approximation to u^{n}. We seek a better approximation on the .rm

$$
\begin{equation*}
u^{n}=u^{n, k}+\delta u . \tag{26}
\end{equation*}
$$

he idea is to insert (26) in (23), Taylor expand the nonlinearities and only eep the terms that are linear in δu. Then we can solve a linear PDE for the orrection δu and use (26) to find a new approximation $u^{n, k+1}=u^{n, k}+\delta u$ to n.

Inserting (26) in (23) gives

$$
\begin{equation*}
\frac{u^{n, k}+\delta u-u^{n-1}}{\Delta t}=\nabla \cdot\left(\alpha\left(u^{n, k}+\delta u\right) \nabla\left(u^{n, k}+\delta u\right)\right)+f\left(u^{n, k}+\delta u\right) \tag{27}
\end{equation*}
$$

Je can Taylor expand $\alpha\left(u^{n, k}+\delta u\right)$ and $f\left(u^{n, k}+\delta u\right)$:

$$
\begin{aligned}
& \alpha\left(u^{n, k}+\delta u\right)=\alpha\left(u^{n, k}\right)+\frac{d \alpha}{d u}\left(u^{n, k}\right) \delta u+\mathcal{O}\left(\delta u^{2}\right) \approx \alpha\left(u^{n, k}\right)+\alpha^{\prime}\left(u^{n, k}\right. \\
& f\left(u^{n, k}+\delta u\right)=f\left(u^{n, k}\right)+\frac{d f}{d u}\left(u^{n, k}\right) \delta u+\mathcal{O}\left(\delta u^{2}\right) \approx f\left(u^{n, k}\right)+f^{\prime}\left(u^{n, k}\right.
\end{aligned}
$$

Inserting the linear approximations of α and f in (27) results in

$$
\begin{aligned}
\frac{u^{n, k}+\delta u-u^{n-1}}{\Delta t}= & \nabla \cdot\left(\alpha\left(u^{n, k}\right) \nabla u^{n, k}\right)+f\left(u^{m, k}\right)+ \\
& \nabla \cdot\left(\alpha\left(u^{n, k}\right) \nabla \delta u\right)+\nabla \cdot\left(\alpha^{\prime}\left(u^{n, k}\right) \delta u \nabla u^{n, k}\right)+ \\
& \nabla \cdot\left(\alpha^{\prime}\left(u^{n, k}\right) \delta u \nabla \delta u\right)+f^{\prime}\left(u^{n, k}\right) \delta u
\end{aligned}
$$

The term $\alpha^{\prime}\left(u^{n, k}\right) \delta u \nabla \delta u$ is $\mathcal{O}\left(\delta u^{2}\right)$ and therefore omitted. Reorganiz equation gives a PDE for δu that we can write in short form as

$$
\delta F\left(\delta u ; u^{n, k}\right)=-F\left(u^{n, k}\right)
$$

where

$$
\begin{aligned}
F\left(u^{n, k}\right)= & \frac{u^{n, k}-u^{n-1}}{\Delta t}-\nabla \cdot\left(\alpha\left(u^{n, k}\right) \nabla u^{n, k}\right)+f\left(u^{n, k}\right), \\
\delta F\left(\delta u ; u^{n, k}\right)= & -\frac{1}{\Delta t} \delta u+\nabla \cdot\left(\alpha\left(u^{n, k}\right) \nabla \delta u\right)+ \\
& \nabla \cdot\left(\alpha^{\prime}\left(u^{n, k}\right) \delta u \nabla u^{n, k}\right)+f^{\prime}\left(u^{n, k}\right) \delta u
\end{aligned}
$$

Note that δF is a linear function of δu, and F contains only terms t known, such that the PDE for δu is indeed linear.

The form $\delta F=-F$ resembles the Newton system $J \delta u=-F$ for sys algebraic equations, with δF as $J \delta u$. The unknown vector in a linear sy algebraic equations enters the system as a matrix-vector product ($J \delta u$), the PDE level we have a linear differential operator instead (δF).

We can rewrite the PDE for δu in a slightly different way too if w $u^{n, k}+\delta u$ as $u^{n, k+1}$.

$$
\begin{aligned}
& \frac{u^{n, k+1}-u^{n-1}}{\Delta t}=\nabla \cdot\left(\alpha\left(u^{n, k}\right) \nabla u^{n, k+1}\right)+f\left(u^{n, k}\right)+ \\
& \nabla \cdot\left(\alpha^{\prime}\left(u^{n, k}\right) \delta u \nabla u^{n, k}\right)+f^{\prime}\left(u^{n, k}\right) \delta u .
\end{aligned}
$$

Note that the first line is the same PDE as arise in the Picard iteration, n remaining terms arise from the differentiations that are an inherent in ξ_{ξ} in Newton's method.

For coding we want to introduce u_{-}for $u^{n, k}$ and u_{1} for u^{n-1}. The f for F and δF are then

$$
\begin{aligned}
F\left(u_{-}\right) & =\frac{u_{-}-u_{1}}{\Delta t}-\nabla \cdot\left(\alpha\left(u_{-}\right) \nabla u_{-}\right)+f\left(u_{-}\right), \\
\delta F\left(\delta u ; u_{-}\right) & =-\frac{1}{\Delta t} \delta u+\nabla \cdot\left(\alpha\left(u_{-}\right) \nabla \delta u\right)+
\end{aligned}
$$

$$
\begin{equation*}
\nabla \cdot\left(\alpha^{\prime}\left(u_{-}\right) \delta u \nabla u_{-}\right)+f^{\prime}\left(u_{-}\right) \delta u . \tag{33}
\end{equation*}
$$

he form that orders the PDE as the Picard iteration terms plus the Newton ıethod's derivative terms becomes

$$
\begin{array}{r}
\frac{u-u_{1}}{\Delta t}=\nabla \cdot\left(\alpha\left(u_{-}\right) \nabla u\right)+f\left(u_{-}\right)+ \\
\nabla \cdot\left(\alpha^{\prime}\left(u_{-}\right) \delta u \nabla u_{-}\right)+f^{\prime}\left(u_{-}\right) \delta u . \tag{34}
\end{array}
$$

Discretization of nonlinear differential equations

ection 3 presents methods for linearizing time-discrete PDEs directly prior to iscretization in space. We can alternatively carry out the discretization in space nd of the time-discrete nonlinear PDE problem and get a system of nonlinear lgebraic equations, which can be solved by Picard iteration or Newton's method s presented in Section 2. This latter approach will now be described in detail.
We shall work with the 1D problem

$$
\begin{equation*}
-\left(\alpha(u) u^{\prime}\right)^{\prime}+a u=f(u), \quad x \in(0, L), \quad \alpha(u(0)) u^{\prime}(0)=C, u(L)=0 \tag{35}
\end{equation*}
$$

his problem is of the same nature as those arising from implicit time integration f a nonlinear diffusion PDE as outlined in Section 3.2 (set $a=1 / \Delta t$ and let (u) incorporate the nonlinear source term as well as known terms with the me-dependent unknown function at the previous time level).

. 1 Finite difference discretizations

liscretization. The nonlinearity in the differential equation (35) poses no ore difficulty than a variable coefficient, as in $\left(\alpha(x) u^{\prime}\right)^{\prime}$. We can therefore use standard approach to discretizing the Laplace term with a variable coefficient:

$$
\left[-D_{x} \alpha D_{x} u+a u=f\right]_{i}
$$

Iriting this out for a uniform mesh with points $x_{i}=i \Delta x, i=0, \ldots, N_{x}$, leads ,

$$
\begin{equation*}
-\frac{1}{\Delta x^{2}}\left(\alpha_{i+\frac{1}{2}}\left(u_{i+1}-u_{i}\right)-\alpha_{i-\frac{1}{2}}\left(u_{i}-u_{i-1}\right)\right)+a u_{i}=f\left(u_{i}\right) \tag{36}
\end{equation*}
$$

This equation is valid at all the mesh points $i=0,1, \ldots, N_{x}-1$. At we have the Dirichlet condition $u_{i}=0$. The only difference from the ci $\left(\alpha(x) u^{\prime}\right)^{\prime}$ and $f(x)$ is that now α and f are functions of u and not on $\left(\alpha(u(x)) u^{\prime}\right)^{\prime}$ and $f(u(x))$.

The quantity $\alpha_{i+\frac{1}{2}}$, evaluated between two mesh points, needs a cc Since α depends on u and u is only known at the mesh points, we need to $\alpha_{i+\frac{1}{2}}$ in terms of u_{i} and u_{i+1}. For this purpose we use an arithmeti although a harmonic mean is also common in this context if α featur jumps. There are two choices of arithmetic means:

$$
\begin{aligned}
& \alpha_{i+\frac{1}{2}} \approx \alpha\left(\frac{1}{2}\left(u_{i}+u_{i+1}\right)=\left[\alpha\left(\bar{u}^{x}\right)\right]^{i+\frac{1}{2}},\right. \\
& \alpha_{i+\frac{1}{2}} \approx \frac{1}{2}\left(\alpha\left(u_{i}\right)+\alpha\left(u_{i+1}\right)\right)=\left[\overline{\alpha(u)}^{x}\right]^{i+\frac{1}{2}}
\end{aligned}
$$

Equation (36) with the latter approximation then looks like

$$
\begin{aligned}
-\frac{1}{2 \Delta x^{2}} & \left(\left(\alpha\left(u_{i}\right)+\alpha\left(u_{i+1}\right)\right)\left(u_{i+1}-u_{i}\right)-\left(\alpha\left(u_{i-1}\right)+\alpha\left(u_{i}\right)\right)\left(u_{i}-u_{i}\right.\right. \\
& +a u_{i}=f\left(u_{i}\right)
\end{aligned}
$$

or written more compactly,

$$
\left[-D_{x} \bar{\alpha}^{x} D_{x} u+a u=f\right]_{i}
$$

At mesh point $i=0$ we have the boundary condition $\alpha(u) u^{\prime}=C$, , discretized by

$$
\left[\alpha(u) D_{2 x} u=C\right]_{0}
$$

meaning

$$
\alpha\left(u_{0}\right) \frac{u_{1}-u_{-1}}{2 \Delta x}=C
$$

The fictitious value u_{-1} can be eliminated with the aid of (39) for $i=0 . \mathrm{F}$ (39) should be solved with respect to u_{i-1} and that value (for $i=0$) sh inserted in (40), but it is algebraically much easier to do it the other way Alternatively, one can use a ghost cell $[-\Delta x, 0]$ and update the u_{-1}. the ghost cell according to (40) after every Picard or Newton iteratio an approach means that we use a known u_{-1} value in (39) from the I iteration.

Solution of algebraic equations. The nonlinear algebraic equatic are of the form $A(u) u=b(u)$ with

$$
\begin{aligned}
A_{i, i} & =\frac{1}{2 \Delta x^{2}}\left(-\alpha\left(u_{i-1}\right)+2 \alpha\left(u_{i}\right)-\alpha\left(u_{i+1}\right)\right)+a, \\
A_{i, i-1} & =-\frac{1}{2 \Delta x^{2}}\left(\alpha\left(u_{i-1}\right)+\alpha\left(u_{i}\right)\right), \\
A_{i, i+1} & =-\frac{1}{2 \Delta x^{2}}\left(\alpha\left(u_{i}\right)+\alpha\left(u_{i+1}\right)\right), \\
b_{i} & =f\left(u_{i}\right) .
\end{aligned}
$$

he matrix $A(u)$ is tridiagonal: $A_{i, j}=0$ for $j>1+1$ and $j<i-1$. The obvious icard iteration scheme is to use previously computed values of u_{i} in $A(u)$ and (u), as described more in detail in Section 2.

Newton's method requires computation of the Jacobian. Here it means that e need to differentiate $F(u)=A(u) u-b(u)$ with respect to $u_{0}, u_{1}, \ldots, u_{N_{x}-1}$. onlinear equation number i has the structure
${ }_{i}=A_{i, i-1}\left(u_{i-1}, u_{i}\right) u_{i-1}+A_{i, i}\left(u_{i-1}, u_{i}, u_{i+1}\right) u_{i}+A_{i, i+1}\left(u_{i}, u_{i+1}\right) u_{i+1}-b_{i}\left(u_{i}\right)$.
he Jacobian becomes

$$
\begin{aligned}
J_{i, i}= & \frac{\partial F_{i}}{\partial u_{i}}=\frac{\partial A_{i, i-1}}{\partial u_{i}} u_{i-1}+\frac{\partial A_{i, i}}{\partial u_{i}} u_{i}-\frac{\partial b_{i}}{\partial u_{i}}+A_{i, i}+\frac{\partial A_{i, i+1}}{\partial u_{i}} u_{i+1}-\frac{\partial b_{i}}{\partial u_{i}} \\
= & \frac{1}{2 \Delta x^{2}}\left(-\alpha^{\prime}\left(u_{i}\right) u_{i-1}+2 \alpha^{\prime}\left(u_{i}\right) u_{i}+\left(-\alpha\left(u_{i-1}\right)+2 \alpha\left(u_{i}\right)-\alpha\left(u_{i+1}\right)\right)\right)+ \\
& \left.a-\frac{1}{2 \Delta x^{2}} \alpha^{\prime}\left(u_{i}\right) u_{i+1}\right)-b^{\prime}\left(u_{i}\right), \\
J_{i, i-1}= & \frac{\partial F_{i}}{\partial u_{i-1}}=\frac{\partial A_{i, i-1}}{\partial u_{i-1}} u_{i-1}+A_{i-1, i}+\frac{\partial A_{i, i}}{\partial u_{i-1}} u_{i}-\frac{\partial b_{i}}{\partial u_{i-1}} \\
= & \frac{1}{2 \Delta x^{2}}\left(-\alpha^{\prime}\left(u_{i-1}\right) u_{i-1}-\left(\alpha\left(u_{i-1}\right)+\alpha\left(u_{i}\right)\right)+\alpha^{\prime}\left(u_{i-1}\right) u_{i}\right), \\
J_{i, i+1}= & \frac{\partial A_{i, i+1}}{\partial u_{i-1}} u_{i+1}+A_{i+1, i}+\frac{\partial A_{i, i}}{\partial u_{i+1}} u_{i}-\frac{\partial b_{i}}{\partial u_{i+1}} \\
= & \frac{1}{2 \Delta x^{2}}\left(-\alpha^{\prime}\left(u_{i+1}\right) u_{i+1}-\left(\alpha\left(u_{i}\right)+\alpha\left(u_{i+1}\right)\right)+\alpha^{\prime}\left(u_{i+1}\right) u_{i}\right) . .
\end{aligned}
$$

he explicit expression for nonlinear equation number $i, F_{i}\left(u_{0}, u_{1}, \ldots\right)$, arises om moving all terms in (39) to the left-hand side. Then we have $J_{i, j}$ and F_{i} nodulo the boundary conditions) and can implement Newton's method.
We have seen, and can see from the present example, that the linear system 1 Newton's method contains all the terms present in the system that arises 1 the Picard iteration method. The extra terms in Newton's method can be ultiplied by a factor such that it is easy to program one linear system and set is factor to 0 or 1 to generate the Picard or Newton system.

4.2 Finite element discretizations

For the finite element discretization we first need to derive the var problem. Let V be an appropriate function space with basis functions \{ Because of the Dirichlet condition at $x=L$ we require $\psi_{i}(L)=0, i \in \mathcal{I}_{\text {s }}$ Galerkin's method, we multiply the differential equation by any $v \in$ integrate terms with second-order derivatives by parts:

$$
\int_{0}^{L} \alpha(u) u^{\prime} v^{\prime} \mathrm{d} x+\int_{0}^{L} a u v \mathrm{~d} x=\int_{0}^{L} f(u) v \mathrm{~d} x+\left[\alpha(u) u^{\prime} v\right]_{0}^{L}, \quad \forall v \in
$$

The Neumann condition at the boundary $x=0$ is inserted in the bounda

$$
\left[\alpha(u) u^{\prime} v\right]_{0}^{L}=\alpha(u(L)) u^{\prime}(L) v(L)-\alpha(u(0)) u^{\prime}(0) v(0)=0-C v(0)=-C
$$

The variational problem is then: find $u \in V$ such that

$$
\int_{0}^{L} \alpha(u) u^{\prime} v^{\prime} \mathrm{d} x+\int_{0}^{L} a u v \mathrm{~d} x=\int_{0}^{L} f(u) v \mathrm{~d} x-C v(0), \quad \forall v \in V
$$

To derive the algebraic equations we also demand the above equations for $v=\psi_{i}, i \in \mathcal{I}_{s}$, and we set $u=\sum_{j \in \mathcal{I}_{s}} c_{j} \psi_{j}$. The result is

$$
\sum_{j \in \mathcal{I}_{s}}\left(\int_{0}^{L} \alpha\left(\sum_{k \in \mathcal{I}_{s}} c_{k} \psi_{k}\right) \psi_{j}^{\prime} \psi_{i}^{\prime} \mathrm{d} x\right) c_{j}=\int_{0}^{L} f\left(\sum_{k \in \mathcal{I}_{s}} c_{k} \psi_{k}\right) \psi_{i} \mathrm{~d} x-C \psi_{i}(0)
$$

Remark. Fundamental integration problem Methods that use the Gal weighted residual principle face a fundamental difficulty in nonlinear pp how can we integrate a terms like $\int_{0}^{L} \alpha\left(\sum_{k} c_{k} \psi_{k}\right) \psi_{i}^{\prime} \psi_{j}^{\prime} \mathrm{d} x$ and $\int_{0}^{L} f\left(\sum_{k} c_{k}\right.$ when we do not know the c_{k} coefficients in the argument of the α functi can resort to numerical integration, provided an approximate $\sum_{k} c_{k} \psi_{k}$ used for the argument u in f and α. If we want to derive the structur nonlinear algebraic equations, we need to apply numerical integration E the nodes only and/or the group finite element method.

4.3 The group finite element method

Finite element notation. Let us simplify the model problem for a w set $a=0, \alpha=1, f(u)=u^{2}$, and have Dirichlet conditions at both en that we get a very simple nonlinear problem $-u^{\prime \prime}=u^{2}$. The variational then

$$
\int_{0}^{L} u^{\prime} v^{\prime} \mathrm{d} x=\int_{0}^{L} u^{2} v \mathrm{~d} x, \quad \forall v \in V
$$

he term with $u^{\prime} v^{\prime}$ is well known so the only new feature is the term $\int u^{2} v \mathrm{~d} x$ Introduction of finite element basis functions φ_{i} means setting

$$
\psi_{i}=\varphi_{\nu(i)}, \quad i \in \mathcal{I}_{s}
$$

here degree of freedom number $\nu(j)$ in the mesh corresponds to unknown umber j. When the degrees of freedom are just the function values at nodes, e have that $c_{j}=u\left(x_{\nu(j)}\right)=u_{\nu(j)}$, i.e., the value of u at node number $\nu(j)$. The nite element expansion for u is now

$$
u=\sum_{j \in I_{b}} U_{j} \varphi_{j}+\sum_{j \in \mathcal{I}_{s}} \varphi_{\nu(j)} u_{\nu(j)}
$$

ith the U_{j} quantities being prescribed Dirichlet values at some nodes with umbers in the index I_{b}. Instead of the $\nu(j)$ indices in the sum $\sum_{j \in \mathcal{I}_{s}} \varphi_{\nu(j)} u_{\nu(j)}$, e just write $\sum_{j} \varphi_{j} u_{j}$. This is possible by saying that j runs over a transformed Idex set: $\{\nu(0), \nu(1), \ldots, \nu(N)\}$. In the following we drop the boundary term $\zeta_{j} U_{j} \varphi_{j}$ and write $u=\sum_{j} \varphi_{j} u_{j}$. The replacement of c_{j} by u_{j} as explained is otivated by simpler interpretation of the nonlinear algebraic equations as a nite difference scheme.
ntegrating nonlinear functions. Consider the term $\int u^{2} v \mathrm{~d} x$ in the variaonal formulation with $v=\varphi_{i}$ and $u=\sum_{k} \varphi_{k} u_{k}$:

$$
\int_{0}^{L}\left(\sum_{k} u_{k} \varphi_{k}\right)^{2} \varphi_{i} \mathrm{~d} x
$$

valuating this integral for P1 elements (see Problem 9) results in the expression

$$
\frac{h}{12}\left(u_{i-1}^{2}+2 u_{i}\left(u_{i-1}+u_{i+1}\right)+6 u_{i}^{2}+u_{i+1}^{2}\right.
$$

, be compared with the simple value u_{i}^{2} that would arise in a finite difference iscretization. More complicated $f(u)$ functions give rise to much more lengthy xpressions, if it is possible to carry out the integral symbolically.
inite element approximation of functions of u. Since we already expand as $\sum_{j} \varphi_{j} u_{j}$ we may use the same approximation for nonlinearities. That is, ny function can be expanded as a sum of basis functions times the function alues. In particular,

$$
f(u) \approx \sum_{j \in I_{b}} \varphi_{j} f\left(u_{j}\right)+\sum_{j} \psi_{j}(x) f\left(u_{j}\right)
$$

here the first sum contain f values at the boundary where u has Dirichlet onditions and the other sum is over the node values j where u is unknown. owever, for f there is no reason two have two summations as we do not need , distinguish between the nodes where u are known or unknown. Therefore, we an collapse the two sums into one (over all nodes, $j=0, \ldots, N_{n}$) and write

$$
f(u) \approx \sum_{j=0}^{N_{n}} \varphi_{j}(x) f\left(u_{j}\right)
$$

This approximation is known as the group finite element method or the approximation technique.

The principal advantage of the group finite element method is for (the symbolic form of difference equations in nonlinear problems. The s form is useful for comparing finite element and finite difference equations linear differential equation problems. Computer programs will always is $\int f(u) \varphi_{i} \mathrm{~d} x$ numerically by using an existing approximation of u in $f($ that the integrand can be sampled at any spatial point.

Application. Let use the group finite element method to derive the 1 the difference equation corresponding to $f(u)$ in the differential equat: have

$$
\int_{0}^{L} f(u) \varphi_{i} \mathrm{~d} x \approx \int_{0}^{L}\left(\sum_{j} \varphi_{j} f\left(u_{j}\right)\right) \varphi_{i} \mathrm{~d} x=\sum_{j}\left(\int_{0}^{L} \varphi_{i} \varphi_{j} \mathrm{~d} x\right) f\left(u_{j}\right.
$$

We recognize this expression as the mass matrix M, arising from \int, times the vector $f=\left(f\left(u_{0}\right), f\left(u_{1}\right), \ldots,\right): M f$. The associated term: difference equations are

$$
\frac{h}{6}\left(f\left(u_{i-1}\right)+4 f\left(u_{i}\right)+f\left(u_{i+1}\right)\right)
$$

Occasionally, we want to interpret this expression in terms of finite dif and then a rewrite of this expression is convenient:

$$
\frac{h}{6}\left(f\left(u_{i-1}\right)+4 f\left(u_{i}\right)+f\left(u_{i+1}\right)\right)=h\left[f(u)-\frac{h^{2}}{6} D_{x} D_{x} f(u)\right]_{i}
$$

We may lump the mass matrix through integration with the Trapezoi In that case the $f(u)$ term in the differential equation gives rise to a sin $h f\left(u_{i}\right)$, just as in the finite difference method.

4.4 Numerical integration of nonlinear terms

Let us reconsider a term $\int f(u) v \mathrm{~d} x$ as treated in the previous secti now we want to integrate this term numerically. Such an approach can easy-to-interpret formulas if we apply a numerical integration rule that the integrand at the node points.

The term in question takes the form

$$
\int_{0}^{L} f\left(\sum_{k} u_{k} \varphi_{k}\right) \varphi_{i} \mathrm{~d} x
$$

valuation of the integrand at a node x_{ℓ} leads to a collapse of the sum $\sum_{k} u_{k} \varphi_{k}$, one term because

$$
\begin{gathered}
\sum_{k} u_{k} \varphi_{k}\left(x_{\ell}\right)=u_{\ell} \\
f(\sum_{k} u_{k} \underbrace{\varphi_{k}\left(x_{\ell}\right)}_{\delta_{k \ell}}) \underbrace{\varphi_{i}\left(x_{\ell}\right)}_{\delta_{i \ell}}=f\left(u_{\ell}\right) \delta_{i \ell}
\end{gathered}
$$

here we have used the Kronecker delta $\delta_{i j}=0$ if $i \neq j$ and $\delta_{i j}=1$ if $i=j$.
Considering the Trapezoidal rule for integration, we have

$$
\int_{0}^{L} f\left(\sum_{k} u_{k} \varphi_{k}\right)(x) \varphi_{i}(x) \mathrm{d} x \approx h \sum_{\ell=0}^{N_{n}} f\left(u_{\ell}\right) \delta_{i \ell}-\mathcal{C}=h f\left(u_{i}\right)
$$

he term \mathcal{C} contains the evaluations of the integrand at the ends with weight $\frac{1}{2}$, eeded to make a true Trapezoidal rule. The answer $h f\left(u_{i}\right)$ must therefore be ultiplied by $\frac{1}{2}$ if $i=0$ or $i=N_{n} .\left(\mathcal{C}=\frac{h}{2} f\left(u_{0}\right) \varphi_{i}(0)+\frac{h}{2} f\left(u_{N_{n}}\right) \varphi_{i}(L).\right)$

One can easily use the Trapezoidal rule on the reference cell and assemble re contributions. It is a bit more work in this context, but working on the ference cell is safer as that approach is guaranteed to handle discontinuous erivatives of finite element functions correctly.
The conclusion is that it suffices to use the Trapezoidal rule if one wants) derive the difference equations in the finite element method and make them milar to those arising in the finite difference method. The Trapezoidal rule as sufficient accuracy for P1 elements, but for P2 elements one should turn to impson's rule.

. 5 Finite element discretization of a variable coefficient Laplace term

urning back to the model problem (35), it remains to calculate the contribution f the $\left(\alpha u^{\prime}\right)^{\prime}$ and boundary terms to the difference equations. The integral in re variational form corresponding to $\left(\alpha u^{\prime}\right)^{\prime}$ is

$$
\int_{0}^{L} \alpha\left(\sum_{k} c_{k} \psi_{k}\right) \psi_{i}^{\prime} \psi_{j}^{\prime} \mathrm{d} x
$$

umerical integration utilizing a value of $\sum_{k} c_{k} \psi_{k}$ from a previous iteration ust in general be used to compute the integral. Now our aim is to integrate rmbolically, as much as we can, to obtain some insight into how the finite ement method approximates this term.

To be able to derive symbolic expressions, we either turn to the group finite .ement method or numerical integration in the node points. Finite element asis functions φ_{i} are used, we set $\alpha(u) \approx \sum_{k} \alpha\left(u_{k}\right) \varphi_{k}$, and then we write

$$
\int_{0}^{L} \alpha\left(\sum_{k} c_{k} \varphi_{k}\right) \varphi_{i}^{\prime} \varphi_{j}^{\prime} \mathrm{d} x \approx \sum_{k}(\underbrace{\int_{0}^{L} \varphi_{k} \varphi_{i}^{\prime} \varphi_{j}^{\prime} \mathrm{d} x}_{L_{i, j, k}}) \alpha\left(u_{k}\right)=\sum_{k} L_{i, j, k} \alpha(u
$$

Further calculations are now easiest to carry out in the reference cell. । elements we can compute $L_{i, j, k}$ for the two k values that are relevant reference cell. Turning to local indices, one gets

$$
L_{r, s, t}^{(e)}=\frac{1}{2 h}\left(\begin{array}{rr}
1 & -1 \\
-1 & 1
\end{array}\right), \quad t=0,1
$$

where $r, s, t=0,1$ are indices over local degrees of freedom in the refert $(i=q(e, r), j=q(e, s)$, and $k=q(e, t))$. The sum $\sum_{k} L_{i, j, k} \alpha\left(u_{k}\right)$ at level becomes $\sum_{t=0}^{1} L_{r, s, t}^{(e)} \alpha\left(\tilde{u}_{t}\right)$, where \tilde{u}_{t} is $u\left(x_{q(e, t)}\right)$, i.e., the value of u node number t in cell number e. The element matrix becomes

$$
\frac{1}{2}\left(\alpha\left(\tilde{u}_{0}\right)+\alpha\left(\tilde{u}_{1}\right)\right) \frac{1}{h}\left(\begin{array}{rr}
1 & -1 \\
-1 & 1
\end{array}\right)
$$

As usual, we employ a left-to-right numbering of cells and nodes. Row i in the global matrix gets contributions from the first row of the matrix in cell $i-1$ and the last row of the element matrix in cell i. number $i-1$ the sum $\alpha\left(\tilde{u}_{0}\right)+\alpha\left(\tilde{u}_{1}\right)$ corresponds to $\alpha\left(u_{i-1}\right)+\alpha\left(u_{i}\right)$. T becomes $\alpha\left(u_{i}\right)+\alpha\left(u_{i+1}\right)$ in cell number i. We can with this insight a the contributions to row number i in the global matrix:
$\frac{1}{2 h}\left(-\left(\alpha\left(u_{i-1}\right)+\alpha\left(u_{i}\right)\right), \quad \alpha\left(u_{i-1}\right)+2 \alpha\left(u_{i}\right)+\alpha\left(u_{i+1}\right), \quad \alpha\left(u_{i}\right)+\alpha(u\right.$
Multiplying by the vector of unknowns u_{i} results in

$$
-\frac{1}{h}\left(\frac{1}{2}\left(\alpha\left(u_{i}\right)+\alpha\left(u_{i+1}\right)\right)\left(u_{i+1}-u_{i}\right)-\frac{1}{2}\left(\alpha\left(u_{i-1}\right)+\alpha\left(u_{i}\right)\right)\left(u_{i}-u_{i-1}\right)\right.
$$

which is nothing but the standard finite difference discretization of $-(1$ with an arithmetic mean of $\alpha(u)$ (and a factor h because of the integr the finite element method).

Instead of using the group finite element method and exact integra can turn to the Trapezoidal rule for computing $\int_{0}^{L} \alpha\left(\sum_{k} u_{k} \varphi_{k}\right) \varphi_{i}^{\prime} \varphi_{j}^{\prime} \mathrm{d}$: at the cell level since that is most convenient:

$$
\begin{aligned}
& \int_{-1}^{1} \alpha\left(\sum_{t=0}^{1} \tilde{u}_{t} \tilde{\varphi}_{t}\right) \frac{2}{h} \frac{d \tilde{\varphi}_{r}}{d X} \frac{2}{h} \frac{d \tilde{\varphi}_{s}}{d X} \frac{h}{2} d X=\frac{1}{2 h}(-1)^{r}(-1)^{s} \int_{-1}^{1} \alpha\left(\sum_{t=0}^{1} u_{t} \tilde{\varphi}_{t}(X)\right) c \\
& \quad \approx \frac{1}{2 h}(-1)^{r}(-1)^{s} \alpha\left(\sum_{t=0}^{1} \tilde{\varphi}_{t}(-1) \tilde{u}_{t}\right)+\alpha\left(\sum_{t=0}^{1} \tilde{\varphi}_{t}(1) \tilde{u}_{t}\right)=\frac{1}{2 h}(-1)^{r}(-1)^{s}(
\end{aligned}
$$

he element matrix in (46) is identical to the one in (44), showing that the roup finite element method and Trapezoidal integration are equivalent with standard finite discretization of a nonlinear Laplace term $\left(\alpha(u) u^{\prime}\right)^{\prime}$ using an rithmetic mean for α : $\left[D_{x} \bar{x} D_{x} u\right]_{i}$.
We might comment on integration in the physical coordinate system too. The mmon Trapezoidal rule in Section 4.4 cannot be used to integrate derivatives ke φ_{i}^{\prime}, because the formula is derived under the assumption of a continuous itegrand. One must instead use the more basic version of the Trapezoidal rule here all the trapezoids are summed up. This is straightforward, but I think it even more straightforward to apply the Trapezoidal rule on the reference cell nd assemble the contributions.
The term $\int a u v \mathrm{~d} x$ in the variational form is linear and gives these terms in ne algebraic equations:

$$
\frac{a h}{6}\left(u_{i-1}+4 u_{i}+u_{i+1}\right)=a h\left[u-\frac{h^{2}}{6} D_{x} D_{x} u\right]_{i}
$$

he final term in the variational form is the Neumann condition at the boundry: $C v(0)=C \varphi_{i}(0)$. With a left-to-right numbering only $i=0$ will give a ontribution $C v(0)=C \delta_{i 0}\left(\right.$ since $\varphi_{i}(0) \neq 0$ only for $\left.i=0\right)$.

Summary.

For the equation

$$
-\left(\alpha(u) u^{\prime}\right)^{\prime}+a u=f(u)
$$

P1 finite elements results in difference equations where

- the term $-\left(\alpha(u) u^{\prime}\right)^{\prime}$ becomes $-h\left[D_{x} \overline{\alpha(u)}^{x} D_{x} u\right]_{i}$ if the group finite element method or Trapezoidal integration is applied,
- $f(u)$ becomes $h f\left(u_{i}\right)$ with Trapezoidal integration or the "mass matrix" representation $h\left[f(u)-\frac{h}{6} D_{x} D_{x} f(u)\right]_{i}$ if computed by a group finite element method,
- $a u$ leads to the "mass matrix" form $a h\left[u-\frac{h}{6} D_{x} D_{x} u\right]_{i}$.

As we now have explicit expressions for the nonlinear difference equations Iso in the finite element method, a Picard or Newton method can be defined s shown for the finite difference method. Nevertheless, the general situation that we have not assembled finite difference-style equations by hand and the near system in the Picard or Newton method must therefore be defined directly arough the variational form, as shown next.

4.6 Picard iteration defined from the variational for

We address again the problem (35) with the corresponding variational fo Our aim is to define a Picard iteration based on this variational form witl attempt to compute integrals symbolically as in the previous three sectio idea in Picard iteration is to use a previously computed u value in the n functions $\alpha(u)$ and $f(u)$. Let u_{-}be the available approximation to $u \mathrm{f}$ previous iteration. The linearized variational form for Picard iteration

$$
\int_{0}^{L}\left(\alpha\left(u_{-}\right) u^{\prime} v^{\prime}+a u v\right) \mathrm{d} x=\int_{0}^{L} f\left(u_{-}\right) v \mathrm{~d} x-C v(0), \quad \forall v \in V
$$

This is a linear problem $a(u, v)=L(v)$ with bilinear and linear forms

$$
a(u, v)=\int_{0}^{L}\left(\alpha\left(u_{-}\right) u^{\prime} v^{\prime}+a u v\right) \mathrm{d} x, \quad L(v)=\int_{0}^{L} f\left(u_{-}\right) v \mathrm{~d} x-C v(
$$

The associated linear system is computed the standard way. Technically back to solving $-\left(\alpha(x) u^{\prime}\right)^{\prime}+a u=f(x)$.

4.7 Newton's method defined from the variational 1

Application of Newton's method to the nonlinear variational form (41) from the problem (35) requires identification of the nonlinear algebraic es $F_{i}\left(c_{0}, \ldots, c_{N}\right)=0, i \in \mathcal{I}_{s}$, and the Jacobian $J_{i, j}=\partial F_{i} / \partial c_{j}$ for $i, j \in \mathcal{I}_{s}$

The equations $F_{i}=0$ follows from the variational form

$$
\int_{0}^{L}\left(\alpha(u) u^{\prime} v^{\prime}+a u v\right) \mathrm{d} x=\int_{0}^{L} f(u) v \mathrm{~d} x-C v(0), \quad \forall v \in V
$$

by choosing $v=\psi_{i}, i \in \mathcal{I}_{s}$, and setting $u=\sum_{j \in \mathcal{I}_{s}} c_{j} \psi_{j}$, maybe with a b function to incorporate Dirichlet conditions.

With $v=\psi_{i}$ we have

$$
F_{i}=\int_{0}^{L}\left(\alpha(u) u^{\prime} \psi_{i}^{\prime}+a u \psi_{i}-f(u) \psi_{i}\right) \mathrm{d} x+C \psi_{i}(0)=0, \quad i \in \mathcal{I}_{s}
$$

In the differentiations leading to the Jacobian we will frequently use the

$$
\frac{\partial u}{\partial c_{j}}=\frac{\partial}{\partial c_{j}} \sum_{k} c_{k} \psi_{k}=\psi_{j}, \quad \frac{\partial u^{\prime}}{\partial c_{j}}=\frac{\partial}{\partial c_{j}} \sum_{k} c_{k} \psi_{k}^{\prime}=\psi_{j}^{\prime}
$$

The derivation of the Jacobian goes as

$$
\begin{align*}
J_{i, j}=\frac{\partial F_{i}}{\partial c_{j}} & =\int_{0}^{L} \frac{\partial}{\partial c_{j}}\left(\alpha(u) u^{\prime} \psi_{i}^{\prime}+a u \psi_{i}-f(u) \psi_{i}\right) \mathrm{d} x \\
& =\int_{0}^{L}\left(\left(\alpha^{\prime}(u) \frac{\partial u}{\partial c_{j}} u^{\prime}+\alpha(u) \frac{\partial u^{\prime}}{\partial c_{j}}\right) \psi_{i}^{\prime}+a \frac{\partial u}{\partial c_{j}} \psi_{i}-f^{\prime}(u) \frac{\partial u}{\partial c_{j}} \psi_{i}\right) \mathrm{d} x \\
& =\int_{0}^{L}\left(\left(\alpha^{\prime}(u) \psi_{j} u^{\prime}+\alpha(u) \psi_{j}^{\prime} \psi_{i}^{\prime}+a \psi_{j} \psi_{i}-f^{\prime}(u) \psi_{j} \psi_{i}\right) \mathrm{d} x\right. \\
& =\int_{0}^{L}\left(\alpha^{\prime}(u) u^{\prime} \psi_{i}^{\prime} \psi_{j}+\alpha(u) \psi_{i}^{\prime} \psi_{j}^{\prime}+(a-f(u)) \psi_{i} \psi_{j}\right) \mathrm{d} x \tag{49}
\end{align*}
$$

When calculating the right-hand side vector F_{i} and the coefficient matrix ${ }_{i, j}$ in the linear system to be solved in each Newton iteration, one must use a reviously computed u, denoted by u_{-}, for the u in (48) and (51). With this otation we have

$$
\begin{align*}
F_{i} & =\int_{0}^{L}\left(\alpha\left(u_{-}\right) u_{-}^{\prime} \psi_{i}^{\prime}+\left(a-f\left(u_{-}\right)\right) \psi_{i}\right) \mathrm{d} x-C \psi_{i}(0), \quad i \in \mathcal{I}_{s}, \tag{50}\\
J_{i, j} & =\int_{0}^{L}\left(\alpha^{\prime}\left(u_{-}\right) u_{-}^{\prime} \psi_{i}^{\prime} \psi_{j}+\alpha\left(u_{-}\right) \psi_{i}^{\prime} \psi_{j}^{\prime}+\left(a-f\left(u_{-}\right)\right) \psi_{i} \psi_{j}\right) \mathrm{d} x, \quad i, j \in \mathcal{I}_{s} . \tag{51}
\end{align*}
$$

hese expressions can be used for any basis $\left\{\psi_{i}\right\}_{i \in \mathcal{I}_{s}}$. Choosing finite element unctions for ψ_{i}, one will normally want to compute the integral contribution ell by cell, working in a reference cell. To this end, we restrict the integration) one cell and transform the cell to $[-1,1]$. The formulas (50) and (51) then lange to

$$
\begin{align*}
& \tilde{F}_{r}^{(e)}=\int_{-1}^{1}\left(\alpha\left(\tilde{u}_{-}\right) \tilde{u}_{-}^{\prime} \tilde{\varphi}_{r}^{\prime}+\left(a-f\left(\tilde{u}_{-}\right)\right) \tilde{\varphi}_{r}\right) \operatorname{det} J \mathrm{~d} X-C \tilde{\varphi}_{r}(0), \tag{52}\\
& \tilde{J}_{r, s}^{(e)}=\int_{-1}^{1}\left(\alpha^{\prime}\left(\tilde{u}_{-}\right) \tilde{u}_{-}^{\prime} \tilde{\varphi}_{r}^{\prime} \tilde{\varphi}_{s}+\alpha\left(\tilde{u}_{-}\right) \tilde{\varphi}_{r}^{\prime} \tilde{\varphi}_{s}^{\prime}+\left(a-f\left(\tilde{u}_{-}\right)\right) \tilde{\varphi}_{r} \tilde{\varphi}_{s}\right) \operatorname{det} J \mathrm{~d} X, \tag{53}
\end{align*}
$$

ith $r, s \in I_{d}$ runs over the local degrees of freedom. In the above formulas, ${ }_{-}(X)=\sum_{r} \tilde{c}_{-r} \tilde{\varphi}_{r}(X)$ is the finite element expansion of u_{-}over the current 311.

Many finite element programs require the user to provide F_{i} and $J_{i, j}$. Some rograms, like FEniCS ${ }^{2}$, are capable of automatically deriving $J_{i, j}$ if F_{i} is〕ecified.
lirichlet conditions. Incorporation of the Dirichlet values by assembling ontributions from all degrees of freedom and then modifying the linear system
can be obviously be applied to Picard iteration as that method involves a s linear system. In the Newton system, however, the unknown is a co δu to the solution. Dirichlet conditions are implemented by inserting the initial guess u_{-}for the Newton iteration and implementing $\delta u_{i}=$ known degrees of freedom. The manipulation of the linear system follows the algorithm in the linear problems, the only difference being that the values are zero.

5 Multi-dimensional PDE problems

5.1 Finite element discretization

The derivation of F_{i} and $J_{i, j}$ in the 1D model problem is easily genera multi-dimensional problems. For example, Backward Euler discretizatio PDE

$$
u_{t}=\nabla \cdot(\alpha(u) \nabla u)+f(u)
$$

gives the nonlinear time-discrete PDEs

$$
u^{n}-\Delta t \nabla \cdot\left(\alpha\left(u^{n}\right) \nabla u^{n}\right)+f\left(u^{n}\right)=u^{n-1},
$$

or with u^{n} simply as u and u^{n-1} as u_{1},

$$
u-\Delta t \nabla \cdot\left(\alpha\left(u^{n}\right) \nabla u\right)-\Delta t f(u)=u_{1}
$$

The variational form, assuming homogeneous Neumann conditions for si becomes

$$
\int_{\Omega}\left(u v+\Delta t \alpha(u) \nabla u \cdot \nabla v-\Delta t f(u) v-u_{1} v\right) \mathrm{d} x
$$

The nonlinear algebraic equations follow from setting $v=\psi_{i}$ and us representation $u=\sum_{k} c_{k} \psi_{k}$, which we just write as

$$
F_{i}=\int_{\Omega}\left(u \psi_{i}+\Delta t \alpha(u) \nabla u \cdot \nabla \psi_{i}-\Delta t f(u) \psi_{i}-u_{1} \psi_{i}\right) \mathrm{d} x
$$

Picard iteration needs a linearization where we use the most recent approx u_{-}to u in α and f :

$$
F_{i} \approx \hat{F}_{i}=\int_{\Omega}\left(u \psi_{i}+\Delta t \alpha\left(u_{-}\right) \nabla u \cdot \nabla \psi_{i}-\Delta t f\left(u_{-}\right) \psi_{i}-u_{1} \psi_{i}\right) \mathrm{d} x
$$

The equations $\hat{F}_{i}=0$ are now linear and we can easily derive a linear sy: the unknown coefficients $\left\{c_{i}\right\}_{i \in \mathcal{I}_{s}}$ by inserting $u=\sum_{j} c_{j} \psi_{j}$.

In Newton's method we need to evaluate F_{i} with the known value u

$$
\begin{equation*}
F_{i} \approx \hat{F}_{i}=\int_{\Omega}\left(u_{-} \psi_{i}+\Delta t \alpha\left(u_{-}\right) \nabla u_{-} \cdot \nabla \psi_{i}-\Delta t f\left(u_{-}\right) \psi_{i}-u_{1} \psi_{i}\right) \mathrm{d} x \tag{58}
\end{equation*}
$$

he Jacobian is obtained by differentiating (56) and using $\partial u / \partial c_{j}=\psi_{j}$:

$$
\begin{gather*}
J_{i, j}=\frac{\partial F_{i}}{\partial c_{j}}=\int_{\Omega}\left(\psi_{j} \psi_{i}+\Delta t \alpha^{\prime}(u) \psi_{j} \nabla u \cdot \nabla \psi_{i}+\Delta t \alpha(u) \nabla \psi_{j} \cdot \nabla \psi_{i}-\right. \\
\left.\Delta t f^{\prime}(u) \psi_{j} \psi_{i}\right) \mathrm{d} x \tag{59}
\end{gather*}
$$

he evaluation of $J_{i, j}$ as the coefficient matrix in the linear system in Newton's lethod applies the known approximation u_{-}for u :

$$
\begin{gather*}
J_{i, j}=\int_{\Omega}\left(\psi_{j} \psi_{i}+\Delta t \alpha^{\prime}\left(u_{-}\right) \psi_{j} \nabla u_{-} \cdot \nabla \psi_{i}+\Delta t \alpha\left(u_{-}\right) \nabla \psi_{j} \cdot \nabla \psi_{i}-\right. \\
\left.\Delta t f^{\prime}\left(u_{-}\right) \psi_{j} \psi_{i}\right) \mathrm{d} x \tag{60}
\end{gather*}
$$

opefully, these example also show how convenient the notation with u and - is: the unknown to be computed is always u and linearization by inserting nown (previously computed) values is a matter of adding an underscore. One mn take great advantage of this quick notation in software [2].

Jon-homogeneous Neumann conditions. A natural physical flux condion for the PDE (54) takes the form of a non-homogeneous Neumann condition

$$
\begin{equation*}
-\alpha(u) \frac{\partial u}{\partial n}=g, \quad x \in \partial \Omega_{N} \tag{61}
\end{equation*}
$$

here g is a prescribed function and $\partial \Omega_{N}$ is a part of the boundary of the domain \therefore From integrating $\int_{\Omega} \nabla \cdot(\alpha \nabla u) \mathrm{d} x$ by parts, we get a boundary term

$$
\begin{equation*}
\int_{\partial \Omega_{N}} \alpha(u) \frac{\partial u}{\partial u} v \mathrm{~d} s \tag{62}
\end{equation*}
$$

aserting the condition (61) into this term results in an integral over prescribed alues: - $\int_{\partial \Omega_{N}} g v \mathrm{~d} s$. The nonlinearity in the $\alpha(u)$ coefficient condition (61) rerefore does not contribute with a nonlinearity in the variational form.
iobin conditions. Heat conduction problems often apply a kind of Newton's soling law, also known as a Robin condition, at the boundary:

$$
\begin{equation*}
-\alpha(u) \frac{\partial u}{\partial u}=h_{T}(u)\left(u-T_{s}(t)\right), \quad x \in \partial \Omega_{R} \tag{63}
\end{equation*}
$$

here $h_{T}(u)$ is a heat transfer coefficient between the body (Ω) and its sur,undings, T_{s} is the temperature of the surroundings, and $\partial \Omega_{R}$ is a part of the
boundary where this Robin condition applies. The boundary integral (becomes

$$
\int_{\partial \Omega_{R}} h_{T}(u)\left(u-T_{s}(T)\right) v \mathrm{~d} s
$$

by replacing $\alpha(u) \partial u / \partial u$ by $h_{T}\left(u-T_{s}\right)$. Often, $h_{T}(u)$ can be taken as c and then the boundary term is linear in u, otherwise it is nonlinear and con to the Jacobian in a Newton method. Linearization in a Picard metl typically use a known value in h_{T}, but keep the u in $u-T_{s}$ as ur $h_{T}\left(u_{-}\right)\left(u-T_{s}(t)\right)$.

5.2 Finite difference discretization

A typical diffusion equation

$$
u_{t}=\nabla \cdot(\alpha(u) \nabla u)+f(u),
$$

can be discretized by (e.g.) a Backward Euler scheme, which in 2D written

$$
\left[D_{t}^{-} u=D_{x} \bar{\alpha}^{x} D_{x} u+D_{y} \bar{\alpha}^{y} D_{y} u+f(u)\right]_{i, j}^{n} .
$$

We do not dive into details of boundary conditions now. Dirichlet and N conditions are handled as in linear diffusion problems.

Writing the scheme out, putting the unknown values on the left-he and known values on the right-hand side, and introducing $\Delta x=\Delta y=h$ some writing, one gets

$$
\begin{aligned}
u_{i, j}^{n}- & \frac{\Delta t}{h^{2}}\left(\frac{1}{2}\left(\alpha\left(u_{i, j}^{n}\right)+\alpha\left(u_{i+1, j}^{n}\right)\right)\left(u_{i+1, j}^{n}-u_{i, j}^{n}\right)\right. \\
& -\frac{1}{2}\left(\alpha\left(u_{i-1, j}^{n}\right)+\alpha\left(u_{i, j}^{n}\right)\right)\left(u_{i, j}^{n}-u_{i-1, j}^{n}\right) \\
& +\frac{1}{2}\left(\alpha\left(u_{i, j}^{n}\right)+\alpha\left(u_{i, j+1}^{n}\right)\right)\left(u_{i, j+1}^{n}-u_{i, j}^{n}\right) \\
& \left.-\frac{1}{2}\left(\alpha\left(u_{i, j-1}^{n}\right)+\alpha\left(u_{i, j}^{n}\right)\right)\left(u_{i, j}^{n}-u_{i-1, j-1}^{n}\right)\right)-\Delta t f\left(u_{i, j}^{n}\right)=u_{i, .}^{n} .
\end{aligned}
$$

This defines a nonlinear algebraic system $A(u) u=b(u)$. A Picard i applies old values u_{-}in α and f, or equivalently, old values for u in A $b(u)$. The result is a linear system of the same type as those arisis $u_{t}=\nabla \cdot(\alpha(\boldsymbol{x}) \nabla u)+f(\boldsymbol{x}, t)$.

Newton's method is as usual more involved. We first define the n algebraic equations to be solved, drop the superscript n, and introduc u^{n-1} :

$$
\begin{aligned}
\grave{i}, j= & u_{i, j}^{n}-\frac{\Delta t}{h^{2}}(\\
& \frac{1}{2}\left(\alpha\left(u_{i, j}^{n}\right)+\alpha\left(u_{i+1, j}^{n}\right)\right)\left(u_{i+1, j}^{n}-u_{i, j}^{n}\right)-\frac{1}{2}\left(\alpha\left(u_{i-1, j}^{n}\right)+\alpha\left(u_{i, j}^{n}\right)\right)\left(u_{i, j}^{n}-u_{i-1, j}^{n}\right)+ \\
& \left.\frac{1}{2}\left(\alpha\left(u_{i, j}^{n}\right)+\alpha\left(u_{i, j+1}^{n}\right)\right)\left(u_{i, j+1}^{n}-u_{i, j}^{n}\right)-\frac{1}{2}\left(\alpha\left(u_{i, j-1}^{n}\right)+\alpha\left(u_{i, j}^{n}\right)\right)\left(u_{i, j}^{n}-u_{i-1, j-1}^{n}\right)\right) \\
& \Delta t f\left(u_{i, j}^{n}\right)-u_{i, j}^{n-1}=0 .
\end{aligned}
$$

is convenient to work with two indices i and j in 2D finite difference discretizaons, but it complicates the derivation of the Jacobian, which then gets four ıdices. The left-hand expression of an equation $F_{i, j}=0$ is to be differentiated ith respect to each of the unknowns $u_{r, s}$ (short for $u_{r, s}^{n}$), $r \in \mathcal{I}_{x}, s \in \mathcal{I}_{y}$,

$$
J_{i, j, r, s}=\frac{\partial F_{i, j}}{\partial u_{r, s}} .
$$

tiven i and j, only a few r and s indices give nonzero contribution since $F_{i, j}$ ontains $u_{i \pm 1, j}, u_{i, j \pm 1}$, and $u_{i, j}$. Therefore, $J_{i, j, r, s}$ is very sparse and we can set p the left-hand side of the Newton system as

$$
\begin{aligned}
r_{i, j, r, s} \delta u_{r, s}=J_{i, j, i, j} \delta u_{i, j} & +J_{i, j, i-1, j} \delta u_{i-1, j}+J_{i, j, i+1, j} \delta u_{i+1, j}+J_{i, j, i, j-1} \delta u_{i, j-1} \\
& +J_{i, j, i, j+1} \delta u_{i, j+1}
\end{aligned}
$$

he specific derivatives become

$$
\begin{aligned}
J_{i, j, i-1, j} & =\frac{\partial F_{i, j}}{\partial u_{i-1, j}} \\
& =\frac{\Delta t}{h^{2}}\left(\alpha^{\prime}\left(u_{i-1, j}\right)\left(u_{i, j}-u_{i-1, j}\right)+\alpha\left(u_{i-1, j}\right)(-1)\right) \\
J_{i, j, i+1, j} & =\frac{\partial F_{i, j}}{\partial u_{i+1, j}} \\
& =\frac{\Delta t}{h^{2}}\left(-\alpha^{\prime}\left(u_{i+1, j}\right)\left(u_{i+1, j}-u_{i, j}\right)-\alpha\left(u_{i-1, j}\right)\right) \\
J_{i, j, i, j-1} & =\frac{\partial F_{i, j}}{\partial u_{i, j-1}} \\
& =\frac{\Delta t}{h^{2}}\left(\alpha^{\prime}\left(u_{i, j-1}\right)\left(u_{i, j}-u_{i, j-1}\right)+\alpha\left(u_{i, j-1}\right)(-1)\right) \\
J_{i, j, i, j+1} & =\frac{\partial F_{i, j}}{\partial u_{i, j+1}} \\
& =\frac{\Delta t}{h^{2}}\left(-\alpha^{\prime}\left(u_{i, j+1}\right)\left(u_{i, j+1}-u_{i, j}\right)-\alpha\left(u_{i, j-1}\right)\right)
\end{aligned}
$$

he $J_{i, j, i, j}$ entry has a few more terms. Inserting u_{-}for u in the J formula and ren forming $J \delta u=-F$ gives the linear system to be solved in each Newton eration.

5.3 Continuation methods

Picard iteration or Newton's method may diverge when solving PDEs wit nonlinearities. Relaxation with $\omega<1$ may help, but in highly nonlinear p it can be necessary to introduce a continuation parameter Λ in the F $\Lambda=0$ gives a version of the problem that is easy to solve, while $\Lambda=1$ is tr problem. The idea is then to increase Λ in steps, $\Lambda_{0}=0, \Lambda_{1}<\cdots<\Lambda_{n}=$ use the solution from the problem with Λ_{i-1} as initial guess for the iter ε the problem corresponding to Λ_{i}.

The continuation method is easiest to understand through an ϵ Suppose we intend to solve

$$
-\nabla \cdot\left(\|\nabla u\|^{q} \nabla u\right)=f
$$

which is an equation modeling the flow of a non-Newtonian fluid th channel or pipe. For $q=0$ we have the Poisson equation (correspond Newtonian fluid) and the problem is linear. A typical value for pseudc fluids may be $q_{n}=-0.8$. We can introduce the continuation parameter Λ such that $q=q_{n} \Lambda$. Let $\left\{\Lambda_{\ell}\right\}_{\ell=0}^{n}$ be the sequence of Λ values in [0, corresponding q values $\left\{q_{\ell}\right\}_{\ell=0}^{n}$. We can then solve a sequence of problf

$$
-\nabla \cdot\left(\|\nabla u\|_{\ell}^{q} \nabla u^{\ell}\right)=f, \quad \ell=0, \ldots, n
$$

where the initial guess for iterating on u^{ℓ} is the previously computed: $u^{\ell-1}$. If a particular Λ_{ℓ} leads to convergence problems, one may try a increase in $\Lambda: \Lambda_{*}=\frac{1}{2}\left(\Lambda_{\ell-1}+\Lambda_{\ell}\right)$, and repeat halving the step in convergence is reestablished.

6 Exercises

Problem 1: Determine if equations are nonlinear or :

Classify each term in the following equations as linear or nonlinear. Assu a and b are unknown numbers and that u and v are unknown functic other symbols are known quantities.

1. $b^{2}=1$
2. $a+b=1, a-2 b=0$
3. $m u^{\prime \prime}+\beta\left|u^{\prime}\right| u^{\prime}+c u=F(t)$
4. $u_{t}=\alpha u_{x x}$
5. $u_{t t}=c^{2} \nabla^{2} u$
6. $u_{t}=\nabla \cdot(\alpha(u) \nabla u)+f(x, y)$
7. $u_{t}+f(u)_{x}=0$
8. $\boldsymbol{u}_{t}+\boldsymbol{u} \cdot \nabla \boldsymbol{u}=-\nabla p+r \nabla^{2} \boldsymbol{u}, \nabla \cdot \boldsymbol{u}=0(\boldsymbol{u}$ is a vector field $)$
9. $u^{\prime}=f(u, t)$
10. $\nabla^{2} u=\lambda e^{u}$

'roblem 2: Linearize a nonlinear vibration ODE

'onsider a nonlinear vibration problem

$$
\begin{equation*}
m u^{\prime \prime}+b u^{\prime}\left|u^{\prime}\right|+s(u)=F(t), \tag{64}
\end{equation*}
$$

here $m>0$ is a constant, $b \geq 0$ is a constant, $s(u)$ a possibly nonlinear function € u, and $F(t)$ is a prescribed function. Such models arise from Newton's second tw of motion in mechanical vibration problems where $s(u)$ is a spring or restoring rce, $m u^{\prime \prime}$ is mass times acceleration, and $b u^{\prime}\left|u^{\prime}\right|$ models water or air drag.
Approximate $u^{\prime \prime}$ by a centered finite difference $D_{t} D_{t} u$, and use a centered ifference $D_{t} u$ for u^{\prime} as well. Observe then that $s(u)$ does not contribute to taking the resulting algebraic equation at a time level nonlinear. Use a geometric sean to linearize the quadratic nonlinearity arising from the term $b u^{\prime}\left|u^{\prime}\right|$.

'xercise 3: Find the sparsity of the Jacobian

onsider a typical nonlinear Laplace term like $\nabla \cdot \alpha(u) \nabla u$ discretized by centered nite differences. Explain why the Jacobian corresponding to this term has the me sparsity pattern as the matrix associated with the corresponding linear srm $\alpha \nabla^{2} u$.
[int. Set up the unknowns that enter the difference stencil and find the Jarsity of the Jacobian that arise from the stencil.
Filename: nonlin_sparsity_Jacobian.pdf.

'xercise 4: Newton's method for linear problems

uppose we have a linear system $F(u)=A u-b=0$. Apply Newton's method , this system, and show that the method converges in one iteration. Filename: onlin_Newton_linear.pdf.

うxercise 5: Differentiate a highly nonlinear term

he operator $\nabla \cdot(\alpha(u) \nabla u)$ with $\alpha(u)=\|\nabla u\|^{q}$ appears in several physical roblems, especially flow of Non-Newtonian fluids. In a Newton method one has , carry out the differentiation $\partial \alpha(u) / \partial c_{j}$, for $u=\sum_{k} c_{k} \psi_{k}$. Show that

$$
\frac{\partial}{\partial u_{j}}\|\nabla u\|^{q}=q\|\nabla u\|^{q-2} \nabla u \cdot \nabla \psi_{j} .
$$

ilename: nonlin_differentiate.pdf.

Problem 6: Discretize a 1D problem with a nonlinea

ficient

We consider the problem

$$
\left(\left(1+u^{2}\right) u^{\prime}\right)^{\prime}=1, \quad x \in(0,1), \quad u(0)=u(1)=0 .
$$

a) Discretize (65) by a centered finite difference method on a uniform
b) Discretize (65) by a finite element method with P1 of equal leng the Trapezoidal method to compute all integrals. Set up the resulting system.

Filename: nonlin_1D_coeff_discretize.pdf.

Problem 7: Linearize a 1D problem with a nonlineas ficient

We have a two-point boundary value problem

$$
\left(\left(1+u^{2}\right) u^{\prime}\right)^{\prime}=1, \quad x \in(0,1), \quad u(0)=u(1)=0 .
$$

a) Construct a Picard iteration method for (66) without discretizing j
b) Apply Newton's method to (66) without discretizing in space.
c) Discretize (66) by a centered finite difference scheme. Construct ε method for the resulting system of nonlinear algebraic equations.
d) Discretize (66) by a centered finite difference scheme. Define the of nonlinear algebraic equations, calculate the Jacobian, and set up N method for solving the system.

Filename: nonlin_1D_coeff_linearize.pdf.

Problem 8: Finite differences for the 1D Bratu prob]

We address the so-called Bratu problem

$$
u^{\prime \prime}+\lambda e^{u}=0, \quad x \in(0,1), \quad u(0)=u(1)=0,
$$

where λ is a given parameter and u is a function of x. This is a widely use problem for studying numerical methods for nonlinear differential eq The problem (67) has an exact solution

$$
u(x)=-2 \ln \left(\frac{\cosh \left(\left(x-\frac{1}{2}\right) \theta / 2\right)}{\cosh (\theta / 4)}\right)
$$

here θ solves

$$
\theta=\sqrt{2 \lambda} \cosh (\theta / 4) .
$$

here are two solutions of (67) for $0<\lambda<\lambda_{c}$ and no solution for $\lambda>\lambda_{c}$. For $=\lambda_{c}$ there is one unique solution. The critical value λ_{c} solves

$$
1=\sqrt{2 \lambda_{c}} \frac{1}{4} \sinh \left(\theta\left(\lambda_{c}\right) / 4\right)
$$

numerical value is $\lambda_{c}=3.513830719$.
) Discretize (67) by a centered finite difference method.
) Set up the nonlinear equations $F_{i}\left(u_{0}, u_{1}, \ldots, u_{N_{x}}\right)=0$ from a). Calculate re associated Jacobian.

Filename: nonlin_1D_Bratu_fd.pdf.
'roblem 9: Integrate functions of finite element expansions
le shall investigate integrals on the form

$$
\begin{equation*}
\int_{0}^{L} f\left(\sum_{k} u_{k} \varphi_{k}(x)\right) \varphi_{i}(x) \mathrm{d} x \tag{68}
\end{equation*}
$$

here $\varphi_{i}(x)$ are P1 finite element basis functions and u_{k} are unknown coefficients, ore precisely the values of the unknown function u at nodes x_{k}. We introduce a ode numbering that goes from left to right and also that all cells have the same ngth h. Given i, the integral only gets contributions from $\left[x_{i-1}, x_{i+1}\right]$. On this iterval $\varphi_{k}(x)=0$ for $k<i-1$ and $k>i+1$, so only three basis functions will ontribute:

$$
\sum_{k} u_{k} \varphi_{k}(x)=u_{i-1} \varphi_{i-1}(x)+u_{i} \varphi_{i}(x)+u_{i+1} \varphi_{i+1}(x)
$$

he integral (68) now takes the simplified form

$$
\int_{x_{i-1}}^{x_{i+1}} f\left(u_{i-1} \varphi_{i-1}(x)+u_{i} \varphi_{i}(x)+u_{i+1} \varphi_{i+1}(x)\right) \varphi_{i}(x) \mathrm{d} x .
$$

plit this integral in two integrals over cell L (left), $\left[x_{i-1}, x_{i}\right]$, and cell R (right), $\left.s_{i}, x_{i+1}\right]$. Over cell L, u simplifies to $u_{i-1} \varphi_{i-1}+u_{i} \varphi_{i}$ (since $\varphi_{i+1}=0$ on this ${ }^{2 l l}$), and over cell R, u simplifies to $u_{i} \varphi_{i}+u_{i+1} \varphi_{i+1}$. Make a sympy program lat can compute the integral and write it out as a difference equation. Give re $f(u)$ formula on the command line. Try out $f(u)=u^{2}, \sin u, \exp u$.

Hint. Introduce symbols u_i, u_im1, and u_ip1 for u_{i}, u_{i-1}, and \imath spectively, and similar symbols for x_{i}, x_{i-1}, and x_{i+1}. Find formulas basis functions on each of the two cells, make expressions for u on the t integrate over each cell, expand the answer and simplify. You can mak code and render it via http://latex.codecogs.com. Here are some app Python statements for the latter purpose:
from sympy import *
\# expr_i holdes the integral as a sympy expression
latex_code = latex(expr_i, mode='plain')
\# Replace u_im1 sympy symbol name by latex symbol u \{i-1
latex_code = latex_code.replace('im1', '\{i-1\}')
\# Replace u_ip1 sympy symbol name by latex symbol u_\{i+1\}
latex_code = latex_code.replace('ip1', '\{i+1\}')
\# Escape (quote) latex_code so it can be sent as HTML text import cgi
html_code = cgi.escape(latex_code)
\# Make a file with HTML code for displaying the LaTeX formula $\mathrm{f}=$ open('tmp.html', 'w')
\# Include an image that can be clicked on to yield a new \# page with an interactive editor and display area where the \# formula can be further edited
text = """

""" \% vars()
f.write(text)
f.close()

The formula is displayed by loading tmp.html into a web browser Filename: fu_fem_int.py.

Problem 10: Finite elements for the 1D Bratu probl

We address the same 1D Bratu problem as described in Problem 8.
a) Discretize (10) by a finite element method using a uniform mesh elements. Use a group finite element method for the e^{u} term.
b) Set up the nonlinear equations $F_{i}\left(u_{0}, u_{1}, \ldots, u_{N_{x}}\right)=0$ from a). C the associated Jacobian.

Filename: nonlin_1D_Bratu_fe.pdf.

Problem 11: Derive the Newton system from a varia form

We study the multi-dimensional heat conduction PDE

$$
\varrho c(T) T_{t}=\nabla \cdot(k(T) \nabla T)
$$

1 a spatial domain Ω, with a nonlinear Robin boundary condition

$$
-k(T) \frac{\partial T}{\partial n}=h(T)\left(T-T_{s}(t)\right)
$$

t the boundary $\partial \Omega$. The primary unknown is the temperature T, ϱ is the density E the solid material, $c(T)$ is the heat capacity, $k(T)$ is the heat conduction, $h(T)$ a heat transfer coefficient, and $T_{s}(T)$ is a possibly time-dependent temperature \& the surroundings.
) Use a Backward Euler or Crank-Nicolson time discretization and derive the ariational form for the spatial problem to be solved at each time level.
) Define a Picard iteration method from the variational form at a time level.
) Derive expressions for the matrix and the right-hand side of the equation rstem that arises from applying Newton's method to the variational form at a me level.
) Apply the Backward Euler or Crank-Nicolson scheme in time first. Derive Newton method at the PDE level. Make a variational form of the resulting DE at a time level.

Filename: nonlin_heat_Newton.pdf.

'roblem 12: Derive algebraic equations for nonlinear 1D eat conduction

onsider a 1D heat conduction PDE

$$
\varrho c(T) T_{t}=\left(k(T) T_{x}\right)_{x}
$$

here ϱ is the density of the solid material, $c(T)$ is the heat capacity, T is the mperature, and $k(T)$ is the heat conduction coefficient.

Use a uniform finite element mesh, P1 elements, and the group finite element tethod to derive the algebraic equations arising from the heat conduction PDE
) Discretize the PDE by a finite difference method. Use either a Backward uler or Crank-Nicolson scheme in time.
) Derive the matrix and right-hand side of a Newton method applied to the iscretized PDE

Filename: nonlin_1D_heat_PDE.pdf

Problem 13: Investigate a 1D problem with a continı method
Flow of a pseudo-plastic power-law fluid between two flat plates can be 1 by

$$
\frac{d}{d x}\left(\mu_{0}\left|\frac{d u}{d x}\right|^{n-1} \frac{d u}{d x}\right)=-\beta, \quad u^{\prime}(0)=0, u(H)=0
$$

where $\beta>0$ and $\mu_{0}>0$ are constants. A target value of n may be $n=$
a) Formulate a Picard iteration method directly for the differential e problem.
b) Perform a finite difference discretization of the problem in each iteration. Implement a solver that can compute u on a mesh. Verify \dagger solver gives an exact solution for $n=1$ on a uniform mesh regardless of size.
c) Given a sequence of decreasing n values, solve the problem for using the solution for the previous n as initial guess for the Picard it This is called a continuation method. Experiment with $n=(1,0.6, C$ $n=(1,0.9,0.8, \ldots, 0.2)$ and make a table of the number of Picard it versus n.
d) Derive a Newton method at the differential equation level and di the resulting linear equations in each Newton iteration with the finite di method.
e) Investigate if Newton's method has better convergence properti Picard iteration, both in combination with a continuation method.

References

[1] C. T. Kelley. Iterative Methods for Linear and Nonlinear Equations 1995.
[2] M. Mortensen, H. P. Langtangen, and G. N. Wells. A FEniCS-ba gramming framework for modeling turbulent flow by the Reynolds-a Navier-Stokes equations. Advances in Water Resources, 34(9), 2011

ndex

mntinuation method, 36, 42
xed-point iteration, 6
roup finite element method, 25
atex.codecogs.com web site, 39
nearization
explicit time integration, 5
fixed-point iteration, 6
Picard iteration, 6
successive substitutions, 6
nline rendering of $\mathrm{IAT}_{\mathrm{E}} \mathrm{X}$ formulas, 39
icard iteration, 6
roduct approximation technique, 25
slaxation (nonlinear equations), 10
ngle Picard iteration technique, 7 opping criteria (nonlinear problems), 7,15
ıccessive substitutions, 6

[^0]: ${ }^{1}$ http://tinyurl.com/jvzzcfn/nonlin/logistic.py

